
A Treasury System for Cryptocurrencies:
Enabling Better Collaborative Intelligence

Bingsheng Zhang
Lancaster University, UK
b.zhang2@lancaster.ac.uk

Roman Oliynykov
Input Output Hong Kong
roman.oliynykov@iohk.io

Hamed Balogun
Lancaster University, UK
h.balogun@lancaster.ac.uk

Abstract—A treasury system is a community-controlled and
decentralized collaborative decision-making mechanism for sus-
tainable funding of blockchain development and maintenance.
During each treasury period, project proposals are submitted,
discussed, and voted for; top-ranked projects are funded from the
treasury. The Dash governance system is a real-world example
of such kind of systems. In this work, we, for the first time,
provide a rigorous study of the treasury system. We modelled,
designed, and implemented a provably secure treasury system
that is compatible with most existing blockchain infrastructures,
such as Bitcoin, Ethereum, etc. More specifically, the proposed
treasury system supports liquid democracy/delegative voting for
better collaborative intelligence. Namely, the stake holders can
either vote directly on the proposed projects or delegate their
votes to experts. Its core component is a distributed universally
composable secure end-to-end verifiable voting protocol. The
integrity of the treasury voting decisions is guaranteed even when
all the voting committee members are corrupted. To further
improve efficiency, we proposed the world’s first honest verifier
zero-knowledge proof for unit vector encryption with logarithmic
size communication. This partial result may be of independent
interest to other cryptographic protocols. A pilot system is
implemented in Scala over the Scorex 2.0 framework, and its
benchmark results indicate that the proposed system can support
tens of thousands of treasury participants with high efficiency.

I. INTRODUCTION

Following the success of Bitcoin, a great number of new
cryptocurrencies and blockchain platforms are emerging on al-
most daily basis. Blockchains have become largely ubiquitous
across various sectors, e.g., technology, academia, medicine,
economics and finance, etc. A key feature expected from
cryptocurrencies and blockchain systems is the absence of
a centralized control over the operation process. That is,
blockchain solutions should neither rely on “trusted parties
or powerful minority” for their operations, nor introduce such
(centralisation) tendencies into blockchain systems. Decentral-
ization not only offers better security guarantees by avoiding
single point of failure, but may also enable enhanced user pri-
vacy techniques. On the other hand, real-world blockchain sys-
tems require steady funding for continuous development and
maintenance of the systems. Given that blockchain systems are
decentralized systems, their maintenance and developmental

funding should also be void of centralization risks. Therefore,
secure and “community-inclusive” long-term sustainability of
funding is critical for the health of blockchain platforms.

In the early years, the development of cryptocurrencies,
such as Bitcoin, mainly rely on patron organizations and
donations. Recently, an increasing number of cryptocurrencies
are funded through initial coin offering (ICO) – a popular
crowd-funding mechanism to raise money for the correspond-
ing startups or companies. A major drawback of donations
and ICOs is that they lack sustainable funding supply. Conse-
quently, they are not suitable as long-term funding sources for
cryptocurrency development due to the difficulty of predicting
the amount of funds needed (or that will be available) for
future development and maintenance. Alternatively, some cryp-
tocurrency companies, such as Zcash Electric Coin Company,
take certain percentage of hair-cut/tax (a.k.a. founders reward)
from the miners’ reward. This approach would provide the
companies a more sustainable funding source for long-term
planning of the cryptocurrency development.

Nevertheless, the aforementioned development funding ap-
proaches have risks of centralization in terms of decision-
making on the development steering. Only a few people (in the
organisation or company) participate in the decision-making
process on how the available funds will be used. However, the
decentralized architecture of blockchain technologies makes
it inappropriate to have a centralized control of the funding
for secure development processes. Sometimes disagreement
among the organisation members may lead to catastrophic
consequences. Examples include the splitting of Ethereum and
Ethereum Classic as well as Bitcoin and Bitcoin Cash.

Ideally, all cryptocurrency stake holders are entitled to par-
ticipate in the decision-making process on funding allocation.
This democratic type of community-inclusive decentralized
decision-making enables a better collaborative intelligence.
The concept of treasury system has been raised to address the
highlighted issue. A treasury system is a community controlled
and decentralized collaborative decision-making mechanism
for sustainable funding of the underlying blockchain devel-
opment and maintenance. The Dash governance system [17]
is a real-world example of such systems. A treasury system
consists of iterative treasury periods. During each treasury
period, project proposals are submitted, discussed, and voted
for; top-ranked projects are then funded. However, the Dash
governance system has a few potential theoretical drawbacks.
i) It does not offer ballot privacy to the voters (a.k.a. mastern-
odes) [28]. Therefore, the soundness of any funding decision
might be ill-affected. For instance, the masternodes may be

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA
ISBN 1-891562-55-X
https://dx.doi.org/10.14722/ndss.2019.23024
www.ndss-symposium.org

subject to coercion. ii) It fails to effectively utilize the knowl-
edge of community experts in the decision-making process.
This is because the system can only support very basic type
of voting schemes, and the voting power of experts are limited.

In this work, we propose to use a different approach –
liquid democracy – to achieve better collaborative intelligence.
Liquid democracy (also known as delegative democracy [19])
is an hybrid of direct democracy and representative democ-
racy. It provides the benefits of both systems (whilst doing
away with their drawbacks) by enabling organisations to take
advantage of experts in a treasury voting process, as well
as giving the stakeholders the opportunity to vote. For each
project, a voter can either vote directly or delegate his/her
voting power to an expert who is knowledgeable and renowned
in the corresponding area.

Collaborative decision-making. The core component of a
treasury system is a decision-making system that allows
members of the community collectively reach some con-
clusions/decisions. During each treasury period, anyone can
submit a proposal for projects to be funded. Due to shortage
of available funds, only a few of them can be supported. There-
fore, a collaborative decision-making mechanism is required.
Note that in the literature, a few blockchain based e-voting
schemes have been proposed. However, our treasury decision-
making have a number of differences: (i) conventional e-voting
scheme requires real-world identity authentication, while our
treasury decision-making do not need to link voters to their
real identities; (ii) in a conventional e-voting scheme, typically,
each voter has one vote, while in our treasury decision-making,
the voting power is proportional to the corresponding stake;
(iii) our treasury decision-making supports liquid democracy
with privacy assurance, while no other known e-voting scheme
can support liquid democracy with provable security.

Proper selection of the voting scheme allows maximizing
the number of voters satisfied by the voting results as well
as minimizing voters’ effort. In practice, there are two com-
monly used voting schemes: i) preferential or ranked voting
and ii) approval voting. An extension of approval voting
is the “Yes-No-Abstain” voting, where the voters express
“Yes/No/Abstain” opinion for each proposal. Recent theoret-
ical analysis of this election rule with variable number of
winners, called Fuzzy threshold voting [27], shows advantages
of this voting scheme for treasury application. Therefore,
we will adopt this voting scheme in our treasury system.
Nevertheless, we emphasize that a different voting scheme
can be deployed to our treasury system without significantly
changing the underlying cryptographic protocols.

Our contributions. In this work, we aim to resolve the funding
sustainability issue for long-term cryptocurrency development
and maintenance by proposing a novel treasury system. The
proposed treasury system is compatible with most existing
off-the-shelf cryptocurrencies/blockchain platforms, such as
Bitcoin and Ethereum. We highlight the major contributions
of this work as follows.

• For the first time, we provide a rigorous security
modeling for a blockchain-based treasury voting sys-
tem that supports liquid democracy/delegative voting.
More specifically, we model the voting system in the

well-known Universally Composable (UC) framework
[13] via an ideal functionality F t,k,n,mVOTE . The func-
tionality interacts with a set voters and experts as
well as k voting committee members. It allows the
voters to either delegate their voting power to some
experts or vote directly on the project. If at least
t out of k voting committee members are honest,
the functionality guarantees termination. Even in the
extreme case, when all the voting committee members
are corrupted, the integrity of the voting result is still
ensured; however, in that case we don’t guarantee
protocol termination.

• We propose an efficient design of the treasury sys-
tem. The system collects funding via three potential
sources: (i) Minting new coins; (ii) Taxation from
miners’ reward; (iii) Donations or charity. In an it-
erative process, the treasury funds accumulate over
time, and the projects are funded periodically. Each
treasury period consists of pre-voting epoch, voting
epoch, and post-voting epoch, which can be defined
in terms of number of blockchain blocks. In the pre-
voting epoch, project proposals are submitted, and the
voters/experts are registered. In the voting epoch, the
voting committee is selected; after that, they jointly
generate the voting key for the treasury period. The
voters and experts then cast their ballots. In the post-
voting epoch, the voting committee computes and
signs the treasury decision. Winning proposals will
then be funded. Any stakeholder in the community
can participate in the treasury voting, and their voting
power is proportional to their possessed stake. In our
system, we distinguish coin ownership from stake
ownership. That is, the owner of a coin can be dif-
ferent from the owner of the coin’s stake. This allows
blockchain-level stake delegation without transferring
the ownership of the coin. It means that the user can
delegate his/her stake to someone else without risk of
losing the ultimate control of the coin(s). To achieve
this, we introduced stake ownership verification mech-
anism using the payload of a coin. (Without loss of
generality, we assume a coin has certain storage field
for non-transactional data.)

• We proposed the world’s first honest verifier zero-
knowledge proof/argument for unit vector encryption
with logarithmic size communication. Conventionally,
to show a vector of ElGamal ciphertexts element-wise
encrypt a unit vector, Chaum-Pedersen proofs [14] are
used to show each of the ciphertexts encrypts either 0
or 1 (via Sigma OR composition) and the product of
all the ciphertexts encrypts 1. Such kind of proof is
used in many well-known voting schemes, e.g., Helios.
However, the proof size is linear in the length of the
unit vector, and thus the communication overhead is
quite significant when the unit vector length becomes
larger. In this work, we propose a novel special honest
verifier ZK (SHVZK) proof/argument for unit vector
that allows the prover to convince the verifier that
a vector of ciphertexts (C0, . . . , Cn−1) encrypts a
unit vector e

(n)
i , i ∈ [0, n − 1] with O(log n) proof

size. The proposed SHVZK protocol can also be Fiat-

2

Shamir transformed to a non-interactive ZK (NIZK)
proof in the random oracle model.

