DroidCap: OS Support for Capability-based
Permissions in Android

Abdallah Dawoud
CISPA Helmholtz Center for Information Security
abdallah.dawoud @cispa.saarland

Abstract—We present DROIDCAP, a retrofitting of Android’s
central Binder IPC mechanism to change the way how per-
missions are being represented and managed in the system.
In DROIDCAP, permissions are per-process Binder object-
capabilities. DROIDCAP’s design removes Android’s UID-based
ambient authority and allows the delegation of capabilities
between processes to create least-privileged protection domains
efficiently. With DROIDCAP, we show that object-capabilities
as underlying access control model integrates naturally and
backward-compatible into Android’s stock permission model and
application management. Thus, our Binder capabilities provide
app developers with a new path to gradually adopting app com-
partmentalization, which we showcase at two favorite examples
from the literature, privilege separated advertisement libraries
and least privileged app components.

I. INTRODUCTION

Android, like other mobile platforms, employs an access
control model in which applications (apps) have to request
privileges—permissions in Android’s jargon—to access user
data and system resources. Once granted, those permissions
are assigned to app sandboxes, defined by each apps’ UID in
the system. Thus, the permissions associated with the UID of
each process constrain the process’ access to (system) services,
other apps, or file-system objects.

This design decision to attribute permissions to app sand-
boxes at the level of UIDs combines characteristics from
capability-based access control systems (i.e., the attributes of
the subject and not its identity matter) with those of list-
based access control models (i.e., the UID forms an ambient
authority for all processes executing under the UID). The
existence of an ambient authority on Android has been shown
problematic for the users’ privacy when app developers mix
app code with non-trustworthy code from other origins, where
particularly advertisement libraries have repeatedly exhibited
privacy-intrusive behavior [25], [12], [21], [62], [61] that
exploits the fact that the library code inherits all privileges
from its host app’s UID, i.e., its ambient authority. Moreover,
permissions enforced by the Linux kernel through Linux GIDs,
such as internet or Bluetooth access [6], are statically assigned
at app install-time to the app UID and are hence particularly
hard to manage in a flexible manner that allows easy delegation

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA

ISBN 1-891562-55-X

https://dx.doi.org/10.14722/ndss.2019.23398
www.ndss-symposium.org

Sven Bugiel
CISPA Helmholtz Center for Information Security
bugiel @cispa.saarland

or revocation. We argue that this combination of characteristics
that retains an ambient authority generally impedes efficiently
separating privileges on Android and makes it unnecessarily
hard for developers to efficiently create new, least-privileged
protection domains and adopting app compartmentalization
best-practices. For instance, every component of an app in-
herits its app’s full permission set and also prior works on
privilege separation [52], [59], [71], [29], [18] necessarily have
to set up new UIDs with separate permissions. There exist
some works that refine the authority: for instance, SEAndroid’s
type enforcement [60] assigns security contexts to processes;
different solutions on information flow control (e.g., [45], [46],
[70]) assign security labels to processes; few solutions make
app components the principal for permission enforcement [64],
[57]; and app virtualization [9], [11] can enforce policies per-
process on IPC and syscalls. However, the status quo is amiss
with the practical needs for efficiently enabling privilege sepa-
ration and providing developers with a path for least-privilege
code compartmentalization, as commonly adopted by security-
critical apps [54], [35]. Per-process privileges alone are not
sufficient, but also efficiently creating new protection domains
through delegation and revocation of privileges is key and is
currently not sufficiently supported (see also Section VI).

In this paper, we propose object-capabilities as a way to
achieve per-process permissions together with the efficient
delegation of privileges between processes. Drawing from
past and current experiences on object-capability systems,
we shift Android’s permission model closer to an object-
capability system. Capability-based access control has been
historically around [19], [23], [68], [37], [38], [49]—where it
found use in high-assurance and distributed systems, such as
EROS [58], IBM System/38 [28], iIMAX 432 [33], CAP [48],
or Amoeba [43]—and has recently been proposed for modern
end-user systems, such as a new security feature for conven-
tional systems like UNIX/Linux [65], [20], hybrid systems like
CHERI [66], or new microkernel-based systems like Google’s
Fuchsia [24]. Our solution adds to this recent developments.
We show that an object-capability system not only fits well
to Android’s system model and realizing permissions, but
also how such a model supports app developers in adopt-
ing privilege separation and fine-grained, dynamic permission
management for least-privilege operation on Android more
efficiently.

At the heart of our paradigm shift for representing per-
missions in Android is an extension to Android’s Binder
IPC mechanism. Binder IPC is the primary IPC channel for
communication among all apps and between system services

and apps. Binder allows processes to hold kernel-managed
references (or handles) to remote processes that they can
call via Binder IPC. The fundamental idea of our solution,
called DROIDCAP, is to extend those Binder references to
reflect the privileges against the remote process—a form of
“extended Binder attributes” akin to the concept of “extended
file attributes.” Since Binder references are process-specific,
just like file handles, every reference forms a unique, kernel-
managed “token” that associates a caller process with a remote
process and the caller’s privileges for that particular remote
process. By default, Android allows a free delegation of
Binder references between processes via the Binder kernel
module. We augment this vanilla delegation with 1) poli-
cies that govern how processes can delegate references to
other processes in order to prevent leakage of privileges, and
2) management functionality to support delegation of subsets
of permissions as well as efficient revocation of permissions
from a (delegated) Binder reference. We integrate our Binder-
based capabilities into Android’s app life-cycle management,
permission management, and permission enforcement (e.g.,
within Android’s system services). As a result, in DROIDCAP
we have a permission enforcement that relies entirely on the
Binder references (or tokens) a calling process holds instead
of the caller’s UID (i.e., no UID-based ambient authority).
We also have a clear permission delegation hierarchy between
system and app processes that reflects the stock permission
granting on Android but allows an efficient (re-)delegation
of permissions between processes to create new protection
domains (i.e., new processes with delegated permissions).
To also cater for permissions enforced through Linux’ GIDs
facility, we explain the integration of Capsicum for Linux [20]
into DROIDCAP to represent file-system-related permissions as
Capsicum capabilities for file-handles. In particular, we discuss
the peculiarities of Android’s Zygote that had to be overcome
to put app processes into Capsicum’s capability mode.

As a result, DROIDCAP occupies a previously unexplored
niche in Android security extensions: By blending permissions
with Binder capabilities, we enable efficient least-privilege
operation of processes while preserving existing Android
APIs and the application model. This backward compatibil-
ity presents developers with a path for gradually adopting
capability-oriented permissions and decomposing apps into
components that form a logical app but run with individual
rights. We demonstrate these benefits at the concrete examples
of retrofitting an open source messaging app, called Kontalk.
Evaluation of our solution shows a minimal performance
impact compared to vanilla Android and full backwards com-
patibility to legacy apps.

II. BACKGROUND: ANDROID OS

Android OS uses a modified Linux kernel that supports
an efficient Inter-Process Communication (IPC), called Binder.
Binder is the primary channel for inter-app communication
and talking to (system) services (see Section IV for an in-
depth discussion on the Binder framework). On top of the
kernel exists Android’s application framework, which manages
a wide range of system services and facilitates data sharing
across apps. The system services enrich apps with a variety of
features, such as retrieving GPS location and capturing photos.
Pre-installed system apps extend those features with APIs
that, for example, make phone calls and manage the Contacts.

App (UID=42) System Service/App
< (e.g., TelephonyService)
Proc Proc Y o
(PID=23) (PID=24) a) Service API 3
o
[Activity_1] ||[Activity_2] o — 2
Erra| v | :
NativeLib 3 Privileged functionality
o
syscall — RPC % syscall
|

|
‘ Kernel API (e.g., virtual filesystem) ‘

Discretionary (UID) & Mandatory Access Control (SELinux)

kernel

Binder Kernel Module

‘ Private/Public Resource (e.g., SDCard) ‘ ‘ Privileged Resource (e.g., rild) ‘

Fig. 1. Android’s default security architecture.

Users can further extend their devices’ functionality with third-
party apps. For this work, the most related system services
are: ActivityManagerService (AMS), which controls app’s
life cycle; PackageManagerService (PMS), which maintains
app’s metadata including privileges; LocationManagerService
(LMS), which provides access to the device’s GPS information.

All apps, including the system apps, are composed of four
basic components: 1) Activities are interfaces that manage
user interactions; 2) Services execute long running operations
and can be bound to and invoked by other apps; 3) Content
Providers manage access to data repositories stored in apps;
and 4) Broadcast Receivers receive and handle broadcast
messages from the system and other apps.

Android’s Security Model

Android’s security architecture is depicted in Figure 1. In
Android, all apps and system services/apps are sandboxed.
Each app runs in its (set of) processes and has a private data di-
rectory. This sandbox is defined by the app’s Linux UID, which
is assigned at app install-time, under which the app’s processes
execute and for which Linux discretionary access control
ensures protection of the private directory. Android further
applies the principle of least-privilege per app sandbox. Thus,
to access resources outside their sandbox, apps have to request
and been granted the necessary privileges (”permissions”).
A handful of permissions protect system resources that the app
processes can directly access with syscalls, such as Internet
and Bluetooth sockets. Those permissions are enforced by the
Linux kernel using GIDs, i.e., the UID of an app holding,
for instance, the Internet permission is assigned at install-time
to a Linux GID [6] that has the rights to create/read/write
Internet sockets. The bulk of the permissions—more than 100
for Android Oreo [2]—however, are enforced by the system
services and apps (see top-right corner of Figure 1). Android
applies privilege separation between third party apps and
system apps/services, where access to certain system resources,
e.g., the radio interface layer daemon (rild), is only allowed to
particular system services, like the TelephonyService. Those
services, in turn, expose Binder IPC-callable methods to apps
as part of the application framework API. Thus, apps that want
to make use of those managed system resources, e.g., initiating
a phone call, have to make an RPC via Binder to the service
API, which then checks if the calling app is privileged enough
to request the service, and if so execute on the calling app’s
behalf (i.e., an intentional deputy). The cornerstone of this

enforcement is Binder IPC, which provides the callee with the
UID and PID of the caller. The called service can then consult
the PMS whether the calling UID has the required permission.

Mandatory Access Control: Android’s domain isolation
and privilege separation has been reinforced with SELinux
type enforcement [60], a realization of mandatory access
control. With type enforcement, all subjects (e.g., processes)
and objects (e.g., files) are labeled with a security type and
the allowed interactions between types are defined in a set
of policy rules. On Android, all app and system service
processes execute in distinct domains defined by an assigned
security type, which reinforces Android’s sandboxing and
least-privilege, and hardens the system against exploits. In
contrast to permissions, which are directly exposed to app
developers, who must request them in the app’s manifest file,
and to end users, who must approve the permission requests by
apps, type enforcement is not directly exposed to developers
nor users. The SELinux policies are usually static and can only
be managed through administrative intervention.

