
Master of Web Puppets: Abusing Web Browsers
for Persistent and Stealthy Computation

Panagiotis Papadopoulos,∗ Panagiotis Ilia,∗ Michalis Polychronakis,† Evangelos P. Markatos,∗

Sotiris Ioannidis,∗ Giorgos Vasiliadis∗
∗FORTH, Greece, {panpap, pilia, markatos, sotiris, gvasil}@ics.forth.gr

†Stony Brook University, USA, mikepo@cs.stonybrook.edu

Abstract—The proliferation of web applications has essentially
transformed modern browsers into small but powerful operating
systems. Upon visiting a website, user devices run implicitly
trusted script code, the execution of which is confined within
the browser to prevent any interference with the user’s system.
Recent JavaScript APIs, however, provide advanced capabilities
that not only enable feature-rich web applications, but also allow
attackers to perform malicious operations despite the confined
nature of JavaScript code execution.

In this paper, we demonstrate the powerful capabilities
that modern browser APIs provide to attackers by presenting
MarioNet: a framework that allows a remote malicious entity to
control a visitor’s browser and abuse its resources for unwanted
computation or harmful operations, such as cryptocurrency
mining, password-cracking, and DDoS. MarioNet relies solely on
already available HTML5 APIs, without requiring the installation
of any additional software. In contrast to previous browser-
based botnets, the persistence and stealthiness characteristics of
MarioNet allow the malicious computations to continue in the
background of the browser even after the user closes the window
or tab of the initially visited malicious website. We present the
design, implementation, and evaluation of our prototype system,
which is compatible with all major browsers, and discuss potential
defense strategies to counter the threat of such persistent in-
browser attacks. Our main goal is to raise awareness about this
new class of attacks, and inform the design of future browser
APIs so that they provide a more secure client-side environment
for web applications.

I. INTRODUCTION

Our increasing reliance on the web has resulted in sophisti-
cated browsing software that essentially behaves as an integrated
operating system for web applications. Indeed, contemporary
browsers provide an abundance of APIs and sensors (e.g.,
gyroscope, location, battery status) that can be easily used
by web applications through locally-running JavaScript code.
The constantly expanding JavaScript interfaces available in
modern browsers enable users to receive timely updates, render
interactive maps and 3D graphics, or even directly connect to
other browsers for peer-to-peer audio or video communication
(e.g., through WebRTC).

In the era of edge computing, the capabilities offered by the
available APIs have pushed a significant part of web application

logic to the endpoints. Web publishers transfer parts of the
critical computations on the user side, thus minimizing latency,
providing satisfactory user experience and usability, while at
the same time increasing the scalability of the service. Despite
all these advancements, the web largely works in the very same
way since its initial inception: whenever a user visits a website,
the browser requests from the remote web server (and typically
from other third-party servers) all the necessary components
(e.g., HTML, CCS, JavaScript and image files), executes any
script code received, and renders the website locally. That is,
whenever a user visits a website, the browser blindly executes
any received JavaScript code on the user’s machine.

From a security perspective, a fundamental problem of web
applications is that by default their publisher is considered as
trusted, and thus allowed to run JavaScript code (even from
third parties) on the user side without any restrictions (as long
as it is allowed by the website’s content security policy, if
any). More importantly, users remain oblivious about the actual
operations performed by this code. This problem has became
evident lately with the widespread surreptitious deployment
of cryptocurrency mining scripts in thousands of websites,
exploiting the visitors’ browsers without their consent [18],
[66]. Although there are some blacklist-based extensions and
tools that can protect users to some extent, such as Google’s
safe browsing, these do not offer complete protection.

On the other hand, disabling entirely the execution of
JavaScript code often breaks intended legitimate functionality
and affects the overall user experience. In general, the highly
dynamic nature of JavaScript, the lack of mechanisms for
informing users about the implemented functionality, and the
instant execution of script code, which does not leave room
for extensive security checks before invocation, are facilitators
for malicious or unwanted in-browser code execution.

On the positive side, unwanted JavaScript execution so far
has been constrained chronologically to the lifetime of the
browser window or tab that rendered the compromised or ma-
licious website. Consequently, cryptocurrency mining or other
malicious JavaScript code can affect users only temporarily,
typically for just a few minutes [53], depending on the time a
user spends on a given website. Unfortunately, however, some
recently introduced web technologies—already supported by
the most popular browsers—can severely exacerbate the threat
of unwanted JavaScript computation in terms of stealthiness,
persistence, and scale, and the support of such capabilities has
already started raising concerns of the community [29].

In this paper, we present MarioNet: a system that enables

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA
ISBN 1-891562-55-X
https://dx.doi.org/10.14722/ndss.2019.23070
www.ndss-symposium.org

a remote attacker to control users’ browsers and hijack device
resources. Upon visiting a website that employs MarioNet, the
user’s browser joins a centrally orchestrated swarm that exploits
user machines for unwanted computation, and launching a
wide variety of distributed network attacks. By leveraging
the technologies offered by HTML5, MarioNet goes beyond
existing approaches and demonstrates how malicious publishers
can launch persistent and stealthy attacks. This is possible by
allowing malicious actors to continue having control of the
victim’s browser even after the user browses away from a
malicious or infected website, and by bypassing most of the
existing in-browser detection mechanisms.

MarioNet consists of two main parts: (a) an in-browser
component, and (b) a remote command and control system.
Although MarioNet enables the attacker to perform attacks
similar to those carried out by typical botnets [32], there are
some fundamental differences. First and foremost, MarioNet
does not exploit any implementation flaw on the victim’s
system and does not require the installation of any software.
In contrast, MarioNet, leverages the provided capabilities of
JavaScript and relies on some already available HTML5 APIs.
Consequently, MarioNet is compatible with the vast majority
of both desktop and mobile browsers. In contrast to previous
approaches for browser hijacking (e.g., Puppetnets [4]), a key
feature of MarioNet is that it remains operational even after
the user browses away from the malicious webpage.

In particular, our system fulfills three important objectives:
(i) isolation from the visited website, allowing fine-grained
control of the utilized resources; (ii) persistence, by continuing
its operation uninterruptedly on the background even after
closing the parent tab; and (iii) evasiveness, avoiding detection
by browser extensions that try to monitor the webpage’s activity
or outgoing communication. Besides malicious computation
some of the attacks the infected browsers can perform include
DDoS, darknet creation, and malicious file hosting and sharing.

Overall, in this paper, we make the following contributions:

1) Present MarioNet: a novel multi-attack framework to allow
persistent and stealthy bot operation through web browsers.
MarioNet is based on an in-browser execution environment
that provides isolated execution, totally independent from
any open browsing session (i.e., browser tab). Therefore,
it is able to withstand any tab crashes and shutdowns,
significantly increasing the attacker’s firepower by more
than an order of magnitude.

2) Demonstrate and assess the feasibility of our approach with
a proof of concept implementation of MarioNet for the
most common web browsers (i.e., Chrome, Firefox, Opera,
and Safari). To measure its effectiveness, we thoroughly
evaluate MarioNet for various attack scenarios.

3) Discuss in detail various defense mechanisms that can be
applied as countermeasures against MarioNet-like attacks.

The main goal of this work is to raise awareness about the
powerful capabilities that modern browser APIs provide to
attackers, so that a more secure client-side environment can be
provided for web applications in the future.

II. BACKGROUND

In this section, we discuss several features that have been
recently introduced as part of HTML5 and influence our design.

We also discuss the capabilities of web browser extensions,
especially with regards to these HTML5 features, and finally,
for each feature, we analyze its security aspects, access policies,
permissions, and threat vectors that may open.

A. HTML5 features

1) Web Workers: Browsers typically have one thread that
is shared for both the execution of JavaScript and for page
rendering processing. As a result, page updates are blocked
while the JavaScript interpreter executes code, and vice versa.
In such cases browsers typically ask the user whether to kill
the unresponsive page or wait until the execution of such long-
running scripts is over. HTML5 solves this limitation with the
Web Workers API [46], which enables web applications to
spawn background workers for executing processing-intensive
code in separate threads from the browser window’s UI thread.

Since web workers run as separate threads, isolated from the
page’s window, they do not have access to the Dynamic Object
Model (DOM) of the webpage, global variables, and the parent
object variables and functions. More specifically, neither the
web worker can access its parent object, nor the parent object
can access the web worker. Instead, web workers communicate
with each other and with their parent object via message passing.
Web workers continue to listen for messages until the parent
object terminates them, or until the user navigates away from
the main webpage. Furthermore, there are two types of web
workers: dedicated and shared workers. Dedicated web workers
are alive as long as the parent webpage is alive, while shared
web workers can communicate with multiple webpages, and
they cease to exist only when all the connections to these
webpages are closed.

Typically, web workers are suitable for tasks that require
computationally intensive processing in an asynchronous and
parallel fashion, such as parsing large volumes of data and
performing computations on arrays, processing images and
video, data compression, encryption etc. Indeed, during the
recent outbreak of web-based cryptocurrency mining, we have
observed that typically these scripts utilize web workers for
mining, and that they deploy multiple such workers to utilize
all available CPU cores of the user’s system.

2) Service Workers: Service workers are non-blocking
(i.e., fully asynchronous) modules that reside in the user’s
browser, in between of the webpage and the publisher’s web
server. Unlike web workers, a service worker, once registered
and activated, can live and run in the background, without
requiring the user to continue browsing through the publisher’s
website—service workers run in a separate thread and their
lifecycle is completely independent from the parent page’s
lifecycle. The characteristics of service workers enable the
provision of functionality that cannot be implemented using
web workers, such as push notifications and background syncing
with the publisher. Furthermore, another core feature of service
workers is their ability to intercept and handle network requests,
including programmatically managing the caching of responses.
This allows developers to use service workers as programmable
network proxies, thus enriching the offline user experience by
controlling how network requests from a webpage are handled.

A service worker can be registered only over HTTPS via
the serviceWorkerContainer.register() function,

2

which takes as argument the URL of the remote JavaScript
file that contains the worker’s script. This URL is passed to
the internal browser’s engine and is fetched from there. For
security purposes, this JavaScript file can be fetched only from
the first-party domain (i.e., cannot be hosted in a CDN or
other third-party servers). Also, no iframe or third-party script
can register its own service worker. Importantly, no browser
extension or any in-browser entity can have access either in the
browser’s C++ implementation that handles the retrieval and
registration of the service worker or in the first-party domain.

When the user browses away from a website, the service
worker of that website is typically paused by the browser;
it is then restarted and reactivated once the parent domain
is visited again. However, it is possible for the publisher of
a website to keep its service worker alive by implementing
periodic synchronization. It should be noted though that the
registration of a service worker is entirely non transparent to the
user, as the website does not require the user’s permission to
register and maintain a service worker. Furthermore, similarly to
web workers, service workers cannot access the DOM directly.
Instead, they communicate with their parent webpages by
responding to messages sent via the postMessage interface.

3) WebRTC: Popular web-based communication applica-
tions (such as Web Skype, Google Meet, Google Hangouts,
Amazon Chime, Facebook Messenger) nowadays are based on
Web Real-Time Communication (WebRTC) API [23], which
enables the establishment of peer-to-peer connections between
browsers. The WebRTC technology enables browsers to perform
real-time audio and video communication and exchange data
between peers, without the need of any intermediary.