• We provide prototype implementation [2] of the pro-
posed treasury system for running and benchmarking
in the real world environment. Our implementation is
written in Scala programming language over Scorex
2.0 framework and uses TwinsChain consensus for
keeping the underlying blockchain. Main functionality
includes proposal submission, registration of voters,
experts, voting committee members and their corre-
sponding deposit lock, randomized selection of the
voting committee members among voters, distributed
key generation (6-round protocol), ballots casting,
joint decryption with recovery in case of faulty com-
mittee members (4-round protocol), randomness gen-
eration for the next treasury period (3-round protocol),
reward payments, deposit paybacks, and penalties for
faulty actors. All implemented protocols are fully
decentralized and resilient up to 50% of malicious
participants. During verification we launched a testnet
that consisted of 12 full nodes successfully operating
tens of treasury periods with different parameters.

II. PRELIMINARIES

Notations. Throughout this paper, we will use the following
notations. Let λ ∈ N be the security parameter. Denote the
set {a, a + 1, . . . , b} by [a, b], and let [b] denote [1, b]. We
abbreviate probabilistic polynomial time as PPT. By a(`), we
denote a length-` vector (a1, . . . , a`). When S is a set, s← S
stands for sampling s uniformly at random from S. When A
is a randomised algorithm, y ← A(x) stands for running A on
input x with a fresh random coin r. When needed, we denote
y := A(x; r) as running A on input x with the explicit random
coin r. Let poly(·) and negl(·) be a polynomially-bounded
function and negligible function, respectively.

The blockchain abstraction. Without loss of generality, we
abstract the underlying blockchain platform encompasses the
following concepts.

◦ Coin. We assume the underlying blockchain platform
has the notion of Coins or its equivalent. Each coin can be
spent only once, and all the value of coin must be consumed.
As depicted in Fig. 1, each coin consists of the following 4
attributes:

• Coin ID: It is an implicit attribute, and every coin has
a unique ID that can be used to identify the coin.

• Value: It contains the value of the coin.

• Cond: It contains the conditions under which the coin
can be spent.

• Payload: It is used to store any non-transactional data.

◦ Address. We also generalize the concept of address.
Conventionally, an address is merely a public key, pk, or
hash of a public key, h(pk). To create coins associated with
the address, the spending condition of the coin should be
defined as a valid signature under the corresponding public
key pk of the address. In this work, we define an address as

Value

Coin

Cond

Payload

Tx

Tx
In1

Inn

…

Verification
DataOut1

Outm
…

Coin ID

Payload

Fig. 1: Coin and transaction structure.

a generic representation of some spending condition. Using
the recipient’s address, a sender is able to create a new coin
whose spending condition is the one that the recipient intended;
therefore, the recipient may spend the coin later.

◦ Transaction. Each transaction takes one or more (un-
spent) coins, denoted as {Ini}i∈[n], as input, and it outputs one
or more (new) coins, denoted as {Outj}j∈[m]. Except special
transactions, the following condition holds:

n∑
i=1

Ini.Value ≥
m∑
j=1

Outj .Value

and the difference is interpreted as transaction fee. As shown
in Fig. 1, the transaction has a Verification Data field that
contains necessary verification data to satisfy all the spending
conditions of the input coins {Ini}i∈[n]. In addition, each
transaction also has a Payload field that can be used to
store any non-transactional data. We denote a transaction as
Tx(A;B;C), where A is the set of input coins, B is the set
of output coins, and C is the Payload field. Note that the
verification data is not explicitly described for simplicity.

Universal composability. We model our system security under
the standard Universal Composability (UC) framework. The
protocol is represented as interactive Turing machines (ITMs),
each of which represents the program to be run by a partici-
pant. Adversarial entities are also modeled as ITMs.

We distinguish between ITMs (which represent static ob-
jects, or programs) and instances of ITMs (ITIs), that represent
interacting processes in a running system. Specifically, an
ITI is an ITM along with an identifier that distinguishes it
from other ITIs in the same system. The identifier consists of
two parts: A session-identifier (SID) which identifies which
protocol instance the ITI belongs to, and a party identifier
(PID) that distinguishes among the parties in a protocol
instance. Typically, the PID is also used to associate ITIs
with “parties” that represent some administrative domains or
physical computers.

The model of computation consists of a number of ITIs
that can write on each other’s tapes in certain ways (specified
in the model). The pair (SID,PID) is a unique identifier of the
ITI in the system. With one exception (discussed later), we
assume that all ITMs are PPT.

We consider the security of the voting system in the UC
framework with static corruption in the random oracle (RO)
model. The security is based on the indistinguishability be-
tween real/hybrid world executions and ideal world executions,
i.e., for any possible PPT real/hybrid world adversary A we
will construct an ideal world PPT simulator S that can present
an indistinguishable view to the environment Z operating the
protocol.

3

Additively homomorphic encryption. In this work, we adopt
the well known threshold lifted ElGamal encryption scheme as
the candidate of the threshold additively homomorphic public
key cryptosystem. Let Gengp(1λ) be the group generator that
takes as input the security parameter λ ∈ N, and outputs the
group parameters param, which define a multiplicative cyclic
group G with prime order p, where |p| = λ. We assume the
DDH assumption holds with respect to the group generator
Gengp. More specifically, the additively homomorphic cryp-
tosystem HE consists of algorithms (KeyGenE,Enc,Add,Dec)
as follows:

• KeyGenE(param): pick sk ← Z∗q and set pk := h =
gsk, and output (pk, sk).

• Encpk(m; r): output e := (e1, e2) = (gr, gmhr).

• Add(c1, . . . , c`): output c := (
∏`
i=1 ci,1,

∏`
i=1 ci,2).

• Decsk(e): output Dlog(e2 ·e−sk1), where Dlog(x) is the
discrete logarithm of x. (Note that since Dlog(·) is not
efficient, the message space should be a small set.)

Lifted ElGamal encryption is additively homomorphic, i.e.

Encpk(m1; r1) · Encpk(m2; r2) = Encpk(m1 +m2; r1 + r2) .

III. THE TREASURY SYSTEM

Entities. As mentioned before, the core of a treasury system
is a collaborative decision-making process, and all the stake
holders are eligible to participate. Let k, `, n,m be integers
in poly(λ). The stake holders may have one or more of the
following roles.

• The project owners O := {O1, . . . ,Ok} are a set of
stake holders that have proposed project for support.

• The voting committees C := {C1, . . . ,C`} are a set of
stake holders that are responsible for generating the
voting public key and announcing the voting result.

• The voters V := {V1, . . . ,Vn} are a set of stake
holders that lock certain amount of stake to participate.

• The experts E := {E1, . . . ,Em} are a special type of
voters that have specialist knowledge and expertise in
some field.

Enabling stake delegation. In our treasury system, the voting
power of a voter is proportional to the corresponding locked
stake value. We distinguish between the ownership of a stake
and the ownership of the actual coin; namely, the stake of a
coin can be “owned” by a user other than the coin owner. This
feature allows us to delegate the stake of a coin to someone
else without transferring the ownership of the coin. To achieve
this, we introduce a stake attribute, denoted as S-Attr, that can
be attached to the Payload of a coin. The user who can provide
the required data that satisfies the condition(s) in the S-Attr
is able to claim the stake of the coin. Of course, the stake
of an unspent coin can only be claimed at most once at any
moment. In practice, to ensure this, additional checks should be
executed. If the user A wants to delegate the stake of a coin to
the user B, he simply needs to put the user B’s desired S-Attr

Project proposing stage

Voter/Expert registration stage

Pre-voting epoch

Committee
selection stage

Key setup
stage

Voting epoch

Ballot
casting stage

Tally
stage

Post-voting epoch

Execution
stage

Fig. 2: Treasury system epochs.

in the Payload of the coin. Note that this type of delegation
is persistent in the sense that if the coin is not consumed, the
S-Attr of the coin remains the same. This feature allows users
to stay offline while the stake of their coins can still be used in
the treasury process by the delegatees. However, this type of
delegation only guarantees pseudonymity-based privacy level,
as anyone can learn “who owns” the stake of the coin by
checking the S-Attr of the coin.

System overview. A treasury system consists of iterative
treasury periods. A treasury period can be divided into three
epochs: pre-voting epoch, voting epoch, and post-voting epoch.
As shown in Figure 2, the pre-voting epoch includes two
concurrent stages: project proposing stage and voter/expert
registration stage. In the project proposing stage, the users
can submit project proposals, asking for treasury funds. Mean-
while, the interested stake holders can register themselves
as either voters and/or experts to participate in the decision
making process by locking certain amount of their stake in the
underlying cryptocurrency. The voter’s voting power is propor-
tional to his locked stake; while, the expert’s voting power is
proportional to the amount of voting power delegated to him.
(We will explain delegation in details later.) Analogously, the
voter’s (resp. expert’s) treasury reward is proportional to his
locked stake (resp. his received delegations).

At the beginning of the voting epoch, there is a voting
committee selection stage, during which, a set of voting com-
mittee members will be randomly selected from the registered
voters who are willing to be considered for selection to the
committee. The probability of being selected is proportional to
locked stake. After the voting committee members are selected,
they jointly run a distributed key generation protocol to setup
the election public key. The voters and experts can then submit
their ballots in the ballot casting stage. Note that the voters
can either delegate their voting powers to some expert or vote
directly on the projects. For each project, voters can delegate
to different experts. At the post-voting epoch, the voting
committee members jointly calculate and announce the tally
result on the blockchain. Finally, in the execution stage, the
winning projects are funded, and the voters, experts and voting
committee members are rewarded (or punished) accordingly.
These transactions will be jointly signed and executed by the
voting committee. Meanwhile, the committee members also
jointly commit to a random seed, which will be used to select
a new voting committee in the next treasury period.

Treasury funding sources. As earlier motivated, treasury
funding, perhaps is the most crucial ingredient in a decen-
tralised community-controlled decision-making system. It must
not only be regular, but also sourced from decentralised means.
That is, source of funding for treasury system should not
introduce centralisation into the system. To this end, desirable
properties from the funding sources are secure, sustainable and
decentralized.

We note that although not all potential funding sources
possess these properties, a clever combination of some of these

4

sources satisfy the set out requirement. Therefore, we propose
3 major sources of funding for the treasury system.