Isolated process: Starting from Android v4.1, app
developers are provided limited support for privilege separation
via isolated processes [1]. Isolated processes are Service
components that run under a separate, transient Linux UID
that differs from any existing UID and has a separate SELinux
type. Hence, this service has no access to the app’s private data
directory, does not hold any permissions, and cannot access
any resources on the file-system. Also the middleware services
refuse serving RPC by an isolated process (due to absence of
permissions). To allow the host app to still communicate with
its isolated process, the app can bind to the isolated process
service component to invoke the service’s operation. Isolated
processes only provide an all-or-nothing privilege separation,
i.e., there are no means to fine-tune the privileges of an isolated
process or to grant additional privileges after running it.

Permission delegation: Android supports simple forms
of delegating permissions between apps. First, URI permis-
sions; Data entries in Content Providers are addressed using
URIs (e.g., content://com.android.contacts for data
in the Contacts app) and access to individual entries can be
granted on per-URI basis. Second, Pending Intents; Intents are
the most abstract form of inter-app and intra-app communica-
tion. A Pending Intent is a pre-populated Intent object that can
be passed to another app, similar to a token. An app holding
a Pending Intent can populate the remaining attributes of that
Intent (e.g., payload, receiver) and then send it. The Intent
will be sent with the permissions of its creator app, effectively
allowing apps to temporarily delegate their permissions in a
controlled way to other apps via Intents.

III. RELATED WORK AND MOTIVATION

We present selected works that extended Android’s security
policy and provide an overview of systems using object-
capabilities. We then relate those concepts to Android’s current
permission enforcement to motivate the design of DROIDCAP.

A. Android Security Extensions

Over the last decade, a variety of security solutions for
Android have been brought forward [7], including retrofitting
Android’s permission system and compartmentalizing apps.

Retrofitting Android’s Permissions: Research has early
on investigated Android’s permissions and inter-app commu-
nication [22] and a range of extensions to or retrofittings
of the stock permission system have been proposed. For
instance, Apex [47], Saint [51], CRePE [17], TISSA [72],
and Porscha [50] extend the permission enforcement with
more fine-grained, dynamic, or context-sensitive permissions
to enable better privacy-protection, DRM, or developer-centric
permissions. TrustDroid [14] and XManDroid [13] establish
security domains that are isolated from each other within the
system services/apps and the file-system.

Information Flow Control: A few works added information
flow control (IFC) to Android, which we also pick up again
in our discussion in Section VI. Agquifer [46] allows app
developers to define secrecy restrictions that protect shared
data along user interface flows across apps and uses a custom
Linux Security Module to revoke Internet access to restrict
data sharing automatically. Weir [45] realizes decentralized
IFC using lazy poly-instantiation and floating labels of app
components to separate memory and storage of different se-
curity contexts and allows data owners to set secrecy policies
and control the export of their data to the network using (web)
domain declassification. Maxoid [70] allows data owner app
to securely delegate operations on files and ContentProviders
to data processing apps, which operate on a custom view
of the owner’s state through union file systems/copy-on-write
SQL proxy and taint tracking. It also prevents delegates from
leaking secrets to other apps or the networks by revoking the
necessary rights from the delegate’s app instance. Jia et al. [31]
permit programmers to specify a DIFC policy via (floating)
labels on apps and app components. The system enforces the
DIFC policy at runtime on inter-component communication
between apps and within apps (assuming components run in
separate processes).

Privilege Separation: Another active area of Android secu-
rity research is focused on compartmentalization of apps. The
predominant use-case is advertisement libraries, which have
repeatedly been shown [25], [12], [21], [62], [61] to cause their
host apps to be over-privileged or even to exploit their host
app’s privileges to invade the user’s privacy. Also WebViews
increase an app’s attack surface by allowing untrusted web
content to access device-local resources [41], [16], [39], [32],
[44]. The general approach to privilege separation is to execute
the library or WebView in a distinct sandbox with different
UID and permissions than the host app. AdDroid [52], Ad-
Split [59], CompARTist [29], and AFrame [71] implement this
approach for ad libs; WIRE [18] privilege-separates WebViews
this way; and Layercake [56] supports WebViews and ad libs.
In contrast, we leverage in DROIDCAP built-in features for
compartmentalizing apps (e.g., process manifest attributes of
components) introduce Binder capabilities for efficient, least-
privilege privilege-separation of those compartments.

Instead of compartmentalizing apps, both Compac [64]
and Flexdroid [57] establish in-app privilege separation by
supplying the permission checkpoints in the system services
with the call stack of the callee, which allow those enforcement
points to distinguish call-sites within apps. Other works [10],
[69], [30] use inlined reference monitors (IRM) to establish
in-app privilege separation. The app’s code is rewritten to add
reference monitoring code [10], [69] or redirect permission-

sensitive calls to an external monitor [30] that acts as a filtering
proxy. However, reliability of in-app privilege separation is
questionable [27]. A recent alternative to inlining the reference
monitor is app virtualization [9], [11], which turns the IRM
concept inside out by executing the monitored app as a
sandboxed child process of the monitor app (e.g., an isolated
process), which we also pick up again in Section VI.

B. Object Capabilities

A capability is an unforgeable, tamper-proof, and system-
maintained reference to a (system-maintained) object together
with the capability holder’s access rights on that object [19].
Historically, this has been used to control access to memory
by wrapping memory pointers in capabilities [23], and in more
modern systems (like [58], [36], [63]) capabilities can also
reference (or name) resources that are represented as objects
(e.g., files or event handles). In a capability-based system,
processes can only reference objects for which they have a
capability, and processes should only gain capabilities through
authorized interfaces that release capabilities only to processes
authorized to hold them. By design, capabilities can be easily
passed between processes or protection domains, but capability
transfer should be constrained by a reference monitor [23].

A number of systems have adopted capabilities [68], [37],
(58], [28], [43], [33], [63], [66], [20], [65], [49], [67], [34],
[24]. A few concepts from these related works should be high-
lighted here for the subsequent discussion of our DROIDCAP
design. For instance, those systems build on the principle of
protection domains that are defined by the capabilities a pro-
cess holds. The isolation between the domains can be breached
in a controlled way, by allowing domains to call operations
in other domains and passing sealed capabilities [42] to the
operation to entitle it to make securely use of the caller’s
privileges. Many of the systems build on microkernels, whose
design is amenable to capabilities because microkernels build
on the idea of compartmentalization and message passing.
Most systems manage capabilities in kernel protected locations
and operations on capabilities, including creation, are only pos-
sible through system interfaces. A few systems use a directory,
which is a table of mappings between a capability name and
the actual capability, to allow domains to discover and request
capabilities. Directories can enforce security policies about
which domain can request which capability and they can also
ease the task of (selectively) revoking capabilities [55] when
the directory is the only way for sharing capabilities.

Closest to our work is Capsicum [65], [20], which intro-
duces a lightweight capability framework for BSD [65] and
Linux [20]. Capsicum naturally differs from our solution in the
technical realization considering the focus on different systems
but forms a complementary building block for our DROIDCAP
(see Section IV). Capsicum provides new kernel primitives for
putting processes into a capability-mode, allowing developers
to more easily adopt least-privilege operation of their appli-
cations by compartmentalizing monolithic applications into
logical applications. Processes in capability mode are denied
access to global namespaces, have restricted syscalls, and can
only access file-system objects for which they hold a capability.
File descriptors, which by design have some properties of
capabilities (i.e., unforgeable, delegable tokens of authority
for file objects) are extended with more fine-grained access

rights. Moreover, processes in capability mode receive a UNIX
domain socket for IPC between host application and sandbox.

C. Motivation for Capabilities on Android

Capabilities have been historically considered as a path
to building secure, fail-safe, and flexible protection mod-
els [38]. This argument has recently been picked up for modern
software development [65] and in particular the benefits of
capabilities for supporting app developers in realizing least-
privilege and compartmentalized apps.

Unfortunately, Android’s default security architecture sup-
ports app compartmentalization only poorly. Efficient app
compartmentalization requires the ability to transfer access
rights between processes via a controlled channel, allowing
those processes to conceptually more easily execute with least-
privileges and to efficiently establish (and later delete) new
protection domains [37] that are defined by the delegated
rights. In Android, privileges are bound to the UID as ambient
authority; thus, the creation of new protection domains neces-
sarily entails creating new Linux UIDs and configuring their
privileges at middleware and kernel level (i.e., permissions,
DAC, and SELinux types and policies). UID-based DAC was
designed to protect users from each other and MAC enforces
static, administrator-managed system policies, i.e., neither was
intended to support app compartmentalization efficiently. Re-
lated works that use process and file attributes to enforce
information flow policies support per-process privileges and
privilege delegation along information flows, but have not been
designed for general access control to system services, other
apps, or file-system objects. We discuss those solutions in more
detail in Section VI. A capability-based system as the foun-
dation would instead satisfy the requirements for efficient app
compartmentalization by developers and for flexibly delegating
access rights between protection domains more fittingly.

When comparing the underlying concepts of prior ca-
pability systems with Android’s system design, one notices
remarkable congruence between those two: First, Android
applies a microkernel-like design in user-space where all apps
and services run in their own processes that are connected via
Binder IPC message passing. Second, apps that would like to
make use of system resources have to call methods provided
by the system apps/services. Those IPC-based RPC implicitly
form a switch of the protection domain from app to a system
domain that is privileged enough to access system resources
on the app’s behalf. In contrast to a capability system, no
access rights are being passed on from app to service on
those RPC. Third, Binder IPC references to remote processes
(see next Section IV) are, just like file descriptors, already a
form of kernel-managed capability that can also be passed on
via Binder IPC and that gives their holders the authority to
send IPC messages to the referenced remote process, although
any more fine-grained privilege enforcement is deferred to
the called processes (see permission check in Figure 1). To
discover and retrieve Binder references, the Binder user-space
framework has a central service, ContextManager, which is
akin to a directory service in capability systems. Fourth,
Android’s design intends to give app developers the ability to
delegate permissions to other apps, e.g., URI permissions and
Pending Intents, and to compartmentalize apps, i.e., executing
app components in separate processes and creating isolated

processes. However, this delegation of permissions is on a
per UID basis and is realized by updating centrally managed
access control lists in the app management (i.e., AMS). App
components in separate processes either still execute under
their host apps’ UID (ambient authority) or, in case of isolated
processes, with no privileges at all and without the option for
fine-grained delegation of privileges.

