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Abstract—Increasingly, mobile application-based ride-hailing
services have become a very popular means of transportation.
Due to the handling of business logic, these services also contain
a wealth of privacy-sensitive information such as GPS locations,
car plates, driver licenses, and payment data. Unlike many of
the mobile applications in which there is only one type of users,
ride-hailing services face two types of users: riders and drivers.
While most of the efforts had focused on the rider’s privacy,
unfortunately, we notice little has been done to protect drivers.
To raise the awareness of the privacy issues with drivers, in
this paper we perform the first systematic study of the drivers’
sensitive data leakage in ride-hailing services. More specifically,
we select 20 popular ride-hailing apps including Uber and Lyft
and focus on one particular feature, namely the nearby cars
feature. Surprisingly, our experimental results show that large-
scale data harvesting of drivers is possible for all of the ride-
hailing services we studied. In particular, attackers can determine
with high-precision the driver’s privacy-sensitive information
including mostly visited address (e.g., home) and daily driving be-
haviors. Meanwhile, attackers can also infer sensitive information
about the business operations and performances of ride-hailing
services such as the number of rides, utilization of cars, and
presence on the territory. In addition to presenting the attacks,
we also shed light on the countermeasures the service providers
could take to protect the driver’s sensitive information.

I. INTRODUCTION

Over the last decade, ride-hailing services such as Uber and
Lyft have become a popular means of ground transportation
for millions of users [34], [33]. A ride-hailing service (RHS) is
a platform serving for dispatching ride requests to subscribed
drivers, where a rider requests a car via a mobile application
(app for short). Riders’ requests are forwarded to the closest
available drivers who can accept or decline the service request
based on the rider’s reputation and position.

To operate, RHSes typically collect a considerable amount
of sensitive information such as GPS position, car plates,
payment data, and other personally identifiable information
(PII) of both drivers and riders. The protection of these data is
a growing concern in the community especially after the pub-

lication of documents describing questionable and unethical
behaviors of RHSes [18], [8].

Moreover, a recent attack presented by Pham et al. [30]
has shown the severity of the risk of massive sensitive data
leakage. This attack could allow shady marketers or angry taxi-
cab drivers to obtain drivers’ PII by leveraging the fact that
the platform shares personal details of the drivers including
driver’s name and picture, car plate, and phone numbers upon
the confirmation of a ride. As a result, attackers could harvest
a significant amount of sensitive data by requesting and can-
celing rides continuously. Accordingly, RHSes have adopted
cancellations policy to penalize such behaviors, but recent
reported incidents have shown that current countermeasures
may not be sufficient to deter attackers (e.g., [15], [5]).

Unfortunately, the above example attack only scratches the
tip of the iceberg. In fact, we find that the current situation
exposes drivers’ privacy and safety to an unprecedented risk,
which is much more disconcerting, by presenting 3 attacks that
abuse the nearby cars feature of 20 rider apps. In particular,
we show that large-scale data harvesting from ride-haling
platforms is still possible that allows attackers to determine
a driver’s home addresses and daily behaviors with high
precision. Also, we demonstrate that the harvested data can
be used to identify drivers who operate on multiple platforms
as well as to learn significant details about an RHS’s operation
performances. Finally, we show that this is not a problem
isolated to just a few RHSes, e.g., Uber and Lyft, but it is
a systematic problem affecting all platforms we tested.

In this paper, we also report the existing countermeasures
from the tested RHSes. We show that countermeasures such
as rate limiting and short-lived identifiers are not sufficient
to address our attacks. We also present new vulnerabilities in
which social security numbers and other confidential infor-
mation are shared with riders exist in some of the RHSes we
tested. We have made responsible disclosures to the vulnerable
RHS providers (received bug bounties from both Uber and
Lyft), and are working with them to patch the vulnerabilities
at the time of this writing.

Finally, to ease the analysis efforts, we have developed a
semi-automated and lightweight web API reverse engineering
tool to extract undocumented web APIs and data dependencies
from a mobile app. These reversed engineered web APIs are
then used to develop the security tests in our analysis.
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• Nearby Cars: The forth API is used by the rider app
to obtain information about nearby cars and a quote of
the cost of the ride. Figure 1 shows an example of this
API with the request and response message. The request
message carries the rider’s location and the response mes-
sage contains several nearby cars. Each car has at least an
identifier (id), the position information, which includes
the GPS coordinates and the time stamp indicating when
such position is recorded.

• Ride Request: The last API is used to request a ride
and spawns across the three entities. It is initiated by the
rider when requesting a ride for a specific destination.
The server will determine the closest drivers to the rider’s
current position and ask them if they would accept the
ride. If so, the server assigns the first responded driver to
the rider, and sends to the rider app the details about the
ride.