• Taxation/Haircut from block reward: Most blockchain
platforms offer block rewards (including transaction
fees) to proposers of new blocks, incentivizing honest
behaviour. A fraction of such block rewards can be
taken and contributed to the decentralised treasury.
This type of funding source is sustainable as long as
the block rewards of the underlying blockchain plat-
form remain. However, block rewards may fluctuate
over time, and it could cause unpredictability of the
available funds.

• Minting new coins: Coin minting represents, perhaps,
the most sustainable funding source of the potential
sources. At the beginning of each treasury period, cer-
tain amount of new coins are created to fund projects.
However, minting may cause inflation in terms of the
fiat market value of the underlying cryptocurrency.

• Donations or charity: Donation is an opportunistic
ad-hoc but unsustainable funding source. Therefore,
meticulous blockchain development planning is diffi-
cult if donations is the only means of treasury funding.

Project proposal. To ensure input independency and elim-
inate unfair advantage caused by late submission, we adopt
a two-stage project proposal scheme. In the first stage, the
project owners O1, . . . ,Ok post an encryption of their project
proposals (encrypted under the election public key of the
previous treasury period) to the blockchain. At the end of
pre-voting epoch and the beginning of the voting epoch,
the voting committee of previous treasury period will jointly
decrypt those project proposals (together with revealing the
seed, which will be explained later).

To commit a project, the project owner needs to submit a
special transaction in form of

Tx
(
{Ini}ni=1;TCoin; {PROJECT,TID,P-Enc,Addr}

)
,

where {Ini}ni=1 are the input coins, and TCoin is a special
output coin whose spending condition is defined as, the coin
can only be spent according to the corresponding treasury
decision (cf. Subsection “supplying the treasury”, below).
Moreover, the coin value TCoin.Value ≥ αmin, where αmin

is the minimum required fee for a project proposal to prevent
denial-of-service attacks. In the Payload field, PROJECT is a
tag that indicates it is a special project proposal transaction;
TID is the treasury ID that is used to uniquely identify a
treasury period; P-Enc is the encrypted project proposal, and
Addr is the return address for the project owner to receive
money if the project succeeds in getting funded.

Voter/Expert registration. In order to register to be a voter,
a stake holder (or a set of stake holders) need(s) to submit a
special voter registration transaction in form of

Tx
(
{Ini}ni=1;TCoin;

{
VOTER-REG,TID, {Si}`i=1, S-Cond, vk,Addr

})
,

where {Ini}ni=1 are the input coins, and TCoin is a special
output coin whose spending condition is defined in Subsec-
tion “supplying the treasury”, below. In the Payload field,
VOTER-REG is a tag that indicates it is a special voter
registration transaction; TID is the treasury ID that is used

to uniquely identify a treasury period; {Si}`i=1 are the freezed
unspent coins that will be used to claim stake value, S-Cond
is the required data that satisfies all the stake attributes of
{Si}`i=1, vk is a freshly generated signature key; and Addr is
the return address for the voter to receive treasury reward.
The voter’s ID is defined as the hash of vk, denoted as
Vi := hash(vk).

Let βmin be a predefined system parameter. To register as
an expert, a stake holder (or a set of stake holders) need(s) to
deposit exact βmin amount of coins, by submitting a special
expert registration transaction:

Tx
(
{Ini}ni=1;TCoin; {EXPERT-REG,TID, vk,Addr}

)
,

where {Ini}ni=1 are the input coins, and TCoin is a special
output coin whose spending condition is defined in Sub-
section “supplying the treasury”. Moreover, the coin value
TCoin.Value ≥ βmin. In the Payload field, EXPERT-REG is a
tag that indicates it is a special expert registration transaction;
TID is the treasury ID that is used to uniquely identify a
treasury period; vk is a freshly generated signature key; and
Addr is the return address for the expert to receive treasury
reward.

The expert’s ID is defined as the hash of vk, denoted as
Ej := hash(vk). Note that the expert does not gain reward
based on the amount of deposited coins, so it is not rational
to deposit significantly more than βmin coins in practice.

Voting committee selection. At the beginning of the voting
epoch, the voting committee of the previous treasury epoch
jointly reveal the committed seed, seed.

Let sti =
∑`
j=1 Sj .Value for all the stake coins Sj claimed

in the payload of the voter registration transaction of vki, i.e.
sti is the total stake amount claimed by vki. Once seed is
announced, any registered voter, who have an address vki with
claimed stake sti, can volunteer to participate in the voting
committee if the following inequality holds:

hash
(
vki, signsk′i

(seed)
)
≤ sti · T

where sk′i is the corresponding signing key for vki, and T is a
pre-defined threshold. When the inequation holds, he/she can
submit a special registration transaction in form of

Tx
(
{Ini}ni=1;TCoin;

{
VC-REG,TID, vk, p̃k, signsk′i

(seed),Addr
})

,

where {Ini}ni=1 are the input coins, and TCoin is a special
output coin whose spending condition is defined in Subsection
“supplying the treasury”, below. Moreover, the coin value
TCoin.Value ≥ γmin. In the Payload field, VC-REG is a
tag that indicates it is a special voting committee registration
transaction; TID is the treasury ID that is used to uniquely
identify a treasury period; vk is a freshly generated signature
verification key; p̃k is a freshly generated public key for a pre-
defined public key cryptosystem; signsk′i

(seed) is the signature
of seed under the signing key corresponding to vki; and Addr
is the return address for the committee member to receive
treasury reward. The threshold T is properly defined to ensure
that approximately λ′ = ω(log λ) (e.g., λ′ = polylog(λ))
committee members are selected, assuming constant fraction
of them will be active. Note that, analogous to most proof-of-
stake systems, T needs to be updated frequently. See [15] for
a common threshold/difficulty T adjustment approach.

5

Remark. Jumping ahead, we will need honest majority of
the voting committee to guarantee voter privacy and protocol
termination. Assume the majority of the stake of all the
registered voters is honest; therefore, the probability that a
selected committee member is honest is p = 1/2 + ε for any
ε ∈ (0, 1/2]. Let X be the number of malicious committee
members selected among all λ′ committee members. Since
λ′ = ω(log λ), by Chernoff bound, for δ = 2ε/(1− 2ε):

Pr[X ≥ λ′/2] = Pr[X ≥ (1 + δ)(1/2− ε)λ′]
< exp(−δ2(1/2− ε)λ′/4)

=
1

exp(ω(log λ))
= negl(λ)

Supplying the treasury. Treasury funds are accumulated via
a collection of coins. For example, the taxation/haircut of the
block reward can be collected through a special transaction at
the beginning of each block. The output of this type of transac-
tions are new coins, whose spending condition, Cond, specifies
that the coin can only be spent according to the corresponding
treasury decision. As will be explained later in details, the
treasury funds will be distributed in forms of transactions
jointly made by the corresponding voting committee; therefore,
the coins dedicated to certain treasury period must allow the
voting committee in that treasury period to jointly spend. More
specifically, there are λ′ committee members selected at the
beginning of the voting epoch of each treasury period. Let
seedTIDi denote the seed opened in the treasury period indexed
by TIDi. Let {vkj}`j=1 be the set of signature verification keys
in the valid committee registration transactions proposed by vki
such that the condition hash

(
vki, signsk′i

(seed)
)
≤ sti ·T holds.

The treasury coin can be spent in a transaction if majority of
the signatures w.r.t. {vkj}`j=1 are present.

Handling the treasury specific data in the payload. Note that
typically the underlying blockchain transaction validation rules
do not take into account of the content stored in the payload of
a transaction. Therefore, additional checks are needed for the
treasury specific transactions. More specifically, we verify the
payload data of those transactions with additional algorithms.
In particular, a coin must be frozen during the entire treasury
period in order to claim its stake. This can be done by,
for example, adding extra constrain in spending condition,
saying that the coin cannot be spent until the certain block
height, which is no earlier than the end of the treasury period.
Furthermore, the stake of one coin can only be claimed once
during each treasury period.

Decision making. During the decision making, the voting
committee members, the voters, and the experts follow the
protocol description in Sec. IV, below. It covers the key
generation stage, the ballot casting stage, and the tally stage.
In terms of security, as shown before, with overwhelming
probability, the majority of the committee members are honest,
which can guarantee voter privacy and protocol termination.
In an unlikely extreme case, where all the voting committee
members are corrupted, our voting scheme can still ensure the
integrity of the voting result. If a cheating voting committee
member is detected, she will lose all her deposit.

For each project, the voters/experts need to submit an

independent ballot. The voter can either delegate his voting
power to some expert or directly express his opinion on the
project; whereas, the expert shall only vote directly on the
project. In our prototype, we adopt the “YES-NO-ABSTAIN”
type of voting scheme. More specifically, after the voting, the
project proposals are scored based on the number of yes votes
minus the number of no votes. Proposals that got at least 10%
(of all votes) of the positive difference are shortlisted, and
all the remaining project proposals are discarded. Shortlisted
proposals are ranked according to their score, and the top
ranked proposals are funded in turns until the treasury fund
is exhausted. Each of the voting committee members will then
sign the treasury decision and treasury transactions, and those
transactions are valid if it is signed by more than t-out-of-k
voting committee members.

Post-voting execution. Certain proportion (e.g. 20%) of the
treasury fund will be used to reward the voting committee
members, voters and experts. The voting committee members
C` ∈ C will receive a fix amount of reward, denoted as ζ1.
Note that as the voting committee members are required to
perform more actions in the next treasury period, their reward
will only be transferred after the completion of those actions
at the end of pre-voting epoch in the next treasury period.
The voter Vi ∈ V will receive reward that is proportional
to his/her deposited amount, denoted as ζ2 · sti, where sti is
the amount of the stake claimed by Vi. The expert Ej ∈ E
will receive reward that is proportional to his/her received
delegations, denoted as ζ3 · Dj , where Dj is the amount
of delegations that Ej has received. Meanwhile, if a voting
committee member cheats or an expert fails to submit a valid
ballot, he/she will lose the deposited coin as a punishment. In
addition, the voting committee members will jointly generate
and commit to a random seed for the next treasury period,
in a protocol depicted as follows. To generate and commit a
random seed, voting committee members C`, ` ∈ [k] needs to
invoke a coin flipping protocol. However, the cost of such a
protocol is very small when they already jointly setup a public
key pk. More specifically, each voting committee members
C`, ` ∈ [k] will pick a random group element R` ← G and
post the encryption of it, C` ← Encpk(R`) to the blockchain.
C :=

∏k
`=1 C` is defined as the committed/encrypted seed for

the next treasury period. Note that C can be jointly decrypted
as far as majority of the voting committee members are honest,
and the malicious voting committee members cannot influence
the distribution of the seed.

