
JavaScript Template Attacks: Automatically Inferring
Host Information for Targeted Exploits

Michael Schwarz, Florian Lackner, Daniel Gruss
Graz University of Technology

{michael.schwarz,daniel.gruss}@iaik.tugraz.at, florian.lackner@student.tugraz.at

Abstract—Today, more and more web browsers and extensions
provide anonymity features to hide user details. Primarily used
to evade tracking by websites and advertisements, these features
are also used by criminals to prevent identification. Thus, not
only tracking companies but also law-enforcement agencies have
an interest in finding flaws which break these anonymity features.
For instance, for targeted exploitation using zero days, it is
essential to have as much information about the target as possible.
A failed exploitation attempt, e.g., due to a wrongly guessed
operating system, can burn the zero-day, effectively costing the
attacker money. Also for side-channel attacks, it is of the utmost
importance to know certain aspects of the victim’s hardware
configuration, e.g., the instruction-set architecture. Moreover,
knowledge about specific environmental properties, such as the
operating system, allows crafting more plausible dialogues for
phishing attacks.

In this paper, we present a fully automated approach to
find subtle differences in browser engines caused by the envi-
ronment. Furthermore, we present two new side-channel attacks
on browser engines to detect the instruction-set architecture and
the used memory allocator. Using these differences, we can deduce
information about the system, both about the software as well as
the hardware. As a result, we cannot only ease the creation of
fingerprints, but we gain the advantage of having a more precise
picture for targeted exploitation. Our approach allows automating
the cumbersome manual search for such differences. We collect
all data available to the JavaScript engine and build templates
from these properties. If a property of such a template stays the
same on one system but differs on a different system, we found
an environment-dependent property.

We found environment-dependent properties in Firefox,
Chrome, Edge, and mobile Tor, allowing us to reveal the underly-
ing operating system, CPU architecture, used privacy-enhancing
plugins, as well as exact browser version. We stress that our
method should be used in the development of browsers and pri-
vacy extensions to automatically find flaws in the implementation.

I. INTRODUCTION

Today, more than half of the world’s population is con-
nected to the internet [35]. Regardless of whether people use
websites from a computer or a smartphone, they require a web
browser to do so. Most web browsers follow the standards
defined by the World Wide Web Consortium (W3C), an
international organization responsible for standards concerning

the world wide web. Although the standards define many
aspects of how websites are rendered and how they behave,
they do not define everything on the implementation level.

As a consequence, implementation details differ signif-
icantly between different browsers. The differences can be
found in supported standardized features, browser-specific
features, as well as aspects which are undefined according
to the standard [18]. With JavaScript, a scripting language
supported by all modern browsers, websites can gather in-
formation about the concrete implementation of the browser.
Furthermore, JavaScript allows to obtain details about the host
system, e.g., the screen resolution, operating system, installed
plugins. This can be used to adapt a website to the specific
properties of a user’s device and environment, providing an
optimal user experience. However, the amount of information
available to a website can also be abused to create a fingerprint
consisting of a set of properties. Such a fingerprint can be used
to uniquely identify a browser, and therefore a user, across
multiple sessions and even across webpages [19], [51], [39].

Browsers aiming at the protection of the privacy of the
user, such as the Tor browser, try to prevent fingerprinting.
They do so by removing differences caused by the browser
as well as the environment. They also block functionality
such as Canvas elements [57]. There are also approaches
to prevent fingerprinting by adding randomness instead of
removing functionality [38]. The aim is always to prevent the
creation of unique fingerprints of a browser and thus also user.

There are many legitimate reasons to prevent tracking and
identification, and for certain groups, such as journalists or
whistleblowers, it is in many cases even vital. However, for
criminal actors, it is undoubtedly also beneficial to prevent
tracking and unique identification. Thus, browsers such as the
Tor browser are also heavily used for criminal activities [60],
[17]. The anti-fingerprinting methods ensure that users can-
not be tracked across websites, preventing deanonymization
through the user’s usage pattern of websites [57]. Thus, at-
tackers trying to reveal the identity of such users cannot rely
on simply tracking a user with fingerprinting.

However, an attacker does not necessarily want to uniquely
identify a user for the purpose of tracking. For an attacker, it
might be even more desirable to gather as much information
about the environment as possible to mount a targeted at-
tack [51]. Especially for nation-state actors or law-enforcement
agencies, it can already be advantageous if only some infor-
mation is known about a user. Information fragments can then
be used to, e.g., link a suspect to a browser session, or mount
a targeted exploit on the user.

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA
ISBN 1-891562-55-X
https://dx.doi.org/10.14722/ndss.2019.23155
www.ndss-symposium.org

In this paper, we propose a method to automate the search
for data leakage which reveals information about the user’s
environment. To automate the leakage detection, we build so-
called templates over properties in different environments. A
property can be anything which can be read by JavaScript.
Multiple runs on one system reveal unstable properties, re-
sulting in a deterministic set of static properties for a specific
environment. We analyzed all unstable properties and show
that in most cases they do not provide any reliable information
about the environment. We also show how our method can
be extended to the unstable properties that can be used for
fingerprinting. The JavaScript property template we obtain
allows us to match a specific target system to one of the
environments in our template. Hence, an attacker can deduce
what the environment of the target system is, and thus, which
attacks can be mounted.

It is well known that law-enforcement agencies actively
try to de-anonymize Tor users [61], [24], [16], [78]. Various
exploits have already been used to do this, some of which
were discovered later on by researchers. The exploits are usu-
ally zero-day exploits mainly targetting users with Windows
operating system [78], [22]. However, exploits are not limited
to zero-day exploits.

Nowadays, there is a repertoire of powerful, software-
based side-channel attacks. These side-channel attacks ex-
ploit various microarchitectural elements, most prominently
caches [56], [55], [33], [81], DRAM [58], or branch pre-
diction [3], [2], [21]. Side-channel attacks are not only able
to break cryptographic algorithms [37], [5], [62], but are
even able to read arbitrary memory contents [43], [36], [74],
[80], [8]. With powerful side-channel attacks, it is plausible
that nation-state actors also use side-channel attacks to de-
anonymize Tor users.

Although some side-channel attacks can be mounted di-
rectly from the browser [29], [30], [64], [26], [41], [25], [23],
[36] or even remotely [71], [40], [65], many powerful side-
channel attacks require native code execution. Both zero-day
exploits, as well as side-channel attacks, require knowledge
of the attacked system. Trying to use an attack for a system
which is not affected might draw attention to the exploit, and
worse, might even leak a zero-day to the public, rendering it
useless for future attacks.

Hence, there is an arms race between browser vendors
emphasizing on the privacy of the user (e.g., Tor), and attackers
and tracking companies trying to learn as much about the
system as possible. Attackers try to find new ways to leak
information which browser vendors prevent as soon as they
become public. This requires considerable effort on both sides.
Thus, both parties have an interest in automating this approach.
Automated leakage detection has already been used to detect
leakage from the cache [32], memory accesses [79], procfs
pseudo-file system [68], and Android API [69].

Our fully-automated approach we propose can replace the
tedious work of identifying such properties manually. As it is
easily integrated into the development and testing chain, it will
allow providing strong guarantees for this security and privacy
aspect of modern browsers.

Furthermore, we present two new side-channel attacks
which can be mounted from JavaScript. They allow an attacker

to reveal the instruction-set architecture and the memory
allocator. Both properties are essential aspects of both side-
channel attacks as well as traditional zero-day exploits.

Contributions. The contributions of this work are:

1) We are the first to propose a fully-automated method
to identify browser properties which can be used for
fingerprinting.

2) We show that we can deduce information about the host
system even in browsers employing anti-fingerprinting
techniques.

3) We present two new side-channel attacks in JavaScript to
deduce further information about the host system.

4) We show that privacy-enhancing browser extension can
leak more information than they disguise and can even be
semi-automatically circumvented, leading to a false sense
of security.

Outline. The remainder of the paper is organized as follows.
In Section II, we provide background information on browser
fingerprinting and side-channel attacks. In Section III, we
present our fully-automated method to find leakage from
browser properties. In Section IV, we present two novel side-
channel attacks to deduce information about the environment.
In Section V, we apply the method to real-world scenarios and
discuss the detected properties which are useful for targeted
attacks and fingerprinting. In Section VI, we analyze the cov-
erage we reach with our approach. In Section VII, we discuss
the limitations of the approach. We conclude in Section VIII.

II. BACKGROUND AND RELATED WORK

In this section, we provide background about state-of-the-
art browser fingerprinting and anti-fingerprinting mechanisms
employed in current browsers. Furthermore, we also discuss
related work which aims to automatically detect leakage in
similar scenarios and give a short overview of side-channel
attacks in JavaScript.

A. Browser Fingerprinting

Browser fingerprinting tries to uniquely identify a user
across multiple webpages or visits to the same webpage
without storing information in the browser. Thus, browser
fingerprinting does not rely on classical tracking mechanisms
such as cookies, making it hard for a user to prevent tracking.

Fingerprinting is usually done via a script which is ex-
ecuted when a user visits a website. This script collects
several properties of the browser, such as the browser version,
operating system, screen resolution, or installed plugins. While
each of the properties itself does not allow tracking of a user,
the combination of properties is unique enough to identify a
user [19], [39].

There are many properties that can be used to fingerprint
users. These properties include fonts [6], [51], plugins [51],
rendering differences [70], [9], the battery status [53], and
audio processing [20].

2

B. Anti-Fingerprinting Mechanisms

To prevent the tracking and identification of users, several
software- and research projects try to minimize the fingerprint-
ing surface. There are mainly two approaches to accomplish
this goal.