The bottom line is that Android’s design incorporates many
of the concepts from capability systems, however, does not
form a capability system per se by upholding a UID-centered
ambient authority. This prevents app and system developers
from efficiently compartmentalizing their code and adopting
least-privilege. This motivated us to build DROIDCAP, a
retrofitting of Android’s basic representation and management
of permissions that shifts Android closer to an object-capability
system. In DROIDCAP permissions are delegable, per-process
Binder capabilities and no ambient authority exists.

IV. DROIDCAP

We start by stating our design objectives. We then de-
scribe the stock Binder framework and afterward explain how
DROIDCAP extends stock Binder to realize capabilities and
how we integrate them into Android to change the very way
in which permissions are being represented and managed. We
conclude this section with case studies for using capabilities.

A. Design Objectives

Since we deploy capability-based permissions, several ob-
jectives need to be fulfilled to ensure security and efficiency:

O1. Unforgeable, communicable capabilities: Unforgeability
has to hold. Otherwise, processes could easily escalate their
privileges by creating unauthorized capabilities. Capabilities
have to be represented in a form that can be efficiently passed
on between processes of the same or different apps.

02. Revocable capabilities: The system needs to offer the
means to revoke access, either by deleting the capability or
clearing the associated access rights.

03. Controlled creation and delegation: Capabilities should
only be created by authorized system components and only be
given to processes that are authorized to hold them. Since ca-
pabilities in DROIDCAP represent Android permissions, those
system components can be the application framework services
responsible for managing permissions. Further, processes must
only be able to re-delegate capabilities over a system controlled
channel, which is constrained by a robust reference monitor
that prevents re-delegations that would result in processes
holding unauthorized access rights.

04. Efficient creation of protection domains: The system
should support app developers in easily creating new protection
domains, i.e., new processes with custom sets of permissions.

05. Backward compatibility: Capabilities should integrate
into app’s life cycle, mimicking how Android’s permissions
are requested, granted, delegated, revoked, and enforced at
runtime. Instead of requiring a wholesale adaption of apps to
DROIDCAP, app developers should be provided with a path to
gradually adopting capability-based app compartmentalization.

Client process Server process

[Manager |

Invoke
method

binder object

Service

Invoke

service.aid|

method

Proxy
AIDL g
l<— h Stub o
handle (int) compiler > 4
- @
Write method , Invoke stub | Read method [&
parameters v method parameters =
/
libbinder.so / libbinder.so

Serialize
trans. data
into TLS

Issue ioctl \ Read data
syscall N from TLS

.

QUEEE) Locate Binder ref. & node \\\

Issue ioctl
syscall

handle (int) Select a *binder_obj.
binder_node: @ EuS—_y EO_OF'_“ thread binder_proc: @ g g
i R)| £
binder_ref Copy data to > binder_node -~ g

Looper’s TLS

binder_proc (client) binder_proc (server)

Binder driver

Fig. 2. Inter-app communication with Binder IPC.

B. Overview of Binder IPC Framework

Binder forms the primary IPC mechanism for any kind of
IPC in Android. In general, the Binder framework serves two
goals: (i) invoking methods across process boundaries; (ii) se-
curely conveying caller’s identity to the callee, facilitating a
high-level access control based on permissions (see Section II).

The Binder framework consists of three main components
(see Figure 2): The Binder driver, a userspace library (lib-
binder), and APIs of the application framework that build
on top of libbinder. An optional component is the AIDL
compiler, which generates Stub and Proxy Java classes from
interface definitions written in the Android Interface Definition
Language (AIDL) to provide app developers with a high-level
abstraction of the low-level Binder operations. In the following,
we explain the components of direct relevance to DROIDCAP.

1) Binder Driver and Binder Transactions: The Binder
driver mediates all Binder IPC interactions facilitating the
client-server architecture. Processes that use Binder IPC have
to first register with the driver. Server processes register looper
threads that block waiting for requests to handle, while clients
register threads that are used to initiate IPC requests. All
communication between threads and the driver are ioctl system
calls that carry transaction data including targeted server and
payload. The driver copies the transaction data from the client’s
thread-local storage (TLS) to the server’s TLS and similarly
transfer any result back. When a process registers itself, the
driver creates a particular data structure for that process, called
binder_proc, and stores all information related to the process’
Binder operations inside this data structure. This binder_proc
data structure is also called a process’ Binder context.

To mediate IPC transactions, the driver introduces a level
of reference indirection by issuing Binder handles to clients.
Every handle designates a server’s Binder service. The Binder
handle is a 32-bit integer value that is unique per process and
identifies a kernel-level data structure, called Binder reference
(binder_ref), stored in client process’ Binder context. Each
Binder reference maintains a one-to-one mapping to a server’s
data structure, called Binder node (binder_node) stored in
server’s Binder context. The Binder node keeps a pointer to an
object stored in server process’ address space, called Binder
object, which wraps the service that is callable via Binder

IPC. A process can have precisely one Binder handle (or
binder_ref) for each unique Binder object (or binder_node).
Each process can be both a client to many servers and a server
to many Binder services. Therefore, its Binder context has to
hold a tree of Binder references and a tree for Binder nodes.
When a process dies, its Binder context is deleted.

By design, Binder allows Binder objects and handles to
be passed on to other processes. The Binder driver detects
transaction data that carries Binder objects as payload and
creates a Binder reference in the recipient’s Binder context
for each transferred Binder object and passes the recipient
the corresponding Binder handle, which can then be used
by the recipient to invoke the referenced Binder object. This
design preserves the unique identity of Binder objects such
that they only exist in servers’ address spaces. The same
behavior takes place when transferring Binder handles, where
the recipient receives a handle for a new Binder reference that
points to the same Binder object as the transferred Binder
handle. This guarantees that each process has its own set of
references. Additionally, transferring Binder handles by means
other than Binder IPC renders the handles meaningless as
the corresponding kernel-level data structures for the recipient
process will not be created, and dereferencing such Binder
handles would always fail. As such, Binder handles form a
kind of simple IPC capability that enables their holders to send
IPC messages to the process of the referenced Binder object.

During a transaction, the driver injects the sender’s UID
and PID into the transaction data. The identity is provided
by the driver, hence, forming a trust anchor for permission
enforcement, where the UID is used to check the sender’s
permissions (see Figure 1).

2) Proxy & Stub Objects: Proxy and Stub objects imple-
ment a contract for remotely calling methods of a service. The
Proxy is a client-side object that is used to marshal parameters,
initiate requests to a server-side object—the Stub—and then
unmarshal returned results. At the server’s side, the Stub
wraps a remote Binder service and unmarshals invocation
parameters, invokes the actual implementation of the service
method, marshals the result, and sends it back to the Proxy. At
the heart of the Proxy object is a Binder handle, whose value
is injected in all transaction data via this Proxy to designate
the remote Binder object. The Android SDK provides Proxies
for all application framework services, wrapped in easy-to-use
Manager classes, e.g., LocationManager or ActivityManager,
that can be retrieved at runtime (see next section).

C. Management of Binder Objects

Since it is impractical to pre-populate processes with han-
dles of all Binder objects in the system, client processes have to
request Binder handles at runtime. To ease the discovery and
request of handles, system services implement the logistics
for registering, storing, and handing out Binder handles. In
Android, two central services take on this role: The Context
Manager (CM) for handles of system services, and Activity
Manager Service (AMS) for handles of Content Providers and
app-provided Services. Thus, CM and AMS are comparable to
directories in capability systems.

Both CM and AMS run on dedicated processes— ser-
vicemanager and system_server—and provide their services

via Binder IPC. Thus, the Binder handles of both services
must be a priori known, or at least, easily obtainable. The
AMS is a system service that is registered with the CM and,
hence, its handle can be retrieved through the CM. The CM,
in turn, is assigned a globally reserved, well-known Binder
handle of 0. The Binder driver delivers all transactions with
a O-handle as target to the CM. Thus, processes can use the
CM to register their services and to request handles to other
registered services. Figure 3 illustrates this service registration
and discovery in more detail. We defer the explanation of
DROIDCAP modifications in that figure until Section IV-D.

1) Binder Object Registration: To expose a Binder object
via IPC to other processes the host process has to register
it with CM (or AMS) to allow other processes to retrieve
its handle. For example, registering a system service with
CM (@ and @) is done using the addService method of
ServiceManager where the Binder object and service name are
passed as method parameters. The Binder driver detects that a
Binder object is being transferred and creates a corresponding
Binder reference in CM’s Binder context before copying the
transaction data along with the new handle to the CM process.
In turn, the CM adds a new entry for the registered service
in a local key-value store of service names and their Binder
handles. Registering a Binder object of a Content Provider ()
is conceptually identically, except that it is the AMS whose
Binder handle needs to be discovered first in order to register
the Content Provider under its URI with publishProvider.

2) Binder Handle Discovery: Two SDK APIs, namely
getSystemService and getContentResolver, are used to retrieve
Binder handles of system services and Content Providers,
respectively. In general, what returns from those APIs is a
Manager object that uses a pre-compiled Proxy that embeds
a Binder handle to the remote Binder object. For example,
calling getSystemService with "location” as a parameter (€))
issues a Binder transaction to the CM and finally returns a
LocationManager object that can be used later on to invoke
operations of the remote LocationManagerService (LMS). At
the kernel level, the Binder driver detects that a Binder handle
is being transferred (from CM to app), therefore it locates the
associated Binder reference in CM’s Binder context, inserts a
new copy of the Binder reference into app’s Binder context,
injects the new Binder handle into the data buffer of the
transaction data, and finally copies it back to app’s TLS.
Android’s SDK retrieves the Binder handle, builds a Proxy
and Manager around it, and returns the Manager object as
result of getSystemService. The same flow goes for retrieving
handles of Content Providers requested in getContentResolver
(@), except that the AMS returns the handle.