Partitionary budgeting. The main goal of treasury is de-
centralized community-driven self-sustainable cryptocurrency
development through projects funding and adoption. The naive
approach is to select projects for funding by ranking all
submitted proposals according to the number of votes they
get and take a number of projects whose total budget does
not exceed the treasury budget. However, there exists a risk
of underfunding vital areas due to numerous project submis-
sions and inflated discussions on some other areas. We can
categorize proposals and allocate a certain amount of treasury
funding for each category to independently guarantee funds to
every vital area.

Analysis of existing blockchain development funding [28]
reveal marketing, PR, integration, software development and

6

The functionality Ft,k,n,mVOTE interacts with a set of voting committees C := {C1, . . . ,Ck}, a set of voters V := {V1, . . . ,Vn}, a set of experts
E := {E1, . . . ,Em}, and the adversary S. It is parameterized by a delegation calculation algorithm DelCal (described in Fig. 4) and a tally
algorithm TallyAlg (described in Fig. 5) and variables φ1, φ2, τ , J1, J2, J3, T1 and T2. Denote Ccor and Chonest as the set of corrupted and
honest voting committees, respectively.
Initially, φ1 = ∅, φ2 = ∅, τ = ∅, J1 = ∅, J2 = ∅, and J3 = ∅.

Preparation:
• Upon receiving (INIT, sid) from the voting committee Ci ∈ C, set J1 := J1 ∪ {Ci}, and send a notification message

(INITNOTIFY, sid,Ci) to the adversary S.
Voting/Delegation:
• Upon receiving (VOTE, sid, vi) from the expert Ei ∈ E , if |J1| < t, ignore the request. Otherwise, record (Ei,VOTE, vi) in φ1; send

a notification message (VOTENOTIFY, sid,Ei) to the adversary S. If |Ccor| ≥ t, then additionally send a message
(LEAK, sid,Ei,VOTE, vi) to the adversary S.

• Upon receiving (CAST, sid, vj , αj) from the voter Vj ∈ V , if |J1| < t, ignore the request. Otherwise, record (Vj , CAST, vj , αj) in
φ2; send a notification message (CASTNOTIFY, sid,Vj , αj) to the adversary S. If |Ccor| ≥ t, then additionally send a message
(LEAK, sid,Vj , CAST, vj) to the adversary S.

Tally:
• Upon receiving (DELCAL, sid) from the voting committee Ci ∈ C, set J2 := J2 ∪ {Ci}, and send a notification message

(DELCALNOTIFY, sid,Ci) to the adversary S.
• If |J2 ∪ Chonest|+ |Ccor| ≥ t, send (LEAKDEL, sid,DelCal(E, φ2)) to S.
• If |J2| ≥ t, set δ ← DelCal(E, φ2).
• Upon receiving (TALLY, sid) from the voting committee Ci ∈ C, set J3 := J3 ∪ {Ci}, and send a notification message

(TALLYNOTIFY, sid,Ci) to the adversary S.
• If |J3 ∪ Chonest|+ |Ccor| ≥ t, send (LEAKTALLY, sid,TallyAlg(V, E, φ1, φ2, δ)) to S.
• If |J3| ≥ t, set τ ← TallyAlg(V, E, φ1, φ2, δ).
• Upon receiving (READTALLY, sid) from any party, if δ = ∅ ∧ τ = ∅ ignore the request. Otherwise, return

(READTALLYRETURN, sid, (δ, τ)) to the requester.

The ideal functionality F t,k,n,mVOTE

Fig. 3: The ideal functionality F t,k,n,mVOTE

organisational costs are most prominent categories. Consider-
ing this and general business development rules, we propose
to include (at least) the following categories.

• Marketing. This covers activities devoted to cryp-
tocurrency market share growth; market analysis, ad-
vertisement, conferences, etc. The vastness of the area
demands this category should take the biggest percent
of the funding budget.

• Technology adoption. This includes costs needed for
wider spreading of cryptocurrency; integration with
various platforms, websites and applications, deploy-
ment of ATMs etc.

• Development and security. This includes costs allo-
cated for funding core and non-core development, se-
curity incident response, patch management, running
testnets, as well as similar critical technology areas.

• Support. This category includes user support, docu-
mentation, maintaining of web-infrastructure needed
for the community and other similar areas.

• Organization and management. This category in-
cludes costs on team coordination and management,
legal support, etc.

• General. This includes projects not covered by the
earlier categories, e.g., research on prospective tech-
nologies for cryptocurrency application, external se-
curity audit, collaboration with other communities,
charity and so on.

It should be noted that the given list of categories is

not final, and treasury deployment in cryptocurrencies will
take into account specific of a given solution based on its
development effort.

Nevertheless, having such an approach guarantees that
critical areas for cryptocurrency routine operation, support and
development will always get funding via treasury, which in
turn, guarantees cryptocurrency self-sustainability.

IV. THE PROPOSED VOTING SCHEME

A. Security modeling

The entities involved in the voting schemes are a set of
voting committee members C := {C1, . . . ,Ck}, a set of voters
V := {V1, . . . ,Vn}, and a set of experts E := {E1, . . . ,Em}.
We consider the security of our treasury voting scheme in the
UC framework with static corruption. The security is based on
the indistinguishability between real/hybrid world executions
and ideal world executions, i.e., for any PPT real/hybrid world
adversary A we will construct an ideal world PPT simulator S
that can present an indistinguishable view to the environment
Z operating the protocol.

The Ideal world execution. In the ideal world, the voting
committee C, the voters V , and the experts E only communicate
to an ideal functionality F t,k,m,nVOTE during the execution. The
ideal functionality F t,k,m,nVOTE accepts a number of commands
from C,V, E . At the same time it informs the adversary of
certain actions that take place and also is influenced by the
adversary to elicit certain actions. The ideal functionality
F t,k,m,nVOTE is depicted in Fig. 3, and it consists of three phases:
Preparation, Voting/Delegation, and Tally.

7

Preparation phase. During the preparation phase, the vot-
ing committees Ci ∈ C need to initiate the voting process by
sending (INIT, sid) to the ideal functionality F t,k,m,nVOTE . The
voting will not start until all the committees have participated
the preparation phase.

Voting/Delegation phase. During the voting/delegation
phase, the expert Ei ∈ E can vote for his choice vi by sending
(VOTE, sid, vi) to the ideal functionality F t,k,m,nVOTE . Note that
the voting choice vi is leaked only when majority of the voting
committees are corrupted. The voter Vj ∈ V , who owns αj
stake, can either vote directly for his choice vj or delegate
his voting power to an expert Ei ∈ E . Similarly, when all the
voting committees are corrupted, F t,k,m,nVOTE leaks the voters’
ballots to the adversary S .

Tally phase. During tally phase, the voting committee
Ci ∈ C sends (DELCAL, sid) to the ideal functionality F t,k,m,nVOTE
to calculate and reveal the delegations received by each expert.
After that, they then send (TALLY, sid) to the ideal func-
tionality F t,k,m,nVOTE to open the tally. Once all the committees
have opened the tally, any party can read the tally by sending
(READTALLY, sid) to F t,k,m,nVOTE . Note that due to the nature
of threshold cryptography, the adversary S can see the voting
tally result before all the honest parties. Hence, the adversary
can refuse to open the tally depending on the tally result. The
tally algorithm TallyAlg is described in Fig. 5.

The real/hybrid world execution. In the real/hybrid world,
the treasury voting scheme utilises a number of support-
ing components. Those supporting components are modelled
as ideal functionalities. First of all, we need a blockchain
functionality FLEDGER [9] to model the underlying blockchain
infrastructure that the treasury system is built on. We then
use the key generation functionality F t,kDKG [40] for threshold
key generation of the underlying public key crypto system.
Finally, a global clock functionality GCLOCK [9] is adopted to
model the synchronised network environment. Let EXECΠ,A,Z
denote the output of the environment Z when interacting with
parties running the protocol Π and real-world adversary A.
Let EXECF,S,Z denote output of Z when running protocol
φ interacting with the ideal functionality F and the ideal
adversary S.

Definition 1: We say that a protocol Π UC-realizes F if
for any adversary A there exists an adversary S such that for
any environment Z that obeys the rules of interaction for UC
security we have EXECΠ,A,Z ≈ EXECF,S,Z .

B. The voting scheme

Let m be the number of experts and n be the number of
voters. Let e

(m)
i ∈ {0, 1}m be the unit vector where its i-th

coordinate is 1 and the rest coordinates are 0. We also abuse
the notation to denote e

(`)
0 as an `-vector contains all 0’s. We

use Encpk(e
(`)
i) to denote coordinate-wise encryption of e

(`)
i ,

i.e. Encpk(e
(`)
i,1), . . . ,Encpk(e

(1)
i,`), where e

(`)
i = (e

(`)
i,1 , . . . , e

(`)
i,`).

1) Vote encoding: In our scheme, we encode the vote
into a (unit) vector. Let encodeE and encodeV be the vote
encoding algorithm for the expert and voter, respectively. For
an expert, upon receiving input x ∈ {YES,NO,ABSTAIN},

Input: a set of the expert labels E , and a set of ballots φ2
Output: the delegation result δ

Init:
• For i ∈ [1,m], create and initiate Di = 0.

Delegation interpretation:
• For each ballot B ∈ φ2: parse B in form of

(Vj , CAST, vj , αj); if vj = (Delegate,Ei) for some
Ei ∈ E , then Di := Di + αj .

Output:
• Return δ := {(Ei, Di)}i∈[m].

Algorithm DelCal

Fig. 4: The delegation calculation algorithm DelCal

the encodeE returns 100, 010, 001 for YES,NO,ABSTAIN,
respectively. For a voter, the input is y ∈ {E1, . . . ,Em} ∪
{YES,NO,ABSTAIN}. When y = Ei, i ∈ [m], it means that
the voter delegate his/her voting power to the expert Ei. When
y ∈ {YES,NO,ABSTAIN}, it means that the voter directly vote
on the project. The encodeV returns a unit vector of length
(m + 3), denoted as v, such that v = e

(m+3)
i if y = Ei, for

i ∈ [m]; and v is set to e
(m+3)
m+1 , e(m+3)

m+2 , and e
(m+3)
m+3 if y is

YES,NO,ABSTAIN, respectively.