As in every peer-to-peer protocol, a challenge of WebRTC
is to locate and establish bidirectional network connections
with remote peers residing behind a NAT. To address this,
WebRTC uses STUN (Session Traversal Utilities for NAT)
and TURN (Traversal Using Relays around NAT) servers
for resolving the network address of the remote peer and
reliably establishing a connection. There are several such servers
publicly available [21], maintained either by organizations (e.g.,
Universities) or companies (e.g., Google).

4) Cross-Origin Resource Sharing: Before HTML5, sending
AJAX requests to external domains was impossible due to the
restrictions imposed by the same-origin policy, which restricts
scripts running as part of a page in accessing only the DOM
and resources of the same domain. This means that a web
application using AJAX APIs (i.e., XMLHttpRequest and
the Fetch API) can only request resources from the same
domain it was loaded.

However, the Cross-Origin Resource Sharing (CORS) [43]
capabilities introduced in HTML5, allow scripts to make cross-
origin AJAX requests to other domains. To enable this feature,
CORS uses extra HTTP headers to permit a user agent to access
selected resources from a server on a different domain (origin)
than the parent sits. Additionally, for HTTP request methods
that can cause side-effects on server-side data (in particular,
for HTTP methods other than GET, or for POST usage with
certain MIME types), the specification mandates browsers to
“preflight” the request, soliciting supported methods from the
server with an HTTP OPTIONS request method, to determine
whether the actual request is safe to send.

B. Web Extensions

The current design of modern browsers’ extensions allows
two types of JavaScript scripts within a browser extension:
(a) content scripts and (b) background scripts. Content scripts
run in the context of the websites visited by the user, thus
they can read and modify the content of these websites using
the standard DOM API, similarly to the websites’ scripts (i.e.,
those JavaScript scripts that were included in the website by
the publisher). Furthermore, content scripts can access directly
a small subset of the WebExtension JavaScript APIs.

On the other hand, background scripts run as long as the
browser is open (and the extension is enabled), and typically
implement functionalities independent from the lifetime of any
particular website or browser window, and maintain a long-
term state. These background scripts cannot access directly
the content of the websites visited by the user. However,
background scripts can access all the WebExtension JavaScript
APIs (or chrome.* APIs for Google Chrome), if the user’s
permission is granted during the installation of the extension.

Indicatively, the large set of WebExtension JavaScript APIs
contains the bookmarks, cookies, history and storage APIs,
which allow access on various types of user data, the tabs
and windows APIs, browserSettings and the webRequest API
among many others. However, even though content scripts
cannot access all WebExtension APIs directly, and background
scripts cannot access the content of the visited website, this
can be achieved indirectly since the content and background
scripts of an extension can communicate with each other.

In addition to the above mentioned APIs, Google Chrome
also supports some HTML5 and other emerging APIs for its
extensions (e.g., application cache, local storage, geolocation,
canvas, notifications, etc.). However, it is important with regards
to this work to emphasize that none of the browsers allow
extensions to use HTML5 APIs such as the Service Workers
API or the Push API. Consequently, browser extensions cannot
interact with possible deployed service workers in any way
(e.g., modify their code, monitor their outgoing traffic, etc.).

C. Security Analysis

Table I summarizes the characteristics of various APIs of
interest. We categorize them along four axes related to the
efficiency of a distributed botnet: (i) the execution model (i.e.,
whether it can run in parallel to the main webpage or in the
background), (ii) if direct network access is possible, (iii) the
ability to use persistent storage, and (iv) the ability to access
the DOM of the webpage.

JavaScript code (running either as part of the webpage, or
in a web worker or service worker) has access to persistent
storage (e.g., using WebStorage), as well as the ability to
communicate with other servers or peers (e.g., using XHR
requests, WebSockets, or WebRTC). However, local JavaScript
code embedded in the webpage also has direct access to the
page’s DOM and therefore, the ability to access or manipulate
any element of the webpage, as well as any network request
or response that is sent or received. Page-resident JavaScript
code cannot be detached from the webpage, neither run
without blocking the rendering process. This results to a major
limitation (for the purposes of malicious scripts), as long-
running operations would affect the user experience. Also,

3

TABLE I: Analysis of HTML5 JavaScript execution methods.

Feature Concurrent
Execution

Background
Execution

Webpage
Detached

Intercept
HTTP Requests

Persistent
Storage

DOM
Access

Network
Access

Local JavaScript code 3 3 3 3
Web Worker (Shared) 3 3 3
Web Worker (Dedicated) 3 3 3
Service Worker 3 3 3 3 3 3

a suspicious code snippet could be detected easily by browser
extensions, since it needs to be embedded in the main website,
and extensions’ JavaScript code can access, inspect and in
general, interfere with the content of the visited website.

Web workers, on the other hand, can perform resource-
intensive operations without affecting the user’s browsing
experience, as they run in separate threads. This allows utilizing
all different available CPU cores of the user’s machine, by
spawning a sufficient number of web workers. Service workers
behave in a similar fashion, but have the important advantage
of being completely detached from the main webpage, running
in the background even after the user has navigated away.
Moreover, service workers can intercept the HTTP requests
sent by the webpage to the back-end web server. Importantly,
since service workers are completely detached from the page’s
window, extensions cannot monitor or interfere with them.

Finally, using the CORS capabilities of HTML5, it is possi-
ble to send multiple GET or POST requests to third-party web-
sites. However, the Access-Control-Allow-Origin:*
header has to be set by the server, in order for the request to
be able to fetch any content. Besides sending HTTP requests,
WebRTC allows the peer-to-peer transfer of arbitrary data,
audio, or video—or any combination thereof. This feature can
open the window for malicious actions such as illegal hosting
and delivery of files, and anonymous communication through
a network of compromised browsers, as we showcase later on.

III. THREAT MODEL AND OBJECTIVES

The motivation behind this work is to design a system capa-
ble of turning users’ browsers into a multi-purpose “marionette”
controlled by a malicious remote entity. Our goal is to leverage
solely existing HTML5 features in order to highlight the lack
of adequate security controls in modern browsers that would
have prevented the abuse of these advanced features.

A. Threat Model

We assume a website that delivers malicious content to
execute unwanted or malicious background operations in
visitors’ browsers. Once the website is rendered, this malicious
content is loaded in a service worker that is capable of
continuing its operation even after the victim browses away
from the website.

Websites can deliver such malicious or unwanted content
intentionally, to gain profit directly (e.g., by attracting visitors
and thus advertisers), or indirectly, by infecting as many
user browsers as possible to carry out distributed (malicious)
computations or mount large-scale attacks. The websites in this
category can range from typically malicious ones, to websites

of shady reputation, and even to trustworthy and reputable
websites that aim to increase their revenue without actually
intending to conduct any illegal activities or harm the user.

There are also several cases where a website can end up
hosting such malicious content unintentionally. Those cases
include: (i) the website registers a benign service worker that
includes untrusted dynamic third-party scripts [35], which in
turn possibly load malicious code; (ii) the website includes third-
party libraries,1 one of which can turn rogue or be compromised,
and then divert the user to a new tab (e.g., using popunders [22]
or clickjacking [64]) where it can register its own service worker
bound to a third-party domain; (iii) the website is compromised
and attackers plant their malicious JavaScript code directly into
the page, thus registering their malicious service worker—a
scenario that we see quite often in recent years [40], [36]; or
(iv) the website includes iframes with dynamic content, which
are typically auctioned at real-time [57] and loaded with content
from third parties.

In the latter case, malicious actors can use a variety of
methods (e.g., redirect scripts [28], [37] or social engineering)
to break out of the iframe and open a new tab on the user’s
browser for registering their own service worker. The important
advantage of this latter approach is that the user does not need
to re-visit the website for the service worker to be activated.
After registration, just an iframe loaded from the malicious
third party is enough to trigger the malicious service worker,
regardless of the visited first-party website. This relieves the
attackers from the burden of maintaining websites with content
attractive enough to lure a large number of visitors. Instead,
attackers can activate their bots just by running malvertising
campaigns, purchasing iframes in ad-auctions [67].

To summarize, our threat model considers that such an
attack can be launched intentionally by a malicious or “shady”
website that includes malicious content, unintentionally, by a
hijacked/compromised website or a website that includes a
compromised library, and also by third-party dynamic content
loaded in iframes (typically used for real-time ad auctions).

B. Challenges

The greatest challenge for systems like MarioNet is to keep
the user’s device under control for as long as possible. This is a
challenging task given that a connection with the server may be
possible only for the duration of a website visit; recent studies
have estimated the average duration of a typical website visit
to be less than one minute [53]. In addition, there is a plethora

1Modern websites often include numerous third-party scripts [55], [14] for
analytics or user tracking purposes, aiming to gain insight, improve performance,
or collect user data for targeted advertising.

4

Web server

(3) Communication channel
(WebSocket)

(1) Webpage fetch (HTTPS)

Blocking
Extensions

Web Browser

Puppeteer

Service WorkerStandard Web Site

 (2) Webpage
 rendering

Fig. 1: High level overview of MarioNet. The in-browser component (Servant), embedded in a Service Worker, gets delivered
together with the actual content of a website. After its registration on the user’s browser, it establishes a communication channel
with its remote command and control server (Pupeteer) to receive tasks.

of sophisticated browser extensions [20], [39] that monitor
the incoming and outgoing traffic of in-browser components.
Consequently, another challenge for MarioNet is to evade any
such deployed countermeasure installed in the browser. Finally,
it is apparent that the malicious or unwanted computation of
MarioNet must not impede the normal execution of the browser,
and avoid degrading the user experience. Otherwise, the risk of
being detected by a vigilant user or at least raising suspicion
due to reduced performance is high.

To summarize, in order to overcome the above challenges,
a MarioNet-like system should have the following properties:

1) Isolation: the system’s operation must be independent from
a browsing session’s thread or process. This isolation will
allow a malicious actor to perform more heavyweight
computation without affecting the main functionality of
the browser.

2) Persistence: the operation must be completely detached
from any ephemeral browsing session, so that the browser
can remain under the attacker’s control for a period longer
than a short website visit.

3) Evasiveness: operations must be performed in a stealthy
way in order to remain undetected and keep the browser
infected as long as possible.

IV. SYSTEM OVERVIEW

In this section, we describe the design and implementation
of MarioNet, a multi-purpose web browser abuse infrastructure,
and present in detail how we address the challenges outlined
earlier. Upon installation, MarioNet allows a malicious actor
to abuse computational power from users’ systems through
their browsers, and perform a variety of unwanted or malicious
activities. By maintaining an open connection with the infected
browser, the malicious actor can change the abuse model at any

time, instructing for instance an unsuspecting user’s browser
to switch from illicit file hosting to distributed web-based
cryptocurrency mining.