First, some applications, such as, e.g., the Tor browser [57],
hide the actual values of properties by either not exposing them
or replacing them with the same value on all platforms. The
Tor browser tries to prevent fingerprinting attempts which rely
on browser properties that can be retrieved using JavaScript,
plugins, or CSS [57]. Thus, the fingerprint of all Tor browsers
in their default configuration is supposed to be the same.

There are also browser extensions for hiding values of
properties as well as complete functionality that can be used
for fingerprinting from a website. Such extensions include, e.g.,
Canvas Defender or the WebAPI Manager [66].

Second, some applications, such as, e.g., the FPRandom
browser [38] or PriVaricator [50], try to break the stability of
fingerprints by randomizing properties. FP-Block [72] spoofs
properties in a way that they are the same for subsequent visits
to one site, but differ between domains to prevent cross-domain
tracking.

However, anti-fingerprinting mechanisms can be detected
through additional, missing, or inconsistent values they cre-
ate [46], [19], [1], [51].

C. Microarchitectural Attacks

Microarchitectural attacks have recently gained a lot of
attention. Typically they are timing attacks that exploit the
behavior of the microarchitecture, e.g., caches, branch pre-
dictors, or DRAM. The cache, in particular, was exploited in
many attacks over the past years, leading to different attack
techniques. Osvik et al. [55] described Evict+Time, where the
attacker measures the influence of evicting a cache set on
the runtime of an algorithm run by the victim, and Prime+
Probe, where the attacker continuously measures whether the
victim evicted a cache line in a specific cache set. Yuval and
Falkner [81] described Flush+Reload, where the attacker con-
tinuously measures whether the victim reloaded a cache line.
Several variations of these attacks were proposed, e.g., Flush+
Flush [31], Evict+Reload [32], [42]. The recently discovered
Meltdown [43], [74], [80], [8] and Spectre [36] attacks are
significantly more powerful microarchitectural attacks. In some
cases, they can infer values from arbitrary memory locations
from other contexts, e.g., other processes or the operating
system kernel.

D. Microarchitectural and Side-Channel Attacks in JavaScript

Although microarchitectural attacks exploit effects on a
very low level of the CPU, they can even be exploited from
JavaScript. In contrast to native code, JavaScript code is
sandboxed and less powerful in terms of multithreading. Thus,
there are several challenges an attacker has to overcome [63].

Still, many microarchitectural properties can be inferred
from JavaScript [54], [29], [64], [41], [26], [25], [23], [36].
Moreover, sensors found on many mobile devices as well
as modern browsers, introduce side channels which can be

Collect #1

Collect #2

Collect #n

Template

Profiling Phase

Explore Cleanup
Extraction

Analysis Phase

Properties

Fig. 1: A JavaScript Template Attack consists of two
phases. In the profiling phase, all available properties of
a browser are collected multiple times. In the analysis
phase, the template is pruned by removing duplicates and
changing values. The resulting identifed properties leak
properties about certain aspects of the environment.

exploited from JavaScript [67], [44], [52]. It has also been
shown that microarchitectual properties can be used for fin-
gerprinting [46].

E. Template-based Leakage Detection

Chari et al. [10] introduced template attacks as a strong
form of side-channel attacks. They first collect side-channel
traces from an attacker-controlled device, the so-called tem-
plate. Then, they collect a single trace from an identical device
processing an unknown secret. The unknown secret can then
be recovered by comparing the trace to the recorded templates.

Brumley and Hakala [7] applied template attacks to cache-
based timing attacks. They rely on Prime+Probe to automati-
cally detect and exploit cache leakage. However, their method
is limited to an attacker who runs on the same CPU core as
the victim. Gruss et al. [32] demonstrated a Flush+Reload-
based template attack to detect and exploit cache leakage
automatically. As their attack leverages the shared last-level
cache, it does not rely on the attacker’s ability to run on the
same core as the victim. Weiser et al. [79] dynamically instru-
mented binaries to generate templates consisting of all memory
access. By comparing templates for different secret inputs, they
can automatically detect whether the binary contains secret-
dependent memory accesses.

On a higher level, Spreitzer et al. used template attacks
on Android to infer application launches and visited web-
sites via the procfs pseudo-file system [68] as well as the
Android API [69]. For both approaches, they first create a
template by gathering all available information from the proc
file system [68] or Android API [69]. In the analysis phase,
they compare templates gathered from different applications
to classify application launches and fingerprint websites based
on the templates.

III. JAVASCRIPT TEMPLATE ATTACKS

JavaScript Template Attacks can automatically identify
language features of JavaScript that leak information about the
environment, e.g., the operating system or hardware. For this
purpose, they leverage the well-known concept of template
attacks (cf. Section II-E) and apply it to JavaScript. As
with all template attacks, JavaScript Template Attacks detect
leakage through template differences caused by a secret. For

3

1 function getProperties(o) {
2 var result = [];
3

4 while(o !== null) {
5 result = result.concat(Reflect.ownKeys(o));
6 o = Object.getPrototypeOf(o);
7 }
8 return result;
9 }

Listing 1: Using reflections on all objects of the prototype
chain results in a list of property names defined either directly
in the object or inherited from an object on the prototype chain.

JavaScript, the secret is the environment of the website, i.e.,
the browser, operating system, and underlying hardware. A
template is a matrix of properties (rows) for various environ-
ments (columns). All properties, e.g., browser properties, are
retrieved through JavaScript.

Finding leakage is equivalent to detecting differences in
these collected properties of the templates. The advantage of
template attacks is that it is not necessary to understand the
cause of the information leak. Hence, the template attack works
fully automated. If the template contains different properties
for different environments, our attack can deduce information
about the (inaccessible) environment. This information can
then be used by an attacker to mount a targeted exploit.

Our attack works in two phases which are outlined in
Figure 1. The first phase is the profiling phase, which creates
several profiles by collecting a set of properties, which are
accessible via JavaScript, in different environments. These
profiles are then combined to a template. In the analysis
phase, we compare the properties of templates to automatically
find differences caused by the environment. These discovered
differences leak information about the environment which can
be used on any webpage to mount a targeted attack.

A. Profiling Phase

The first phase is the profiling phase which builds the tem-
plates consisting of multiple profiles. The profiling phase runs
entirely inside the browser and is implemented in JavaScript.

As a first step, the profiling code creates a list of proper-
ties which are accessible from JavaScript. In JavaScript, the
accessible properties are either functions, numbers, strings,
booleans, arrays, or objects. We refer to numbers, strings, and
booleans as primitive types, as they have a single value which
can directly be accessed and read. Objects and arrays (which
are only a special type of object) are complex types, as they do
not have a single generically comparable value. Instead, they
are comprised of multiple primitive types and possibly further
complex types.

Functions are more complex and require at least a certain
understanding of the semantics to invoke them. This is an
orthogonal problem [34], and thus, the properties that are
returned by function calls are subject to future work. Solving
this problem also allows applying JavaScript Template Attacks
trivially to properties returned by functions. Even though we
do not evaluate functions, we can still leverage functions for
the templates. First, functions itself have a set of properties,

...mimeTypes

screen

plugins

window

clipboard

location

{elements}

frames navigatordocument history

Fig. 2: In the JavaScript object hierarchy, every object is
derived from Object. The window object is the root of
all accessible objects and thus, for JavaScript Template
Attacks.

e.g., name or length. Second, with artificial properties,
we describe a way to add custom properties to the profiling
phase. This allows us to convert simple functions, e.g., the
toString function, into properties.

We distinguish between native properties, which are de-
fined by the language or the browser, and artificial properties
which can be added manually or automatically before the
profiling phase.

• Native Properties. Native properties are primitive or com-
plex types which are defined either by the language, i.e.,
in the ECMAScript standard, or by the browser. Examples
include the length property of almost every object or
the document property of the window object. Moreover,
browsers often introduce own properties to support features
which are not yet standardized, or which aid developers
in the debugging process of web applications. Examples
include the window.chrome property in Google Chrome
or the window.sidebar property in Mozilla Firefox.

• Artificial Properties. We introduce the term artificial
properties for properties which are typically not available
in JavaScript. As JavaScript allows adding properties dy-
namically to any object, additional properties can be added
to the profiled objects. These additional properties can, for
example, be results of preceding function calls.
Moreover, accessor properties can be added to the pro-
filed objects. These properties are actually functions, as
they do not return a static value but the result of a
function. In contrast to functions, these properties do
not support arguments. Thus, functions without arguments
(e.g., toString) can be converted to artificial properties,
allowing them to be used in the profiling phase.

1) Exploration Step: The first step of the profiling phase is
to explore the list of all accessible properties. We leverage both
reflections and the JavaScript functionality of iterating through
properties of an object. Listing 1 shows our method to collect
all properties from a given object. The properties include both
inherited properties, which are not defined directly in the object
but in the prototype chain, and non-inherited properties.

The goal is to identify as many properties as possible.
There is no list of all available objects which can be used in
the exploration step. However, in JavaScript, objects are linked
with each other in so-called prototype chains. This is similar to
class inheritance in other languages such as C++. Thus, from
an arbitrary object, we can traverse all child elements and all
parent elements. The root object of every object is Object.

4

200 250 300 350 400 450 500

0
20
40

DOM Parsing [ms]

C
ou

nt User 1

User 2

Fig. 3: The histogram of non-static properties (e.g., the
DOM parsing time) can be used to, e.g., create fingerprints.

Furthermore, JavaScript has an object hierarchy as illus-
trated in Figure 2. Accessible objects (e.g., global objects,
functions, HTML DOM) are referenced in the window object
(representing the browser window), or in one of its child
elements. Hence, by starting the property exploration step at
the window object, we reach all accessible properties. The
result of the exploration step is a list of accessible properties.

The exploration step has to run only once per environment,
as the set of properties is static and does not change.