Since sending data to the blockchain consumes coins, we
implicitly assume all the experts E and voters V have spare
coins to pay the transaction fees that is incurred during the
protocol execution. More specifically, we let each party prepare
{Ini}`1i=1, {Outj}`2j=1 s.t.

`1∑
i=1

Ini.Value ≥
`2∑
j=1

Outj .Value .

Denote the corresponding coins owned by a voter Vi ∈ V ,
an expert Ej ∈ E , and a voting committee member Ct ∈ C
as ({In(Vi)

η }`1η=1, {Out(Vi)
η }`2η=1), ({In(Ej)

η }`1η=1, {Out(Ej)
η }`2η=1),

and ({In(Ct)
η }`1η=1, {Out(Ct)

η }`2η=1), respectively. The protocol
is depicted in Fig. 7. It consists of preparation phase, vot-
ing/delegation phase, and tally phase.

Sending/Reading data to/from FLEDGER. Fig. 6 describes the
macro for a party to send and read data to/from the blockchain
FLEDGER. According the blockchain model proposed by [9],
three types of delays need to be considered. First, we have a
bounded network delay, and it is assumed that all messages can
be delivered within ∆1 rounds, which is 2∆1 clock-ticks in
[9]. Subsequently, a desynchronised user can get up-to-date
within 2∆1 rounds (i.e. 4∆1 clock-ticks) after registration.
The second type of delay is the fact that the adversary can
hold a valid transaction up to certain blocks, but she cannot
permanently deny service to (or DoS) such a transaction.
This is modeled by the ExtendPolicy in FLEDGER, where if
a transaction is more than ∆2 rounds (i.e. 2∆2 clock-ticks)
old, and is still valid with respect to the current state, then it
will be included into the state. Finally, we have a so-called
windowsize. Namely, the adversary can set state-slackness of
all the honest parties up to the windowsize, which is consistent
with the common prefix property in [20]. Hence, all the honest
parties can have a common state of any blocks that have been

8

Input: a set of the voters V , a set of the experts E , two sets of
ballots φ1, φ2 and the delegation δ.
Output: the tally result τ

Init:
• Create and initiate τyes = 0, τno = 0 and τabstain = 0.
• Parse δ as {(Ei, Di)}i∈[m].

Tally Computation:
• For each ballot B ∈ φ2: parse B in form of

(Vj , CAST, vj , αj); if vj = (Vote, aj) for some
aj ∈ {yes, no, abstain}, then τaj := τaj + αj .

• For each ballot B ∈ φ1: parse B in form of
(Ei,VOTE, bi) for some bi ∈ {yes, no, abstain}, then
τbi := τbi +Di.

Output:
• Return τ := (τyes, τno, τabstain).

The tally algorithm TallyAlg

Fig. 5: The tally algorithm TallyAlg

proposed more than windowsize. Denote ∆3 rounds (i.e. 2∆3

clock-ticks) as the windowsize.

To send a message x to FLEDGER, we need to first check
if this party has deregistered and desynchronized. If so, the
party needs to first send (REGISTER, sid) to FLEDGER. Note
that the registered but desynchronized party can still send
a transaction before it is fully updated. We simply make
a ‘dummy’ transaction whose input coins and output coins
share the same owner (spending condition), and the message
x is stored in the payload of the transaction. To read a
message (stored in the payload of some transaction) from
FLEDGER, analogously a deregistered party needs to first send
(REGISTER, sid) to FLEDGER. After 4δ1 clock-ticks, the party
can get synchronised. In order to receive the latest message,
the party needs to wait a maximum of 2(∆2 + ∆3) clock-
ticks for the transaction that carries the intended message to
be included in the state of the party.

V. A NEW UNIT VECTOR ZK PROOF

Zero-knowledge proofs/arguments. Let L be an NP language
and RL is its corresponding polynomial time decidable binary
relation, i.e., L := {x | ∃w : (x,w) ∈ RL}. We say a
statement x ∈ L if there is a witness w such that (x,w) ∈ RL.
Let the prover P and the verifier V be two PPT interactive
algorithms. Denote τ ← 〈P (x,w), V (x)〉 as the public tran-
script produced by P and V . After the protocol, V accepts the
proof if and only if φ(x, τ) = 1, where φ is a public predicate
function.

Definition 2: We say (P, V) is a perfectly complete
proof/argument for an NP relation RL if for all non-uniform
PPT interactive adversaries A it satisfies

• Perfect completeness:

Pr

[
(x,w)← A; τ ← 〈P (x,w), V (x)〉 :
(x,w) 6∈ RL ∨ φ(x, τ) = 1

]
= 1

• (Computational) soundness:

Pr

[
x← A; τ ← 〈A, V (x)〉 :
x 6∈ L ∧ φ(x, τ) = 1

]
= negl(λ)

Let V (x; r) denote the verifier V is executed on input
x with random coin r. A proof/argument (P, V) is called
public coin if the verifier V picks his challenges randomly
and independently of the messages sent by the prover P .

Definition 3: We say a public coin proof/argument (P, V)
is a perfect special honest verifier zero-knowledge (SHVZK)
for a NP relation RL if there exists a PPT simulator Sim such
that

Pr

 (x,w, r)← A;
τ ← 〈P (x,w), V (x; r)〉 :
(x,w) ∈ RL ∧
∧ A(τ) = 1

 ≈ Pr

 (x,w, r)← A;
τ ← Sim(x; r) :
(x,w) ∈ RL ∧
∧ A(τ) = 1


Public coin SHVZK proofs/arguments can be transformed

to a non-interactive one (in the random oracle model [10]) by
using Fiat-Shamir heuristic [18] where a cryptographic hash
function is used to compute the challenge instead of having an
online verifier.

Schwartz-Zippel lemma. For completeness, we recap a vari-
ation of the Schwartz-Zippel lemma [38] that will be used in
proving the soundness of the zero-knowledge protocols.

Lemma 1 (Schwartz-Zippel): Let f be a non-zero multi-
variate polynomial of degree d over Zp, then the probability
of f(x1, . . . , xn) = 0 evaluated with random x1, . . . , xn ← Zp
is at most d

p .

Therefore, there are two multi-variate polynomials f1, f2.
If f1(x1, . . . , xn) − f2(x1, . . . , xn) = 0 for random
x1, . . . , xn ← Zp, then we can assume that f1 = f2. This
is because, if f1 6= f2, the probability that the above equation
holds is bounded by max(d1,d2)

p , which is negligible in λ.

Pedersen commitment. In the unit vector zero-knowledge
proof, we use Pedersen commitment as a building block. It
is perfectly hiding and computationally binding under the
discrete logarithm assumption. More specifically, it consists
of the following 4 PPT algorithms. Note that those algorithms
(implicitly) take as input the same group parameters, param←
Gengp(1λ).

• KeyGenC(param): pick s← Z∗q and set ck := h = gs,
and output ck.

• Comck(m; r): output c := gmhr and d := (m, r).

• Open(c, d): output d := (m, r).

• Verifyck(c, d): return valid if and only if c = gmhr.

Pedersen commitment is also additively homomorphic, i.e.

Comck(m1; r1) ·Comck(m2; r2) = Comck(m1 +m2; r1 +r2) .

The proposed unit vector ZK proof/argument. We denote
a unit vector of length n as e

(n)
i = (ei,0, . . . , ei,n−1), where

its i-th coordinate is 1 and the rest coordinates are 0. Conven-
tionally, to show a vector of ElGamal ciphertexts element-wise
encrypt a unit vector, Chaum-Pedersen proofs [14] are used to
show each of the ciphertexts encrypts either 0 or 1 (via Sigma
OR composition) and the product of all the ciphertexts encrypts
1. Such kind of proof is used in many well-known voting

9

Macro Send-Msg(x, {Ini}`1i=1, {Outj}`2j=1):
• If the party has deregistered and desynchronized:

◦ Send (REGISTER, sid) to FLEDGER .
◦ Send

(
SUBMIT, sid,Tx({Ini}`1i=1; {Outj}`2j=1;x)

)
to FLEDGER .

◦ Send (DE-REGISTER, sid) to FLEDGER .
• If the party is already synchronized:

◦ Send
(

SUBMIT, sid,Tx({Ini}`1i=1; {Outj}`2j=1;x)
)

to FLEDGER .

Macro Read-Msg:
• If the party has deregistered and desynchronized:

◦ Send (REGISTER, sid) to FLEDGER .
◦ Wait for max{4∆1, 2(∆2 + ∆3)} clock-ticks by keeping sending (TICK, sid) to the GCLOCK .
◦ Send (READ, sid) to FLEDGER and receive (READ, sid, data) from FLEDGER .
◦ Send (DE-REGISTER, sid) to FLEDGER .

• If the party is already synchronized:
◦ Wait for max{4∆1, 2(∆2 + ∆3)} clock-ticks by keeping sending (TICK, sid) to the GCLOCK .
◦ Send (READ, sid) to FLEDGER and receive (READ, sid, data) from FLEDGER .

• Return data.

Sending and reading messages

Fig. 6: Macro for sending and receiving message via FLEDGER

Denote the corresponding coins owned by a voter Vi ∈ V , an expert Ej ∈ E , and a voting committee member Ct ∈ C as
({In(Vi)

η }`1η=1, {Out
(Vi)
η }`2η=1), ({In(Ej)η }`1η=1, {Out

(Ej)
η }`2η=1), and ({In(Ct)

η }`1η=1, {Out
(Ct)
η }`2η=1), respectively.

Preparation phase:
• Upon receiving (INIT, sid) from the environment Z , the committee Cj , j ∈ [k] sends (KEYGEN, sid) to Ft,kDKG to generate pk.

Voting/Delegation phase:
• Upon receiving (VOTE, sid, vj) from the environment Z , the expert Ej , j ∈ [m] does the following:

◦ Send (READPK, sid) to Ft,kDKG , and receive (PUBLICKEY, sid, pk) from Ft,kDKG .
◦ Set the unit vector e(3) ← encodeE(vj). Compute cj

(3) ← Encpk(e
(3)) and its NIZK proof πj (Cf. Sec. V).