Our system, which is OS agnostic, assumes no assistance
from the user (e.g., there is no need to install any browser
extension). On the contrary, it assumes a “hostile” environment
with possibly more than one deployed anti-malware browser
extensions and anti-mining countermeasures. We also assume
that MarioNet targets off-the-shelf web browsers. Hence, the
execution environment of MarioNet is the JavaScript engine of
the user’s web browser. Breaking out of the JIT engine [5] is
beyond the scope of this paper.

A. System components

Figure 1 presents an overview of MarioNet, which consists
of three main components:

1) Distributor: a website under the attacker’s control (e.g.,
through the means discussed in Section III-A), which
delivers to users the MarioNet’s Servant component, along
with the regular content of the webpage. It should be noted
that the attacker does not need to worry about the time a
user will spend on the website. It takes only one visit to
invoke MarioNet and run on the background as long as
the victim’s browser is open.

2) Servant: the in-browser component of MarioNet, embed-
ded in a service worker. It gets delivered and planted
inside the user’s web browser by the Distributor. Upon
deployment, the Servant establishes a connection with its
Puppeteer through which it sends heartbeats and receives
the script of malicious tasks it has to perform. The Servant
runs in a separate process and thereby it continues its
operation uninterruptedly even after its parent tab closes.

3) Puppeteer: the remote command and control component.
This component sends tasks to the Servant to be executed,

5

and orchestrates the performed malicious operations. The
Puppeteer is responsible for controlling the intensity of
resources utilization (CPU, memory, etc.) on the user side,
by tuning the computation rate of the planted Servant.

As illustrated in Figure 1, MarioNet is deployed in three
main steps: First, (step 1) the user visits the website (i.e.,
the Distributor) to get content that they are interested in. The
Distributor delivers the JavaScript code of the Servant along
with the rest of the webpage’s resources. During the phase
webpage rendering (step 2), the Servant is deployed in the user’s
browser. As part of its initialization, the Servant establishes a
communication channel with its remote command and control
server (Pupeteer) and requests the initial set of tasks (step 3).
The Pupeteer, which is maintained by the attacker, responds
with the malicious script (e.g., DDoS, password cracking,
cryptocurrency mining) the Servant has to execute.

B. Detailed Design

MarioNet leverages existing features of HTML5 to achieve
the objectives presented in Section III: isolation, persistence,
and evasiveness. In-browser attacks that involve computationally
heavy workloads require isolation in order to avoid interfering
with a webpage’s core functionality. Previous approaches [13],
[54] rely on web workers to carry out heavy computation in
the background (in a separate thread from the user’s interface
scripts). Although this isolation also prevents the code of the
web worker from having access to the DOM of the parent
page, it has the benefit of allowing multi-core utilization. As a
result, attackers can utilize multiple cores for their malicious
computations. However, web workers run in the same browser
tab as the website, and consequently, their execution is tightly
coupled with the parent tab: whenever the tab closes, the web
worker terminates as well. In addition, security-related browser
extensions can (i) monitor all traffic and (ii) tamper with the
script running in the web worker.

To remedy these shortcomings, MarioNet leverages a
different component of HTML5, namely service workers. As
described in Section II-A2, service workers are typically used
as an in-browser caching proxy, serving the user during offline
periods. In contrast to web workers, service workers run
in a separate process, completely detached from the parent
tab. In addition to service workers, we use the SyncManager
interface [45] to register background “sync registrations” for
the service worker, to keep the Servant always alive. The
tab independence and indefinite lifetime properties of the
Servant provide MarioNet with persistence, allowing attackers
to carry out their malicious computation for the entire period
that a browser remains open—a major benefit over existing
approaches based on web workers, which remain operational
only for the duration of a browsing session (open tab).

Another advantage of leveraging service workers is that
they conceptually operate between the browser and the remote
server. As a consequence, any security monitoring performed
by browser extensions cannot monitor the activity and network
communication of the service worker, allowing the Servant
to operate in a stealthy way. Consequently, the Servant can
establish a communication channel with the remote Puppeteer
that no browser extension can snoop. In addition, the established
communication channel is TLS-encrypted (as required by

the service worker API [19]), ensuring the integrity and
confidentiality of the transmitted data. Consequently the C&C
communication channel cannot be inspected by any eavesdrop-
ping third party sitting either (i) inside (e.g., browser extension)
or (ii) outside (e.g., ISP) of the browser.

The only request that reveals the existence of the service
worker is the initial GET request at the time of the user’s first
website visit, when the service worker gets initially registered.
Although during that GET request a monitoring extension can
observe the contents of the service worker, it will still not
observe any suspicious code—the code that will carry out the
malicious tasks is delivered to the Servant only after its first
communication with the Puppeteer, and this communication is
hidden from browser extensions (as discussed in Section II-B)

Along with the evasiveness of MarioNet against monitoring
and blocking extensions, it is also important to maintain its
stealthiness to avoid detection from users themselves. Existing
web-based botnet approaches [13], [54] follow an opportunistic
approach, utilizing greedily all available resources on the device
during their limited period of activity. When browsers run such
a malicious script, the louder noise of the fans, the sudden
power drainage, or the sluggish responsiveness of their system,
alerts users who are likely to close the associated browser tab,
or even report the website to their blocker extension.

In contrast to existing in-browser attacks, MarioNet aims to
prolong its presence on a user’s device by allowing the attacker
to monitor the device’s state at real time, and adjust accordingly
the resources utilization to minimize the possibility of getting
detected. To that end, the Servant monitors the device’s current
status (e.g., CPU utilization, battery status) and by utilizing
HTML5’s high-resolution performance timers [72], throttles
or even pauses the execution of the malicious workload. This
allows it to minimize the risk of self-exposure in case there is
a CPU capping mechanism in the browser [8].

Persistence across Browser Reboots: MarioNet runs in the
background as long as the browser is open. After that, the victim
has to re-visit the malicious domain or render the malicious
iframe where the malicious domain resides, in order to re-
activate the service worker and allow the Servant to continue
its operation. To increase persistence even further, we have
developed a technique that allows MarioNet to persist even
after the browser has been restarted. This can be achieved by
utilizing the Push API [44]. This feature allows a web server
to deliver asynchronous notifications and updates to service
workers, in an attempt to provide users with better engagement
and timely new content. By abusing this mechanism, MarioNet
can enable the Puppeteer to periodically probe its Servants and
re-activate them after the browser restarts.

In contrast to the non-transparent to user process of service
worker registration, security policies in modern browsers restrict
the use of the Push notifications feature only after the user’s
permission. Of course, some users may get suspicious on
that behavior, depending on the website they visit. However,
an advanced attacker can convince reluctant users to give
their consent for push notifications by advertising enticing
offers (e.g., virtual points or participation to contests) or by
performing more advanced types of social engineering using
custom permission requesting popups. Recent studies have
shown that 12% of users give such permissions when they are

6

Target

Puppeteer

Botnet

d
o

v
i
s
i
t

T
a
r
g
e
t

vis
it

Tar
get

(a)

Botnet

d
o

c
o
m
p
u
t
e

r
e
t
u
r
n

r
e
s
u
l
t

Puppeteer

(b)

Puppeteer

Botnet

Host A

Host C

fetch file

using magnet

talk

with A

Host B

talk

with B

(c)

Fig. 2: Different use cases of MarioNet. After victims get compromised, the attacker can instrument them to perform (a) visits to
a selected server or URL, for DDoS attack or fake ad-impressions, (b) requested computations, such as cryptocurrency mining or
password cracking, and (c) illegal services, such as illicit file hosting or hidden/anonymized communications.

asked to [3], which constitutes a fairly large number of nodes,
sufficient for deploying a persistent botnet that is capable to
survive browser reboots.

V. ATTACK VECTORS

Our design, described in Section IV, opens the space for
a diverse set of attacks in users’ web browsers, which can be
categorized in three models, as shown in Figure 2.

A. DDoS Attacks

A simple yet powerful attack that can be launched with the
devices the attacker controls is a Distributed Denial-of-Service
attack. In MarioNet we implemented a DDoS attack module
enabling the Puppeteer to instruct the Servants to connect to
a specific Internet host. As a result, the targeted host will get
overwhelmed by the large amount of connections and thus
become non-responsive to benign users.

A limitation of using a high-level language, such as
JavaScript, to initiate a DoS attack is that it does not provide
low level networking access. Directly manipulating the network
packets to be sent is thus not an option (e.g., force TCP-SYN
packets only, or spoof source network address). In addition, it
results to much higher latency, due to the extra memory copies
and context switches that are caused from the resulting system
calls. Instead, JavaScript offers more high-level approaches,
such as XMLHttpRequest objects [48] or methods provided
by cross-platform libraries (e.g., the get(), post(), and
ajax() methods provided by jQuery). These methods can
be used to perform HTTP GET and POST requests, either
synchronously (i.e., in a blocking fashion, waiting for the
connection to be established) or asynchronously. In addition,
some methods may return cached responses (e.g., the get()
method provided by jQuery).

In order to increase the DDoS fire power of MarioNet,
we use the XMLHttpRequest API, which can be used
to perform AJAX (asynchronous HTTP) requests, and does
not cache any responses. Moreover, it allows to control the
request method, and set an arbitrary HTTP body, as well

as some HTTP request headers (e.g., the request content
type). One concern though, that we already mentioned in
Section II-A4, is that if the target web server does not enable the
Access-Control-Allow-Origin:* header, the request
will not fetch any content. Even in that case though, the attack
can still succeed, as it does not necessarily rely on forcing the
web server to send a response. As long as the requests are
sent, the incoming network link is filling up and also the server
needs to spend resources to handle the incoming requests.

Apart from HTTP fetching mechanisms, HTML5’s Web-
Sockets API [47] provide additional opportunities. WebSockets
can be used to send messages to a WebSocket-enabled server
over TCP and receive event-driven responses. Obviously, to
mount a DoS attack using WebSockets, the targeted server
needs to implement this protocol; this is indeed the case for
many popular web sites, as well as for smaller ones, which
increasingly adopt the WebSockets protocol. Besides that, as
already has been shown in [58], malicious JavaScript code may
still misuse the handshake by requesting resources even by
targeting a non-WebSocket web server. Although the targeted
web server may ignore the characteristic WebSocket HTTP
headers (as it is not supported), it can still accept WebSocket
handshake HTTP requests as normal HTTP requests [58]. As a
result, the web browser will start the WebSocket handshake with
the target, while the non-WebSocket web server will process
the HTTP request as a valid request. In MarioNet, we use
the WebSocket() method to initiate connections with web
servers, and then the send() method to send a flood of data
to the targeted server.

Using XMLHttpRequest.send(), jQuery’s ajax()
and WebSocket’s send() methods, we can continuously send
a flood of messages to a targeted host. Each approach allows
MarioNet to connect to any host, by specifying the hostname
or IP address and the corresponding port number. By doing so,
JavaScript code can misuse the TCP handshake by requesting
connections even to non-HTTP or non-WebSocket servers. In
those cases, the targeted servers will either receive only the
TCP SYN packets (e.g., when the destination port is in a closed,
reject, or drop state), or the full HTTP request. Furthermore,

7

the WebSocket API allows to open many different connections,
which enables attackers to orchestrate different styles of attacks
(e.g., stealthy, low-volume, etc.). For instance, it allows to
perform Slowloris-like attacks, by keeping many connections
to the target server open as long as possible [9].