2) Collection Step: During the collection step, the
JavaScript code creates a profile consisting of the properties
identified in the exploration step and their values. The collec-
tion step runs again inside the browser in JavaScript.

Our property collection algorithm takes a list of proper-
ties which were identified in the exploration step. For every
property, the collection step acquires the actual value of the
property. As we only considered properties which have a
concrete value (e.g., no property which first requires a function
to be called), we can directly read the value of every such
property. Note that this step is not limited to properties with
concrete values, as adding properties resulting from function
calls works the same if there is a way to call functions in an
automated way. We refer to the set of collected properties as
a profile. Combining profiles by running the collection step in
different environments results in a template.

The template still contains properties which are not useful
in the further analysis (cf. Section III-B), as they are not static.
Examples include the page load time or the render time. These
values change every time the page is reloaded. Exploiting such
properties requires an understanding of the semantics of the
values which is an orthogonal problem. Although semantics
could theoretically be inferred using machine learning, our
manual investigations already showed that these non-static
properties did not contain any information we deemed usable
for deducing environment information. Thus, we focussed on
the more interesting static properties. For fingerprinting, non-
static properties might still be useful and can be exploited by
collecting histograms of the values which can then be matched
to single users (cf. Figure 3).

To later on detect which properties are not static (cf.
Section III-B1), i.e., which properties do not have the same
value on every read, the collection step needs to run multiple
times. Every run collects the same properties and the hash of
the corresponding object. Thus, after multiple runs (typically
3 to 4), there is a list of values for every property from the
exploration step, composing the profile.

The profile is finally transmitted to the back-end server
(e.g., using AJAX) for incorporation into the template used
for further analysis.

B. Analysis Phase

The analysis phase is an offline phase which finds the prop-
erties leaking information about the environment. In contrast to
the profiling phase, this second phase of the templating process
does not run inside the browser.

The input to the analysis is the template generated in
the profiling phase. Depending on the profiles contained in
the template, the analysis phase can detect properties leaking
different aspects of the environment. For example, if all profiles
are recorded with the same browser on different operating
systems, the analysis phase detects properties leaking the
operating system.

The analysis phase is also split into two steps, the cleanup
step and the property extraction step.

1) Cleanup Step: In the first step, the template has to be
cleaned. Profiles collected in the profiling phase often contain
duplicate properties. There are multiple reasons for this.

First, JavaScript objects are often heavily linked to other
objects. This creates entries in the profile which appear to have
a different name but are the same properties. For example,
window.frames.window.name is the same property as
window.name. These properties are detected if the objects
have the same hash (which was stored in the collection phase),
and are then unified.

Second, due to our method of collecting all properties (cf.
Listing 1), the same property for one object might be collected
multiple times. As we iterate through the entire prototype
chain, we might get properties which are already overwritten
by the child object. For example, the name property is
collected for every object in the prototype chain. However,
we can only access the name property of the last child, as it
overwrites this property for all other objects in the prototype
chain. These properties are trivial to remove as they have
exactly the same name.

After the pruning of duplicates, the cleanup step has
to identify properties which are not static, i.e., proper-
ties which have changing values on different reads. For
the collected values of every property, we test whether
all the values are identical. If at least one of the values
is different, we do not consider this property further. For
example, the timestamp when the page was fully loaded
(window.performance.timing.responseEnd) dif-
fers between multiple runs of the collection step. Although
this property contains information about the environment, we
cannot use it in an automated manner, as our automated method
does not understand the semantics of properties (i.e., that this
is a timestamp).

In all observed cases, it was sufficient to run the collection
step 3 to 4 times to filter out non-static properties in the
cleanup step.

2) Property Extraction Step: Using the cleaned template,
the property extraction step identifies properties which leak
information. In this step, we first create the union of all

5

Browser Profiling (once) Profiling (twice) Analysis Total
Firefox 0.8 s 3.4 s <0.1 s 3.5 s
Chrome 1.8 s 5.6 s <0.1 s 5.7 s
Tor browser 0.7 s 3.2 s <0.1 s 3.3 s
FPRandom 0.7 s 3.2 s <0.1 s 3.3 s

TABLE I: The time it takes to run a JavaScript Template
Attack for various browsers. As the analysis phase does
not run inside the browser, the time difference is due to
the number of collected properties. For all browsers, the
total time is well below 10 s.

properties from all profiles of the template. This is necessary,
as in many cases not all properties are present in all profiles.

For every property in the unified property list, the collected
values in the different profiles are compared. If a property has
the same value in all profiles, it can be ignored as it does not
contain any information. This is the case for the majority of the
properties, as properties are in the most cases not influenced
by the environment, but only the current page.

However, if the value of a property varies between different
profiles in the template, this property contains information that
can be used to distinguish the environments. The same holds
true if a property cannot be found in a template at all. The
absence of a property is treated as a value of undefined
for this property. In Section V, we show that the absence
of properties can, for example, be used to detect whether a
browser is used in private-browsing mode.

The final output of the analysis phase is a matrix of
properties (rows) and their corresponding values for a set of
different environments (columns). For all properties of the
template matrix (i.e., for each row), the value differs for at
least one environment column. The more templates contain a
different value for the property, the higher the entropy of the
property, and thus the more it is able to deliver information
about the environment. Section V shows the results of the
JavaScript Template Attack on various browsers, including the
properties which leak information.

C. Performance

In contrast to other template attacks [32], [68], [69], [79],
JavaScript Template Attacks are extremely fast. Table I shows
the runtime of the profiling and analysis phase for several
different browsers. For all browsers, the runtime is well below
10 s, and could still be optimized.

The performance of the profiling phase depends on the
performance of the JavaScript engine in the browser, and also
on the number of properties provided by the browser. The
higher the number of properties collected during the profiling
phase, the longer this phase takes. If only native properties, i.e.,
properties which are provided by the browser, are collected, the
time of the profiling phase is below 2 s for all tested browsers.
The artificial properties increase the runtime measurably.

The collection step of the profiling phase has to be run at
least twice to remove properties which are not static, thus, the
real time of the profiling phase increases by the number of
runs. However, in all tests, the maximum number of required
runs was 4. Moreover, to filter out properties which only

change every second (e.g., a timestamp), we wait for 2 s
between each run of the collection phase. Still, the profiling
phase for most browsers is below 5 s.

As the analysis phase is offline, i.e., it does not run in
the browser, and thus, there are only negligible performance
differences for different browsers, due to the number of prop-
erties and environment provided. The resulting runtime in all
our tests was less than 0.1 s.

The total runtime of a JavaScript Template Attack is the
sum of the profiling phase(s) and the analysis phase. This time
slightly depends on the browser, but for most our tests it is
below 5 s.

IV. LOW-LEVEL PROPERTIES

In this section, we show how the JavaScript Template
Attack (cf. Section III) can be augmented with properties
reflecting low-level properties of the environment. For this,
we add artificial properties (cf. Section III-A) to the browser
before running the profiling phase. The artificial properties
are not properties per se but the result of functions deriving
information about the underlying architecture or even microar-
chitecture.

Neither architectural nor microarchitectural properties are
directly accessible in JavaScript. JavaScript code is platform
independent. Thus, environmental properties have to be ab-
stracted by the JavaScript engine. Moreover, for security
reasons, JavaScript code runs in a sandbox and has no direct
access to the underlying environment.

Still, recent research showed that such low-level properties
can be obtained via side channels in JavaScript [54], [29], [64],
[41], [26]. In this section, we present 2 new side channels to
obtain architectural properties.

A. Instruction-Set Architecture

JavaScript is an interpreted language executed in a sandbox.
Thus, the language itself is independent of the instruction-set
architecture (ISA) of the machine it runs on. However, for
performance reasons, JavaScript functions which are frequently
executed are compiled to machine code using a just-in-time
(JIT) compiler [73], [15].

Although JavaScript is oblivious to the ISA, the JIT com-
piler is limited by the ISA of the current platform. Thus, the
JIT compiler behaves differently on CPUs with different ISAs.
We can exploit this to distinguish one ISA from another ISA
in JavaScript.

We craft a code snippet for which the JIT compiler can
generate efficient code for one ISA and cannot generate equally
efficient code for a different ISA. Then, we compare the
runtime of this code snippet to a very similar code snippet for
which the JIT compiler can generate efficient code on both
ISAs. Using the runtime differences between the two code
snippets, we can infer the underlying ISA.

Listing 2 contains two functions which are very similar.
Both functions have data-dependent calculations with floating
point numbers. However, the first function has one operation
less. On x86, the JIT compiler uses the SSE XMM registers for

6

1 var a = 0.9, b = c = d = e = f = g = 0;
2 for(var i = 0; i < 10000000; i++) {
3 b = 1.0 / a;
4 c = 2.2 / b;
5 d = 3.4 / c;
6 e = 4.1 / d;
7 f = 5.8 / e;
8 g = 6.6 / f;
9 // no operation

10 a = a + b + c + d + e + f + g + g;
11 }

1 var a = 0.9, b = c = d = e = f = g = h = 0;
2 for(var i = 0; i < 10000000; i++) {
3 b = 1.0 / a;
4 c = 2.2 / b;
5 d = 3.4 / c;
6 e = 4.1 / d;
7 f = 5.8 / e;
8 g = 6.6 / f;
9 h = 7.1 / g;

10 a = a + b + c + d + e + f + g + h;
11 }

Listing 2: Two nearly identical code snippets to detect whether the code runs in a 32-bit or 64-bit environment. In 64-bit
environments, both functions have basically the same execution time, whereas in 32-bit environments, the Firefox/Tor browser
just-in-time compiler generates slower code for the right function as fewer registers are available to store intermediate results.