◦ Execute macro Send-Msg
(

(cj
(3), πj), {In

(Ej)
η }`1η=1, {Out

(Ej)
η }`2η=1

)
. (Cf. Fig. 6)

• Upon receiving (CAST, sid, vi, αi) from the environment Z , the voter Vi, i ∈ [n] does the following:

◦ Send (READPK, sid) to Ft,kDKG , and receive (PUBLICKEY, sid, pk) from Ft,kDKG .
◦ Set the unit vector e(m+3) ← encodeV(vi). Compute ui

(m+3) ← Encpk(e
(m+3)) and its NIZK proof σi (Cf. Sec. V).

◦ Execute macro Send-Msg
(

(ui
(m+3), σi, αi), {In

(Vi)
η }`1η=1, {Out

(Vi)
η }`2η=1

)
. (Cf. Fig. 6)

Tally phase:
• Upon receiving (DELCAL, sid) from the environment Z , the committee Ct, t ∈ [k] does:

◦ Execute macro Read-Msg and obtain data.
◦ Fetch the ballots {(ci(3), πi)}i∈[m] and {(uj

(m+3), σj , αj)}j∈[n] from data.
◦ For i ∈ [m], check Verify(ci

(3), πi) = 1; for j ∈ [n], Verify(uj
(m+3), σj) = 1. Remove all the invalid ballots.

◦ For j ∈ [n], if a valid uj
(m+3) is posted, parse uj

(m+3) to (aj
(m),bj

(3)).
◦ For j ∈ [n], ` ∈ [0,m− 1], compute zi,` := a

αj

j,` .
◦ For i ∈ [0,m− 1], compute si :=

∏n
`=1 z`,i and jointly decrypt it to wi (Cf. [22]).

• Upon receiving (TALLY, sid) from the environment Z , the committee Ct, t ∈ [k] does:
◦ For i ∈ [0,m− 1], ` ∈ [0, 2], compute di,` := c

wi
i,` .

◦ For ` ∈ [0, 2], compute x` :=
∏m−1
j=0 dj,` ·

∏n
j=1 b

αj

j,` and jointly decrypt it to y` (Cf. [22]). Execute macro

Send-Msg
(

(x`, y`), {In
(Ct)
η }`1η=1, {Out

(Ct)
η }`2η=1

)
. (Cf. Fig. 6)

• Upon receiving (READTALLY, sid) from the environment Z , the party P does the following:
◦ Execute macro Read-Msg and obtain data.
◦ Fetch {(xi, yi)}i∈[0,2] from data, and return (READTALLYRETURN, sid, (y0, y1, y2)) to the environment Z .

The voting protocol Πt,k,m,n
VOTE

Fig. 7: The voting protocol Πt,k,m,n
VOTE in {FLEDGER,F t,kDKG}-hybrid model

10

Input: index i = (i1, . . . , ilogn) ∈ {0, 1}logn

Output: unit vector e
(n)
i = (ei,0, . . . , ei,n−1) ∈ {0, 1}n

1. For ` ∈ [logn], set b`,0 := 1− i` and b`,1 := i`;
2. For j ∈ [0, n − 1], set ei,j :=

∏logn
`=1 b`,j` , where

j1, . . . , jlogn is the binary representation of j;
3. Return e

(n)
i = (ei,0, . . . , ei,n−1);

The algorithm that maps i ∈ [0, n− 1] to e
(n)
i

Fig. 8: The algorithm that maps i ∈ [0, n− 1] to e
(n)
i

schemes, e.g., Helios. However, the proof size is linear in the
length of the unit vector, and thus the communication overhead
is quite significant when the unit vector length becomes larger.

In this section, we propose a novel special honest ver-
ifier ZK (SHVZK) proof for unit vector that allows the
prover to convince the verifier that a vector of ciphertexts
(C0, . . . , Cn−1) encrypts a unit vector e(n)

i , i ∈ [0, n−1] with
O(log n) proof size. Without loss of generality, assume n is a
perfect power of 2. If not, we append Encpk(0; 0) (i.e., trivial
ciphertexts) to make the total number of ciphertexts to be the
next power of 2. The proposed SHVZK protocol can also be
Fiat-Shamir transformed to a non-interactive ZK (NIZK) proof
in the random oracle model. The basic idea of our construction
is inspired by [24], where Groth and Kohlweiss proposed a
Sigma protocol for the prover to show that he knows how to
open one out of many commitments. The key idea behind our
construction is that there exists a data-oblivious algorithm that
can take input as i ∈ {0, 1}logn and output the unit vector
e

(n)
i . Let i1, . . . , ilogn be the binary representation of i. The

algorithm is depicted in Fig. 8.

Intuitively, we let the prover first bit-wisely commit the
binary presentation of i ∈ [0, n − 1] for the unit vector
e

(n)
i . The prover then shows that each of the commitments

of (i1, . . . , ilogn) indeed contain 0 or 1, using the Sigma
protocol proposed in Section 2.3 of [24]. Note that in the 3rd
move of such a Sigma protocol, the prover reveals a degree-1
polynomial of the committed message. Denote z`,1 := i`x+β`,
` ∈ [log n] as the corresponding degree-1 polynomials, where
β` are chosen by the prover and x is chosen by the verifier. By
linearity, we can also define z`,0 := x− z`,1 = (1− i`)x−β`,
` ∈ [log n]. According to the algorithm described in Fig.8, for
j ∈ [0, n − 1], let j1, . . . , jlogn be the binary representation
of j, and the product

∏logn
`=1 z`,j` can be viewed as a degree-

(log n) polynomial of the form

pj(x) = ei,jx
logn +

logn−1∑
k=0

pj,kx
k

for some pj,k, k ∈ [0, log n − 1]. We then use batch
verification to show that each of Cj indeed encrypts ei,j .
More specifically, for a randomly chosen y ← Zp, let
Ej := (Cj)

xlog n · Enc(−pj(x); 0); the prover needs to show
that E :=

∏n−1
j=0 (Ej)

yj ·
∏logn−1
k=0 (Dk)x

k

encrypts 0, where
D` := Encpk(

∑n−1
j=0 (pj,` · yj);R`), ` ∈ [0, log n − 1] with

fresh randomness R` ∈ Zp. The construction is depicted
in Fig. 9, and it consists of 5 moves. Both the prover and
the verifier shares a common reference string (CRS), which
is a Pedersen commitment key that can be generated using

random oracle. The prover first commits to each bits of the
binary representation of i, and the commitments are denoted
as I`, ` ∈ [log n]. Subsequently, it produces B`, A` as the
first move of the Sigma protocol in Sec. 2.3 of [24] showing
I` commits to 0 or 1. Jumping ahead, later the prover will
receive a challenge x← {0, 1}λ, and it then computes the third
move of the Sigma protocols by producing {z`, w`, v`}logn

`=1 .
To enable batch verification, before that, the prover is given
another challenge y ← {0, 1}λ in the second move. The prover
computes and sends {D`}logn−1

`=0 . The verification consists of
two parts. In the first part, the verifier checks the following
equations to ensure that I` commits to 0 or 1.

• (I`)
x ·B` = Comck(z`;w`)

• (I`)
x−z` ·A` = Comck(0; v`)

In the second part, the verifier checks if

n−1∏
j=0

(
(Cj)

xlog n

· Encpk(−
logn∏
`=1

z`,j` ; 0)
)yj · logn−1∏

`=0

(D`)
x`

is encryption of 0 by asking the prover to reveal the random-
ness.

Theorem 1: The protocol described in Fig. 9 is a 5-move
public coin special honest verifier zero-knowledge argument
of knowledge of e

(n)
i = (ei,0, . . . , ei,n−1) ∈ {0, 1}n and

(r0, . . . , rn−1) ∈ (Zp)n such that Cj = Encpk(ei,j ; rj),
j ∈ [0, n− 1] under the DDH assumption.

Proof: For perfect completeness, we first observe that the
verification equations (I`)

x·B` = Comck(z`;w`) and (I`)
x−z` ·

A` = Comck(0; v`) holds. Indeed, by additively homomorphic
property of the commitment scheme, (I`)

x·B` = Comck(i`·x+
β`;α`·x+γ`) and (I`)

x−z` ·A` = Comck(i`·(x−z`)+i`·β`;α`·
(x− z`) + δ`) = Comck(i`(1− i`) ·x; v`). Since i`(1− i`) = 0
when i` ∈ {0, 1}, we have (I`)

x−z` · A` = Comck(0; v`).
Moreover, for each j ∈ [0, n− 1],

∏logn
`=1 z`,j` is a polynomial

in the form of

pj(x) = ei,jx
logn +

logn−1∑
k=0

pj,kx
k

where x is the verifier’s challenge. Therefore, it is easy to see

n−1∏
j=0

(
(Cj)

xlog n

· Encpk(−
logn∏
`=1

z`,j` ; 0)
)yj

·
logn−1∏
`=0

Encpk(
n−1∑
j=0

(pj,` · yj);R`)x
`

= Encpk
(n−1∑
j=0

(
ei,j · xlogn − pj(x) +

logn−1∑
`=0

pj,` · x`
)
· yj ;R

)
= Encpk(0;R) .

For soundness, first of all, the Sigma protocols for com-
mitments of i`, ` ∈ [log n] is specially sound, i.e., given two
transactions with the same {I`, B`, A`}logn

`=1 and two different
x and {z`, w`, v`}logn

`=1 , there exists a PPT extractor that can
output the corresponding witness i` ∈ {0, 1}.

11

CRS: the commitment key ck
Statement: the public key pk and the ciphertexts C0 := Encpk(ei,0; r0), . . . , Cn−1 := Encpk(ei,n−1; rn−1)

Witness: the unit vector e
(n)
i ∈ {0, 1}n and the randomness r0, . . . , rn−1 ∈ Zp

Protocol:
• The prover P , for ` = 1, . . . , logn, does:

◦ Pick random α`, β`, γ`, δ` ← Zp;
◦ Compute I` := Comck(i`;α`), B` := Comck(β`; γ`) and A` := Comck(i` · β`; δ`);

• P → V : {I`, B`, A`}logn`=1 ;
• V → P : Random y ← {0, 1}λ;
• The prover P for ` = 0, . . . , logn− 1, does:

◦ Pick random R` ← Zp and compute D` := Encpk
(∑n−1

j=0 (pj,` · yj);R`
)

• P → V : {D`}logn−1
`=0 ;

• V → P : Random x← {0, 1}λ;
• The prover P does the following:

◦ Compute R :=
∑n−1
j=0 (rj · xlogn · yj) +

∑logn−1
`=0 (R` · x`);

◦ For ` = 1, . . . , logn, compute z` := i` · x+ β`, w` := α` · x+ γ`, and v` := α`(x− z`) + δ`;

• P → V : R and {z`, w`, v`}logn`=1

Verification:
• Check the followings:
• For ` = 1, . . . , logn, does:

◦ (I`)
x ·B` = Comck(z`;w`)

◦ (I`)
x−z` ·A` = Comck(0; v`)

•
∏n−1
j=0

(
(Cj)

xlog n · Encpk(−
∏logn
`=1 z`,j` ; 0)

)yj ·∏logn−1
`=0 (D`)

x` = Encpk(0;R), where zj,1 = zj and zj,0 = x− zj .