RHSes may provide additional services and APIs that
are not shown in Figure 1, such as billing information for
customers and APIs to integrate with other third-party services
(e.g., Google Maps).

B. Motivation and Threat Model

Motivation. The motivation of our work is based on a serious
attack against drivers of RHSes. To the best of our knowledge,
one of the first few attacks threatening the safety of drivers has
been presented by Pham et al. [30] as a part of a broader study
on privacy threats in RHSes. In this attack, the attacker is a
group of angry taxi-cab drivers who wants to harm RHS drivers
coordinately. To do so, the attacker exploits the behavior of the
Request Ride API that returns drivers’ personal details. Based
on this behavior, the attacker collects drivers’ information by
requesting and canceling rides. While this threat may seem
implausible, a number of news reports is showing that physical
violence is a real threat to RHS drivers (e.g., [39], [10], [21],
[31]). On the other hand, RHS providers have begun to charge
penalties if users canceling rides. This policy increases the cost
for conducting such information collection, and mitigates the
attacks utilizing the Request Ride API.

However, despite the Request Ride API, we find that the
Nearby Cars API can also leak drivers’ information both
directly and indirectly. Nevertheless, it remains underestimated
and is rarely noticed by attackers and researchers. There might
be multiple reasons. The first reason is probably that, showing
the nearby cars is a common feature of apps in this category,
which brings directly to the users with vivid visual effects and
lets them realize how many available cars around them, in
order to estimate where they would better to move to catch
a car in a shorter time. This feature is provided by almost
every RHS app today, though different app may adopt different
strategy to display the nearby cars (e.g., using different radius).
The second possible reason is that, this API is not designed
to provide drivers’ information directly as what the Request

Ride API does, such as driver’s name, plate number, and
phone number. As a result, when designing RHS apps, the
app developers may intuitively provide this feature by default,
without challenging much about its security.

Therefore, in this paper, we intend to systematically study
the severity of the data leakages originated from this visual

Service Name #Downloads Obfuscated?

Uber 100+ millions ✔

Easy 10+ millions ✔

Gett 10+ millions ✔

Lyft 10+ millions ✔

myTaxi 5+ millions ✔

Taxify 5+ millions ✗

BiTaksi 1+ millions ✔

Heetch 1+ millions ✔

Jeeny 500+ thousands ✔

Flywheel 100+ thousands ✗

GoCatch 100+ thousands ✔

miCab 100+ thousands ✗

RideAustin 100+ thousands ✗

Ztrip 100+ thousands ✔

eCab 50+ thousands ✔

GroundLink 10+ thousands ✗

HelloCabs 10+ thousands ✗

Ride LA 10+ thousands ✗

Bounce 10+ thousands ✗

DC Taxi Rider 5+ thousands ✔

Table I: The selected RHSes in our study.

effect, which is brought by the execution of the Nearby Cars

API. To our surprise, we find that this feature can actually
cause a lot of damages to both the drivers and the platform
providers as well.

Threat Model. We assume the attacker is either a ride-hailing
service, an individual, or a group of persons. In addition, the
attacker can reverse engineer the rider app of RHSes, create
fake accounts, use GPS spoofing to forge user positions, and
control several machines connecting to the Internet.

III. METHODOLOGY AND TOOLS

A key objective of this work is to have a systematic under-
standing of the current circumstances of driver’s security issues
in RHSes by studying the related web APIs they exposed. To
this end, we intend to investigate the deployed countermeasures
or mechanisms that can prevent, increase the cost, or slow
down the acquisition of the GPS positions of drivers, and
meanwhile to understand whether such data leakage is a threat
to drivers’ privacy and RHS business. For this purpose, we
have to apply security tests over web APIs, which requires
proper descriptions of the web API end-points, parameters,
and API call sequences. Unfortunately, the documentation of
web APIs is not always available: out of the 20 mobile apps we
studied, only Lyft provides a description of the Nearby Cars

API2. To solve this problem, we need to design a tool for web
API reverse engineering.

In this section, we first describe how we select the RHSes
and their apps in §III-A, then present how we design our web
API reverse engineering tool in §III-B and its implementation
in §III-C.

A. Selection of the RHSes

We conducted our study on a selection of RHSes by
searching for the keyword “ride-hail” on Google Play Store
through a clean Chrome Browser instance and selecting the top
20 suggested apps that can be installed and run on our devices

2See "Availability - ETA and Nearby Drivers" https://developer.lyft.com/
reference
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Interestingly, according to our preliminary analysis of these
20 apps, we also notice that we can use a lightweight API
level data dependency analysis instead of the heavyweight
instruction level data dependency analysis (i.e., taint analysis)
to solve our problem. In that, the parameters are mostly strings
and we can identify the dependencies by matching their values.
The only limitation for this approach is that we are unable to
identify the dependencies if a string is transformed between the
definition of the string and the use of the string. Fortunately,
we did not notice such a case in our RHS apps.