Of course, MarioNet cannot send messages to any port at
the targeted host. To avoid Cross-protocol Scripting [69], which
allowed the transmission of arbitrary data to any TCP port,
modern browsers block by default outgoing messages to a list of
reserved ports [42]. Finally, we note that the resulting network
performance of JavaScript is not that high, compared to DoS
attack tools that can leverage direct access to OS internals (i.e.,
memory map techniques between the network interface and the
application) and low-level APIs (i.e., raw sockets). However,
this is not a serious limitation, as it has been shown that short,
low-volume DDoS attacks pose a great security and availability
threat to businesses [71].

B. Cryptocurrency Mining

The rise of lightweight cryptocurrencies, such as JSEcoin
and Monero, together with the features of Web Workers API
that have been described in Section II, have recently enabled
the widespread adoption of cryptocurrency mining on the Web.
As a result, attackers have started migrating mining algorithms
to JavaScript and embed them to regular websites, in the form
of web worker tasks. By doing so, the website visitors become
mining bots unwittingly every time they access these websites.

However, the short website visiting times make the prof-
itability of the web workers approach questionable [65]. Instead,
MarioNet increases the potential profits of web cryptocurrency
mining, due to the background execution it offers, completely
detached from the website. As a matter of fact, we have
implemented a service worker module that computes hashes of
the popular CryptoNight algorithm [11]. CryptoNight is a proof-
of-work (PoW) algorithm used in several cryptocurrencies,
such as Electroneum (ETN) and Monero (XMR). The service
worker that we have implemented within MarioNet, connects
with Coinhive [10], which is a web service that provides an
API for users to embed a JavaScript miner on their websites.
Alternatively, the cryptocurrency miner can connect to any
mining pools, through the HTTP stratum proxy, using a
registered account, as shown in previous works [54]. By doing
so, attackers will be credited the payout directly to their wallets.
Finally, we notice that other hash algorithms that are used for
cryptocurrency mining, such as Scrypt-based miners [7], can
be implemented in a straightforward way by porting their
implementations to JavaScript.

C. Distributed Password Cracking

The idea of distributed password hash cracking on the
web is not new [4]. Orthogonal to other approaches that try
to boost the sustained performance by either increasing the
parallelism using different web workers [13], or exploiting
the computational capabilities of modern GPUs using the We-
bGL/WebCL API [52], MarioNet can help towards increasing
the uptime of hash cracking techniques, and as a result the
overall performance.

The basic concept in MarioNet is to have the Puppeteer
distribute the computation between the infected browsers. The

server contains a list of the hashes to be cracked and gives
each node a range of character combinations along with the
hash to be cracked. Each node then hashes these combinations
and checks if it matches the original hash; if it matches, the
node reports the recovered password back to the Puppeteer. A
major advantage of MarioNet is that it can be agnostic to the
hashing function used, since the function code is transferred
from the Puppeteer and executed from the MarioNet nodes
through eval(). As a matter of fact, in Figure 7 we show the
performance achieved by MarioNet for executing two popular
hashing algorithms, namely SHA-256 and MD5.

D. Malicious or Illegal Data Hosting

Having a large network of MarioNet nodes can also enable
the delivery of illegal or otherwise unwelcome content. The
advantages of MarioNet is not only that the content can be
served by unsuspecting users, making it hard to track down the
real culprits behind it, but also allows efficient data distribution
between the MarioNet nodes.

Indeed, the release of WebRTC (Web Real-Time Communi-
cations) protocol in the browser a few years ago, enables peer-to-
peer networking communications. In particular, WebRTC allows
web applications and sites to capture and optionally stream
audio and/or video media, as well as to exchange arbitrary
data between browsers without requiring an intermediary. Even
though this technology opens new opportunities for distributed
networking to the web, it also brings some significant security
concerns when used maliciously. In the case of MarioNet, for
instance, it could be easily used as an illegal content provider,
leveraging the distributed nature and persistence that offers. As
a proof-of-concept, similar to [13] we used the WebTorrent
API [16] to implement a simple, yet flexible, data hosting
mechanism over WebRTC which allows the sharing of torrent
files through the infected MarioNet nodes. WebTorrent allows
users to seed and leech files with other peers entirely through
their web browsers. A new torrent file can easily be created
using the seed() function which creates a new torrent and
starts seeding it. The file can then be downloaded and further
seeded from other nodes, using the returned magnetURI.

E. Other Attacks

1) Relay Proxies: Fully anonymous and transparent relay
proxies that can route data between two peers, are an important
asset for criminal use, making it difficult for the authorities to
track down the perpetrators. Large groups of such proxies can
form a hidden network (i.e., Darknet), where people buy and
sell illicit products like weapons and drugs [12].

The MarioNet infrastructure can provide a platform for
establishing such networks. Specifically, an infected browser
can be used as an intermediate proxy to fetch illegal content
from services in the Darknet on behalf of an anonymous
user. Indeed, building upon the previous illegal data hosting
scenario, MarioNet could form anonymous circuits (similar to
mixnets), through which users could route their web traffic.
Such chain could be created by bots connected with encrypted
peer-to-peer channels with each other by using WebRTC.2

2WebRTC traffic is always encrypted. Transmitted data is protected by
Datagram Transport Layer Security (DTLS) [49] and Secure Real-time
Transport Protocol (SRTP) [41].

8

There are already such browser-based proxies implemented
over WebRTC, like Stanford’s Flash Proxies [17] and Tor
Project’s Snowflake [26]. Apparently, a solid implementation
of such a service within a service worker, capable of providing
strong anonymity guarantees (e.g., similar or close to Tor), is
not a trivial task and requires deeper analysis. Hence, such an
exploration is beyond the scope of this paper.

2) Click Fraud: Having a large botnet can become profitable
in many ways. One such way is to abuse the digital advertising
ecosystem, by having bots rather than humans view or click on
online advertisements. It is estimated that online advertising
fraud will cost advertisers $19 billion in 2018, which represents
9% of total digital advertising spend [31].

MarioNet can be easily used to generate clicks, as well
as surf targeted websites for a period of time, stream online
videos to increase views, manipulate online polls, and possibly
sign up for newsletters. To achieve that, the service worker can
obtain periodically a list of online links that is requested to visit,
possibly combined with metadata such as visit duration, number
of clicks, etc. In addition, due to the rich programming features
that JavaScript offers, MarioNet can be easily programmed to
follow a human-centric online behavioral model (e.g., similar to
the one proposed by Baldi et al. [6]) to evade countermeasures
that seek to block users with unusual activity (e.g., clicking
too many links in a short period of time).

VI. EVALUATION

A. Prototype Setup

To assess the feasibility and effectiveness of our approach,
and also to check the existence of possible code protection and
restriction mechanisms, we build a real world deployment of
our MarioNet prototype. Our prototype consists of two servers;
the first server is an Apache web server that hosts a simple
webpage, and the second one is a command and control server
(i.e., Puppeteer), delivering tasks to the Servants. Upon the
first website visit, the webpage registers a service worker in
the Servant and a sync manager that is responsible to keep the
service worker alive in the background. After its registration, the
Servant opens a full-duplex connection—using the WebSocket
API [47]—with the Puppeteer and retrieves a JavaScript code
snippet that executes through eval(). In order to be able to
use eval() from within the service worker, the collaborating
web server gives the needed permission through the HTTP
Content Security Policy (CSP).

Browser Compatibility: As discussed in Section IV, our
approach is based on existing components of HTML5 such
as Service Workers and its interface SyncManager. Table II
summarizes the browser compatibility of these components,
and thus the compatibility of our framework. As we can see,
some vendors like Google, started supporting service workers
quite early (2016), while others caught up only until recently,
i.e., Safari (2018). Still, MarioNet is compatible with the most
popular browsers in both desktop and mobiles.

In our experiments we tested MarioNet with four popular
desktop browsers, namely Chrome, Firefox, Opera and Safari.
However, we chose to exclude Safari from the performance
evaluation results, due to its bad performance sustained in all
the experiments conducted. Even though the service worker

TABLE II: MarioNet’s browser compatibility

Device Browser SW compatibility

Desktop

Chrome since v40
Firefox since v44
Opera since v26
Edge since v17
Safari since v11.1

IE NoSupport

Mobile

Samsung Internet since v4
Chrome Android since v64

UC Browser since v11.8
iOS Safari since v11.3

Firefox Android since v57
Android Browser Partially since v62

Opera Mobile Partially since v37
Opera Mini NoSupport
Blackberry NoSupport

 1

 10

 100

 1000

 10000

1G
bit

W
iFi

DSL
Regular4G

G
ood3G

Regular3G

G
ood2G

Regular2G

G
PRS

H
T

T
P

 r
e
q
u
e
s
ts

/s
e
c

Network Connection

Firefox

Chrome

Opera

Fig. 3: Rate of asynchronous outgoing HTTP OPTION requests
for different browsers and network connections in the DDoS
scenario. An orchestrated DoS attack in MarioNet can achieve
rates of up to 1632 reqs/sec per infected device.

functionality is provided by Safari, we experienced several
performance glitches. We believe that this behavior is due
to the recently adaptation of service workers in Safari (2018).
Even for simple workloads, i.e., a simple counting example, the
performance achieved by the service worker is extremely slow
(i.e., 20− 50× lower) compared to the performance achieved
by the other three browsers.

B. Performance Evaluation

In order to demonstrate the effectiveness of MarioNet, we
conduct several experiments with various popular browsers
and hardware settings, which allow us to make useful and
interesting comparisons. However, it is noted that in this paper
we do not aim to provide an optimal implementation in terms
of performance, but rather to demonstrate the feasibility of
the aforementioned attacks. To that end, the performance of
the system can be further improved by using WebAssembly.
Furthermore, all the experiments presented in this section were

9

 0

 5

 10

 15

 20

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

H
a

s
h

ra
te

 (
H

a
s
h

e
s
/s

e
c
)

CPU utilization threshold

Intel i7-4790, 3.6GHz

Intel i7-4770, 3.4GHz

Intel i7-5557U, 3.1GHz

Intel i5-5200U, 2.2GHz

Fig. 4: Hashrate for different equipped
CPUs and utilization levels in the cryp-
tojacking scenario. As expected, victim’s
hardware affects significantly the compu-
tation power that MarioNet may obtain.

 0

 5

 10

 15

 20

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

H
a

s
h

ra
te

 (
H

a
s
h

e
s
/s

e
c
)

CPU utilization threshold

High Performance

Balanced

Power Saver

Fig. 5: Hashrate for different utilization
levels and Power modes in the cryptojack-
ing scenario. The OS may slow down clock
speed of the victim’s device, reducing up
to 78.41% the computation power.

 0

 5

 10

 15

 20

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

H
a

s
h

ra
te

 (
H

a
s
h

e
s
/s

e
c
)

CPU utilization threshold

Firefox

Chrome

Opera

Fig. 6: Hashrate for different infected
browsers and utilization levels in the cryp-
tojacking scenario. Firefox browser can
calculate up to 1.51× more hashes per
second than Chrome and Opera.

conducted in a controlled environment, without reaching any
host outside our local network (see Section VIII).