Unit vector ZK argument

Fig. 9: Unit vector ZK argument

Moreover,
∏n−1
j=0

(
(Cj)

xlog n · Encpk(−
∏logn
`=1 z`,j` ; 0)

)yj
builds a degree-log n polynomial w.r.t. x in the plaintext.
While,

∏logn−1
`=0 (D`)

x`

encrypts a degree-(log n − 1) poly-
nomial w.r.t. x. Since x is randomly sampled after D`

is committed, Schwartz-Zippel lemma,
∏n−1
j=0

(
(Cj)

xlog n ·
Encpk(−

∏logn
`=1 z`,j` ; 0)

)yj · ∏logn−1
`=0 (D`)

x`

encrypts a zero
polynomial w.r.t. x with overwhelming probability if the
polynomial evaluation is 0. Therefore, Q(y) :=

∑n−1
j=0 (ei,j −∏logn

`=1 i`,j`) ·yj = 0 with overwhelming probability. Similarly,
by Schwartz-Zippel lemma, Q(y) is a zero polynomial; hence,
we have for j ∈ [0, n−1], ei,j =

∏logn
`=1 i`,j` with overwhelm-

ing probability.

In terms of special honest verifier zero-knowledge, we now
construct a simulator Sim that takes input as the statement
(C0, . . . , Cn−1) and the given challenges x, y ∈ {0, 1}λ, and
it outputs a simulated transcript whose distribution is indistin-
guishable from the real one. More specifically, Sim first ran-
domly picks i` ← {0, 1} and α`, β`, γ`, δ` ← Zp, ` ∈ [log n].
It then computes {I`, B`, A`}logn

`=1 and {z`, w`, v`}logn
`=1 accord-

ing to the protocol description. For ` ∈ {1, . . . , log n − 1},
it then picks random U`, R` ← Zp and computes D` :=
Encpk(U`;R`). It then randomly picks R← Zp, computes

D0 :=
Encpk(0;R)∏n−1

j=0

(
(Cj)x

log nEncpk(−
∏logn
`=1 z`,j` ; 0)

)yj ·∏logn−1
`=1 (D`)x

`

After that, Sim outputs the simulated transcript as(
{I`, B`, A`}logn

`=1 , y, {D`}logn−1
`=0 , x, {z`, w`, v`}logn

`=1

)
.

This concludes our proof.

VI. SECURITY AYALYSIS

The security of the treasury voting protocol is analysed in
the UC framework. We provide Theorem 2 and its proof can
be found in the full version.

Theorem 2: Let k, n,m = poly(λ) and t > k/2. Protocol
Πt,k,n,m

VOTE described in Fig. 7 UC-realizes F t,k,m,nVOTE in the
{FLEDGER,F t,kDKG}-hybrid world against static corruption under
the DDH assumption.

VII. IMPLEMENTATION AND PERFORMANCE

Prototyping. The proposed treasury system was implemented
as a fully functional cryptocurrency prototype. As an under-
lying framework we used Scorex 2.0 [1] that provides basic
blockchain functionality. It is a flexible modular framework
designed particularly for fast prototyping with a rich set
of already implemented functionalities such as asynchronous
peer-to-peer network layer, built-in blockchain support with
pluggable and extendable consensus module, simple transac-
tions layer, JSON API for accessing the running node, etc.
As treasury requires basic blockchain functions, we decided to
select TwinsCoin [15] example and extend it with the proposed
treasury system. Treasury integration required modification of
the existed transactions structure and block validation rules,
as well as introduction of new modules for keeping treasury
state and managing transactions forging. All cryptographic
protocols related to the voting procedure were implemented
in a separate library to simplify code maintanance. It is
also possible to reuse it not only in the blockchain systems
but also as a standalone voting system. The implementation
uses BouncyCastle library (ver.1.58) that provides needed
elliptic curve math. Some operations in the finite field were

12

Fig. 10: DKG protocol execution time depending on the number of
committee members

implemented with help of the BigInteger class from the Java
Core. Subprotocols of the developed system were implemented
exactly as they are described in the paper without any protocol-
level optimizations.

Test network. For testing developed treasury prototype in real
environment a local network of 12 full nodes was launched. It
successfully worked for several days with dozens of epochs.
The treasury network had 9 voters with different amount of
stake, 3 experts, 12 candidates to the voting committee (10 of
them were selected to participate). The numbers of proposals
varied from 1 to 7. Treasury cycle had 780 blocks. Underlying
blockchain with TwinsCoin consensus had block generation
time of 10 seconds (or approximately 4.5 hours treasury cycle).

During the tests many abnormal situations were simulated,
for instance, a malicious behavior of the committee members,
absence of the voters and experts, refusal to participate in
the decryption stage, etc. With a correctly working majority
of the committee members, the voting results were always
successfully obtained and rewards were correctly distributed.

Evaluations. For evaluating performance of the cryptographic
protocols a special set of tests were developed as a part of
the cryptographic library. The working station has Intel Core
i7-6500U CPU @ 2.50GHz and 16GB RAM.

We benchmarked key generation protocol running time for
different number of voting committee members: from 10 to
100 (high numbers might be required to guarantee honest
majority on member random selection among large amount
of members). Shared public key generation was made both for
all honest committee members and in presence of malicious
ones (any minority amount, their exact ratio does not have
influence on protocol running time for any honest participant).
Results are given in Fig. 10.

Besides, there is an estimated amount of data needed to be
transmitted over a P2P network to complete the protocol, in
dependence of committee size and malicious members ratio.
Results are given in Fig. 11 (recall that even controlling 50% of
the committee, an attacker can break confidentiality of voters’
ballots, but not their integrity or tally result).

Ballot generation is done once by a voter and takes less
than 1 second for several hundreds of experts, so it has little
influence on the voting protocol performance. To get tally

Fig. 11: Total size of the DKG protocol messages to be sent over
the peer-to-peer network depending on the number of committee
members

results, it is needed to collect all ballots from participating
voters, validate their correctness (via attached NIZK) and then
do tally for all correct ballots. Figure 12 shows the prover’s
running time, the verifier’s running time and the size of the
unit vector ZK proof that has been used in the ballot casting.

Finally, the overall communication cost for all the voting
ballots per project during the entire treasury period is depicted
in Fig. 13. In particular, for a treasury period with 5000 voters
and 50 experts, the overall communication is approximately
20 MB per project.

Remark. Note that in practice, the treasury period is long
enough, say, 30 days (approximately 4320 blocks for Bitcoin),
so blockchain space overhead for treasury deployment in the
cryptocurrency blockchain is insignificant. At the same time,
we consider a sidechain approach [6], [21], [29] for treasury
implementation as an effective solution. It allows separation of
treasury functionality from the mainchain consensus, providing
a number of advantages. In particular, treasury protocols do not
influence the mainchain consensus, moving all implementation
complexity in a sidechain. This modular construction also
saves mainchain space for core clients.

VIII. RELATED WORK

The Dash governance system (DGS) [17] also referred to
as Dash governance by blockchain (DGBB) is the pioneer trea-
sury implementation for cryptocurrency development funding
on any real-world cryptocurrency. The DGS allows regular
users on the Dash network to participate in the development
process of the Dash cryptocurrency by allowing them sub-
mit project proposals (for advancing the cryptocurrency) to
the network. A subset of users known as Masternodes then
vote to decide what proposals from the submitted proposals
get funding. Every voting cycle (approximately one month),
winning proposals are voted for and funded from the accrued
resources in the blockchain treasury. 10% of all block rewards
within each monthly voting period is contributed towards the
blockchain treasury, from which proposals are then funded.
Although the DGS works in practice, there are open questions
to it. For instance, voting on the DGS is not private, thereby
leaving nodes susceptible to coercion.

13

Fig. 12: The prover’s running time, verifier’s running time and the
size of the unit vector ZK proof.

Beyond voting, the Dash Governance System (DGS) [17],
[28], is the first self-sustenance/funding mechanism in any
cryptocurrency or blockchain system. However, the DGS does
not support delegative voting and ballot privacy.

A second system is the ZenCash (now - Horizen) multi-
stakeholder governance model. By design, it adopts a flexible
multi-stakeholder governance model [39]. The core idea is to
remove centralisation which entrusts enormous powers with
a minority. Participation is voluntary and decision-making
powers cuts across all categories of stakeholders proportional
to their resources(stake).

Initially, the Horizen (ZenCash) system has a Core Team
(inclusive of founders of Zen) and a DAO (consisting of
industry leaders) that controls 3.5% of block mining rewards
and 5% of rewards respectively. The plan is to evolve, de-
velop and adopt a hybrid voting mechanism that enables all
stakeholders to influence decisions and resource allocations
on the blockchain. This evolution would result in a system
of DAOs, with competing DAOs responsible for working on
different problems. Collectively, the DAOs will be responsible
for activities (building, maintaining, improving software, legal,
marketing, and advertising) that will ensure the long-term
sustainability of Zen.

Community members / stakeholders are allowed to partic-
ipate in the development of Zen via project proposals which
are funded by the DAOs through the 5% block mining reward
allocation they receive. We remark that proposals are only to be
funded subject to successful voting. Although, at launch, only
one DAO “staffed with respected professionals” exists. The
staff strength of each DAO is between 3−5 members and could
potentially be increased to any number. A dispute resolution
mechanism is to be provided for solving issues among DAO
members. Delegative voting is not supported and the system
uses fixed amount of voting tokens.

Liquid democracy (also known as delegative democ-
racy [19]) as an hybrid of direct democracy and representative
democracy provides the benefits of both system (whilst doing
away with their drawbacks) by enabling organisations to take
advantage of the experts in a voting process and also gives
every member the opportunity to vote [41], [42]. Although the
advantages of liquid democracy has been widely discussed in

Fig. 13: The overall communication for all the voting ballots during
an entire treasury period.

the literature [12], [23], [26], [32], [34], there are few provably
secure construction of liquid democracy voting.