Therefore, we eventually design a lightweight, API level,
dynamic data dependency analysis that works in the following
three steps:

Step I: Logging Android and System APIs. First, we
instrument a large number of system APIs of our interest,
which includes (i) all of the HTTP(S) system libraries
(e.g., HttpClient) and low level (SSL)Socket APIs handling
third-party or self-developed libraries; (ii) the system
APIs that are required by Ride-Hailing services, such as
LocationManager.requestLocationUpdates(),
LocationManager.getLastKnownLocation(),
GPSTracker.getLatitude(), GPSTracker.get

Longitude(), and System.currentTimeMillis().
During the execution of these APIs, we log the name, the
parameters, and the return values of the system APIs in a log
file.

Step II: Resolving the Web APIs. Unlike the system APIs
whose name is documented, we do not have any name of
the web APIs because they are merely HTTP request and
response messages. On the other hand, these messages have
already been logged when the networking system APIs get
executed. Therefore, by inspecting the networking request and
response API execution information in the log file, we can pair
each request with its corresponding response, and then parse
these pairs according to the HTTP protocol specification [1]:
a request message includes 1) a request-line, 2) request header
fields, 3) an empty line, and 4) an optional message-body;
and a response message contains 1) a status-line, 2) response
header fields, 3) an empty line, and 4) an optional message-
body.

Specifically, we parse the request message to obtain the
request URL as well as request parameters and we also parse
the response messages to abstract its content as a set of pairs of
<field_name,value>. With respect to the parameters and
response value pairs, we parse them accordingly based on their
specific encodings (e.g., JSON and XML). Eventually, the web
API is resolved by the request URL, the request parameters,
and the return values (i.e., response message). Then, we replace
the log entires of the original network sending and receiving
APIs with the newly resolved web APIs in the log file.

Step III: Data Dependency Analysis. Then by analyzing the
log file in both forward and backward directions, we identify
the APIs of our interest and also dependencies. In particular:

• Forward Data Dependency Analysis. Starting from
the return values of the hooked system APIs (e.g.,
GPSTracker.getLongitude()), we search where

this value is used in the log file in the forward direction.
The web APIs that use the GPS coordinates in the request
parameters is the candidate of the Nearby Cars API.
Also, interestingly, the GPS coordinates will also be used
in the return values of the Nearby Cars API because
each nearby car also has a location. An example of this
response message is in shown in Figure 2, which is the
JSON formatted item in nearby cars array. Therefore,
to further narrow down the candidate, we also inspect the
response messages. If the GPS coordinates exist in the
response message, we identify this Nearby Cars API.

• Backward Data Dependency Analysis. Having identi-
fied the Nearby Cars API, we then search in a backward
direction to locate where the parameters of this API
are defined. Transitively, we identify the closure that
generates the parameters such as the access_token.
Note that to really identify whether a parameter is token,
we apply the same differential packet analysis [2] to infer
the tokens in the request message. The key observation is
that different users are assigned with different tokens, and
we can therefore align and diff their requests for the same
web API by using two different users. Such a protocol
alignment and diffing approach has been widely used by
many protocol reverse engineering systems (e.g., [2], [9],
[42], [43]), and we just use the one from the Protocol
Informatics (PI) project [2].

C. Implementation

We have implemented our analysis tool atop the Xposed [3]
framework, which allows the dynamic interception of all of the
Android APIs including system APIs. The execution of these
APIs is logged into a log file, in which each entry contains
the API name, the value of parameters, and return value.
To resolve the web APIs from the log file, we just develop
standard parsing with python scripts. In particular, we depend
on urllib, zlib, json, and xml python libraries to parse
and decode the content of the web API. Finally, to infer the
tokens in the request and response messages, we use the open
source message field alignment and diffing implementation
from PI [2].

The last piece of our tool is a standalone data scraping
component that is able to collect the nearby driver information
by sending a large volume of request messages to the RHS
server with proper parameters. With our web API reverse en-
gineering component, the implementation of this task becomes
quite simple. In particular, we just developed a python script
that sends HTTP(S) request messages to the servers by using
the token obtained in the web API reverse engineering and
mutating the GPS coordinates of our interest. If the token
requires refresh, we execute the refresh token API with proper
parameters as well. Please note that these parameters have
already been identified by our data dependency algorithm.