3) Binder Handle Invocation: When a method of a Man-
ager is called (@), the contained Proxy marshals the method
parameters and passes the data to the Binder userspace library
(see also Figure 2). The library builds the transaction data,
injects the Binder handle embedded in the Proxy object as the
target’s handle of the transaction data, and write the transaction
to the driver. The Binder driver uses the transaction’s Binder
handle to locate the Binder reference in client’s Binder context.
This Binder reference points to the server’s Binder object. The
driver injects the client’s UID and PID into the transaction data
and copies the transaction data into the TLS of the server’s
process. The server’s Binder userspace library and Stub take

Contacts Location Activity Context Binder App’s
Content Manager Manager Manager . pp
. A : : Driver Process
Provider Service Service Service
1 <
Aw ServiceManager.addService(binderObject, “activity”) }—) 'g
Create Binder nodes in Binder g
Forward handle [context of host process and create)
w ServiceManager.addService(binderObject, “location”) }—) { . } Binder reference in Binder context 3
I of servicemanager (for system 3
. 3
4& { . } 4ActivityManager.publishProvider(binderobj, “uri://contacts")} Services) or system_server (for LQ
| Content Providers) 2
(_JBuiId proxy based on handle abstraction (IBinder object) & return itLA/ 3
Resolve handle & transfer P} getSystemService(“location”)
transaction data target’s TLS
[Get handle for “location” service >
% Return handle }—)ﬁCreale Binder reference in the Binder context of the app’s proc.] q>)
Get handle AND set caller’s o
access rights in Binder Return handle AND rights C Create reference AND inject access rights into it E
capability (Binder capability) o
B Build proxy, wrap it in Location Manager, and return it r—> 8
2
[Resolve handle & transfer data [<—@ getContentResolver(‘uri:/ /contacts”) ——— &
Locate proxy of desired content
provider
v {.}
Locate proxy, encode access
uonttandidelegatedlTR [Resolve handle & transfer data—|< G LocationManager.getLocation() F————
A4 %
Resolve handle, inject caller’s

|
QJ get caller’s UID from getCallingUid() and query PMS for permission check]

get caller’s access rights and delegated URIs using getCallingRights() and
getCallingDelegatedURIs() APIs, accordingly, to enforce access control

locally

Stock Android DroidCap modification

Fig. 3.

care of reading the data from the driver and invoking the
server’s service method. The service uses gerCallingUid to
identify the client based on the UID provided by the driver
and queries the PMS to check whether the calling UID holds
specific permissions (e.g., permission check in Figure 1).
Querying the PMS could be an IPC invocation in itself when
the service does not execute on the same process as PMS, for
instance, as usually is the case for Content Providers (@).

D. DroidCap: Design and Implementation

DROIDCAP is a retrofitting to Binder that brings object
capabilities to Android’s permission enforcement. The core
idea behind DROIDCAP is to use Binder handles as capabil-
ity tokens and to associate Android’s permissions as access
rights to them. Thus, DROIDCAP does not aim at redesigning
Android’s permission system but instead realizes a new rep-
resentation of permissions via object capabilities. This eases
privilege separation between app’s components and opens an
adoption path to app compartmentalization.

In DROIDCAP, privilege separation can be achieved
through standard facilities of Android, such as isolated pro-
cesses Or running an app’s components on separate processes.
Assigning privileges to processes, by means of capabilities,
instead of UIDs eliminates the complications associated with
the ambient authority (Q4). DROIDCAP integrates smoothly
in apps’ life-cycles and provides the same experience for app
developers and users. To benefit from the security features of
DROIDCAP, app developers need to design their apps with
capabilities in mind and use the security APIs of DROIDCAP.

Our current DROIDCAP design focuses on confining, del-
egating, and revoking access to system services and content
providers, which account for the vast majority of system
resources available to apps. Thus, we focus on representing

access rights (and delegated
URIs) into transaction data,

copy data into target’s TLS

{1

Service Invocation

V@) ContentResolver.query(...)

Delegation, revocation, and invocation of Binder objects/handles. Modifications for capabilities are highlighted.

Android’s middleware permissions as capabilities. In Sec-
tion IV-E, we present the integration of Capsicum [65], [20]
into Android, which can be used to represent file-system
permissions as capabilities.

1) Representation of Binder Capabilities: The Binder han-
dle is a token that fulfills the fundamental requirements of
object-capabilities: unforgeable, communicable, designating a
resource, and uniquely assigned to a process. Since the Binder
driver manages Binder handles, the driver is a reference
monitor for all Binder IPC, which guarantees the requirements
mentioned above. DROIDCAP employs the Binder handle as
an object-capability for [PC-callable processes (satisfying Q1
and QS5) and extends its data structure to carry additional
capability fields (see Figure 4). Permissions that the capability
holder has for the referenced service can be stored in a bitmask
(access_rights) and a linked list of strings (str_permissions), as
we explain later. Further, we added a parent field parent_proc
that points to the process that delegated this Binder reference
to the current holder, as well as delegation_flags to express
delegation constraints (which is inspired by sealed capabili-
ties [42]). Binder capabilities, similarly to file descriptors or
SELinux security contexts, are assigned to processes within
the kernel’s process management. In DROIDCAP, processes
always start with an empty set of Binder capabilities and
gradually receive them at runtime, e.g., through delegation.
This is independent of the PID, i.e., this is a per-process but
not per-PID privilege management.

2) Management of Binder Capabilities: We explain how
Binder capabilities are managed in DROIDCAP. In this context,
we explain our changes to stock Android’s services (see
DROIDCAP modifications in Figure 3).

a) Creating Binder Capabilities: In our current DROID-
CAP design, we deliberately stick close to Android permissions
for process privileges to preserve backward compatibility. One

handle

binder_node: ()
capability_fields:

ptr

binder_proc: @ ¥§
N

[~ —> binder_node ./

binder_proc (server)

e binder_proc (delegator)

= access_rights (int)

= str_permissions (linked list)
= parent_proc ()

= delegation_flags (int)

binder_capability

binder_proc (client)

Fig. 4. Binder capability as a combination of Binder reference (to Binder
node) and capability fields for permissions, parent process (i.e., delegator),
and delegation constraints.

of the challenges DROIDCAP had to resolve is maintaining
the sync between access rights in Binder capabilities and
permissions, such that any change of an app’s permissions
should be reflected in the access rights encoded in capabilities
held by processes of the app. Since permissions are managed
by the PMS, DROIDCAP has to rely on this service to retrieve
each app’s permissions. However, with Binder capabilities,
capability creation cannot be decoupled from the delegation of
access rights, since Binder capabilities are attached to Binder
references, which are only created when the corresponding
Binder object or a handle to that object is being passed on
via Binder IPC. To solve this problem, we leverage the central
role of CM and AMS for handing out Binder references
to app processes (i.e., @ and @ in Figure 3), which is
comparable to directories in capability systems. They form
trusted system components that are the only processes able
to create Binder capabilities for processes that are authorized
to hold the capability (Q3). We created a channel between
PMS and CM to supply all apps’ permissions to the CM the
instant they are granted or revoked. Whenever the CM should
hand out a Binder handle to a calling process, the CM will use
this information to create a Binder capability from this handle
(@)) that carries the access rights of the calling process for the
service referenced by the associated handle and then return this
Binder capability (@),(). The capability allows that process
to send IPC messages to the referenced service, which will use
the capability information to enforce access control. Similarly,
the AMS is responsible for handing out Binder handles of
Content Providers and non-system services (). Equivalent
to how CM couples issuing of Binder handles with computing
access rights of the caller, the AMS consults the PMS—as they
run on the same process—for the caller’s general permissions,
while it additionally uses its local database of delegated URI
permissions to encode the caller’s per-URI access rights before
returning the Binder capability to the calling process.

To encode standard permissions from the applica-
tion framework into Binder capabilities, we use the ca-
pability’s access rights bitmask. Since those are well-
known permissions, using a bitmask is a highly space-
efficient representation. We have run an analysis on An-
droid’s standard permissions and their point of enforce-
ment, and identified permissions enforced at each ser-
vice. For example, the ACCESS_COARSE_LOCATION or
ACCESS_FINE_LOCATION permissions are used to control
access to the LMS. Using this information, AMS and CM
identify the relevant permissions of the service for which
they hand out a capability and encode each permission the
requesting app should have in the access rights bitmask.

At enforcement points in services, e.g., LMS, access rights
are decoded accordingly. However, app developers can de-
fine custom permissions in their app manifests and Content
Provider can be protected with URI permissions. Since those
permissions are unpredictable strings, encoding them into a
bitmask is an impractical solution. Thus, DROIDCAP uses the
linked list of strings of Binder capabilities (str_permissions
in Figure 4) to store custom permissions and delegated URI
permissions. Upon invocation of the Binder reference, all
permission strings are copied to the callee’s TLS. To avoid
unnecessary performance degradation, only string permissions
that correspond to a specific Binder object are stored in the
Binder capability that points at that Binder object.

Determining which permission has to be encoded for the
current caller to CM/AMS can be handled in one of two
ways. For backwards compatibility (QS), the permissions can
depend on the caller’s UID, i.e., if any of the processes of
a UID requests a handle, the capability’s access rights are
set to those of the caller’s ambient authority. This preserves
the same access control enforcement as on default Android.
For apps that explicitly make use of capabilities, the app
developer can state in the app’s manifest dedicated process
tags and use-permission tags per declared component.
The AMS and PMS manage at runtime a logical mapping of
those components to their processes, and hence can report to
CM/AMS the permissions of the calling process ID that will
receive the Binder handle. Hence, CM/AMS can configure the
Binder capability per-component.

3) Controlled delegation: Delegation of Binder capabilities
has to be controlled (Q3) to avoid processes from holding
unauthorized access rights. At the same time, DROIDCAP has
to support different paths for delegation and has to consider
the technical intricacies of the Binder framework.

a) Delegation flags and parent field: Once a Binder
capability has been created and transferred to a process, this
process might want to transfer the Binder capability to other
processes. Without constraints on the delegation of capabilities,
this would undermine the security policy. For instance, a
process could delegate a Binder capability to another process
that never was authorized to hold those access rights (and
would not have received them from the CM or AMS). Thus,
delegation of Binder capabilities is subject to constraints
enforced by the Binder driver. Those constraints are expressed
primarily through delegation_flags and the parent_proc fields
of Binder capabilities: 1) A capability delegated from one
process to another must in any case carry a subset of the access
rights of the sender. 2) A capability with no_delegation flag
set cannot be delegated to other processes. A capability with
limited_delegation flag set can only be delegated to another
process of the same logical app. This flag can only be further
restricted but not relaxed during delegations. CM and AMS
create capabilities with limited_delegation. 3) Every capability
carries a parent field that points to the process that delegated it
and the Binder driver sets this field during delegation. Changes
of the access rights of a capability, such as down-/upgrading
and merging, can only be done by the parent process (within
the limits of the parent process’ access rights) or the system
(i.e., CM and AMS), which always takes precedence. For
simplicity, we keep only a single parent.

b) Inheritance: Binder capabilities, in contrast to file
handles, are not inherited by forking processes. The Binder
driver data structures are not integrated with the kernel’s
process management and, hence, new processes always start
with an empty set of Binder references/nodes.

c) Capability merging: Every Binder reference and
hence capability is a one-to-one mapping to a Binder node and
for every Binder object exists exactly one Binder node. Thus, if
a process would receive a Binder reference to a Binder node for
which it already holds a reference, Binder would simply abort
the redundant operation. However, with Binder capabilities,
the access rights and string permissions of two capabilities for
the same Binder node would be merged if the parent field
matches, i.e., we assign the union set of the access rights
and string permissions to the existing capability. Supporting
merging of capabilities from different parents, would require
per-parent access rights lists to support different revocation
strategies (e.g., consensus or priority).

d) Delegation paths: DROIDCAP provides three paths
for inter-process delegation of Binder capabilities:

(1) Bound services: A process holding a Binder reference
to another process executing a bound Service can transfer a
capability directly as part of a Binder transaction. This path is
used, e.g., to delegate capabilities to isolated processes.