1) Abuse of network resources: In the first experiment,
we measure the rate of HTTP requests that the MarioNet
framework can achieve from a single browser. As described
in Section V-A, the Puppeteer instructs the Servant to con-
tinuously send multiple HTTP requests to a remote server,
via XMLHttpRequest.send(). Figure 3 shows the rate
achieved for different browsers and different types of networks.
To measure the rate, we ran tcpdump at the targeted server
and captured all the incoming HTTP traffic. As can be seen in
Figure 3, even devices over inferior network connections are
capable of contributing a fair share in such a distributed attack
(e.g., an average of 214 reqs/sec on Good3G networks). For
high network bandwidth, i.e., 1 GbE, Opera tends to achieve
higher rates (up to 1632 reqs/sec on average).

2) Abuse of computation power: The next experiment
explores the computation capacity that the infected browsers
can provide. Figure 4 presents the hashrate achieved when
mining Monero coins in Chrome, for different CPU models
and various utilization thresholds. As expected, the performance
gain is highly affected by the equipped hardware. Specifically,
we see that Intel i7-4790 can give 29% more hashes per second
than Intel i5-5200U, when fully utilized.

After experimenting with different operating systems, we no-
ticed that the different power mode characteristics they provide
can drastically affect the sustained performance of CryptoNight
execution. Figure 5 shows the performance achieved on a
Windows 7 desktop computer that is equipped with an Intel
i7-4790K, at 4.0GHz, under 3 different power modes (namely
High Performance, Balanced and Power Saver). When fully
utilized, the Power Saver mode forces the CPU to reduce the
voltage and clock speed, which causes a decrease of up to
78.41% compared to the High Performance mode. In addition,
in the Balanced mode, when CPU utilization exceeds 50% the
operating system allows the CPU to run in full speed in order
to cover the increased computation needs, thus verging the
hashrate of High Performance mode.

Next, we explore how different infected browsers affect the
computation gain of MarioNet. Figure 6 shows the hash-rate

 0

 100

 200

 300

 400

 500

 600

 700

Chrome Firefox Opera

C
ra

c
k
in

g
 s

p
e
e
d
 (

K
H

a
s
h
e
s
/s

e
c
) MD5

SHA-256

Fig. 7: Cracking speed of different browsers in the distributed
password-cracking scenario. MarioNet can brute-force per
victim around 500K MD5 hashes per second or around 300K
SHA-256 hashes, irrespective of the infected browser.

achieved for different browsers, when using a Intel i7-5557U
CPU. We observe that Firefox can calculate up to 34.55% more
hashes per second than Chrome and Opera, which are both
based on Chromium and the V8 JavaScript engine.

The earnings of an attacker that launches a distributed
MarioNet-like Monero mining attack can be estimated with
the following equation: Earnings = ((total hashrate ×
block reward)/current difficulty) × time. For this esti-
mation we consider a scenario of an attacker that controls a
website that attracts on average 10000 unique visitors per day,
that the visitors of the malicious site have mid-range devices,
and that the attacker utilizes only a single core of their devices
at a utilization level of 60%-70% (i.e., user hashrate of 10
h/s). According to the current difficulty of Monero mining,
the attacker will earn around 0.5 monero every 12 hours,
which is easily achievable when considering the persistence
characteristics of a MarioNet-like attack. It should be noticed
though, that this is a very conservative estimation, since we
only assume that the attacker infects a relatively small number
of users, and that the victims’ devices are only slightly utilized.

In our last experiment, we explore the performance sustained

10

for password cracking. Figure 7 plots the achieved rate for
hashing 10-digit alphanumerical passwords on a brute-force
manner, for both MD5 and SHA-256 algorithms. As we can
see, all browsers achieve similar and comparable performance.
This means that a single browser can brute-force around 500K
MD5 hashes per second or 300K SHA-256 hashes, irrespective
of the infected browser.

3) Persistent and Evasive abuse: In order to assess the
persistence and evasiveness of our approach, we deliver
MarioNet within a webpage destined to perform cryptojacking.
Before fetching the webpage in a Chrome browser, (i) we open
tcpdump and (ii) we deploy in our browser the following ex-
tensions/tools: Tamper Chrome HTTP capturing extension [20],
Chrome’s default DevTools, WebSniffer [2], and HTTP Spy [1]
to explore in the real world, the stealthiness of MarioNet against
state-of-the-art monitoring and blocking extensions. After fully
rendering the webpage and planting the Servant, we close the
associated browser tab. Then, from the Puppeteer, (iii) we push
a cryptocurrency mining task to the Servant and let it run for
3 consecutive days. We see that although the Servant regularly
communicated with the Puppeteer to obtain PoW tasks, as
tcpdump correctly captured, none of the employed extensions
was able to monitor any Servant-related traffic other than the
very first GET request of the webpage, right before infection.

Comparison to state-of-the-art web botnets: In order to
compare MarioNet with the state-of-the-art web-botnets, we
load our password cracking algorithm in a set of web workers as
described in related approaches [13], [54]. Given that these web-
botnets run only for as long as the victim is surfing the webpage,
they need to fully utilize the resources of the infected device in
order to scrounge a meaningful gain from this short infection
window. As a consequence, they usually occupy concurrently
all system cores across the entire period of a website visit,
which studies have shown that it is 1 minute on average [53].

In Figure 8, we plot the total number of SHA-256 hashes
brute-forced by the 2 approaches in an infected browser for a
period of 12 hours. For MarioNet, we measure two cases: (i)
the best case, where the password cracker runs uninterruptedly
in the victim’s device, and (ii) the worst case, where along
with the malicious computations there is heavy utilization from
other processes too. In the second case, to simulate this heavy
load, we concurrently run a multi-threaded pi digit calculator
that fully utilizes all 8 system’s cores. As we can see, although
web-botnet utilizes greedily 8× more resources, MarioNet
due to its persistence, enjoys a higher efficiency after the
18th minute of an open browser, even under extreme heavy
concurrent interference. Consequently, while until today, the
business model of malicious websites were to deploy a web-
botnet and find a way to keep the user on the website (by
providing free movie streaming, online games or include pop-
under windows [70]), with MarioNet it takes only a momentary
visit to infect the user and take control of their browser.

VII. DEFENSES

In this section we examine potential defense mechanisms
that could detect and mitigate MarioNet type of attacks. The
goal is to determine whether it is feasible to detect the general
methodology of the attack vectors that are opened through the
misuse of the service worker mechanisms, rather than mitigating
the specific use cases studied in this paper.

10
3

10
4

10
5

10
6

10
7

10
8

 0 100 200 300 400 500 600 700

A
c
c
u
m

u
la

te
d
 S

H
A

2
5
6
 K

H
a
s
h
e
s

Time (minutes)

MarioNet (best case)

MarioNet (worst case)

Web-botnet (w/ Web Workers)

10
3

10
4

10
5

10
6

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 8: Number of SHA256 hashes brute-forced by MarioNet
and previous Web-botnet approaches that utilize Web Workers,
in the lapse of time. The persistence of MarioNet makes a single
infected browser compute hashes as long as the browser is open
and thus be more efficient than opportunistic Web-Botnets.

We present various defense strategies and discuss the
corresponding tradeoffs they bring. We categorize the defenses
in two classes: (i) those that can be deployed inside a vanilla
browser (e.g., via an extension), and (ii) those that can be
deployed in the host (through anti-virus tools, IDS/IPS, firewalls,
etc.) or by modifying the browser.

A. In-browser Mechanisms

1) Restricting or Disabling Service Workers: Service work-
ers have been introduced to enable rich offline user experi-
ence, such as periodic background synchronization and push
notifications, embedded content fallback, caching, message
relaying across pages, offline fallback, and user-side load
balancing. Traditionally, these types of functionality required
a native application. However, the window of opportunity for
abuse by attackers, makes for a difficult tradeoff between
rich user experience and security. In the case of MarioNet,
disabling service workers could indeed prevent the persistence
and stealthiness of in-browser malicious computation. Towards
a similar direction, one could suggest to restrict the liveness of
service workers, making it proportionate to the user presence
in the website that hosts them (i.e., the service worker is
suspended after the user leaves the website) or apply a time
cap (i.e., a service worker gets terminated if it keeps running for
an unreasonable amount of time). By doing so, the persistence
characteristic of our attack will no longer be available. Service
workers will still be able to intercept and modify navigation
and resource requests, as well as cache resources, using the
storage API for example, to allow applications to run even
when the network is not available.

However, service workers were designed to provide im-
portant functionalities to long-running web applications (e.g.,
Google Docs, Gmail, Twitter, LinkedIn, Whatsapp web client)
even after tab closing [50]. By forcing restrictions, service
workers will not be able to provide the above background
processing, thus significantly limiting the capabilities of con-
temporary web applications, resulting in a severe degradation

11

of user experience. To mitigate that, a better solution would be
to selectively enable service workers only for some “trusted”
websites, possibly via a browser extension that prevents the
unconditional registration of service workers.

A step towards striking stealthiness is to disable the eval()
family functions. By doing so, the attacker would need to
ship the malicious functionalities together with the service
worker, which would facilitate the signature-based content
filtering browser extensions to detect them easier. Obviously,
this would be an arm race between attackers and defenders,
given the obfuscation and code scrambling techniques that
are in use for similar cases. In addition, service workers can
include minimal ISA emulators in order to execute malicious
instructions received from the attacker. A more aggressive
option would be to limit the functionality offered by service
workers, by making only a subset of JavaScript available for use
(e.g., allowing only the sending/receiving of data between the
website and the server). Clearly, such a data-driven approach
would require much more careful consideration and design.

2) Whitelists/Blacklists: Another possible defense strategy is
to restrict the browser, with fine-grained policies, from fetching
and deploying service workers. The simplest approach is the use
of whitelists; i.e., service workers will be blocked, unless the
domain of origin is whitelisted. These lists can initially include
popular sites, which are typically considered more trusted, and
enriched by web crawling and analysis platforms, such as [61],
that perform web-wide analysis to detect malicious websites
and JavaScript files.

3) Click to Activate: Another mitigation would be to require
the user’s permission for registration and activation of a
service worker—similar to “Click to Play” mechanism [51] that
disables by default plug-ins, such as Flash, Java, Silverlight
and others. By doing so, the service worker functionality will
be disabled by default, and users would need to explicitly
give permission for the service worker to run. Currently, this
user consent is needed only for the Push Notifications [44].
However, given the variation of attack vectors that can be
achieved through a malicious service worker, we believe that
explicit permission would raise user suspicion—in the same
way it does for location, microphone, etc.—especially when
browsing unreliable websites. One may say that these proposed
permission-based defenses may be not practical to constitute
the perfect mitigation for the presented attack. However, recent
developments such as GDPR, mobile or browser permissions
model etc., have demonstrated that user consent can be forced.