1 vaddss %xmm0,%xmm1,%xmm1
2 vdivsd %xmm7,%xmm6,%xmm6
3 vmovsd %xmm7,0x8(%esp)
4 vxorpd %xmm2,%xmm2,%xmm2
5 vxorpd %xmm7,%xmm7,%xmm7

1 vaddsd %xmm0,%xmm1,%xmm0
2 vdivsd %xmm2,%xmm11,%xmm3
3 vaddsd %xmm2,%xmm0,%xmm0
4 vdivsd %xmm3,%xmm10,%xmm4

Listing 3: The 32-bit x86 JIT compiler (left) cannot use as many registers as the 64-bit JIT compiler (right) and has to reuse
registers and also save them onto the stack.

floating point operations. There are 8 XMM registers available
on x86-32 but 16 XMM registers on x86-64.

Thus, on x86-64, all intermediate values can be kept in the
registers for both functions. However, on x86-32, all interme-
diate values can be kept in the registers for the first function
but not for the second function. This increases the runtime
of the 32-bit code significantly, as registers have to be reused
and thus temporarily saved on the stack (cf. Listing 3). As
the function is executed multiple thousand times, the runtime
difference is accumulated and can easily be measured.

The same approach can also be used to distinguish 32-
bit ARM vs. 64-bit ARM environments. There, the number
of floating-point registers is the same, however, the number
of general registers differ. On 32-bit ARM, only 10 general
registers (r0-r9) are used by the JIT compiler, whereas on 64-
bit ARM, 32 general registers (r0-r31) are used by the JIT
compiler.

We performed the measurement 10 000 times each on
multiple 32-bit and 64-bit environments. In our tests, 32-bit
environments can always be detected, 64-bit environments are
in some cases classified as 32-bit due to scheduling or other
noise which results in a slower execution of the fast function.
However, we can still detect whether it is x86-32 or x86-64
with a probability of >98% for all tested environments.

In fact, the measurement does not even require a high-
precision timer. Noise does not play a role, as it can be
averaged out by repeating the measurements, and the timer
resolution does not matter, as the number of loop iterations
(cf. Listing 2) can be increased until it is distinguishable. The
performance.now function with a resolution of 100ms in
Tor is already sufficient to measure the difference if combined
with edge thresholding [64], [26].

B. Memory Allocator

Many browser exploits rely on the underlying memory
allocator [4], [28]. Buffer overflows as well as use-after-
free vulnerabilities often require knowledge of the memory
layout to craft reliable exploits. As browsers use different
memory allocators, reliable exploits require information about
the allocation strategy.

Memory allocators differ between browsers, e.g., Partition-
Alloc in Chrome [14] and jemalloc in Firefox [4]. Due to
platform-specific virtual memory APIs, the memory allocator
behavior in one browser can even differ between operating
systems [13]. However, all memory allocators have in common
that they allocate memory in blocks. The size of such a block
is usually a power of 2.

Thus, there are two scenarios if a resizable data structure
in JavaScript has to grow. Either, there is still sufficient space
in the allocated memory block, and the data structure just uses
this space. Or, the memory has to be resized, which can lead to
a reallocation of the memory and thus also the data structure.
In the latter case, we can measure a timing difference, as
this operation requires large amounts of memory to be copied
which is a slow process.

Moreover, memory allocators distinguish between small
and large allocations. While small allocations are handled di-
rectly by the memory allocator, large allocations are delegated
to the operating system. The operating system can then directly
map the required memory segments, e.g., with mmap on
Unix or VirtualAlloc on Windows. Attacks which require
knowledge of physical addresses [30], [64] exploited the fact
that memory mapped by the operating system is not initialized.
When iterating over the memory, the operating system has to
handle a page fault for every page that is accessed for the
first time, which takes significantly longer than an access to
an already mapped page. Thus, an attacker learns where a new

7

1 KB 4 KB 8 KB 16 KB 512 KB 1 MB 2 MB 4 MB
0%

Firefox Chrome

Fig. 4: Iterating over a large array shows timing spikes
at different array indices. The distances are caused by
the internal memory allocator which has to allocate new
memory blocks. The timings which are the easiest to detect
(and thus have the highest frequency in the histogram)
are slow timings caused by the allocator requesting more
memory from the operating system.

page starts, and thus the least significant bits of the physical
address.

We only focus on the timing differences from the allocator
itself, not on timing differences caused by the operating
system. Note that page faults can of course also be used to
learn information about the environment. However, as most
systems use pages with a size of 4KB, there is not much
information to gain from exploiting this side channel.

To infer information about the memory allocator of the
browser, we first allocate a small array of several kilobytes. We
then choose a step size of 512B and continuously resize the
array by this step size. For every resize, we measure the time
it takes using performance.now() in combination with
edge thresholding [64], [26]. This results in a sufficiently high
timer resolution to see the activity of the memory allocator. The
activity manifests itself in slightly higher timings compared to
accesses without memory allocator activity.

By comparing the distances between the high timings, we
can infer the allocated size of the memory region. Figure 4
shows a histogram of the timing differences for Firefox and
Chrome, grouped into typical sizes used by memory allocators.
The default allocation size is detected correctly for both
Chrome (512KB) and Firefox (1MB).

Measurement noise due to the coarse-grained
performance.now timing function and interrupts leads to
spurious high timings and missed high timings. The smaller
buckets in the histogram are due to some smaller buckets used
by the memory allocators, as well as spurious high timings.
If the activity of a memory allocator (i.e., a high timing) is
missed, the bucket size is incorrectly identified as too large.
However, as we see in the histogram, in the majority of the
cases (i.e., the highest peak in the histogram) the allocation
size is determined correctly.

C. Graphics

WebGL allows the browser to access low-level properties
and functions of the graphics card. The amount of information
which can be gathered from the graphics card has already been
used as a source for browser fingerprinting [39], [9]. Especially
as WebGL does not require any browser permissions, it is an
easy-to-use source for properties. In this section, we show that

JavaScript Template Attacks can be trivially extended to also
detect leaking properties in the WebGL extension.

The WebGL extension is not a static object which is always
available through the object hierarchy (cf. Figure 2). Thus, on
a blank site, there is no reference to a WebGL object or any of
the WebGL extensions. However, by simply creating a WebGL
element and attaching it to the window object, we can use a
JavaScript Template Attack on the WebGL element as well.

1 <canvas id="glCanvas" width="640" height="480"/>
2 <script type="text/javascript">
3 // add artificial property "canvas"
4 window.canvas =
5 document.querySelector("#glCanvas");
6 // add artificial property "gl" for WebGL
7 window.gl = window.canvas.getContext("webgl");
8 </script>

Listing 4: Adding the canvas element as well as the WebGL
object as an artificial property to the window object.

Listing 4 shows the corresponding code to add WebGL as
an artificial property to the object hierarchy. WebGL requires
an HTML canvas element to instantiate the WebGL exten-
sion. We also add the canvas element to the window object
as an artificial property as it contains properties as well.

The WebGL object contains 435 properties. 296 out
of the 435 properties are only constants which refer to
specific WebGL parameters that can be actively queried
from OpenGL. Thus, these properties itself do not con-
tain any information. Hence, we have to automatically
query the values of all parameters and again add them to
window object as artificial properties. Querying the value
of a parameter is as simple as window.wgl[param] =
gl.getParameter(gl[param]) for every property of
the WebGL object.

Adding the base WebGL parameters as artificial properties
adds already close to 300 properties accessible to a JavaScript
Template Attack. Another large set of parameters correspond-
ing to WebGL, and therefore the underlying hardware and
environment, is not directly accessible through the WebGL
object but through WebGL extensions. WebGL extensions
provide additional functions and parameters of OpenGL to
the browser. All specified and not-yet specified extensions are
registered in the WebGL Extension Registry [27].

For every WebGL extension which is currently specified,
gl.getExtension(extensionName) returns either an
object of the extension if it is supported, or null. If the
browser and environment support the extension, we can use
it in the same way as the normal WebGL object. Again, every
extension provides constant properties which can be used to
query the parameter value from the extension. This is fully
automated in the same manner as for the WebGL object.

Adding the parameters of all extensions adds around 100
additional properties to the window object. While the Tor
browser does not provide any WebGL extension, there are 96
parameters from 23 extensions in Chrome and 115 parameters
from 24 extensions in Firefox. In Section V, we show that
the properties created from WebGL parameters can be used to
infer information about the environment.

8

Device ISA Operating System Browser
PC1 x86-64 Kubuntu 16.04.4 LTS Chrome, Firefox, Tor

Windows 10 Chrome, Firefox, Tor, Edge
PC2 x86-64 Kubuntu 18.04 LTS Chrome, Firefox, Tor

Windows 7 Chrome, Firefox, Tor, Edge
PC3 x86-64 Kubuntu 16.04.5 LTS Chrome, Firefox, Tor

Windows 10 Chrome, Firefox, Tor, Edge
VM1 x86-32 Windows XP Chrome, Firefox, Tor
VM2 x86-64 Kubuntu 17.04 Chrome, Firefox, Tor
VM3 x86-64 Windows 10 Chrome, Firefox, Tor, Edge
Phone1 AArch64 Android 7.0 Chrome, Firefox, Tor
Phone2 ARMv7 Android 6.0.1 Chrome, Firefox, Tor
Phone3 AArch64 Ubuntu 16.04 Chrome, Firefox, Tor

TABLE II: List of environments used for the case studies.

D. Microarchitectural Elements

There is a variety of other low-level properties which have
already been used in side-channel attacks from JavaScript [75],
[54], [29], [44], [64], [26], [41], [77], [36]. All these prop-
erties can theoretically also be added as artificial properties.
However, these attacks are already powerful attacks itself.
Furthermore, these attacks are often quite fragile and require
information about the system itself, without providing infor-
mation about the environment, but only about specific secrets.
Thus, an attacker would rather use such microarchitectural
side-channel attacks to complement a JavaScript Template
Attack.