(2) Intents: A process can attach a capability to an Intent mes-
sage. Since all Intent messages are routed to their destinations
through the AMS, the capability is transferred first into the
AMS’ Binder context and from there to the Intent receivers’
context. To ensure that the parent field of the capability is
correct, AMS uses its special role and instructs the Binder
driver to not update the parent field when transferring the
capability to a receiver. This mechanism is used, for instance,
when delegating a URI permission to another app via an Intent.

(3) ioctl command: A process can also instruct the Binder
driver to delegate a capability to another process for which
the delegator knows the PID. If the delegatee already has a
capability for the same Binder node, the privileges are merged.
If not, this capability of the delegatee is initially dormant, i.e.,
the process has no handle to use it until a transaction transfers
a reference to the same node to the delegatee. This path is
used during the grantUriPermission method. If an app grants
access to a URI to another process and that process has not yet
a ContentResolver to the corresponding ContentProvider, the
capability is dormant until the ContentResolver is requested
from the AMS (@ in Figure 3).

4) Revocation: To support the dynamic permissions of
stock Android where users can revoke app’s permissions at
runtime, DROIDCAP enables revocation and downgrading of
access rights at runtime. We found that in stock Android an
app’s processes are killed when permission settings change.
Although this is a rather crude approach for revocation, it
is effective and in line with stock Android for revocation
of Binder capabilities in DROIDCAP. Binder capabilities are
removed from the kernel when the owning process dies (Q2)
and they have to be requested again when the process restarts,
with changes on permissions encoded.

To support app developers in revoking delegated capabil-
ities (Q2), we introduced new commands to the ioctl call to

3 Notify: there is a message Check sender’s access rights & resolve target(s) ‘
I I
Broadcast —
<— 6 TNV EGEES < Bl send broadcast [j Sender
Service

Process
Receiver Process

A A
4 Invoke AMS to read msg 5 Check receiver’s access rights

Operations of Stock Android | el EULIER Sl (o)

Fig. 5.

Enforcing permissions of broadcast sender and receiver in the AMS

the Binder driver. First, if the delegating process has a Binder
handle to the delegatee process (e.g., bound service), the del-
egator can present the driver with its handle to the delegatee’s
process and the capability of the delegator that was passed on.
Using those credentials, the delegator can instruct the driver
to revoke access rights from the delegatee’s capability. If the
Binder driver can locate a corresponding capability in the
delegatee’s Binder context and that capability’s parent field
points back to the delegator process, the Binder driver can
revoke (or increase) the delegatee’s access rights within the
bounds of the delegator’s access rights. Second, if the delegator
has no handle to the delegatee’s process (e.g., delegation via
Intents or grantUriPermission) but has a PID or UID (e.g., the
delegatee’s packagename is known), the delegator can instruct
the Binder driver to revoke a capability or access right of the
UID’s processes or process under the PID. Third, the delegator
can purge a capability by instructing the driver to remove a
capability it holds from all processes in the system to which
the delegator transfered that capability.

5) Invocation: From developer’s point of view, invoking
a Binder capability is identical to invoking a regular Binder
handle. However, the driver additionally injects the caller’s
access rights and delegated URIs from the caller’s capability
into the transaction data before passing the request to the target
process (@ in Figure 3). The target process, e.g., a system
service or a Content Provider, can use two new API methods
getCallingRights and getCallingDelegatedURIs to check the
calling process’ permissions (). Given that getSystemService
and getContentResolver are the only ways to retrieve Binder
handles of system services and content providers (except for
delegation within logical apps), it is guaranteed that those
permissions were authorized by the system.

As such, our current DROIDCAP design diverges from a
pure object-capability system, where the access to the target
service would be enforced within the Binder driver, while we
defer the enforcement of capabilities to the target processes.
We adopted this design from stock Android to avoid mixing
middleware semantics (i.e., permissions) with kernel-level se-
mantics and to ease backward compliance to stock Android.

In addition to checking the access rights of the calling
processes, the application framework enables apps to control
which processes are allowed to handle specific events initiated
by the caller. For example, an app might require a Broad-
cast receiver to hold specific permissions where sending the
Broadcast itself requires a permission from the sender. In stock
Android, this situation is handled by the AMS (see Figure 5),
which receives the send broadcast request (), resolves target
Broadcast Receiver and checks sender’s permissions to broad-
cast this specific Intent (BJ), and finally delivers the Broadcast
message ([J). To cover this scenario in DROIDCAP, without
diverging from the object-capability model where access rights

1. fork ,

h0 L[Aewspoess
Initialization phase | | Operation phase |
i !

setresgid() i '

open co on d L '
s el) | || ;
SetUpSeccompfFilter() | 1 3
L 5. !

i || openat(FDCWD, !

selinux_setcontext() | ! absPath) |

userspace

2. open common root
directories
(e.g., /etc, /data, /system)
and store their fds

setresuid()

4. store fd

Opened

6. get dirfFD

kernel

directories

list(<pid, fd,
path>) l

3. open directory ¢7. openat(dirfFD, relPath)

Virtual File System]

|G TR TG (o210 | Modified for DroidCap

Fig. 6. Sandboxing app processes using Capsicum capability mode

of Binder capabilities are checked on IPC-recipient’s side, we
introduce a callback from the AMS to the Broadcast Receivers,
triggering them to invoke the AMS (E]) and request that
Broadcast message to be delivered (). At this point, the AMS
can check the access rights of the receivers’ capabilities to
authorize delivery of this Broadcast according to the sender’s
specification (FJ) and delivers the Broadcast message only if
successfully authorized ([). This extension to the Android
SDK preserves backward compatibility with existing apps.

E. Capsicum Capabilities

The bulk of Android’s permissions are enforced by the
application frameworks services and apps, which are called via
Binder IPC. However, a handful of permissions are enforced
by the Linux kernel (using GIDs) and do not involve IPC,
hence, excluding Binder references as technical realization
of capabilities for those file-system-related permissions. To
also cater for those file-system permissions, we integrated
Capsicum for Linux [20] into DROIDCAP and ported the
Capsicum userspace library [3] into Android’s middleware.
Although Android is based on Linux, this integration was a
non-trivial technical task, which we elaborate on the following.

Generally, the capability mode, as implemented in Cap-
sicum for Linux project, enforces four conditions: 1) A process
that entered the capability mode cannot exit it and this mode
is inherited by all its child processes. 2) In capability mode, a
process has only access to whitelisted syscalls with whitelisted
parameters (e.g., open syscall is prevented whereas openat
is allowed). Blocking syscalls forces developers to rely only
on file descriptors, which are wrapped as capabilities, for
file-system operations. Whitelisting policies are enforced by
Linux seccomp. 3) A process in capability mode can create new
file descriptors only under the directories for which they were
delegated access to. File descriptors are either delegated stati-
cally, by means of opening them before entering the capability
mode (e.g., using open syscall), or dynamically by receiving
them over IPC (e.g., sockets) from another process. 4) To
invoke a syscall on a file descriptor, this file descriptor has to
be associated with the necessary capabilities, otherwise the call
will fail (e.g., reading a file and changing its offset requires the
CAP_READ and CAP_SEEK Capsicum capabilities). Those
capabilities are enforced when resolving the file descriptor to
a file struct in the kernel.

1) Integration into Android: Starting from Android 8, sec-
comp policies restrict the number of syscalls available to apps

10

to those used in the bionic library, and Android P enforces even
more restrictions [4]. Fortunately, this significantly reduces the
effort required for porting the Capsicum’s seccomp policy to
Android. By comparing the Android and Capsicum policies we
find that Android’s policy is more relaxed than Capsicum’s.
For our integration, we used the policy of Android 9 after
making sure none of the whitelisted syscalls is likely to break
the conditions of the capability mode mentioned above. The
only modification to Android’s seccomp policy was setting the
OPENAT_BENEATH flag in the process. Capsicum requires
this flag to prevent processes from escaping the directory
referenced by the file descriptor passed to the *at() syscall, i.e.,
the relative path is not allowed to contain ”..” nor to start with
”/”. Using this policy, when zygote calls SetUpSeccompFilter()
(see Figure 6), Capsicum’s capability mode becomes effective
immediately. Naturally, app processes will crash in capability
mode unless they are supplied with necessary file descriptors
for the operation. However, supplying processes with necessary
file descriptors is a non-trivial task and the primary challenge
for putting app processes into Capsicum’s capability mode:
Capsicum assumes that the creator of a process in capability
mode has an operational relationship with that process (e.g.,
same developer) and knows exactly which file descriptors to
pass on; however, for zygote it is impossible to predict all re-
quired file descriptors an app might need, given the complexity
of Android apps that are composed of several libraries running
on different threads and continually accessing the file-system.
Passing necessary file descriptors to app processes in capability
mode at runtime—they cannot open them themselves—is not
an option, since it would require an all-privileged delegator
process that can open all requested files and delegate their
descriptors to app processes. Not only would this be inefficient,
but also be a direct violation of least-privilege design.

Instead, we solve this challenge with a combination of
statically opening possible root directories of needed files
prior to entering capability mode and relying on SELinux’
mandatory access control to constrain app behavior. We imple-
mented a proof-of-concept prototype of this solution as part of
DROIDCAP. We instrument zygote (see Figure 6) to statically
supply forked processes with valid file descriptors for common
root directories (i.e., /dev, /system, and /data). To do so,
we relax SELinux’ policy to allow zygote and apps to create
file descriptors for root directories with necessary POSIX
permissions to be able to use them in *ar syscalls. Allow such
operations might seems decremental to Android’s security,
however, the existing SELinux rules restrict the resources
accessible by the process inside those directories. For example,
there is an SELinux rule that permits apps to access the
/dev/socket/netd interface but there is no rule to allow
access to /dev/kmsg. However, using those file descriptors
requires all call-sites to switch to openat() syscalls instead
of open(). Since the default seccomp policy prohibits open(),
all call-sites in fact already use openat(), but unfortunately
Android’s libraries show a persistent pattern of using openat()
with AT_FDCWD as the first argument and an absolute path as
the second argument, which yields the same semantics of using
an open() syscall. Due to the additional OPENAT_BENEATH
flag in capability mode, this patter fails and causes apps to
crash due to denied openat() syscalls. To avoid refactoring the
entire Android SDK to change those calls to be compliant with
the OPENAT_BENEATH flag, we implemented a proxy for

openat() syscalls inside the kernel that draws from the design
of syscall interposition techniques [53]. When zygote opens
the root directories (step 2), we intercept the call (see Proxy in
Figure 6), open the directories, and store their file descriptors
along with the paths they reference in a special table for
the designated process inside the kernel (step 4). When the
openat() syscall is invoked (step 5), we again intercept the
call in the proxy, get the root directory of the absolute path,
retrieve the file descriptor for that directory from the table of
root directories (step 6), and rewrite the call such that a relative
path is opened under the file descriptor of the directory (step 7).