Most real-world implementations of liquid democracy only
focus on the functionality aspect of their schemes. For instance,
Google Vote [25] is an internal Google experiment on liquid
democracy over the social media, Google+, which does not
consider voter privacy. Similarly, systems such as proxyfor.me
[36], LiquidFeedback [31], Adhocracy [7], GetOpinionated,
[16] also offer poor privacy guarantees. It is worth mentioning
that Sovereign [37] is a blockchain-based voting protocol for
liquid democracy; therefore, its privacy is inherited from the
underlying blockchain, which provides pseudonymity-based
privacy. Wasa2il [33] is able to achieve end-to-end verifiability
because this foils privacy. The best known liquid democracy
and proxy democracy voting schemes are nVotes [35] and
Statement Voting [41], [42]. However, those systems require
mix-nets as their underlying primitive. This makes them less
compatible to the blockchain setting due to the heavy work
load of the mixing servers.

There are a few blockchain based e-voting schemes in the
literature, but most of them, e.g., Agora [8], only use the
blockchain as a realization of the bulletin board. The actual
e-voting schemes are not integrated with the blockchain. [30]
is a proposed blockchain-based voting solution that heavily
relies on an external “trusted third party” between users and the
election authority/authentication authority, in order to ensure
anonymity/privacy of voters. Each candidate is voted for by
having transactions sent to them. Nonetheless, privacy or
anonymity of voters can be broken by collusion between the
authentication organisation and the trusted third party. [11]
proposes an end-to-end voting system based on Bitcoin that
utilises a Kerberos-based protocol to achieve voter identity
anonymisation. Voting takes place via sending of tokens from
voters to address (public key) of candidates. However, voting
is not private and other voters can be influenced by the trend or
likelihood of the overall results (before voting is concluded).
Furthermore, the scheme is susceptible to coercion.

Our work differs from these earlier works because it not
only supports liquid democracy whilst preserving privacy of

14

the voters and delegates, it is also practical in the sense that it
considers real-life concerns (e.g., monthly duration of treasury
epoch) associated with a treasury system for blockchains.

IX. CONCLUSION AND FUTURE WORK

In this work, we initiated the study of blockchain treasury
systems for the community to collaboratively collect and
distribute funds in a decentralised manner. We note that the
voting scheme used in the treasury system can be further
improved with game-theoretic approaches to enable better
collaborative decision making. The proposed system can also
be extended to serve blockchain self-governance. Our treasury
system is planned for practical deployment in cryptocurrencies
in 2019. In particular, the treasury model is in the roadmap of
Cardano [3], to be a part of the Voltaire release [4]. Horizen
(formerly ZenCash) also implements DAO Treasury Protocol-
level Voting System [5] based on our scheme.

ACKNOWLEDGMENT

This work is partially supported by EPSRC grant
EP/P034578/1, PETRAS PRF, and IOHK Ltd. We thank
Dmytro Kaidalov and Andrii Nastenko from IOHK for the
prototype implementation and benchmarks. Bingsheng Zhang
is the corresponding author.

REFERENCES

[1] “Scorex 2 - the modular blockchain framework.” [Online]. Available:
https://github.com/ScorexFoundation/Scorex

[2] “Treasury prototype implementation.” [Online]. Available: https:
//github.com/input-output-hk/TreasuryCoin

[3] “Cardano monetary policy. treasury and fees,” 2018. [Online].
Available: https://cardanodocs.com/cardano/monetary-policy/

[4] “Cardano roadmap. voltaire,” 2018. [Online]. Available: https:
//cardanoroadmap.com/

[5] “Horizen roadmap. dao treasury protocol-level voting system,” 2018.
[Online]. Available: https://www.horizen.global/roadmap/

[6] A. Back et al., “Enabling blockchain innovations with pegged
sidechains,” 2014. [Online]. Available: https://blockstream.com/
sidechains.pdf

[7] Adhocracy, “Adhocracy official website,” online; date last accessed:
2017-10-21. [Online]. Available: https://adhocracy.de

[8] Agora, “Bringing our voting systems into the
21st century, version 0.2,” 2018. [Online]. Avail-
able: https://static1.squarespace.com/static/5b0be2f4e2ccd12e7e8a9be9/
t/5b45ff930e2e72b2215df3d9/1531314069537/Agora Whitepaper.pdf

[9] C. Badertscher, U. Maurer, D. Tschudi, and V. Zikas, “Bitcoin as a
transaction ledger: A composable treatment,” in CRYPTO 2017, vol.
10401. Springer, 2017, pp. 324–356.

[10] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm
for designing efficient protocols,” in CCS ’93, 1993, pp. 62–73.

[11] S. Bistarelli, M. Mantilacci, P. Santancini, and F. Santini, “An end-to-
end voting-system based on bitcoin,” in SAC ’17, 2017, pp. 1836–1841.

[12] P. Boldi, F. Bonchi, C. Castillo, and S. Vigna, “Voting in social
networks,” in Proceedings of the 18th ACM conference on Information
and knowledge management. ACM, 2009, pp. 777–786.

[13] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” Cryptology ePrint Archive, Report 2000/067,
2000, https://eprint.iacr.org/2000/067.

[14] D. Chaum and T. P. Pedersen, “Wallet databases with observers,” in
CRYPTO ’92, vol. 740, 1993, pp. 89–105.

[15] A. Chepurnoy, T. Duong, L. Fan, and H. Zhou, “Twinscoin:
A cryptocurrency via proof-of-work and proof-of-stake,” IACR
Cryptology ePrint Archive, vol. 2017, p. 232, 2017. [Online].
Available: http://eprint.iacr.org/2017/232

[16] J. Degrave, “Getopinionated,” gitHub repository; date last accessed:
2017-10-21. [Online]. Available: https://github.com/getopinionated/
getopinionated

[17] Evan Duffield, Daniel Diaz, “Dash: A payments-focused
cryptocurrency,” 2018. [Online]. Available: https://github.com/dashpay/
dash/wiki/Whitepaper

[18] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to
identification and signature problems,” in CRYPTO’ 86, 1986, pp. 186–
194.

[19] B. Ford, “Delegative democracy,” Manuscript, 2002. [Online].
Available: http://www.brynosaurus.com/deleg/deleg.pdf

[20] J. A. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone
protocol: Analysis and applications,” in EUROCRYPT 2015, vol. 9057.
Springer, 2015, pp. 281–310.

[21] P. Gaži, A. Kiayias, and D. Zindros, “Proof-of-stake sidechains,” in
IEEE Symposium on Security & Privacy, 2019.

[22] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure distributed
key generation for discrete-log based cryptosystems,” in EUROCRYPT
’99. Springer Berlin Heidelberg, 1999, pp. 295–310.

[23] J. Green-Armytage, “Direct voting and proxy voting,” Constitutional
Political Economy, vol. 26, no. 2, pp. 190–220, 2015.

[24] J. Groth and M. Kohlweiss, One-Out-of-Many Proofs: Or How to Leak
a Secret and Spend a Coin. Springer, 2015, pp. 253–280.

[25] S. Hardt and L. C. Lopes, “Google votes: A liquid democracy experi-
ment on a corporate social network,” 2015.

[26] J. Ito, “Emergent democracy,” arXiv:1807.06953, vol. 17, 2018.
[27] D. Kaidalov, L. Kovalchuk et al., “A proposal for an ethereum classic

treasury system.” [Online]. Available: https://iohk.io/research/papers/
#AJSEAT7K

[28] D. Kaidalov, A. Nastenko et al., “Dash governance system:
Analysis and suggestions for improvements.” [Online]. Available:
https://iohk.io/research/papers/#NSJ554WR

[29] A. Kiayias and D. Zindros, “Proof-of-work sidechains,” Cryptology
ePrint Archive, Report 2018/1048, 2018. [Online]. Available: http:
//eprint.iacr.org/2018/1048

[30] K. Lee, J. James, T. Ejeta, and H. Kim, “Electronic voting service using
block-chain,” Journal of Digital Forensics, Security and Law, 2016.

[31] LiquidFeedback, “LiquidFeedback official website,” online; date last
accessed: 2017-10-21. [Online]. Available: http://liquidfeedback.org

[32] D. Lomax, “Beyond politics, an introduction,” January 1,
2003, online; date last accessed: 2017-10-21. [Online]. Avail-
able: http://web.archive.org/web/20031220012108/www.beyondpolitics.
org/Beyond Politics Intro.htm

[33] S. McCarthy, “Wasa2il,” 2016, gitHub repository; date last accessed:
2017-10-21. [Online]. Available: https://github.com/smari/wasa2il

[34] M. Nordfors, “Democracy 2.1: How to make a bunch of lazy and selfish
people work together,” 2003, online; date last accessed: 2017-10-21.
[Online]. Available: https://archive.org/stream/politics Democracy2.1/
Democracy2.1 djvu.txt

[35] nVotes, “3 crypto schemes for liquid democracy (iii),” July 19
2017, online; date last accessed: 2017-10-21. [Online]. Available:
https://nvotes.com/3-crypto-schemes-liquid-democracy-iii/

[36] Proxy.me, “Voteflow,” 2015, online; date last accessed: 2017-10-21.
[Online]. Available: http://www.proxyfor.me/help

[37] Democracy Earth, “The social smart contract. an open source white
paper.” September 1, 2017, online; date last accessed: 2017-10-21.
[Online]. Available: http://democracy.earth

[38] J. T. Schwartz, “Fast probabilistic algorithms for verification of
polynomial identities,” J. ACM, vol. 27, no. 4, pp. 701–717, Oct. 1980.
[Online]. Available: http://doi.acm.org/10.1145/322217.322225

[39] R. Viglione, R. Versluis, and J. Lippencott, “Zen white paper,”
2017. [Online]. Available: https://zensystem.io/assets/Zen%20White%
20Paper.pdf

[40] D. Wikström, “Universally composable DKG with linear number of
exponentiations,” in SCN 2004, 2004, pp. 263–277.

[41] B. Zhang and H. Zhou, “Brief announcement: Statement voting and
liquid democracy,” in PODC 2017, 2017, pp. 359–361.

[42] B. Zhang and H.-S. Zhou, “Statement voting,” in FC ’19, 2019.

15