To summarize, for each analyzed RHS app, we first in-
stalled the app in an instrumented Android device where
most of the Android APIs are interposed and their executions
are logged. For each selected app, we also created two user
accounts for each service. Then, we performed a user login
request and reached the view where the cars are displayed
on a map, by using the two users we registered. Next, we
analyze the log file to resolve the web APIs of our interest and
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Rider App RL1 RL2 SM1 SM2 GPS AN1 AN2

Uber  #  ∞ # ∞  

Easy - # # ∞ # ∞  

Gett - #  ∞ # ∞  

Lyft  #  24h # ∞ #

myTaxi - # # ∞ # 20m  

Taxify  #  ∞ # ∞  

BiTaksi - #  ∞ # ∞  

Heetch - #  ∞ # ∞  

Jeeny - # # ∞ # 20m  

Flywheel - #  20m # 10m  

GoCatch - #  ∞ # ∞  

miCab - #  ∞ # ∞ #

RideAustin - #  ∞ # ∞  

Ztrip - #  30m # ∞  

eCab  # # ∞ # ∞  

GroundLink - # # ∞ # ∞  

HelloCabs - #  ∞ # ∞ #

Ride LA - # # ∞ # ∞ #

Bounce - #  ∞ # ∞ #

DC Taxi Rider - #  ∞ # ∞ #

Table II: List of countermeasures. Values:  for countermea-
sure present, # for countermeasure missing, "-" for unknown,
and ∞ for not expired. Columns: RL1 for Reqs/s, RL2 for
Different IPs, SM1 for Authn, SM2 for Session Life-Span,
GPS for Anti-GPS Spoofing, AN1 for Identifier Life-Span,
AN2 for Driver Info.

identify the dependencies. After that, we run our standalone
data scraping component to scrape the nearby cars. We refer
to §IV and §V for the description of the individual test of the
apps.

IV. SECURITY ANALYSIS OF NEARBY CARS API

We now present our security analysis of Nearby Cars APIs.
The goal of this analysis is to identify server-side mechanisms
and possible countermeasures that can block or slow down
the attacker’s operations. The list of the countermeasures is
presented in §IV-A and the analysis results are presented in
§IV-B.

A. Analysis Description

The first step of our analysis is to prepare a list of
countermeasures to evaluate. We reviewed publicly available
documents such as ride-hailing apps’ API documentation for
developers and the best practices for web service development4

to search for known countermeasures covering the following
categories: rate limiting, anti-GPS spoofing, session manage-
ment, data anonymization, and anti-data scraping. Table II
shows the list of countermeasures. In the rest of this section,
we discuss each category and provide details of our tests.

Rate Limiting. Rate limiting is a technique that is used to limit
the number of requests processed by online services, and it is
often used to counter denial of service (DoS) attacks. Based on
our threat model, the attacker can take advantage of multiple
computers to perform a large number of requests. Accordingly,
we considered two countermeasures: per-user rate limits on the

4See, the "OWASP REST Security Cheat Sheet" https://www.owasp.org/
index.php/REST_Security_Cheat_Sheet and the "OWASP Web Service Se-
curity Cheat Sheet" https://www.owasp.org/index.php/Web_Service_Security_
Cheat_Sheet

number of requests and per-user limits on the number of IPs
used.

(RL1) Rate Limits Reqs/s: Servers can limit the number
of requests processed over a period of time. The
rate limits can be enforced for each user or
web server. When the limit is reached, the web
server may respond with a “429 Too Many

Requests” response status. We populated this
column using the information we gathered from
the ride-hailing service documentations. Only
Uber and Lyft describe the rate limits based on
the frequency of requests per second and the total
amount of requests per user. The other services
do not share these details. However, during our
experiments, we discovered that Taxify and eCab
implement rate limits. Nevertheless, these limits
are enforced when administrators suspect under-
going malicious activities, e.g., DoS.

(RL2) Different IPs: RHSes may be recording the IPs
for every user who logs in as a measure to mit-
igate session hijacking attacks. When the server
detects a new IP, it may require the user to
be re-authenticated. To populate this column, we
checked the behavior of the server when process-
ing parallel requests from the same user session
using different source IPs. We used two sources:
an IP of the DigitalOcean Inc. network, and the
other of our own campus network.

Session Management. Session management encompasses the
mechanisms to establish and maintain a valid user session.
It includes user authentication, generation, and validation of
session identifiers. In this analysis, we focus on those aspects
that can limit attacker activities.

(SM1) Authentication: The first aspect we intend to
check is whether the access to Nearby Cars API is
restricted to the authenticated user only. We verify
this by checking for the presence of a session ID
in the Nearby Cars API request.

(SM2) Session Lifespan: The second aspect is the life-
span of user sessions that may slow down attack-
ers. For example, shorter validity time windows
may require the attacker to re-authenticated fre-
quently. We measure the session lifespan by call-
ing the Nearby Cars API over an extended period.
When we receive an error message, e.g., HTTP
response “4xx” series status code or a response
with a different response body format (e.g., keys
of JSON objects), we mark this session as expired.
We did not design ad-hoc experiments for that,
but we monitored errors during the experiments
of §V.