Moreover, as a consequence to the Spectre attacks, which
have not only been shown in native code but also in JavaScript,
browser manufacturers limited the access to high-precision
timers rigorously. This does not only include the provided
performance.now function but also self-built timers using
SharedArrayBuffers [26], [64]. As a result, many of the
well-known microarchitectural attacks are currently prevented
until a new timing source is found, or browser vendors re-
enable SharedArrayBuffers and precise timers as, e.g.,
Google plans to do with Chrome [59].

V. CASE STUDIES

In this section, we provide multiple case studies of our
JavaScript Template Attack in various environments. We scan
all native properties which are in the hierarchy starting at
window (cf. Figure 2). Additionally, we add the artificial
properties described in Section IV, which includes all We-
bGL properties and WebGL extension properties, the mem-
ory allocator and the ISA. As browsers, we used Google
Chrome 67.0.3396.99, Mozilla Firefox 61.0.1, Tor 7.5.6, and–
if available–Microsoft Edge 42.17134.1.0. Table II shows a
table of all the environments we used for testing.

For all case studies, we used our open-source JavaScript
Template Attack framework.1 In the case studies, we tried to
automatically infer as much information about the environment
as possible.

The collected information can be used directly or indi-
rectly to mount targeted exploits. Directly usable information
includes, for example, the operating system and architecture,
which is required knowledge for many exploits. Indirectly

1The source of the framework can be found in a GitHub repository at
https://github.com/IAIK/jstemplate

usable information includes, for example, the use of privacy
extensions or private mode which can be used to imitate
plausible looking system messages or dialogues, e.g., for
phishing [11], [12].

In all use cases, we assume that we cannot simply read
the correct information directly from the browser, e.g., from
the user agent. The user agent string contains among others
operating system, browser name and version. Even if we get
this information directly, an attacker cannot rely on this infor-
mation, as it can easily be modified using browser extensions.
Moreover, some browsers such as Tor do not even provide any
information about the environment in the user agent.

A. Browser Detection

The major browsers all have their own JavaScript and
rendering engine. Thus, exploitable bugs are usually limited
to one browser. Especially exploits which heavily rely on the
internal functionality of the browser are limited to a specific
browser.

The differences between the browsers do not only prevent
one browser exploit to work in a different browser, but it also
makes it easy to distinguish browsers. Every browser supports
a distinct set of functions [18] and also provides browser-
specific properties through so-called vendor prefixes [49].
Already the number of documented properties for the major
browsers differs significantly, with 2698 for Chrome, 2247 for
Firefox, and 1806 for Edge [47].

Moreover, as the JavaScript engine differs between
browsers, the values of properties are also different. We added
the toString representation of functions as simple artificial
properties. As the representation is not strictly defined, it dif-
fers between browsers. This difference has also been exploited
to detect the manipulation of the user-agent string [76].

However, not only the values of properties are different
but also the available properties differ between browsers.
We compared all accessible native and artificial properties of
Firefox and Chrome running in exactly the same environment.
Every property which was not implemented was assumed to
have the value undefined, which is the case for every
undefined variable.

In total, our JavaScript Template Attack discovered 14 544
properties which differed between Firefox and Chrome. With
60.1%, the majority of differing properties is the string repre-
sentation of functions. Without these artificial properties, there
are still 5796 properties which differ between the two browsers.
Similarly, there are 15 670 different properties between Edge
and Firefox, and 8913 between Edge and Chrome.

Even between Firefox and the Tor browser (which is based
on Firefox) we found 3055 properties with different values.
Again, the majority of differing properties (63.6%) is the string
representation of functions. However, as both browsers share
the same code base, the difference is not in the format of the
string representing the function. The differences are caused by
functions which are only available in one of the two browsers.
Without considering functions, there are still 1111 properties
with different values between the two browsers.

Summarizing, even browsers which share a common code
base can be easily distinguished using our JavaScript Template

9

54/61 55/62 56/63 57/64 58/65 59/66 60/67
13,000
14,000
15,000
16,000

Version (Firefox/Chrome)

Pr
op

er
tie

s

Fig. 5: The number of identified properties from Chrome
60 to 67 () and Firefox 53 to 60 (). The trend shows
that the number of properties increases over time.

Attack. For all tested browsers, there are more than 1000
properties with different values which can be used to uniquely
identify a specific browser. We were successfully able to
distinguish all of the 40 tested setups (cf. Table II) without any
false positives or false negatives. Even in the hypothetical case
that native properties do not leak this information anymore, the
artificial memory-allocator property (cf. Section IV-B) can be
used to distinguish browsers.

1) Browser Version: For many exploits, it is not only
necessary to know which browser the victim uses but also
the exact browser version. As exploits are disclosed, they are
usually fixed by the browser vendor in one of the next versions.
Thus, to reliably run an exploit on a browser, knowing the
browser version is important for selecting a working exploit.

Figure 5 shows the number of properties discovered using
a JavaScript Template Attack for every Firefox and Chrome
version since 53 and 60 respectively. For all versions of Firefox
and Chrome, there are many unique properties. We further
compared the number of properties between all versions of
the browsers. There is always at least one property which has
changed between any two versions. For all tested browsers
in all setups, we were able to distinguish the versions of the
browsers. We can see a clear trend to an increasing number of
properties, although in some versions properties are removed
due to changes in the standards or deprecation of functions.

Summarizing, for all major browsers, it is easy to detect the
actual browser version by counting the number of implemented
properties, even without inspecting the values of the properties.
As the trend is to continuously add more features instead of
removing features, we expect the browser version detection to
work on newer versions of the browsers as well.

B. Privacy-Extension Detection

There are several privacy-enhancing extensions for
browsers, e.g., ad blocker or anti-tracking extensions. Some
of them modify the information sent to servers (e.g., FP-
Block [72]) or overwrite JavaScript functionality (e.g., Chrome
Zero [63]). Often, such plugins change properties which are
accessible from JavaScript. Thus, a JavaScript Template Attack
can detect the presence of such plugins.

Note that the detection of such plugins can have various
uses. First, it allows an attacker to create dialogues which
look as if they are coming from such a browser extension,
tricking the user into interacting with them. For example, a
user might be tricked into clicking on a fake update dialogue

from an extension, which actually triggers, e.g., a switch to
fullscreen mode or a file download. Second, exploits can be
automatically adapted to avoid functions which are modified
by a browser extension such as Chrome Zero [63]. Finally,
as already described by Mowery et al. [46], Eckersley [19],
Acar et al. [1], or Nikiforakis et al. [51], such plugins are a
source for fingerprinting, as they lead to inconsistencies.

We evaluated Chrome Zero [63], Chameleon [45], Canvas
Defender2, CyDec Platform AntiFingerprint3, Ghostery4, and
WebAPI Manager [66]. For Chrome Zero, we are not only able
to detect that it is active but also the current protection level
(cf. Table III).

Mounting a JavaScript Template Attack with the WebAPI
Manager extension [66] active leads to similar results. Again,
we can detect that the extension is active as it modifies
properties. Similar to the Chrome Zero extension, we can
also detect which protection level is used (lite, conservative,
aggressive) as shown in Table IV. As with Chrome Zero, it is
not possible to access the references to the original functions.

For Canvas Defender, we cannot only determine that
it is used (105 distinguishing properties) but also semi-
automatically circumvent it. Canvas Defender replaces func-
tions which are used or can potentially be used for fin-
gerprinting with its own functions. However, as it requires
the original functionality as well, it stores references to the
original functions as properties of the window object. Thus,
a JavaScript Template Attack does not only discover the use
of the extension, but it also reveals the original functions.
From an attacker’s perspective, the function references are
conveniently named the same as the original functions and
just prefixed with a random string. Thus, JavaScript Template
Attacks cannot only detect the tested extension. It can even
be used to circumvent it, leaving more than 30 000 users who
have this extension installed with a false sense of security.

Mounting a JavaScript Template Attack with the WebAPI
Manager extension [66] activated leads to similar results.
Again, we can detect that the extension is active as it modifies
between 1472 and 2307 properties, depending on the protec-
tion level. We can also easily detect whether Chameleon or
CyDec are active. Our JavaScript Template Attack identified
13 properties which are modified by Chameleon and 2365
properties which are modified or added by CyDec. Each
of these properties can be used to detect that the user has
Chameleon installed and activated. Interestingly, Ghostery is
only detectable when installed in Firefox. Ghostery adds
Ghostery-specific elements to every page in Firefox, revealing
the usage of this extension. In Chrome, there are no differ-
ences, making Ghostery in Chrome not detectable with our
automated method.

We can conclude that JavaScript Template Attacks are
a valuable method for developers of privacy-enhancing ex-
tensions to test their extension. If extensions try to hide
references instead of making them inaccessible, they can be
easily revealed again, allowing an attacker to easily circumvent

2https://multiloginapp.com/canvasdefender-browser-extension/
3https://addons.mozilla.org/en-US/firefox/addon/cydec-platform-

antifingerprint/
4https://www.ghostery.com/

10

vs. Medium High Tin Foil Hat Sample Expression
Low 27 29 27 !!((Worker&&Worker.toString().indexOf(‘‘postMessage’’)==-1)|0)
Medium - 28 28 !!((addEventListener&&addEventListener.toString().indexOf(‘‘block’’)!=-1)|0)
High - - 28 !!((performance.now&&performance.now.toString().indexOf(‘‘fuzz’’)!=-1)|0)
Tin Foil Hat - - - !!((Array&&Array.toString().indexOf(‘‘Proxy’’)!=-1)|0)

TABLE III: Every row of the table represents a protection level of Chrome Zero [63]. On the left side of the table is the
number of properties which have a different value compared to the protection level in the corresponding column. The
right side of the table shows one sample expression which is only true if the corresponding protection level is active.

vs. Lite Conservative Aggressive
None 1492 1539 2381
Lite - 67 894
Conservative - - 843

TABLE IV: Every row of the table represents a protection
level of the Web API Manager [66]. The table contains the
number of properties with a different value compared to
the protection level in the corresponding column.

the extension. JavaScript Template Attacks can easily uncover
such leaked references during development.