B. Host-based Approaches

1) Signature-based Detection: Traditional tools such as
firewalls, anti-virus, and intrusion detection/prevention systems,
are always a prominent methodology for the detection of
malicious activities. The majority of these tools are typically
using signatures to detect suspicious data or code that enters
or leaves a user’s computer. The creation of such signatures
for the case of MarioNet may be trivial for some attack cases.
For example, it could be easy to detect MarioNet messages
that are exchanged between the service worker that lies in the
browser and the back-end server, by monitoring the network
traffic. A sophisticated attacker can obviously employ several
techniques to raise the bar against signature-based detection

mechanisms. For example, by installing end-to-end encryption
with the back-end server can sufficiently hide the content of
the messages. Given that a host-based approach can have
full control of the client side though, the SSL connection
can be intercepted to acquire the decrypted data. Besides, the
messages still need to be transferred, which can be a good
hint for detection mechanisms that are based on network flow
statistics (e.g., number of packets exchanged, packet size). Even
though covert channels and steganography may potentially
help attackers, there are works that try to detect web-based
botnets, by performing anomaly detection on features like
communication patterns and payload size [30].

2) Behavioral Analysis and Anomaly Detection: A more
drastic solution would be to develop techniques that try to detect
suspicious behavior of JavaScript programs that are embedded
in the web site or the service worker. Obviously, this would
require more sophisticated analysis than simple fixed string
searching and regular expression matching, due to the fact that
the obfuscation of the malicious JavaScript code snippets can
evade static analysis techniques. Instead, more advanced and
complex analyzers should be used, such as the monitoring of
the utilized resources or the behavioral analysis of the executed
code. Even though this can be quite challenging, several works
have been proposed in the past [25], [62], [27]. For instance,
one of the first anomaly detection approaches is JaSPIn [62],
which creates a profile of the application usage of JavaScript
and enforces it later. IceShield [27] uses a linear decision
function that differentiates malicious code from normal code
based on heuristics for several attack types that apply code
obfuscation. Finally, in [25] the authors audit the execution
of JavaScript code, and compare it to high-level policies, in
order to detect malicious code behavior. Although all these
approaches are not trivial, they are a prominent step towards
protecting against malicious JavaScript programs in general.

VIII. DISCUSSION

Ethical considerations. In this paper, we implemented and
deployed MarioNet in a strictly controlled environment. During
our experimentation with attack scenarios, no user or web
server outside this controlled environment were contacted or
harmed in any way. As such, we constrained the evaluation of
our system to a limited set of nodes, thus avoiding any attempt
to measure our system on a larger scale, in the real world.

Attack difficulty. Based on our threat model (Section III-A) a
MarioNet attack can be launched (a) intentionally, by a mali-
cious or “shady” website; (b) unintentionally, by a hijacked or
compromised website, or a website that includes a compromised
library; and (c) through third-party dynamic content in iframes.
Since our attack does not rely solely on a legitimate website
or third-party library to be compromised, but it can also be
performed by first-party websites that include such content,
and also triggered by dynamic content in iframes, according
to (a) and (c), it seems that such an attack can be practically
launched quite easily (by actors with different incentives or
intentions). Essentially, it requires only a contemporary web
browser (all popular browsers are vulnerable—see Table II) and
just accessing a webpage that provides such malicious content,
either from first or third parties.

Attack impact. Aside from the cases of malicious or shady
websites that can straightforwardly launch our attack, and web-

12

sites or third party libraries being compromised, the presented
attack can be also launched by loading malicious third-party
dynamic content in iframes residing in entirely legitimate
websites. For instance, attackers can exploit the ad ecosystem’s
real-time auctioning mechanism to load their malicious content
in iframes [57]. It has been already demonstrated in previous
works [13] how programmatic ad delivery can be exploited to
distribute malicious content. The ease of launching such an
attack, and the ability of attackers to utilize legitimate, and more
importantly, popular and trustworthy websites with possibly
hundreds of thousands visitors, demonstrate the enormous im-
pact our attack can potentially have. In addition, the stealthiness
property of MarioNet, which can evade effectively monitoring
extensions by design, and the fact that all major browsers are
currently vulnerable to such attacks, as shown in the previous
sections, make the number of potential victims even larger, and
highlight the need for careful design and adequate protection
mechanisms.

Registration of multiple service workers. Service workers
are associated with specific scopes during registration and each
service worker can only control pages that fall under its scope.
If more than one service workers are registered (while the user
is navigating throughout a website), then the browser enables
only the service worker with the broader scope (typically the
service worker registered at the root domain). However, during
our experimentation we observed that a publisher can design
its website on purpose so that multiple service workers can be
registered in non-overlapping scopes (i.e., in file paths at the
same level of the URI). As a consequence, this could allow
MarioNet to have multiple Servants simultaneously active and
utilize them for running its malicious tasks in multiple threads.

Cross-origin service workers. The cross-origin service worker
(or foreign-fetch [60]) is an experimental feature of Chrome
54, to enable registration of third-party service workers. The
motivation behind that, is to enable developers to implement
advanced functionality, such as client-side caching of CDN-
based third party content. However, this feature broadens the
threat model of MarioNet-like approaches, enabling third-parties
to misuse the service workers of the domains that include
them. Even though this feature was discontinued one year after
its announcement [68], mostly due to applicability issues, it
still shows that such new functionality should be considered
carefully in terms of security, before being applied.

Towards this direction, the aim of this work is to increase
the awareness of developers and browser vendors about the
provided powerful (but also potentially risky) capabilities of
modern HTML, and hopefully lead to the deployment of
restrictive policies that will adequately secure the user-side
environments of future web applications.

IX. RELATED WORK

Web browsers are a core part of our everyday life, being
the door to the gigantic world of the web. As a result, they
have become a valuable target for attackers, that try to exploit
them in many different ways.

For instance, several approaches try to abuse the rich
features of modern web applications, in order to form web-
based botnets, the existence of which has seen a significant

rise recently [33]. Provos et al. [61] present the threat of web-
based malware infections, in which the infected browsers pull
commands from a server controlled by the attacker. Contrary
to traditional botnet-like attacks, web-based malware does
not spread via remote exploitation but rather via web-based
infection. In [4], the authors craft malicious webpages where
users get infected upon visit. The attackers can then abuse users’
browsers to perform attacks like DDoS, worm propagation, and
node reconnaissance. Grossmann and Johansen [24] leverage
ads to deliver malicious JavaScript to users, forcing browsers
to establish connections with a victim server, thus performing
a DoS attack. A major limitation of these approaches though,
is that the corresponding malicious JavaScript snippets need to
be embedded in the main webpage. As a result, long-running
operations would block the rendering procedure and execution
of the web application, making it practical only for short-lived
attacks.

To overcome this limitation, many approaches started
recently to use web workers—a feature that was introduced
with HTML5. Web workers run as separate threads, and thus
being isolated from the page’s window. This allows the parallel
execution of operations, without affecting the normal rendering
of the web application, leading to the rise of more advanced
web-based botnets. Kuppan [34] demonstrate this ability of
using web workers to perform DDoS attacks. Rushanan et al.
in [63], also use web workers to perform stealthy computations
on the user side and launch not only attacks like DoS and
resource depletion but also covert channel using CPU and
memory throttling. Pellegrino et al. [58] also present different
techniques to orchestrate web-based DoS attacks, by utilizing
web workers among other HTML5 features, and provide an
economic analysis and costs of browser-based botnets.

Similarly, Pan et al. [54] explore the possibility of using
web workers for performing application-layer DDoS attacks,
cryptocurrency mining and password cracking. Their results
show that although DDoS attacks and password cracking are
feasible and with comparable financial cost, cryptocurrency
mining is not profitable for the attacker given the limited time
a user spends in a website. Dorsey presented an in-browser
botnet using web workers as well [13]. The user browser,
after infection, participates in a swarm of bots performing
various malicious operations like DDoS attacks, torrent sharing,
cryptocurrency mining, and distributed hash cracking. To infect
as many users as possible, Dorsey embedded his malware in a
malicious advertisement and let the ad network to distribute
it to the users browsers. Similar to MarioNet, all the above
approaches do not require any software installation on the
user side. However, the browser remains under the control of
the attacker only for the duration that the user is browsing
the malicious website, making it impractical for long-running
botnet operations. Instead, MarioNet provides persistence that
allows the attacker to perform malicious computations for a
period longer than a website visit.

Besides the crypto-mining and crypto-jacking attacks, in
which a website unintentionally hosts web-mining code snip-
pets [40], [36], there are publishers that intentionally use mining
to monetize their websites. Eskandari et al. analyze the existing
in-browser mining approaches and their profitability [15].
Similar to web-based botnets, in-browser miners maintain a
connection with a remote server to obtain PoW tasks and abuse

13

web workers to achieve the highest possible CPU utilization on
the user side. However, the short website visiting times make the
profitability of this approach questionable [65], [56]. MarioNet
also uses crypto-jacking as a possible scenario, however instead
of web workers we leverage service workers to enable an entity
to gain much higher profits due to the provided persistence.

Finally, several attacks are based on malicious browser ex-
tensions that a user downloads and deploys in the browser [38],
[59]. For instance, Liu et al. propose a botnet framework that
exploits the browser extension update mechanism to issue
batch commands [38]. By doing so, they are able to perform
DDoS attacks, spam emails and passwords sniffing. Similarly,
Perrotta et al. exploit the over-privileged capabilities of browser
extensions to check the effectiveness of botnet attacks in
contemporary desktop and mobile browsers [59]. Their results
show that different attacks are feasible in different browsers.
A major difference of these approaches with MarioNet, is that
all the above approaches require the installation of software
(i.e., browser extension) on the user side.

X. CONCLUSION

In this work, we presented MarioNet: a novel multi-attack
framework to allow persistent and stealthy bot operation through
web browsers. Contrary to traditional botnet-like approaches,
our framework does not require any installation of malicious
software on the user side. Instead, it leverages the existing
technologies and capabilities provided by HTML5 APIs of
contemporary browsers.

We demonstrate the effectiveness of this system by design-
ing a large set of attack scenarios where the user’s system
resources are abused to perform malicious actions including
DDoS attacks to remote targets, cryptojacking, malicious/illegal
data hosting, and darknet deployment. Two important charac-
teristics of MarioNet, that further highlight the severity of the
aforementioned attacks, is that it provides persistence, thus
allowing an attacker to continue their malicious computation
even after the user navigates away from the malicious website.
In addition, MarioNet provides evasiveness, performing all
operations in a completely stealthy way, thus bypassing the
existing in-browser detection mechanisms.

Essentially, our work demonstrates that the trust model of
web, which considers web publishers as trusted and allows them
to execute code on the client-side without any restrictions is
flawed and needs reconsideration. Furthermore, this work aims
to increase the awareness regarding the powerful capabilities
that modern browser APIs provide to attackers, and to initiate
a serious discussion about implementing restrictions while
offering such capabilities that can be easily abused.

ACKNOWLEDGMENTS

We thank our shepherd, Adam Doupé, and the anonymous
reviewers for their valuable feedback. The research leading to
these results has received funding from European Union’s Marie
Sklodowska-Curie grant agreement 690972 (PROTASIS); the
Horizon 2020 Research & Innovation Programme under grant
agreements 786669 (REACT), 740787 (SMESEC), 700378
(CIPSEC), and 786890 (THREAT-ARREST); and by the
National Science Foundation (NSF) under grant CNS-1617902.
The paper reflects only the authors’ view and the Agency and

the Commission are not responsible for any use that may be
made of the information it contains.