2) Delegation of Capsicum Capabilities: Transferring Cap-
sicum capabilities over sockets is the natural way for delega-
tion, but since the Binder framework also enables transfer of
file descriptors, it can be instrumented to transfer Capsicum
capabilities making delegation/revocation more convenient to
app developers. However, in either case, the kernel has to
be aware of all delegated Capsicum capabilities to enable
revocation, and more importantly, to prevent arbitrary accesses
to file-system resources. To understand how delegation works,
we consider a scenario where an app delegates access to the
Internet, enabling the receiver to open an Internet socket. Upon
transferring of the Capsicum capability to the receiver, the
kernel creates a new entry inside the table of delegations. The
entry identifies the source, the target, delegated rights, and the
inode of the file descriptor. Further checks are made to ensure
the source has access to the delegated object with the rights
to be delegated or has the necessary privileges (e.g., Zygote).

When the receiver of the delegation tries to make use
of the delegated capability to the Internet driver and tries
to create a new Internet socket, it opens the driver using
the openat syscall. The kernel would immediately retrieve
the source’s inode identified by the relative path and the file
descriptor of the parent directory, and compares it with the one
delegated and previously stored in the table of delegations, if
any. This is to ensure that both operations (i.e., delegation and
opening of delegated capability) address the same resource.
Checking the table of delegations is an inevitable operation
to guarantee that all delegations are considered. Given that
DAC would prevent the receiver process from opening the
file because it does not hold the necessary DAC privileges
(identified by the group ID), our kernel extension overrules
DAC. Then, the kernel sets the delegated rights on the file
descriptor forming a Capsicum capability, and finally marks
it with the delegated flag before returning it. This form of
delegation happens when Zygote forks new processes whose
apps are granted the Internet permission. To enable usage
of delegated Capsicum capabilities without triggering a clash
between security policies of Capsicum and DAC, we disable
GID-based checks for file-system accesses only when the file
descriptor in use is a delegated Capsicum capability, identified
by the delegated flag. This technique can work for delegating
access to files in the private directory.

3) External Storage: Given Android’s unconventional
mechanism [5] in mounting different storage devices that
differ in file-system permissions based on the granted runtime
Android permissions for reading and writing to the external
storage, access to files stored on the external storage using
Capsicum capabilities would require integration with the vold
daemon which is beyond the scope of our prototype.

11

Application Sandbox (UID) Logical Application

Process 1

Main Activity

N\ | Location Contacts
\\ ! Capability Capability
1

Main Process

Main Activity

i
becomes) | i

Ad lib ' Delegate/revoke capabilites !

! Y Y |

! Process 2 Process 3 |

Location | | Contacts - ! Activity Location Contacts || |
Permission | | Permission Capability Capability || |

i Ad lib
|

Fig. 7. Compartmentalizing an app to form a logical app.

F. Case Studies

In this section, we present two case studies that show
DROIDCAP’s potential in supporting app developers in com-
partmentalizing their apps using Binder capabilities. We defer
the discussion on how to retrofit existing apps to utilize
DROIDCAP’s new security features to Section V-B.

1) Isolated processes: Isolated processes are easily de-
clared in the app’s manifest and are realized as a service com-
ponent that has no privileges in the system and can be bound
to by the host app processes. By default, an isolated process
cannot retrieve any Binder handles from the CM and AMS and
also cannot successfully open any file handles. Thus, isolated
processes force the app developer to make an all-or-nothing
decision: either compartmentalized code executes with all
privileges of the ambient authority or with no privileges at all.
In DROIDCAP, the app developer can gradually increase the
privileges of an isolated process by passing Binder capabilities
to the bound service of the isolated process. Since the transient
UID does not matter for permission enforcement but only the
access rights of the process’s Binder capability, this provides
a path to the developer to start from a completely deprivileged
protection domain to build a least-privilege component. Adding
Capsicum to DROIDCAP would further allow delegation of file
handles to isolated processes.

2) Interstitial AdMob advertisements: Different security
extensions [52], [59], [29], [71] proposed privilege separation
for advertisement libraries and virtually all of them relied
on sandboxing the libraries in a separate app (UID) through
system modifications [52], [59], [71] or app rewriting [29].
We analyzed the most popular AdMob advertisement library
and found that for interstitial ads the library does not have
any tightly coupled operational or state dependencies with its
host app. Thus, interstitial ads can be deployed in a separate
Activity component that executes in its own process and that is
simply invoked by calling the Activity. With DROIDCAP, this
easily allows us to compartmentalize the app into a logical app
as depicted in Figure 7, where the advertisement library runs
in a separate process to which the host app delegates only a
subset of its privileges (here location) while withholding other
permissions (contacts). On DROIDCAP this is accomplished
using the Binder driver APIs or, more efficiently, using the
per-component use-permission attribute in the app manifest.

V. EVALUATION

In this section, we present the performance, security, and
functionality evaluation of DROIDCAP. We tested DROIDCAP
on different Android (6.0, 7.1, 8.0, 9.0) and Linux kernel
versions (3.4, 4.4, 4.9). However, all subsequent evaluations

TABLE 1. PERFORMANCE (IN CYCLES) FOR BINDER TRANSACTIONS.

System | Mean | o | Min | 25% | Median | 75% | Max

46,360
53,786

9,866
9,626

16,404
16,327

369,388

Android
453,305

34,679
DroidCap

36,231

22,004 ‘

32,961
21,877

34,314

used Android 9 (android-9.0.0_r1) and a Linux kernel v4.9.
We ran all tests on a HiKey960 device that has an octa-core
1.8 GHz Cortex-A53 CPU and 3 GB RAM.

A. Performance Evaluation

For kernel and native layer micro-benchmarks, we used
the ARM Performance Monitoring Unit to capture CPU cycle
counts. Measurements at the application framework utilized the
system timer via System.nanoTime. Through all measurements,
CPU clock was fixed at 1.875 GHz. All results are the average
computations of 50,000 trials, unless stated otherwise. All
margins of error are computed for a 95% confidence level.

To compare DROIDCAP with stock Android, we measured
the required CPU cycles for 500k Binder transactions in the
Binder driver for both systems under equal setups, i.e., both
systems boot up, do not start any app, and execute a sequence
of taps on the screen using Android’s application exerciser
monkey to generate transactions. Since both measurement
series included a few extreme outliers (of three or more mag-
nitudes lower and higher than mean), we eliminated in both
series the measurements below the 5th percentile and above
the 95th percentile. Table I summarizes the overall results.
On average DROIDCAP induces an overhead of 3.44% (1,552
cycles) to transactions. A closer look at the types of transac-
tions reveals that 6.15% of all transactions contained Binder
handles and 10.67% contained Binder nodes—both of which
require more processing from the driver. The weighted average
considering the frequencies of transaction types is 1,538 cycles
or 3.41%. Using Mann-Whitney and Kolmogorov-Smirnov
tests, we can attribute those differences in means (U>10'1,
p<.001) and frequency distribution (D=0.037, p<.001) to our
modifications. In general, both systems exhibit a very skewed
frequency distribution, a very large standard deviation, and a
median that is higher than the 75th percentile.

We performed further micro-benchmarks that separately
measure the operations of DROIDCAP to gain deeper insights
on the contributing factors to the overall overhead. Retrieving
and copying the access rights of the caller process to the
callee’s TLS adds a negligible overhead of 61.78 CPU cycles
(0=26.77%0.37) in comparison to the 34,679 cycles consumed
for each Binder transaction in stock Android. However, once
the access rights are copied to the address space of the callee
process, it can use those information locally for access control
enforcement. To understand the positive impact of this feature
we consider the following two examples: First, the Contacts
content provider requires only 10.99us (0=4.1440.1) to re-
trieve access rights from its TLS, decode them, and enforce
access control of READ and WRITE permissions, where in
stock Android it has to issue a round-trip IPC to the PMS
that takes 226.40us (0=51.1641.14). Second, although LMS
is hosted on the same process as PMS, thus permissions checks
are answered process-locally, DROIDCAP achieves an almost
seven-fold gain (11.18us) for access control in comparison to
the 77.02us required for permissions checks in stock Android.

12

700
@ DroidCap: Encode and copy URIs to callee’s TLS

600

W DroidCap: Read, decode, and control access
500

[Stock Android: Permission check with AMS (IPC)

400

Time (lus)

344 688 1370 2746 5492 10972 21916 43922

Size of delegated URI permissions (bytes)

Fig. 8. Overhead for URI permission enforcement.

In the following, we consider the penalty incurred by
copying string permissions to callee’s TLS upon the invocation
of a Binder capability that carries them by focusing on URI
permissions as an example (see Figure 8). In general, this
is an expensive operation that produces a linearly increasing
overhead (slope=0.0142) with increasing number of delegated
URIs. Although this increase is considerable in comparison to
the average time of a Binder transaction, our measurements
show that DROIDCAP would still outperform stock Android
for overall access control enforcement when the calling process
holds delegated URIs of size 21.4kb or less. Since URIs are
strings, it is hard to give an exact number of URIs that have
to be delegated in DROIDCAP to incur a penalty. However, as
an example, a process that has been granted 53 URIs, each of
which is a 100 ASCII-characters long, would yield almost the
same overall overhead for access control check in DROIDCAP
(296.83us) in comparison to the round-trip IPC check to the
AMS in stock Android (307.15us). Unfortunately there exist
no statistics on the average number of delegated URIs between
apps, but we would argue that a developer who delegates this
amount of URIs might not follow best practices. If indeed this
high number of delegated URIs is needed, DROIDCAP might
require the app to make a lookup in the capability attribute
using ioctl calls to the Binder driver instead of copying them.

The average overhead of the Binder kernel module for del-
egating and revoking a Binder capability using bound services
and Intents is 562 (0=427+3.72) and 2,851 (0=2,396+£22.57)
CPU cycles, respectively. Note that we ignore measuring the
user space overhead, because such operations are identical
to standard IPC operations where a Binder handle is being
transferred as part of the transaction data. Delegation and
revocation of a single string permission through direct ioctl
using a known PID of the delegatee or the Binder handle that
was previously delegated consumes on average 34,035 cycles
(0=14,038+123), which translates to 17.72us that are used for
looking up Binder reference(s) and string comparisons.