C. Private Mode Detection

Similarly to privacy-enhancing extensions, Firefox,
Chrome, and Edge provide a built-in private-browsing mode.
In this mode, the browser does not keep any tracks of visited
websites, such as cookies or history. Furthermore, private
browsing also includes some tracking protection [48].

We mounted a JavaScript Template Attack to detect
whether there are any differences between normal mode and
private-browsing mode. In Chrome, there are no detectable
differences when using the browser in private-browsing mode.
Similarly, we cannot detect differences between normal mode
and guest mode, a feature similar to private-browsing mode.

For Firefox, however, there are properties revealing
whether the current window is a private-browsing window
or a normal window. For example, service workers are not
available in private-browsing mode. Thus, all 73 properties
corresponding to service workers are only detected in normal
mode and not available in private-browsing mode.

An additional hint that a Firefox window is in private-
browsing mode is the value of the doNotTrack property.
Per default, this flag is set to “unspecified” and only gets an
actual value if the user specifies one in the browser settings. In
private-browsing mode, however, this flag is always set to “1”
if not configured differently by the user. Thus, if this value is
not “1”, the window is probably not in private-browsing mode.

For Edge, we can also detect whether the window is
in private-browsing mode or normal mode. We detected 72
properties corresponding to local databases and Microsoft-
specific properties, such as MSCredentials. These features
are only available in normal mode. Moreover, Edge handles the
doNotTrack property in the same way as Firefox, providing
another hint about the current mode.

D. Operating System Detection

If exploits interact with the environment, e.g., access
operating-system specific resources, an attacker has to know
which operating system is used. The same is true if an attacker
tries to create fake system messages [11], [12]. Most browsers
are available for all major platforms and provide the same
functionality on all platforms. Thus, for a legitimate website,
there is usually no reason to detect the operating system for
any functionality except for statistics.

We mounted a JavaScript Template Attack to detect
whether any property would reveal the underlying operating
system. For Microsoft Edge, this would be trivial, as it only
runs on Microsoft Windows. Thus, we did not include this
browser in our tests. Furthermore, to eliminate influences
which are not from the operating system, wherever possible,
we mounted the attack on the same hardware for the different
operating systems.

The Tor browser actively tries to eliminate all
differences among operating systems. Still, some
properties differ between operating systems. An
interesting difference in properties we detected is
the window.innerWidth/window.innerHeight
pair. Although the Tor browser warns the user not to
resize the window to prevent fingerprinting using these
properties, they are not always the same. For example,
window.innerWidth is 1000 on Linux (Kubuntu 16.04.4)
but 1001 on Windows 10. The reason for this is that
Windows 10 has native support for high-density displays and
automatically scales application such that they have a usable
size. For the browser, the screen appears to be smaller than
the actual screen resolution. However, this scaling seems to
introduce rounding errors, which results in this difference
in the window.innerWidth property. On Android (with
Orfox), this property is also different with a value of 980.

The font rendering causes another difference between op-
erating systems. The list of installed fonts is already known
to provide reliable fingerprints [6]. Due to different available
fonts as well as differences in the font rendering code, the
same text has different dimensions on different operating sys-
tems [51]. For example, in Tor, a default heading on Windows
10 is 1 pixel higher than on Linux. Such differences do not
only exist for the Tor browser but also for Chrome.

For Firefox, we detected additional properties which give
an even better indication about the underlying operating sys-
tem. Firefox has experimental support for virtual-reality dis-
plays (e.g., window.navigator.activeVRDisplays).
However, in the current version (61.0.1), only Windows is fully
supported. Linux is not supported, and macOS is only partially

11

supported. Thus, by detecting which functions are available for
virtual-reality displays, the operating system can be detected.

Moreover, we detected differences in WebGL prop-
erties which allow distinguishing the operating system
for both Firefox and Chrome. One property which re-
veals whether the underlying operating system is Win-
dows is the UNMASKED_RENDERER_WEBGL property of the
WEBGL_debug_renderer_info extension. This property
contains the OpenGL renderer used for WebGL. On Windows,
this string always contains ANGLE, which stands for Almost
Native Graphics Layer Engine, the OpenGL compatibility
layer on Windows [76]. The string Iris refers to Intel Iris
Graphics, a GPU which is mostly found in MacBook Pros and
iMacs, thus indicating that the browser is running on macOS.

The Android operating system can also be distin-
guished from other operating systems mostly by the
lack of functions (and thus properties). For example,
Firefox on Android does not support speech synthesis
(e.g., window.SpeechSynthesis). Chrome on Android,
for example, does not support support inline installa-
tion of extensions (e.g., chrome.webstore.install).
Both browsers do not support shared workers (e.g.,
window.SharedWorker) and plugins on Android.

However, we detected one feature which is only available
on Chrome for Android. The window.MediaSession al-
lows a mobile website to show information about the currently
played multimedia content in the notification bar. If this prop-
erty is available, the underlying operating system is Android.

For some of the properties, the operating system can be
directly inferred, and by combining the detected properties,
we can reliably detect any of the major operating systems.

E. Architecture Detection

For exploits running binary code, it is vital to know the
current ISA. Assuming a wrong ISA (e.g., x86 instead of
ARM) results in an unsuccessful exploit. In both cases, the
exploit attempt does not only fail, but it might also be detected.

As with all other properties, the Tor browser tries to provide
the same functionality and properties on all architectures. On
all desktop operating systems, the Tor browser reports the
platform as Win32, independent of the actual operating system
or ISA. However, we detected a difference when running a
JavaScript Template Attack on Orfox, the official Android
version of the Tor browser. There, the platform is not reported
as Win32 but the actual platform is reported (armv8l on an
ARMv8 phone and armv7l on an ARMv7 phone). We also
disclosed this issue to the developers, and it will be fixed in
one of the future versions.

Another property which indicates the underlying ISA is
again the renderer information as well as the vendor informa-
tion from WebGL. Adreno, Mali, and Tegra renderer are
only available for ARM. Thus, if this string is contained in the
renderer information, the underlying ISA is ARM. Similarly,
on Linux, the renderer information can even contain the
specific microarchitecture. For example, on a Lenovo T460s
with an Intel Skylake CPU, the vendor string contains Intel
and the renderer property value is Mesa DRI Intel(R)
HD Graphics 520 (Skylake GT2).

Browser MDN JavaScript Template
Firefox 2247 15709
Chrome 2698 13570
Edge 1806 9666
Firefox Android 2104 15612
Chrome Android 2676 13119

Tor browser 2247† 15639

† As the MDN does not distinguish between the Tor browser and Firefox, we used the
Firefox numbers, as the Tor browser is based on Firefox.

TABLE V: The number of properties documented in the
MDN Web Docs compared to the number of properties
found using a JavaScript Template Attack.

Finally, the artificial property presented in Section IV-A
can be used to distinguish 32-bit and 64-bit x86. We achieve
a classification rate which is close to 100%. Moreover, it has
the huge advantage that it cannot easily be hidden from an
attacker, whereas the values of properties can be anonymized
by the browser vendors.

F. Virtual Machine Detection

Although virtual machines should not be distinguishable
from native machines, we still detected one property which
has a distinct value inside a virtual machine. In Firefox,
the WebGL extension can reveal that Firefox is running
inside a virtual machine. The UNMASKED_VENDOR_WEBGL
property of the WEBGL_debug_renderer_info extension
is set to VMWare, Inc. when running inside VirtualBox
or VMWare. For the Tor browser and Chrome, we could
not detect any property which immediately reveals that the
environment is a virtual machine.

However, there are two properties which can give a hint that
the underlying environment is a virtual machine. First is the re-
ported screen resolution (window.screen.availWidth /
window.screen.availHeight). If the value is an odd
value, i.e., not one of the usually used resolutions of screens,
it is a strong indicator that the browser is running in a virtual
machine. For example, on our test machine, the screen resolu-
tion is 1920x1080, and the reported resolution inside the VM is
1920x944. Second, the number of reported CPUs can be easily
queried using navigator.hardwareConcurrency. For
a native environment, this value is usually a power of two on
consumer hardware. A small number which is not a power of
two (e.g., 3) is also an indicator that the browser is running
inside a virtual machine.

VI. COVERAGE ANALYSIS

In this section, we analyze the coverage of JavaScript
Template Attacks. As a baseline, we parsed the MDN Web
Docs [47]. We then compared all our detected properties to
the properties extracted from the MDN Web Docs.

Table V shows the number of properties we parsed from the
MDN Web Docs as well as the number of properties detected
with a JavaScript Template Attack for Firefox, Chrome (both
on Linux and Android), Edge, and the Tor browser (Linux
only). Interestingly, the number of detected properties for every
browser is much higher than the number of properties officially
documented. One reason for this is that the documentation is
apparently not complete. Moreover, we access several internal,

12

Browser Exploration Without duplicates Usable
Firefox 18443 16450 15709
Chrome 15585 13604 13570
Edge 13752 11850 9666
Firefox Android 18214 16296 15612
Chrome Android 15556 13608 13119
Tor browser 17217 15645 15639

TABLE VI: The number of properties found using a
JavaScript Template Attack and the number of properties
which were left after the cleanup step of the analysis phase
(cf. Section III-B1).

undocumented properties. This is an interesting aspect, as our
JavaScript Template Attack also allows to find completely
new properties which might not have been considered for
fingerprinting before as they are not documented. Another
reason is that we access the same property for multiple objects,
e.g., the length property. Properties from the prototype chain
are not documented if they are already documented for the
parent object. Thus, this property is counted twice although it
is in principle the same property.