REFERENCES

[1] “HTTP spy,” https://chrome.google.com/webstore/detail/http-spy/
agnoocojkneiphkobpcfoaenhpjnmifb.

[2] 5ms.ru, “Web Sniffer,” https://chrome.google.com/webstore/detail/web-
sniffer/ndfgffclcpdbgghfgkmooklaendohaef.

[3] Accengage, “Push notification benchmark press release 2017,” https:
//www.accengage.com/press-release-accengage-releases-the-push-
notification-benchmark-2017-including-for-the-first-time-web-push-
facebook-messenger-metrics-in-addition-to-stats-for-mobile-apps/,
2017.

[4] S. Antonatos, P. Akritidis, V. T. Lam, and K. G. Anagnostakis,
“Puppetnets: Misusing web browsers as a distributed attack infrastructure,”
ACM Trans. Inf. Syst. Secur., vol. 12, no. 2, pp. 12:1–12:38, Dec. 2008.

[5] M. Athanasakis, E. Athanasopoulos, M. Polychronakis, G. Portokalidis,
and S. Ioannidis, “The devil is in the constants: Bypassing defenses in
browser JIT engines.” in Proceedings of Annual Network and Distributed
System Security Symposium, ser. NDSS’15, 2015.

[6] P. Baldi, P. Frasconi, and P. Smyth, Modeling the Internet and the Web:
Probabilistic Methods and Algorithms. Wiley Online Library, 2003,
ch. 7. Modeling and Understanding Human Behavior on the Web.

[7] D. Bradbury, “Scrypt-based miners and the new cryptocurrency arms
race,” https://www.coindesk.com/scrypt-miners-cryptocurrency-arms-
race/, 2013.

[8] C. Cimpanu, “Firefox working on protection against in-browser
cryptojacking scripts,” https://www.bleepingcomputer.com/
news/software/firefox-working-on-protection-against-in-browser-
cryptojacking-scripts/, 2018.

[9] Cloudflare, “Slowloris DDoS Attack,” https://www.cloudflare.com/
learning/ddos/ddos-attack-tools/slowloris/.

[10] Coinhive, “A Crypto Miner for your Website,” https://coinhive.com.
[11] CryptoNote Technology, “Egalitarian proof of work,” https://

cryptonote.org/inside.php#equal-proof-of-work, 2015.
[12] M. Dittus, J. Wright, and M. Graham, “Platform criminalism: The ’last-

mile’ geography of the darknet market supply chain,” in Proceedings of
the 2018 World Wide Web Conference, ser. WWW, 2018.

[13] B. Dorsey, “Browser as botnet, or the coming war on your web
browser,” https://medium.com/@brannondorsey/browser-as-botnet-or-
the-coming-war-on-your-web-browser-be920c4f718, 2018.

[14] S. Englehardt and A. Narayanan, “Online tracking: A 1-million-site
measurement and analysis,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS, 2016.

[15] S. Eskandari, A. Leoutsarakos, T. Mursch, and J. Clark, “A first look at
browser-based cryptojacking,” CoRR, vol. abs/1803.02887, 2018.

[16] F. Aboukhadijeh and WebTorrent, LLC., “Torrents on the web,” https:
//webtorrent.io/, 2017.

[17] D. Fifield, N. Hardison, J. Ellithorpe, E. Stark, D. Boneh, R. Dingledine,
and P. Porras, “Evading censorship with browser-based proxies,” in In-
ternational Symposium on Privacy Enhancing Technologies Symposium,
ser. PETS, 2012.

[18] D. Goodin, “Cryptojacking craze that drains your cpu now done by
2,500 sites,” https://arstechnica.com/information-technology/2017/11/
drive-by-cryptomining-that-drains-cpus-picks-up-steam-with-aid-of-
2500-sites/, ArsTechnica.

[19] Google Developers, “Introduction to service worker,” https:
//developers.google.com/web/ilt/pwa/introduction-to-service-worker,
2018.

[20] Google Open Source, “Tamper Chrome browser application,”
https://chrome.google.com/webstore/detail/tamper-chrome-extension/
hifhgpdkfodlpnlmlnmhchnkepplebkb, 2017.

[21] P. Gregoire, “Public STUN server list,” https://gist.github.com/mondain/
b0ec1cf5f60ae726202e, 2016.

[22] G. Grigoreva, “What is a popunder ad & how to use it (explained),”
https://www.mobidea.com/academy/popunder-ad/, 2018.

[23] I. Grigorik, “Browser APIs and protocols: WebRTC,” https://hpbn.co/
webrtc/, 2013.

14

https://chrome.google.com/webstore/detail/http-spy/agnoocojkneiphkobpcfoaenhpjnmifb
https://chrome.google.com/webstore/detail/http-spy/agnoocojkneiphkobpcfoaenhpjnmifb
https://chrome.google.com/webstore/detail/web-sniffer/ndfgffclcpdbgghfgkmooklaendohaef
https://chrome.google.com/webstore/detail/web-sniffer/ndfgffclcpdbgghfgkmooklaendohaef
https://www.accengage.com/press-release-accengage-releases-the-push-notification-benchmark-2017-including-for-the-first-time-web-push-facebook-messenger-metrics-in-addition-to-stats-for-mobile-apps/
https://www.accengage.com/press-release-accengage-releases-the-push-notification-benchmark-2017-including-for-the-first-time-web-push-facebook-messenger-metrics-in-addition-to-stats-for-mobile-apps/
https://www.accengage.com/press-release-accengage-releases-the-push-notification-benchmark-2017-including-for-the-first-time-web-push-facebook-messenger-metrics-in-addition-to-stats-for-mobile-apps/
https://www.accengage.com/press-release-accengage-releases-the-push-notification-benchmark-2017-including-for-the-first-time-web-push-facebook-messenger-metrics-in-addition-to-stats-for-mobile-apps/
https://www.coindesk.com/scrypt-miners-cryptocurrency-arms-race/
https://www.coindesk.com/scrypt-miners-cryptocurrency-arms-race/
https://www.bleepingcomputer.com/news/ software/firefox-working-on-protection-against-in-browser-cryptojacking-scripts/
https://www.bleepingcomputer.com/news/ software/firefox-working-on-protection-against-in-browser-cryptojacking-scripts/
https://www.bleepingcomputer.com/news/ software/firefox-working-on-protection-against-in-browser-cryptojacking-scripts/
https://www.cloudflare.com/learning/ddos/ddos-attack-tools/slowloris/
https://www.cloudflare.com/learning/ddos/ddos-attack-tools/slowloris/
https://coinhive.com
https://cryptonote.org/inside.php#equal-proof-of-work
https://cryptonote.org/inside.php#equal-proof-of-work
https://medium.com/@brannondorsey/browser-as-botnet-or-the-coming-war-on-your-web-browser-be920c4f718
https://medium.com/@brannondorsey/browser-as-botnet-or-the-coming-war-on-your-web-browser-be920c4f718
https://webtorrent.io/
https://webtorrent.io/
https://arstechnica.com/information-technology/2017/11/drive-by-cryptomining-that-drains-cpus-picks-up-steam-with-aid-of-2500-sites/
https://arstechnica.com/information-technology/2017/11/drive-by-cryptomining-that-drains-cpus-picks-up-steam-with-aid-of-2500-sites/
https://arstechnica.com/information-technology/2017/11/drive-by-cryptomining-that-drains-cpus-picks-up-steam-with-aid-of-2500-sites/
https://developers.google.com/web/ilt/pwa/introduction-to-service-worker
https://developers.google.com/web/ilt/pwa/introduction-to-service-worker
https://chrome.google.com/webstore/detail/tamper-chrome-extension/hifhgpdkfodlpnlmlnmhchnkepplebkb
https://chrome.google.com/webstore/detail/tamper-chrome-extension/hifhgpdkfodlpnlmlnmhchnkepplebkb
https://gist.github.com/mondain/b0ec1cf5f60ae726202e
https://gist.github.com/mondain/b0ec1cf5f60ae726202e
https://www.mobidea.com/academy/popunder-ad/
https://hpbn.co/webrtc/
https://hpbn.co/webrtc/

[24] J. Grossman and M. Johansen, “Million Browser Botnet,” Presentation
at Black Hat USA, 2013.

[25] O. Hallaraker and G. Vigna, “Detecting Malicious JavaScript Code in
Mozilla,” in Proceedings of the 10th IEEE International Conference on
Engineering of Complex Computer Systems, ser. ICECCS, 2005.

[26] S. Han, “Snowflake Technical Overview,” https://keroserene.net/
snowflake/technical/, The Tor Project, 2017.

[27] M. Heiderich, T. Frosch, and T. Holz, “IceShield: Detection and
Mitigation of Malicious Websites with a Frozen DOM,” in Proceedings
of the 14th International Conference on Recent Advances in Intrusion
Detection, ser. RAID, 2011.

[28] B. Hillmer, “URL redirect: Breaking out of an iframe,” https://
help.surveygizmo.com/help/break-out-of-iframe, 2017.

[29] E. Homakov, “Building botnet on serviceworkers,” https://sakurity.com/
blog/2016/12/10/serviceworker botnet.html, 2016.

[30] F.-H. Hsu, C.-W. Ou, Y.-L. Hwang, Y.-C. Chang, and P.-C. Lin, “De-
tecting Web-Based Botnets Using Bot Communication Traffic Features,”
Security and Communication Networks, vol. 2017, 2017.

[31] Juniper Research, “Ad fraud to cost advertisers $19 billion
in 2018, representing 9% of total digital advertising spend,”
https://www.juniperresearch.com/press/press-releases/ad-fraud-to-cost-
advertisers-$19-billion-in-2018, 2018.

[32] S. Khattak, N. R. Ramay, K. R. Khan, A. A. Syed, and S. A.
Khayam, “A taxonomy of botnet behavior, detection, and defense,” IEEE
Communications Surveys Tutorials, vol. 16, no. 2, pp. 898–924, 2014.

[33] KrebsOnSecurity, “The Rise of Point-and-Click Botnets,” https://
krebsonsecurity.com/tag/web-based-botnets/.

[34] L. Kuppan, “Attacking with html5,” Presentation at Black Hat, 2010.
[35] S. Lekies, B. Stock, M. Wentzel, and M. Johns, “The Unexpected

Dangers of Dynamic JavaScript,” in Proceedings of the 24th USENIX
Conference on Security Symposium, ser. USENIX Security, 2015.

[36] J. Leyden, “Real mad-quid: Murky cryptojacking menace that
smacked ronaldo site grows,” http://www.theregister.co.uk/2017/10/10/
cryptojacking/, The Register, 2017.

[37] Z. Li, S. Alrwais, X. Wang, and E. Alowaisheq, “Hunting the Red Fox
Online: Understanding and Detection of Mass Redirect-Script Injections,”
in 2014 IEEE Symposium on Security and Privacy, ser. IEEE S&P, May
2014.