Anti-GPS Spoofing. The attacker spoofs GPS coordinates to
fetch nearby cars. As such, services may deploy mechanisms to
verify whether the GPS position is consistent with other mea-
surements, e.g., nearby WiFi networks and nearby cell towers5.
For this category, we do not enumerate and test possible

5See https://developer.android.com/guide/topics/location/strategies
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countermeasures, but we verify the presence of mechanisms
that would prevent an attacker from rapidly changing position
via GPS spoofing. For this test, we spoofed GPS coordinates
so that the users will appear in very distant places at the same
time. We first identified at least two cities where each ride-
hailing service operates. For example, for Lyft, we selected 11
cities and performed one request per second for each city for
twenty times. Four services, i.e., Bounce, RideAustin, RideLA,
and DC Taxi Rider, operate in a single city. In these cases, we
picked distant points within the same city.

Anonymization. This category contains countermeasures to
hide sensitive information and make it hard for an attacker
to reveal drivers’ identities. We derived this list by manually
inspecting the content of Nearby Cars API responses.

(AN1) Identifier Lifespan: As shown in Figure 2, the
Nearby Cars API’s responses carry identifiers for
either cars or drivers in most cases. In this study,
we assume each driver is binding to a unique
car, which means the identifier for a car and
for a driver is conceptually equivalent. These
identifiers can be used to track cars and drivers
across different responses. Shortening the lifespan
of identifiers may mitigate this problem. Then,
we tested the time it takes for an identifier to be
updated. As discussed for the session ID lifespan,
we measured the identifier lifespans during the
experiments of §V.

(AN2) Personally Identifiable Information: We inspect
the responses looking for personally identifiable
information. We looked for the first and last name,
email, phone numbers, and others.

B. Results

We now present the main results of our analysis. Results
are presented in Table II.

Rate Limiting. Uber, Lyft, and Gett are the only three services
provide publicly available API documentations. According to
Uber’s documentation, Uber enforces a limit of 2, 000 requests
per hour and a maximum peaks of 500 requests per second per
user. In our experiments, we observed that the real rate limit
is much lower, i.e., one request per second. As the Nearby

Cars API is undocumented, we speculated that this may be a
particular rate limit of the Nearby Cars API only. Lyft reports
the presence of rate limits; however, they do not disclose the
actual thresholds. Gett does not report the presence of rate
limits.

For Taxify and eCab, we discovered rate limits at about
two requests per second. These limits were not always present,
but they were enforced after they notified us about suspicious
traffic originated from our servers.

For the remaining RHSes, we did not identify rate limits.
As we elaborate more in §V, we requested on average about
four requests per second based on the insight gained with Uber,
Taxify, and eCab. Higher rate limits may be present, but we
did not verify their presence for ethical reasons. Finally, none
of the services enforce a same-origin network policy for user
requests.

Service name Sensitive information

Lyft Driver avatar

HelloCabs Name, phone number

Ride LA Name, phone number

DC Taxi Rider Name, phone number, email

miCab Account creating time, account last update time, device

number, hiring status

Bounce Name, date of birth, driver avatar, phone number, social

security number, driver license number, driver license ex-

piration date, home address, bank account number, routing

number, account balance, vehicle inspection details, vehicle

insurance details

Table III: List of personally identifiable information of drivers
included in Nearby Cars API responses

User Authentication. 14 services restrict the Nearby Cars

API to authenticated users only. The remaining services, i.e.,
GroundLink, myTaxi, Easy, Jeeny, RideLA, and eCab do not
require any form of user authentications. This allows any pub-
lic attacker to retrieve nearby cars without user authentication.

It is worth to mention the case of GoCatch. Every time
a user wants to log in at GoCatch, the service requires the
submission of a token sent via SMS. While this approach may
affect the service usability, it can raise the cost of the attacker
operations.

Session Lifespan. Since the beginning of the experiments, all
services—except for three—have not required us to obtain a
fresh user session. For Uber, Lyft, Heetch, Gett, and Flywheel,
the experiments last in total 28 days. During this period, only
Lyft and Flywheel require us to refresh the session ID after 24
hours and every 30 minutes, respectively. For the other services
the experiment lasted 15 days (eCab and Taxify only 7 days).
Among these, only Ztrip requires to refreshen the session ID
every 30 minutes.

Anti-GPS Spoofing. Our analysis did not reveal the presence
of any anti-GPS spoofing behavior among all of tested RHSes.

Identifier Lifespan. Overall, 17 services do not use short-lived
identifiers. The maximum time interval is the same as that of
session lifespan. Only three services shuffle identifiers every
20 minutes. Among these, it is worth mentioning the behavior
of Flywheel that refreshes identifiers about every 10 minutes.