Still, we do not achieve a 100% coverage for multiple
reasons. The majority of the documented properties does not
belong to static objects, i.e., objects which always exists in
the browser. Many objects have to be dynamically created,
e.g., exceptions, or instances of elements. Thus, we cannot
automatically explore the properties of these objects. It is,
however, possible to create such objects and add them to
the hierarchy manually. We showed this for WebGL (cf.
Section IV-C) and the toString function (cf. Section V-A).
Future work has to research whether this step can be automated
to achieve an even higher coverage. Nonetheless, as shown
in Section V, the coverage is already sufficient to find many
properties which reveal information about the environment.

Another reason for missing properties is that some browser-
specific properties are not referenced by the window root
object and are thus not in the hierarchy illustrated in Figure 2.

Table VI shows that most of the detected properties were
actually usable for the property extraction step (cf. Sec-
tion III-B2). The cleanup step (cf. Section III-B1) removed
only a small percentage (<15%) of the properties as they were
duplicates. From the remaining properties, only a few (<9%)
had to be discarded as they changed their value when read
multiple times. These properties were mostly timestamps.

For all browsers, we found around 10 000 usable properties.
This massive number of automatically detected, partly undoc-
umented and usable properties stresses the need for automated
leakage detection.

VII. DISCUSSION

In this section, we discuss the differences between
JavaScript Template Attacks and traditional fingerprinting, its
limitations, and possible future improvements.

A. Difference to Fingerprinting

Although JavaScript Template Attacks look similar to fin-
gerprinting, they have a different goal. In traditional finger-
printing, attackers try to identify properties or combinations

of properties which are unique for a user. For JavaScript
Template Attacks, we try to identify properties or combinations
of properties which are unique for an environment. In contrast
to fingerprinting, it is preferable that the identified properties
do not change for different users, but only for environments.

The overlap between JavaScript Template Attacks and
fingerprinting lies in the fact that many detected properties
can be used for fingerprinting. This makes JavaScript Template
Attacks also a powerful method to automatically search for
new fingerprinting sources. It detects differences in properties
within seconds, without requiring any manual analysis. Thus,
this also reduces the time to search for new fingerprints. As
shown in Section V, several of the properties we used to detect
the environment are indeed useful for fingerprinting.

B. Limitations and Future Work

We currently focussed mainly on properties, and only
added the toString function and the functions to query
WebGL parameters. Thus, many properties which are hidden
behind function calls are not identified. We expect that the
results of function calls provide more information about the
environment, similar to function calls in Android [69].

The most simple case are functions which do not
take any argument. Still, adding these functions as arti-
ficial properties is not as straightforward as it seems at
first glance. Several functions have to be blacklisted, as
they would abort the script (e.g., window.close() or
document.location.reload()) or pause the script un-
til the user actively continues execution (e.g., alert()).
Moreover, cycles have to be detected to not be stuck in endless
loops (e.g., the result of toString is again a string which
provides a toString function).

Future research has to investigate how this approach can be
applied to functions with parameters. In contrast to Java [69],
getting the number and types of arguments for a function
in JavaScript is not straightforward. Moreover, choosing sane
values is a hard problem. It would be interesting to com-
bine techniques from fuzzing which select sane values with
JavaScript Template Attacks to automatically test the return
values of functions. However, fuzzing JavaScript APIs with a
high coverage is still an open research problem [34].

An interesting direction would also be to target certain
web standards, such as Web USB or Web NFC. To get useful
results, a JavaScript Template Attack would require some
manual initialization and possibly user interaction to grant
the corresponding permission. Thus, this is not in the scope
of this paper, as it requires more research into automatically
understanding the semantics of functions and calling them.

C. Countermeasures

Most browsers do not have the goal to prevent identification
of the environment. While some properties which leak infor-
mation about the environment cannot easily be removed, others
can be anonymized as it is, e.g., done in the Tor browser. From
our experiments, we have seen that Tor’s anti-fingerprinting
design [57] also prevents that an attacker can leak a lot of
information about the environment. Thus, anti-fingerprinting
techniques–if implemented correctly–are a viable method to
also prevent the detection of the environment.

13

As shown in Section V, JavaScript Template Attacks can
detect leakage in privacy-enhancing browsers and extensions.
Thus, the main use case of JavaScript Template Attacks is
to provide an automated augmentation for the development
process of defense mechanisms. If used in the development
process of privacy-enhancing browsers and extensions, they
can detect overlooked properties, as, e.g., in the case of the
Orfox browser (cf. Section V-E). This also shows shortcomings
in the implementation of extensions, e.g., the original function
references are still accessible (cf. Section V-B).

VIII. CONCLUSION

In this paper, we presented JavaScript Template Attacks, a
fully automated novel technique to detect subtle differences in
browser engines caused by the environment. Furthermore, we
showed two new side-channel attacks on browsers, allowing
to detect the instruction-set architecture and the used memory
allocator. Our techniques even work in the presence of anti-
fingerprinting mechanisms in the browser. By leveraging the
found differences in the browser engine, an attacker learns
details about the environment and can get a clearer picture
of a system for a targeted exploit. Moreover, our technique is
applicable to identifying new fingerprints automatically.

We found environment-dependent properties in all major
browsers, including Tor for Android, allowing us to reveal the
underlying operating system, CPU architecture, used privacy-
enhancing plugins, and the exact browser version. Furthermore,
we showed that privacy-enhancing extensions can provide a
false sense of security as they can be circumvented semi-
automatically using our technique if not implemented correctly.
Thus, we stress that our method should be used in the
development process of browsers and privacy extensions to
automatically find flaws in the implementation.

ACKNOWLEDGMENTS

We would like to thank our anonymous reviewers for their
feedback. This work has received funding from the European
Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No
681402).

REFERENCES

[1] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gürses, F. Piessens, and
B. Preneel, “Fpdetective: dusting the web for fingerprinters,” in CCS,
2013.

[2] O. Acıiçmez, c. K. Koç, and J.-p. Seifert, “On the Power of Simple
Branch Prediction Analysis,” in AsiaCCS, 2007.

[3] O. Acıiçmez, J.-P. Seifert, and c. K. Koç, “Predicting secret keys via
branch prediction,” in CT-RSA 2007, 2007.

[4] P. Argyroudis and C. Karamitas, “Exploiting the jemalloc memory
allocator: Owning firefox’s heap,” Blackhat USA, 2012.

[5] D. J. Bernstein, “Cache-Timing Attacks on AES,” 2004. [Online].
Available: http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

[6] K. Boda, Á. M. Földes, G. G. Gulyás, and S. Imre, “User tracking
on the web via cross-browser fingerprinting,” in Nordic Conference on
Secure IT Systems, 2011.

[7] B. B. Brumley and R. M. Hakala, “Cache-timing template attacks,” in
International Conference on the Theory and Application of Cryptology
and Information Security, 2009.

[8] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A Systematic Evaluation of
Transient Execution Attacks and Defenses,” arXiv:1811.05441, 2018.

[9] Y. Cao, S. Li, and E. Wijmans, “Browser fingerprinting via os and
hardware level features,” in NDSS, 2017.

[10] S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks,” in CHES, 2002.
[11] G. Chatzisofroniou, “Efficient wi-fi phishing attacks,” 2016. [Online].

Available: https://census-labs.com/media/effective wifi phishing 33c3.
pdf

[12] ——, “Extra phishing pages,” 2018. [Online]. Available: https:
//github.com/wifiphisher/extra-phishing-pages

[13] Chromium, “Key concepts in chrome memory,” 2018.
[Online]. Available: https://chromium.googlesource.com/chromium/src/
+/lkgr/docs/memory/key concepts.md

[14] ——, “Partitionalloc design,” 2018. [Online]. Avail-
able: https://chromium.googlesource.com/chromium/src/+/lkcr/base/
allocator/partition allocator/PartitionAlloc.md

[15] L. Clark, “A crash course in just-in-time (jit) compilers,” 2017.
[Online]. Available: https://hacks.mozilla.org/2017/02/a-crash-course-
in-just-in-time-jit-compilers/

[16] S. Cortes, “Legalizing domestic surveillance: The role of mutual legal
assistance treaties in deanonymizing torbrowser technology,” 2015.

[17] J. Dalins, C. Wilson, and M. Carman, “Criminal motivation on the dark
web: A categorisation model for law enforcement,” Digital Investiga-
tion, 2018.

[18] A. Deveria. (2018) Can i use... support tables for html5, css3, etc.
[Online]. Available: http://caniuse.com/

[19] P. Eckersley, “How unique is your web browser?” in PETS, 2010.
[20] S. Englehardt and A. Narayanan, “Online tracking: A 1-million-site

measurement and analysis,” in CCS, 2016.
[21] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump over aslr:

Attacking branch predictors to bypass aslr,” in International Symposium
on Microarchitecture (MICRO), 2016.

[22] A. Fobian and C.-B. Bender, “Firefox 0-day targeting tor-users,” 2016.
[23] P. Frigo, C. Giuffrida, H. Bos, and K. Razavi, “Grand Pwning Unit:

Accelerating Microarchitectural Attacks with the GPU,” in IEEE S&P,
2018.