Specific to the current design of DROIDCAP is the reporting
of permissions from PMS to the CM. In worst case, where all
system permissions are granted to a single app, the aggregated
overhead of granting/revoking a new permission as measured
from the PMS is 36.51us (0=11.26+£0.2us). In general, re-
porting permissions is a rare operation because users tend to
grant apps permissions upon their request and rarely revoke
them afterwards. When processes request Binder capabilities
from the CM, DROIDCAP takes 0.29us (0=0.11ps) to com-
pute the access rights. A well designed app should perform this
operation only once over the lifespan of the calling process.

B. Security Evaluation of Kontalk

We retrofitted an open source messaging app, called
Kontalk, to use Binder capabilities. The app requests 24
permissions, 11 of which are dangerous, and it can access
the Internet. The app consists of 37 components and includes
about 30 third-party libraries.

We started compartmentalizing the app by executing each
component in its own process and then reconstructing the
connections between the components via IPC to preserve
app’s functionality. Unfortunately, compartmentalizing existing
apps is, in general, a hard problem [65], since components
might share a state, and requires app developers to adopt
distributed app development to build logical apps consisting
of different processes connected via message passing. Ideally,
app developers should be supported in this task of compart-
mentalizing their apps, for instance through new tools and
frameworks [26]. Android apps are not different in this regard.
Through dynamic and static analysis of the top apps on the
Google Play-Store, we found that none of those apps could be
automatically compartmentalized. We attribute that to several
programming practices that expect the app to run on a single
process and which are widely used in the analyzed apps, such
as (i) sharing class variables and singletons across components,
(i1) invoking app’s Binder services locally instead of binding
and invoking them over IPC, (iii) broadcasting messages within
the process using LocalBroadcastManager, and (iv) sharing
primitive data via SharedPreferences, which, by design, do not
synchronize reads and writes requests from different processes.
Thus, to compartmentalize apps, we need to replace those im-
peding practices with secure alternatives that are semantically
equivalent. Our strategy is to use a ContentProvider to share
primitive class variables and SharedPreferences data, bind to
local Binder services, and use explicit Intent broadcasts.

To identify the permissions that are used by each com-
ponent in Kontalk, we used an existing permission map [8]
and complemented it with missing permissions enforced at
the filesystem and the native layer. We find that 17 out of
the 37 components do not need any permission. The other
20 components need between 1 to 8 permissions each. This
is a fitting example of violating least privilege because in
the normal execution on stock Android, each component
and library inherits all granted permissions. After retrofitting
Kontalk to use Binder capabilities, every component runs with
least privileges. This also concerns the privileges of third-
party libraries included in those components, e.g., TrueTime
and BarcodeScanner inherited privileges were reduced to no-
permissions, and Camera and Internet, respectively. Using
Binder and Capsicum capabilities combined would further
reduce the BarcodeScanner privileges to only the Camera.

C. Backwards Compatibility

To evaluate DROIDCAP’s backward compatibility, we dy-
namically tested the top 50 apps of 44 categories on Play
using the monkey exerciser on stock Android and afterwards
on DROIDCAP. We fixed the seed and the number of events
(1000) for the monkey to produce the exact sequence and
types of events for all apps. We filtered all apps that already
crashed or failed to install on stock Android, which left a
test set of 1,752 apps. Our results show that about 2% of the

13

apps failed the test on DROIDCAP due to runtime exceptions,
which we manually inspected and found to not be caused
by DROIDCAP’s changes but uncontrolled variants, such as
network delays and resources loading time. This demonstrates
the backwards compatibility of DROIDCAP with existing apps.

VI. DISCUSSION

Different solutions for type enforcement, information flow
control (IFC), and app virtualization also realize fine-grained,
flexible per-process/per-component privileges and consider the
delegation of access rights. However, despite their apparent
parallels to our work, their objectives differ from DROIDCAP’s:
that is providing app developers with a path for efficiently
compartmentalizing their apps and applying the principle of
least privilege to their apps’ components. Nevertheless, we find
that there are great opportunities for Binder capabilities and
those solutions to complement each other.

Type enforcement: SELinux’ security types are assigned
to processes and not UIDs and hence restrict each process’
access rights. Research, such as FlaskDroid [15], has shown
how this type enforcement can be extended into the application
framework services and apps, also providing a per-process
permission enforcement. But, SELinux (or mandatory access
control in general) was not designed to support efficient app
compartmentalization but to enforce static system policies that
are highly inflexible in practice and require administrative
intervention for updates. Moreover, SELinux types do not scale
as efficiently as capabilities, e.g., every possible permission
combination would require a dedicated security type, easily
causing a type explosion. Nevertheless, mandatory access
control (with SELinux on Android) has been considered as a
strong building block for capability systems [65], [38], which
enforces basic information flow policies that can be statically
analyzed and that harden the trusted computing base for
capability management. Also in our integration of Capsicum,
we rely on the beneficial combination of capabilities and
SELinux (see Section IV-E).

IFC: Different works (e.g., [45], [46], [70], [31]; see
Section III) address the intricate problem of controlling prop-
agation of sensitive data once it was released to another, data
processing app and preventing accidental or deliberate leakage
of that data. Data flow labels, in most cases floating labels, on
apps (components) or processes determine which data the app
(component) or process can access or to which sinks data can
be leaked. The supported policies of those solutions are usually
very flexible. However, the goal of controlling information flow
differs from the access control a capability system aims at and,
hence, the existing IFC solutions do not fit well for the setting
we are concerned with. For instance, delegation of access
rights in the IFC solutions is often coupled to label propagation
on explicit data flows but does not fit well to delegating
or even representing access rights to call system services.
Further, labels are used to separate different security contexts
in memory and on storage for non-interference. Changing the
labels (e.g., endorsement) is usually tied to restarting the app
(component) or process, or poly-instantiating the app (compo-
nent) or process. We think controlling information flows after
data has been released is a very valuable complement to an
access control system like Binder capabilities that governs if
data should be released or accessed, and it might be interesting

to explore in the future to which extent Binder capabilities
can further enhance IFC solutions. Moreover, supporting inter-
component IFC within an app can also motivate developers
to consider least-privilege data dissemination between their
apps’ components and add to the encouragement for app
compartmentalization by DROIDCAP.

App virtualization: App virtualization solutions like Box-
ify [9] put a reference monitor between a sandboxed app
and the system. The primary goal of app virtualization is to
provide app sandboxing without modifying the app or the
system. App virtualization differs first of all in its declared
purpose from DROIDCAP, since it does not encourage app
compartmentalization by app developers but declares app de-
velopers as the opponent whose apps have to be constrained.
Further, while Boxify allows enforcement of powerful policies
on the app’s interaction with other apps, system services, or the
file system, its design comes also with inherent performance
issues for which object-capabilities could be an easy way out.
For instance, Boxify has to proxy all file-system access by a
sandboxed app, since sandboxed apps are isolated processes,
which adds a complete IPC round-trip time to the syscall.
Using capabilities, access to the app’s private directory—a
subdirectory of the Boxify app’s private directory—can be
simply delegated to the sandboxed process. Similarly, if Boxify
does not need to enforce policies on an app’s access to system
services, it can simply delegate a Binder capability to the sand-
boxed app to allow it to access the system service without the
additional round-trip via the Boxify app. Furthermore, Boxify’s
highly-privileged Broker by-design violates the principle of
least privilege to be able to mediate any potential app.

General attacker model: Lastly, it should be emphasized
that DROIDCAP currently primarily targets app developers
that want to design their apps more defensively by com-
partmentalizing them or privilege-separating untrusted code.
But, like other compartmentalization solutions like [18], [29],
[52], [59], [71] our attacker model does not include malicious
developers. DROIDCAP by itself cannot prevent malicious or
colluding [40], [13] apps, although it prevents unauthorized
delegation of capabilities between apps.

VII. CONCLUSIONS

We presented DROIDCAP, a retrofitting of Android’s
Binder IPC mechanism to establish Binder capabilities that
associate each IPC handle with the access rights to the refer-
enced remote process. We integrated Binder capabilities into
Androids’ app management, such as requesting Binder han-
dles to application framework services/apps, and permission
enforcement, i.e., using the Binder capabilities for enforcing
permissions. Additionally, we complemented DROIDCAP with
a prototypical integration of Capsicum providing the founda-
tion for file-system permissions as capabilities. We presented
our approach for putting apps into capability mode, a non-
trivial task that required integration with Android’s zygote and
SELinux. As a result, we created a permission enforcement that
allows per-process permissions that can be easily delegated to
create new protection domains, and hence opened a path to
efficiently adopt app compartmentalization and least-privilege
operation. In particular, our solution removes the UID-based
ambient authority of Android’s stock design. The key observa-
tion that our DROIDCAP conveys is that the design of modern

14

(mobile) systems is highly amenable to capability based access
control and that capabilities can support defensive mobile app
development better than the current permission model.

To make capabilities and app compartmentalization more
accessible to app developers, future work should investigate
how developers can be supported (e.g., tools and frameworks),
in particular in light of the inherently modular design of mobile
systems. Furthermore, our current design makes a trade-off
between pure object-capabilities and backwards compatibility
to Android’s permissions, and moving Android to a pure
object-capability system might be worthwhile.

Acknowledgements. We like to thank our anonymous review-
ers for their valuable comments and Lucas Davi for shep-
herding this paper. This work was partially supported by the
German Federal Ministry of Education and Research (BMBF)
through funding for the Center for IT-Security, Privacy, and
Accountability (CISPA) (VFIT/FKZ: 16KIS0345).

REFERENCES

[1] “Android manifest file: Service,” https://developer.android.com/guide/

topics/manifest/service-element, last visisted: 05/03/2018.

“AndroidManifest.xml (android-8.1.0_r23),” https://android.
googlesource.com/platform/frameworks/base/+/android-8.1.0_r23/
core/res/AndroidManifest.xml, last visited: 05/03/2018.

“Capsicum userspace library,” https://github.com/google/capsicum-test/
tree/dev/libcaprights, last visisted: 07/07/18.

“Security behavior changes,” https://developer.android.com/about/
versions/pie/android-9.0-changes-all, last visisted: 06/08/2018.
“Storage - Android Open Source Project,” https://source.android.com/
devices/storage/, last visisted: 06/08/2018.

“platform.xml,” https://android.googlesource.com/platform/frameworks/
base/+/master/data/etc/platform.xml, 2017, last visisted: 05/03/2018.
Y. Acar, M. Backes, S. Bugiel, S. Fahl, P. McDaniel, and M. Smith,
“SoK: Lessons Learned From Android Security Research For Appified
Software Platforms,” in IEEE S&P, 2016.