Personally Identifiable Information. Our analysis revealed
that in total six services share Personally Identifiable Infor-
mation (PII). Among them, we discovered full names, phone
numbers, as well as sensitive information such as social
security numbers and bank account data. The complete list
of PII per service is in Table III.

C. Takeaway

In short, our first analysis did not observe any particular
countermeasures hampering attackers. Instead, our analysis
revealed behaviors that can facilitate attackers, e.g., long-lived
tokens. Also, our tests identified two types of vulnerabilities
in 11 RHSes: six services do not require user authentication
to reveal the position of nearby drivers, and other six services
directly return a variety of personally identifiable information
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Rider App City/Area Req/s Days Cov/M

Uber O’ahu Island, Hawai’i 1 28 19

Easy Sao Paulo, Brazil 4 15 0.3

Gett Eilat, Israel 4 28 0.3

Lyft O’ahu Island, Hawai’i 5 28 19

myTaxi Hamburg, Germany 4 15 20

Taxify Paris, France 2 7 12

BiTaksi Istanbul, Turkey 4 15 20

Heetch Stockholm, Sweden 4 28 12

Jeeny Riyadh, Saudi Arabia 4 15 0.3

Flywheel Seattle, US 4 28 7

GoCatch Sydney, Australia 4 15 20

miCab Cebu, Philippines 4 15 0.8

RideAustin Austin, US 4 15 7

Ztrip Houston, US 4 15 12

eCab Paris, France 2 7 7

GroundLink Dallas, US 4 15 20

HelloCabs Yangon, Myanmar 4 15 7

Ride LA Los Angeles, US 4 15 20

Bounce San Diego, US 4 15 20

DC Taxi Rider Washington DC, US 4 15 3

Table IV: An overview of the parameters of our experiments.
Cov/M for the estimate coverage area (mi2) of one monitor.

(RideLA contains both vulnerabilities), which even includes
sensitive and confidential information (e.g., social security
numbers and bank account numbers).

V. ATTACKS

The results of the web API analysis indicate that the Nearby

Cars API may be poorly protected. Attackers may be able to
collect a large volume of data containing drivers’ identifiable
information and their positions, which can uncover drivers’
sensitive information indirectly. To demonstrate the threats,
in this section, we present three attacks to show that the
current implementations of Nearby Cars API not only seriously
threaten drivers’ safety and privacy, but also allow attackers to
spy on RHS business performances.

In this section, we present the details of our attacks.
First, we present the data collection and processing in §V-A.
Then, three attacks are presented in §V-B,§V-C, and §V-D,
respectively.

A. Design

Our attacks consist of three components: data acquisition,
data aggregation, and data analysis.

Data Acquisition. Data acquisition is performed with moni-
tors. A monitor is a bot that controls a rider account. In this
study, all monitors for a particular RHS use only one account.
A monitor is placed in an appropriate location in a city to
collect data by continuously performing API calls with spoofed
GPS coordinates and store collected data in a local database.
Moreover, monitors are responsible for determining when the
authorization token needs to be refreshed.

The exact locations of our monitors are determined as
follows. First, if the RHS operates in multiple cities, we
select a city which is relatively isolated from neighboring
cities (e.g., in an island). Second, we calculate the average
size that a monitor could cover (up to 20 mi2 for ethical
concerns). Then, we place monitors in a grid based on the size
of the area covered by each monitor, which varies considerably

across services; however, as cities have irregular shapes, we
adjusted monitors to better adapt to the shapes manually. Also,
as monitors may cover the same area, we further refined
the positions of monitors to reduce overlaps. The locations,
coverage size of each monitor, and other parameters of our
experiments are reported in Table IV.

After being placed, each monitor starts to acquire data
at a constant request rate, which has been determined by
considering ethical aspects. Specifically, our experiments must
not interfere with the normal business operations of RHSes and
not to trigger the active rate-limiting mechanism, if there is any.
Accordingly, we first tried to acquire data from Lyft with a rate
of 10 requests per second, the documented rate limits. After
two hours, we reached the Lyft’s rate limit, and we reduced
monitors’ rate by half, i.e., five requests per second. Then, we
used the new rate for Uber. However, we reached the rate limit
of Uber as well and further reduced to one request per second.
For the other RHSes, we set the initial rate four requests per
second and never changed it. Only for Taxify and eCab, we
further reduced the request rate to two requests per second.

In fact, we acquired data incrementally. First, we started
the acquisition for Lyft, Uber, Heetch, Gett, and Flywheel
on April 13th, 2018. The responses data are collected over
four consecutive weeks (28 days), i.e., between April 13th
and May 10th. Then we extended the acquisition of data to
the remaining 15 RHSes from May 11th. In total, except for
Taxify and eCab, we acquired data for 15 days. Because of
a power outage, our monitors were offline or gathered partial
date between May 12th and 14th, and May 19th and 21th.
We excluded these days in the following study. For Taxify
and eCab, we acquired only seven days because the network
providers flagged our machines as infected. Accordingly, we
suspended the acquisition of data.