[24] B. Gellman, C. Timberg, and S. Rich, “Secret nsa documents show
campaign against tor encrypted network,” The Washington Post, p. 4,
2013.

[25] D. Genkin, L. Pachmanov, E. Tromer, and Y. Yarom, “Drive-by key-
extraction cache attacks from portable code,” in ACNS, 2018.

[26] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida, “ASLR on
the Line: Practical Cache Attacks on the MMU,” in NDSS, 2017.

[27] K. Group, “Webgl extension registry,” 2018. [Online]. Available:
https://www.khronos.org/registry/webgl/extensions/

[28] S. Groß. (2017) Exploiting a cross-mmap overflow in firefox.
[Online]. Available: https://saelo.github.io/posts/firefox-script-loader-
overflow.html

[29] D. Gruss, D. Bidner, and S. Mangard, “Practical memory deduplication
attacks in sandboxed javascript,” in ESORICS, 2015.

[30] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A Remote
Software-Induced Fault Attack in JavaScript,” in DIMVA, 2016.

[31] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+Flush: A
Fast and Stealthy Cache Attack,” in DIMVA, 2016.

[32] D. Gruss, R. Spreitzer, and S. Mangard, “Cache Template Attacks: Au-
tomating Attacks on Inclusive Last-Level Caches,” in USENIX Security
Symposium, 2015.

[33] D. Gullasch, E. Bangerter, and S. Krenn, “Cache Games – Bringing
Access-Based Cache Attacks on AES to Practice,” in S&P, 2011.

[34] R. Hodován and Á. Kiss, “Fuzzing javascript engine apis,” in Interna-
tional Conference on Integrated Formal Methods, 2016.

[35] S. Kemp, “Digitnal in 2018: World’s internet users pass the 4 billion
mark,” 2018. [Online]. Available: https://wearesocial.com/blog/2018/
01/global-digital-report-2018

[36] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in S&P, 2019.

[37] P. C. Kocher, “Timing Attacks on Implementations of Diffe-Hellman,
RSA, DSS, and Other Systems,” in CRYPTO, 1996.

14

[38] P. Laperdrix, B. Baudry, and V. Mishra, “Fprandom: Randomizing core
browser objects to break advanced device fingerprinting techniques,” in
ESSoS, 2017.

[39] P. Laperdrix, W. Rudametkin, and B. Baudry, “Beauty and the beast:
Diverting modern web browsers to build unique browser fingerprints,”
in S&P, 2016.

[40] M. Lipp, M. T. Aga, M. Schwarz, D. Gruss, C. Maurice, L. Raab, and
L. Lamster, “Nethammer: Inducing rowhammer faults through network
requests,” arXiv:1711.08002, 2017.

[41] M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, and S. Mangard,
“Practical Keystroke Timing Attacks in Sandboxed JavaScript,” in
ESORICS, 2017.

[42] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, “AR-
Mageddon: Cache Attacks on Mobile Devices,” in USENIX Security
Symposium, 2016.

[43] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading Kernel Memory from User Space,” in USENIX
Security Symposium, 2018.

[44] M. Mehrnezhad, E. Toreini, S. F. Shahandashti, and F. Hao, “Touchsig-
natures: identification of user touch actions and pins based on mobile
sensor data via javascript,” Journal of Information Security and Appli-
cations, 2016.

[45] A. Miagkov, “Chameleon - browser fingerprinting protection for
everybody,” 2015. [Online]. Available: https://github.com/ghostwords/
chameleon

[46] K. Mowery, D. Bogenreif, S. Yilek, and H. Shacham, “Fingerprinting
information in javascript implementations,” in W2SP, 2011.

[47] Mozilla, “mdn-browser-compat-data,” 2018. [Online]. Available: https:
//github.com/mdn/browser-compat-data

[48] ——, “Private browsing - use firefox without saving history,”
2018. [Online]. Available: https://support.mozilla.org/en-US/kb/private-
browsing-use-firefox-without-history

[49] ——, “Vendor prefix,” 2018. [Online]. Available: https://developer.
mozilla.org/en-US/docs/Glossary/Vendor Prefix

[50] N. Nikiforakis, W. Joosen, and B. Livshits, “Privaricator: Deceiving
fingerprinters with little white lies,” in WWW, 2015.

[51] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and
G. Vigna, “Cookieless monster: Exploring the ecosystem of web-based
device fingerprinting,” in Security and privacy (SP), 2013.

[52] L. Olejnik, “Stealing sensitive browser data with the
W3C Ambient Light Sensor API,” 2017. [Online]. Avail-
able: https://blog.lukaszolejnik.com/stealing-sensitive-browser-data-
with-the-w3c-ambient-light-sensor-api/

[53] L. Olejnik, S. Englehardt, and A. Narayanan, “Battery status not
included: Assessing privacy in web standards,” in Workshop on Privacy
Engineering (IWPE), 2017.

[54] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis, “The
Spy in the Sandbox: Practical Cache Attacks in JavaScript and their
Implications,” in CCS, 2015.

[55] D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and Counter-
measures: the Case of AES,” in CT-RSA, 2006.

[56] C. Percival, “Cache missing for fun and profit,” in BSDCan, 2005.
[57] M. Perry, E. Clark, S. Murdoch, and G. Koppen. (2018, 05) The

design and implementation of the tor browser. [Online]. Available:
https://www.torproject.org/projects/torbrowser/design/

[58] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “DRAMA:
Exploiting DRAM Addressing for Cross-CPU Attacks,” in USENIX
Security Symposium, 2016.

[59] C. Reis, “Mitigating spectre with site isolation in chrome,”
2018. [Online]. Available: https://security.googleblog.com/2018/07/
mitigating-spectre-with-site-isolation.html

[60] D. S. Rudesill, J. Caverlee, and D. Sui, “The deep web and the darknet:
A look inside the internet’s massive black box,” 2015.

[61] B. Schneier, “Attacking tor: how the nsa targets users’ online
anonymity,” The Guardian, vol. 4, 2013.

[62] M. Schwarz, D. Gruss, S. Weiser, C. Maurice, and S. Mangard,
“Malware Guard Extension: Using SGX to Conceal Cache Attacks ,”
in DIMVA, 2017.

[63] M. Schwarz, M. Lipp, and D. Gruss, “JavaScript Zero: Real JavaScript
and Zero Side-Channel Attacks,” in NDSS, 2018.

[64] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard, “Fantastic Timers
and Where to Find Them: High-Resolution Microarchitectural Attacks
in JavaScript,” in FC, 2017.

[65] M. Schwarz, M. Schwarzl, M. Lipp, and D. Gruss, “Netspectre: Read
arbitrary memory over network,” arXiv:1807.10535, 2018.

[66] P. Snyder, C. Taylor, and C. Kanich, “Most Websites Don’t Need to
Vibrate: A Cost-Benefit Approach to Improving Browser Security,” in
CCS, 2017.

[67] R. Spreitzer, “Pin skimming: Exploiting the ambient-light sensor in
mobile devices,” in Proceedings of the 4th ACM Workshop on Security
and Privacy in Smartphones & Mobile Devices, 2014.

[68] R. Spreitzer, F. Kirchengast, D. Gruss, and S. Mangard, “Procharvester:
Fully automated analysis of procfs side-channel leaks on android,” in
AsiaCCS, 2018.

[69] R. Spreitzer, G. Palfinger, and S. Mangard, “Scandroid: Automated side-
channel analysis of android apis,” in 11th ACM Conference on Security
and Privacy in Wireless and Mobile Networks, 2018.

[70] P. Stone, “Pixel Perfect Timing Attacks with HTML5,” Jun. 2013.
[Online]. Available: http://www.contextis.com/files/Browser Timing
Attacks.pdf

[71] A. Tatar, R. Krishnan, E. Athanasopoulos, C. Giuffrida, H. Bos, and
K. Razavi, “Throwhammer: Rowhammer Attacks over the Network and
Defenses,” in USENIX ATC, 2018.

[72] C. F. Torres, H. Jonker, and S. Mauw, “Fp-block: Usable web privacy
by controlling browser fingerprinting,” in ESORICS, 2015.

[73] V8 Team, “Launching ignition and turbofan,” 2017. [Online].
Available: https://v8project.blogspot.com/2017/05/launching-ignition-
and-turbofan.html

[74] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-
Order Execution,” in USENIX Security Symposium, 2018.

[75] T. Van Goethem, W. Joosen, and N. Nikiforakis, “The clock is still
ticking: Timing attacks in the modern web,” in CCS, 2015.

[76] A. Vastel, P. Laperdrix, W. Rudametkin, and R. Rouvoy, “Fp-scanner:
The privacy implications of browser fingerprint inconsistencies,” in
USENIX Security Symposium, 2018.

[77] P. Vila and B. Köpf, “Loophole: Timing attacks on shared event loops
in chrome,” in USENIX Security Symposium, 2017.

[78] B. Vitaris, “Firefox zero-day can be used to deanonymize tor users,”
2016. [Online]. Available: https://www.deepdotweb.com/2016/12/11/
firefox-zero-day-can-used-deanonymize-tor-users

[79] S. Weiser, A. Zankl, R. Spreitzer, K. Miller, S. Mangard, and G. Sigl,
“DATA - differential address trace analysis: Finding address-based side-
channels in binaries,” in USENIX Security Symposium, 2018.

[80] O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, R. Strackx, T. F. Wenisch, and Y. Yarom, “Foreshadow-
NG: Breaking the Virtual Memory Abstraction with Transient Out-of-
Order Execution,” Technical report, 2018.

[81] Y. Yarom and K. Falkner, “Flush+Reload: a High Resolution, Low
Noise, L3 Cache Side-Channel Attack,” in USENIX Security Sympo-

sium, 2014.

15