M. Backes, S. Bugiel, E. Derr, P. McDaniel, D. Octeau, and S. Weisger-
ber, “On demystifying the android application framework: Re-visiting
android permission specification analysis,” in USENIX Security, 2016.

(2]

(3]
(4]
(5]
(6]

(7]

(8]

[9] M. Backes, S. Bugiel, C. Hammer, O. Schranz, and P. von Styp-
Rekowsky, “Boxify: Full-fledged app sandboxing for stock android,”

in USENIX Security, 2015.

M. Backes, S. Gerling, C. Hammer, M. Maffei, and P. von Styp-
Rekowsky, “Appguard - enforcing user requirements on Android apps,”
in TACAS’13, 2013.

A. Bianchi, Y. Fratantonio, C. Kruegel, and G. Vigna, “Njas: Sand-
boxing unmodified applications in non-rooted devices running stock
android,” in ACM SPSM, 2015.

T. Book, A. Pridgen, and D. S. Wallach, “Longitudinal analysis of
android ad library permissions,” in IEE MoST, 2013.

S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and
B. Shastry, “Towards taming privilege-escalation attacks on Android,”
in NDSS, 2012.

S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A.-R. Sadeghi, and
B. Shastry, “Practical and lightweight domain isolation on Android,”
in ACM SPSM, 2011.

S. Bugiel, S. Heuser, and A.-R. Sadeghi, “Flexible and fine-grained
mandatory access control on Android for diverse security and privacy
policies,” in USENIX Security, 2013.

E. Chin and D. Wagner, “Bifocals: Analyzing webview vulnerabilities
in android applications,” in WISA, 2014.

M. Conti, V. T. N. Nguyen, and B. Crispo, “CRePE: Context-related
policy enforcement for Android,” in ISC. Springer, 2010.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

D. Davidson, Y. Chen, F. George, L. Lu, and S. Jha, “Secure integra-
tion of web content and applications on commodity mobile operating
systems,” in ASIACCS, 2017.

J. B. Dennis and E. C. Van Horn, “Programming semantics for multi-
programmed computations,” Commun. ACM, vol. 9, no. 3, pp. 143155,
Mar. 1966.

D. Drysdale, “Capsicum object-capabilities on linux,” https://github.
com/google/capsicum-linux, last visisted: 07/07/18.

W. Enck, D. Octeau, P. McDaniel, and C. Swarat, “A study of android
application security,” in USENIX Security, 2011.

W. Enck, M. Ongtang, and P. McDaniel, “Understanding android
security,” IEEE SP, vol. 7, no. 1, pp. 50-57, 2009.

R. S. Fabry, “Capability-based addressing,” Commun. ACM, vol. 17,
no. 7, pp. 403-412, Jul. 1974.

Google, “Fuchsia is not linux: A modular, capability-based operat-
ing system,” https://fuchsia.googlesource.com/docs/+/master/the-book/,
2018, last visited: 04/23/2018.

M. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe exposure
analysis of mobile in-app advertisements,” in WiSec, 2012.

K. Gudka, R. N. Watson, J. Anderson, D. Chisnall, B. Davis, B. Laurie,
I. Marinos, P. G. Neumann, and A. Richardson, “Clean application
compartmentalization with soaap,” in ACM CCS, 2015.

H. Hao, V. Singh, and W. Du, “On the effectiveness of api-level access
control using bytecode rewriting in android,” in ASIACCS, 2013.

M. E. Houdek, F. G. Soltis, and R. L. Hoffman, “Ibm system/38 support
for capability-based addressing,” in IEEE ISCA, 1981.

J. Huang, O. Schranz, S. Bugiel, and M. Backes, “The ART of App
Compartmentalization: Compiler-based Library Privilege Separation on
Stock Android,” in ACM CCS, 2017.

J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S. Foster,
and T. Millstein, “Dr. Android and Mr. Hide: Fine-grained security
policies on unmodified Android,” in ACM SPSM, 2012.

L. Jia, J. Aljuraidan, E. Fragkaki, L. Bauer, M. Stroucken,
K. Fukushima, S. Kiyomoto, and Y. Miyake, “Run-time enforcement
of information-flow properties on android,” in ESORICS, 2013.

X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N. Peri, “Code injection
attacks on html5-based mobile apps: Characterization, detection and
mitigation,” in ACM CCS, 2014.

K. C. Kahn, W. M. Corwin, T. D. Dennis, H. D’Hooge, D. E.
Hubka, L. A. Hutchins, J. T. Montague, and F. J. Pollack, “imax: A
multiprocessor operating system for an object-based computer,” in ACM
SOSP, 1981.

P. A. Karger, “Improving security and performance for capability
systems,” Ph.D. dissertation, University of Cambridge, Oct. 1988.

D. Kilpatrick, “Privman: A library for partitioning applications,” in
USENIX Annual Technical Conference, FREENIX Track, 2003.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “sel4: Formal verification of an os kernel,”
in ACM SOSP, 2009.

B. W. Lampson and H. E. Sturgis, “Reflections on an operating system
design,” Commun. ACM, vol. 19, no. 5, pp. 251-265, May 1976.

T. A. Linden, “Operating system structures to support security and
reliable software,” ACM Comput. Surv., vol. 8, no. 4, pp. 409-445,
Dec. 1976.

T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin, “Attacks on WebView
in the Android system,” in ACSAC, 2011.

C. Marforio, H. Ritzdorf, A. Francillon, and S. Capkun, “Analysis of
the communication between colluding applications on modern smart-
phones,” in ACSAC, 2012.

V. S. Martin Georgiev, Suman Jana, “Breaking and fixing origin-based
access control in hybrid web/mobile application frameworks,” in NDSS,
2014.

J. H. Morris, Jr., “Protection in programming languages,” Commun.
ACM, vol. 16, no. 1, pp. 15-21, Jan. 1973.
S. J. Mullender, G. van Rossum, A. S. Tanenbaum, R. van Renesse,

and H. van Staveren, “Amoeba: A distributed operating system for the
1990s,” Computer, vol. 23, no. 5, pp. 44-53, May 1990.

15

[44]

[45]

[46]

[47]

(48]

[49]

[50]

(511

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(711

[72]

P. Mutchler, A. Doupé, J. Mitchell, C. Kruegel, and G. Vigna, “A Large-
Scale Study of Mobile Web App Security,” in IEE MoST, 2015.

A. Nadkarni, B. Andow, W. Enck, and S. Jha, “Practical DIFC enforce-
ment on android,” in USENIX Security, 2016.

A. Nadkarni and W. Enck, “Preventing accidental data disclosure in
modern operating systems,” in ACM CCS, 2013.

M. Nauman, S. Khan, and X. Zhang, “Apex: Extending Android per-
mission model and enforcement with user-defined runtime constraints,”
in ASIACCS, 2010.

R. M. Needham and R. D. Walker, “The cambridge cap computer and
its protection system,” in ACM SOSP, 1977.

P. G. Neumann, R. S. Boyer, R. J. Feiertag, K. N. Levitt, and L. Robin-
son, “A provably secure operating system: The system, its applications,
and proofs,” Computer Science Laboratory Report CSL-116, Second
Edition, SRI International, 1980.

M. Ongtang, K. R. B. Butler, and P. D. McDaniel, “Porscha: policy
oriented secure content handling in android,” in ACSAC, 2010.

M. Ongtang, S. E. McLaughlin, W. Enck, and P. McDaniel, “Semanti-
cally rich application-centric security in Android,” in ACSAC, 2009.

P. Pearce, A. Porter Felt, G. Nunez, and D. Wagner, “AdDroid: Privilege
separation for applications and advertisers in Android,” in ASIACCS,
2012.

N. Provos, “Improving host security with system call policies,” in
USENIX Security, 2003.

N. Provos, M. Friedl, and P. Honeyman, “Preventing privilege escala-
tion,” in USENIX Security, 2003.

D. Redell and R. Fabry, “Selective revocation of capabilities,” in Proc.
International Workshop on Protection in Operating Systems, 1974.

F. Roesner and T. Kohno, “Securing embedded user interfaces: Android
and beyond,” in USENIX Security, 2013.

J. Seo, D. Kim, D. Cho, I. Shin, and T. Kim, “FLEXDROID: enforcing
in-app privilege separation in android,” in NDSS, 2016.

J. S. Shapiro, J. M. Smith, and D. J. Farber, “EROS: a fast capability
system,” in ACM SOSP, 1999.

S. Shekhar, M. Dietz, and D. S. Wallach, “Adsplit: Separating smart-
phone advertising from applications,” in USENIX Security, 2012.

S. Smalley and R. Craig, “Security Enhanced (SE) Android: Bringing
Flexible MAC to Android,” in NDSS, 2013.

S. Son, G. Daehyeok, K. Kaist, and V. Shmatikov, “What mobile ads
know about mobile users,” in NDSS, 2015.

R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Investi-
gating user privacy in android ad libraries,” in JEE MoST, 2012.
Trustworthy Systems Team (Data61), “seL4 reference manual v. 7.0.0,”
https://sel4.systems/Info/Docs/seL.4-manual-7.0.0.pdf, Sep. 2017.

Y. Wang, S. Hariharan, C. Zhao, J. Liu, and W. Du, “Compac: Enforce
component-level access control in Android,” in ACM CODASPY, 2014.
R. N. M. Watson, J. Anderson, B. Laurie, and K. Kennaway, “Capsicum:
practical capabilities for unix,” in USENIX Security, 2010.

R. N. M. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. An-
derson, D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie, S. J.
Murdoch, R. Norton, M. Roe, S. Son, and M. Vadera, “Cheri: A hybrid
capability-system architecture for scalable software compartmentaliza-
tion,” in /EEE S&P, 2015.

M. V. Wilkes, The Cambridge CAP Computer and Its Operating System
(Operating and Programming Systems Series). Amsterdam, The
Netherlands, The Netherlands: North-Holland Publishing Co., 1979.

W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and
F. Pollack, “Hydra: The kernel of a multiprocessor operating system,”
Commun. ACM, vol. 17, no. 6, pp. 337-345, Jun. 1974.

R. Xu, H. Saidi, and R. Anderson, “Aurasium: Practical policy enforce-
ment for Android applications,” in USENIX Security, 2012.

Y. Xu and E. Witchel, “Maxoid: Transparently confining mobile appli-
cations with custom views of state,” in EuroSys, 2015.

X. Zhang, A. Ahlawat, and W. Du, “Aframe: Isolating advertisements
from mobile applications in android,” in ACSAC, 2013.

Y. Zhou, X. Zhang, X. Jiang, and V. Freeh, “Taming information-
stealing smartphone applications (on Android),” in TRUST, 2011.