Data Aggregation. Responses of Nearby Cars API return car
paths. Each path is a list of timestamped GPS coordinates with
an identifier, which is used to link paths to cars or drivers and
does not change over time. One of these RHSes, i.e., Lyft,
requires additional attention. Lyft’s Nearby Cars API responses
include the URL of driver’s avatar, a driver-chosen picture
(selfie in most cases). Avatars do not change very often, and
this makes them reliable identifiers for drivers. However, each
response contains only the URL of the closest driver. To gather
the URLs of other drivers, we deploy a mobile monitor for
each newly-discovered “driver” to perform an additional API
call closer to the most recent GPS coordinate.

Data Analysis. The final step is to remove noises from our
dataset. First, we observe that drivers work as full-time or part-
time. We categorize drivers as full-time if they appear more
than half of the total number of days. Compared to the part-
time drivers, full-time drivers have a tendency to exhibit more
regular daily patterns. Thus, we focus on full-time drivers only.
Second, drivers have various activities through a day if they
are absent in our dataset, giving a ride or logged out of the
platform (e.g., to sleep or eat). As none web API we used to
collect data can distinguish a specific activity, we rely on the
inter-path interval to distinguish the two cases. In particular,
we observe that the average ride in the cities that we are
monitoring could last up to 45 minutes. Accordingly, if the
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essary PII to riders is inevitable. However, improper imple-
mentation logic may provide the PII to the one who should
not receive. For example, a driver’s avatar should be provided
to the rider who has successfully scheduled a ride, not any
other users. Therefore, we consider an appropriate practice is
to provide PII after a successful scheduled ride, which can
protect drivers’ PII from unexpected leakages.

C. Ethical Considerations and Responsible Disclosure

The analysis presented in this paper involved the analysis
of remote servers and handling sensitive data of drivers.
We addressed the ethics concerns of our study as follows.
First, we designed experiments to avoid interfering the normal
operations of RHSes. Our experiments (i) used a low request
rate, and we adapted it based on the feedback received by
the remote servers and (ii) we did not request, cancel or
did any other operations that could change drivers behavior.
Second, even though the data we collected is accessible to the
public and has not been encrypted, our monitors have been
implemented to remove sensitive response fields before storing
data in our database. In doing so, we are not storing any private
data item, such as full names, dates of birth, and social security
numbers.

Our analysis identified security issues that need to be
addressed by RHSes’ developers. We have notified our findings
as follows. First, for these RHSes with clear vulnerabilities,
e.g., the SSN returned by Bounce and unauthenticated access
to the Nearby Cars API, we have followed the notification
procedure presented by Stock et al. [35]. After the initial noti-
fication, we regularly verify the presence of the vulnerability.
If the vulnerability is present, then we send a reminder after
two weeks of the initial notification. Second, to adequately
address our findings, RHSes developers may need to redesign
the web API and the rider app as well. In this case, we have
reached out to the developers, and are discussing the details
of our findings.

D. Feedbacks After Disclosure

We notified the developers of all 20 RHSes about our
results. Eight services shared with us the details of the
patch and asked for our feedback. For example, Bounce
removed sensitive PII including social security number and
bank account number from their response messages, Lyft’s
Nearby Cars API has stopped providing avatar informations,
and Heetch is considering to harden the web API usage by
introducing further restrictions such as shorter the lifespan of
drivers’ IDs. Furthermore, as a result of our notification efforts,
Lyft and Uber each awarded us a bug bounty.

E. Lessons Learned

The Unlearned Lesson Despite Media Attention. The mas-
sive sensitive data leakage of drivers [30] and the Hell pro-
gram [11] have received extensive media attentions covering
both legal and financial impacts. However, despite all these
attentions, changes in the platforms, if any, are not perceptible
making it possible for an attacker to spy on drivers.

From Security to Safety. Second, most of the attention
has been devoted to the industrial espionage between two

competitors and a little has been paid to the possible safety
issues of drivers. Unfortunately, the issues presented in this
paper goes beyond the mere computer security issue and
touches drivers’ safety. As shown in this paper, Nearby Cars

APIs can be used to determine driver’s home address.

A Market Segment Problem. Finally, a more concerning
outcome of our findings is that Uber and Lyft are not two
isolated cases. On the contrary, our results show a problem
of an entire sector: for all services, it is possible to mount
the same set of attacks of inferring driver’s home addresses;
also, all of these ride-hailing services suffer from at least one
vulnerability. Meanwhile, in one case, i.e., Gett, the attacker
can directly query a web API to obtain the position of a specific
driver, without the need of harvesting API responses.