[38] L. Liu, X. Zhang, and S. Chen, “Botnet with browser extensions,”
in Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third
Inernational Conference on Social Computing (SocialCom), 2011 IEEE
Third International Conference on, ser. PASSAT/SocialCom, 2011.

[39] L. McAfee, “Mcafee secure safe browsing,” https:
//www.mcafeesecure.com/safe-browsing, 2018.

[40] K. McCarthy, “CBS’s Showtime caught mining crypto-coins in viewers’
web browsers,” http://www.theregister.co.uk/2017/09/25/showtime hit
with coinmining script/, The Register, 2017.

[41] D. A. McGrew and K. Norrman, “The secure real-time transport protocol
(srtp),” 2004.

[42] MDN web docs, “Mozilla port blocking,” https://developer.mozilla.org/
en-US/docs/Mozilla/Mozilla Port Blocking, 2014.

[43] ——, “Cross-Origin Resource Sharing (CORS),” https:
//developer.mozilla.org/en-US/docs/Web/http/CORS, 2018.

[44] ——, “Push API,” https://developer.mozilla.org/en-US/docs/Web/API/
Push API, 2018.

[45] ——, “ServiceWorkerRegistration.periodicSync,”
https://developer.mozilla.org/en-US/docs/Web/API/
ServiceWorkerRegistration/periodicSync, 2018.

[46] ——, “Using Web Workers,” https://developer.mozilla.org/en-US/docs/
Web/API/Web Workers API/Using web workers, 2018.

[47] ——, “WebSockets,” https://developer.mozilla.org/en-US/docs/Web/API/
WebSockets API, 2018.

[48] ——, “XMLHttpRequest,” https://developer.mozilla.org/en-US/docs/
Web/API/XMLhttpRequest, 2018.

[49] N. Modadugu and E. Rescorla, “Datagram transport layer security,”
2006.

[50] Mozilla Corporation, “Serviceworker cookbook,” https://serviceworke.rs/,
2018.

[51] Mozilla Support, “Why do I have to click to activate plug-
ins?” https://support.mozilla.org/en-US/kb/why-do-i-have-click-activate-
plugins, 2018.

[52] MWR InfoSecurity, “Distributed hash cracking on the web,” https://
labs.mwrinfosecurity.com/blog/distributed-hash-cracking-on-the-web/,
2012.

[53] J. Nielsen, “How long do users stay on web pages?” https:
//www.nngroup.com/articles/how-long-do-users-stay-on-web-pages/,
Nielsen Norman Group, 2011.

[54] Y. Pan, J. White, and Y. Sun, “Assessing the threat of web worker
distributed attacks,” in Communications and Network Security (CNS),
2016 IEEE Conference on, ser. CNS, 2016.

[55] E. P. Papadopoulos, M. Diamantaris, P. Papadopoulos, T. Petsas, S. Ioan-
nidis, and E. P. Markatos, “The Long-Standing Privacy Debate: Mobile
Websites vs Mobile Apps,” in Proceedings of the 26th International
Conference on World Wide Web, ser. WWW, 2017.

[56] P. Papadopoulos, P. Ilia, and E. P. Markatos, “Truth in web mining: Mea-
suring the profitability and cost of cryptominers as a web monetization
model,” CoRR, vol. abs/1806.01994, 2018.

[57] P. Papadopoulos, N. Kourtellis, P. R. Rodriguez, and N. Laoutaris,
“If You Are Not Paying for It, You Are the Product: How Much Do
Advertisers Pay to Reach You?” in Proceedings of the 2017 Internet
Measurement Conference, ser. IMC, 2017.

[58] G. Pellegrino, C. Rossow, F. J. Ryba, T. C. Schmidt, and M. Wählisch,
“Cashing Out the Great Cannon? On Browser-Based DDoS Attacks
and Economics,” in 9th USENIX Workshop on Offensive Technologies
(WOOT 15), ser. WOOT, 2015.

[59] R. Perrotta and F. Hao, “Botnet in the browser: Understanding threats
caused by malicious browser extensions,” CoRR, vol. abs/1709.09577,
2017. [Online]. Available: http://arxiv.org/abs/1709.09577

[60] J. Posnick, “Cross-origin Service Workers: Experimenting with For-
eign Fetch,” https://developers.google.com/web/updates/2016/09/foreign-
fetch, 2016.

[61] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and N. Modadugu,
“The Ghost in the Browser Analysis of Web-based Malware,” in
Proceedings of the First Conference on First Workshop on Hot Topics
in Understanding Botnets, ser. HotBots, 2007.

[62] P. Raman, “JaSPIn: JavaScript based Anomaly Detection of Cross-site
scripting attacks,” Ph.D. dissertation, Carleton University, 2008.

[63] M. Rushanan, D. Russell, and A. D. Rubin, “Malloryworker: stealthy
computation and covert channels using web workers,” in International
Workshop on Security and Trust Management. Springer, 2016, pp.
196–211.

[64] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson, “Busting frame
busting: a study of clickjacking vulnerabilities at popular sites,” IEEE
Oakland Web, vol. 2, no. 6, 2010.

[65] K. Sedgwick, “Mining Crypto In a Browser Is a Complete Waste
of Time,” https://news.bitcoin.com/mining-crypto-in-a-browser-is-a-
complete-waste-of-time/.

[66] T. Soulo, “How many websites are mining cryptocurrency? we analyzed
175m+ domains to find out.” https://ahrefs.com/blog/cryptomining-
study/.

[67] The European Union Agency for Network and Information Security
(ENISA), “Malvertising,” https://www.enisa.europa.eu/publications/info-
notes/malvertising, 2016.

[68] The World Wide Web Consortium (W3C), “Remove foreign fetch,”
https://github.com/w3c/ServiceWorker/issues/1188, 2017.

[69] J. Topf, “Vulnerability note vu#476267,” https://www.kb.cert.org/vuls/
id/476267, 2001.

[70] L. Tung, “Windows: This sneaky cryptominer hides behind taskbar
even after you exit browser,” https://www.zdnet.com/article/windows-
this-sneaky-cryptominer-hides-behind-taskbar-even-after-you-exit-
browser/, 2017.

[71] S. Weagle, “Short, low-volume DDoS attacks pose
greatest security and availability threat to businesses,”
https://www.itproportal.com/features/short-low-volume-ddos-attacks-
pose-greatest-security-and-availability-threat-to-businesses/.

[72] World Wide Web Consortium (W3C), “High resolution time level 2,”
https://www.w3.org/TR/hr-time-2/, 2018.

15

https://keroserene.net/snowflake/technical/
https://keroserene.net/snowflake/technical/
https://help.surveygizmo.com/help/break-out-of-iframe
https://help.surveygizmo.com/help/break-out-of-iframe
https://sakurity.com/blog/2016/12/10/serviceworker_botnet.html
https://sakurity.com/blog/2016/12/10/serviceworker_botnet.html
https://www.juniperresearch.com/press/press-releases/ad-fraud-to-cost-advertisers-$19-billion-in-2018
https://www.juniperresearch.com/press/press-releases/ad-fraud-to-cost-advertisers-$19-billion-in-2018
https://krebsonsecurity.com/tag/web-based-botnets/
https://krebsonsecurity.com/tag/web-based-botnets/
http://www.theregister.co.uk/2017/10/10/cryptojacking/
http://www.theregister.co.uk/2017/10/10/cryptojacking/
https://www.mcafeesecure.com/safe-browsing
https://www.mcafeesecure.com/safe-browsing
http://www.theregister.co.uk/2017/09/25/showtime_hit_with_ coinmining_script/
http://www.theregister.co.uk/2017/09/25/showtime_hit_with_ coinmining_script/
https://developer.mozilla.org/en-US/docs/Mozilla/Mozilla_Port_Blocking
https://developer.mozilla.org/en-US/docs/Mozilla/Mozilla_Port_Blocking
https://developer.mozilla.org/en-US/docs/Web/http/CORS
https://developer.mozilla.org/en-US/docs/Web/http/CORS
https://developer.mozilla.org/en-US/docs/Web/API/Push_API
https://developer.mozilla.org/en-US/docs/Web/API/Push_API
https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorkerRegistration/periodicSync
https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorkerRegistration/periodicSync
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/XMLhttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/XMLhttpRequest
https://serviceworke.rs/
https://support.mozilla.org/en-US/kb/why-do-i-have-click-activate-plugins
https://support.mozilla.org/en-US/kb/why-do-i-have-click-activate-plugins
https://labs.mwrinfosecurity.com/blog/distributed-hash-cracking-on-the-web/
https://labs.mwrinfosecurity.com/blog/distributed-hash-cracking-on-the-web/
https://www.nngroup.com/articles/how-long-do-users-stay-on-web-pages/
https://www.nngroup.com/articles/how-long-do-users-stay-on-web-pages/
http://arxiv.org/abs/1709.09577
https://developers.google.com/web/updates/2016/09/foreign-fetch
https://developers.google.com/web/updates/2016/09/foreign-fetch
https://news.bitcoin.com/mining-crypto-in-a-browser-is-a-complete-waste-of-time/
https://news.bitcoin.com/mining-crypto-in-a-browser-is-a-complete-waste-of-time/
https://ahrefs.com/blog/cryptomining-study/
https://ahrefs.com/blog/cryptomining-study/
https://www.enisa.europa.eu/publications/info-notes/malvertising
https://www.enisa.europa.eu/publications/info-notes/malvertising
https://github.com/w3c/ServiceWorker/issues/1188
https://www.kb.cert.org/vuls/id/476267
https://www.kb.cert.org/vuls/id/476267
https://www.zdnet.com/article/windows-this-sneaky-cryptominer-hides-behind-taskbar-even-after-you-exit-browser/
https://www.zdnet.com/article/windows-this-sneaky-cryptominer-hides-behind-taskbar-even-after-you-exit-browser/
https://www.zdnet.com/article/windows-this-sneaky-cryptominer-hides-behind-taskbar-even-after-you-exit-browser/
https://www.itproportal.com/features/short-low-volume-ddos-attacks-pose-greatest-security-and-availability-threat-to-businesses/
https://www.itproportal.com/features/short-low-volume-ddos-attacks-pose-greatest-security-and-availability-threat-to-businesses/
https://www.w3.org/TR/hr-time-2/

	Introduction
	Background
	HTML5 features
	Web Workers
	Service Workers
	WebRTC
	Cross-Origin Resource Sharing

	Web Extensions
	Security Analysis

	Threat Model and Objectives
	Threat Model
	Challenges

	System Overview
	System components
	Detailed Design

	Attack Vectors
	DDoS Attacks
	Cryptocurrency Mining
	Distributed Password Cracking
	Malicious or Illegal Data Hosting
	Other Attacks
	Relay Proxies
	Click Fraud

	Evaluation
	Prototype Setup
	Performance Evaluation
	Abuse of network resources
	Abuse of computation power
	Persistent and Evasive abuse

	Defenses
	In-browser Mechanisms
	Restricting or Disabling Service Workers
	Whitelists/Blacklists
	Click to Activate

	Host-based Approaches
	Signature-based Detection
	Behavioral Analysis and Anomaly Detection

	Discussion
	Related Work
	Conclusion
	References