VII. RELATED WORK

Privacy-Preserving Location-Based Services (LBS). Privacy
in LBSes is a long-lasting concern. Many privacy-preserving
architecture have been proposed and attempted to address
privacy issues in the broader category of LBSes, e.g., location-
based Trust for Mobile User-generated Content [23], location-
based social networks [17], privacy-preserving location proof
updating system [38], privacy-aware location proof architec-
ture [26]. Most recently, Pham et. al. also proposed two privacy
preserving LBS systems particularly for ride-hailing services:
ORide [29] and PrivateRide [30]. Our work complements these
efforts by demonstrating the possible attacks current ride-
hailing services still face.

Leakage of Privacy Sensitive Data in Mobile Applications.
The detection of data leakage in mobile applications is a chal-
lenging problem that has been addressed from different angles
using different techniques. For example, Enck et al. [13], Yang
et al. [37] and Egele et al. [12] focused on the problem of
identifying mobile apps that transmit sensitive data such as
GPS position and contact lists without device users awareness.
Data leakage can also occur when transmitting user-provided
sensitive date. SUPOR [19] and UiRef [4] have been designed
to detect these leakages. Finally, data leakage can be the result
of exploitations of code vulnerabilities such as code injection
vulnerabilities [20] or improper certificate validation [14], or
library vulnerabilities [28].

There are also efforts of identifying the privacy leakage of
the server response data from mobile apps. For instance, Kock
et. al. [22] proposed using both static analysis and dynamic
analysis to semi-automatically discover server-based informa-
tion oversharing vulnerabilities, where privacy sensitive cus-
tomer information was unexpectedly sent to the mobile apps.
Improper implementation of access control mechanism at the
server side can also lead to sensitive data leakage from mobile
apps, as shown in AuthScope [43] and LeakScope [41]. Our
work is inspired by these server side data leakage problems,
but we focus on a new context particularly in the ride-hailing
service that has not been explored before.

Web API and Protocol Reverse Engineering. To conduct
our study, we developed a lightweight dynamic analysis tool
to reverse engineer the remote server web APIs for privacy
sensitive data analysis. In fact, there is also a large body of
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research focusing on reverse engineering of network protocols
from both network traces and application binary executions. In
particular, Discoverer [9] and Protocol Informatics [2] extract
protocol format from the collected network traces, whereas
Polyglot [7], AutoFormat [24], Dispatcher [6], Reformat [36]
instead extract protocol format based on how network message
is processed by the application binary. Inferring the protocol
format is not the primary goal of our analysis. Recently,
WARDroid [27] introduces a static-analysis based method to
extract web APIs, but it focuses on the implementation logic,
which is not the objective of our analysis. However, our tech-
nique can certainly integrate these techniques to recognize the
message format in addition to the discovery of the web APIs.

Dynamic Analysis of Mobile Apps. Our approach is based
on dynamic analysis to identify web APIs and dependencies.
Similarly, dynamic approaches have been used in the past to
study specific security problems. For instance, TaintDroid [13]
has been used to detect whether user’s privacy sensitive infor-
mation can be leaked outside the phone; AppsPlayground [32]
recognizes the user interfaces of mobile apps and gener-
ates corresponding inputs to expose more app behaviors;
DECAF [25] navigates various activities of mobile apps to
discover potential Ads flaws; SmartGen [40] executes a mobile
app with selective concolic execution to expose malicious
URLs; so on and so forth.

Our approach differs from these existing techniques as
follows. First, we solve the problem of extracting web APIs
including the parameter roles from mobile apps. Second, each
work has their own unique challenges. For instance, we do
not face the issues of executing all the possible program paths
of a mobile app, and instead we rely on security analysts
to execute the app. Certainly, we can integrate existing
efforts such as SmartGen [40] to expose the web APIs more
efficiently and automated.

VIII. CONCLUSION

We have presented a large-scale study of the privacy-
sensitive data leakage of drivers in the ride-hailing services. We
focus on one particular feature, namely the nearby cars feature,
which retrieves nearby car’s information from the server when
a rider opens the mobile app. Surprisingly, our study with 20

ride-hailing services including both Uber and Lyft has revealed
that the data harvesting attacks are feasible. In particular, our
study showed that these attacks are a real threat to the safety
of drivers: attackers can determine the locations of drivers
with high-precision, including but not limited to the home
address, and detect driver’s daily behaviors. Moreover, some
of the services also leak other confidential information such
as the social security numbers of drivers. Furthermore, the
aggregated business information about the ride-hailing services
can also be learned by attacks such as the number of rides,
utilization of cars, and presence on the territory. In addition
to evaluating the current countermeasures and reporting the
attacks we conducted, we have also discussed more robust
countermeasures the service providers could use to defeat the
attacks presented in this paper.
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