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Abstract—Blockchain technologies recently received a consid-
erable amount of attention. While the initial focus was mainly
on the use of blockchains in the context of cryptocurrencies such
as Bitcoin, application scenarios now go far beyond this. Most
blockchains have the property that once some object, e.g., a block
or a transaction, has been registered to be included into the
blockchain, it is persisted and there are no means to modify
it again. While this is an essential feature of most blockchain
scenarios, it is still often desirable—at times it may be even legally
required—to allow for breaking this immutability in a controlled
way.

Only recently, Ateniese et al. (EUROS&P 2017) proposed an
elegant solution to this problem on the block level. Thereby,
the authors replace standard hash functions with so-called
chameleon-hashes (Krawczyk and Rabin, NDSS 2000). While
their work seems to offer a suitable solution to the problem
of controlled re-writing of blockchains, their approach is too
coarse-grained in that it only offers an all-or-nothing solution.
We revisit this idea and introduce the novel concept of policy-
based chameleon-hashes (PCH). PCHs generalize the notion of
chameleon-hashes by giving the party computing a hash the
ability to associate access policies to the generated hashes. Anyone
who possesses enough privileges to satisfy the policy can then find
arbitrary collisions for a given hash. We then apply this concept to
transaction-level rewriting within blockchains, and thus support
fine-grained and controlled modifiability of blockchain objects.

Besides modeling PCHs, we present a generic construction
of PCHs (using a strengthened version of chameleon-hashes with
ephemeral trapdoors which we also introduce), rigorously prove
its security, and instantiate it with efficient building blocks. We
report first implementation results.

I. INTRODUCTION

Blockchains technologies have attracted a tremendous
amount of attention. This increase in interest was mainly
triggered by the first large-scale application of blockchains,
i.e., the decentralized cryptocurrency Bitcoin. Meanwhile ap-
plications go far beyond their use in cryptocurrencies. Ex-
amples include application domains such as supply chains,

digital twins, insurance, healthcare, or energy.1 In a nutshell,
a blockchain is a decentralized, distributed, potentially public,
and immutable log of objects such as transactions. It is created
by establishing consensus between the chain’s participants and
can be thought of as a hash-chain which links blocks together.
That is, each block includes the hash of the previous block as
a reference to link them. Each block typically also includes
some other information and a set of valid transactions, which,
in turn, are usually accumulated into a single hash value by
means of a Merkle tree [36]. A transaction can be a monetary
transaction (as in cryptocurrencies) or include any other object
of interest which needs to be recorded, e.g., data related to
smart contracts.

Blockchains can be of different types. They can be public
as for example used within Bitcoin or Ethereum, where the
consensus protocol is executed between many pseudonymous
participants. Here, the blockchain can be read and written
by everyone. In such blockchains, the consensus finding is
typically either implemented via proofs of work (PoW), or
proofs of stake (PoS) combined with some alternative, less
resource intensive consensus finding algorithm (e.g., byzantine
fault tolerance algorithms [33]). Such public blockchains can
also be viewed as permissionless, because everyone can join
the system, can participate in the consensus protocol, and can
also establish smart contracts. Blockchains, however, can also
be private (also called enterprise or permissioned blockchains)
like Hyperlegder, Ethereum Enterprise, Ripple, or Quorum.
Here, all the participants and their (digital) identities are known
to one or more trusted organizations. Actors have (policy-
based) write and read permissions, and reading and writing
usually requires consensus of several participants. Such private
blockchains can thus be viewed as permissioned, because they
restrict the actors who can contribute to the consensus on the
system state to validate the block transactions. Hyperledger [3]
for instance uses so-called endorsement policies in the form
of monotone Boolean formulas, e.g., (A AND D) OR C to
determine which peers are required to endorse a transaction.
Moreover, among others, they allow also to restrict access to
approved actors who can create smart contracts.

Problem and Motivation. One particular issue that is of
interest in this work is that once some object has been
registered in the blockchain (be it private or public), the object

1http://www.businessinsider.de/blockchain-technology-applications-use-
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is persisted as is and there is no means to alter it ever again.
While this is one of the crucial properties of blockchains, it
is often desirable—at times may be even legally required—
to introduce features which allow to “break” the immutability
of objects in the blockchain, preferably in a fine-grained and
controlled way. While this might sound dangerous at first
glance, there are surprisingly many scenarios which do benefit
or even crucially require such a functionality.

With the increasing number of application of blockchains
already listed, which may include sensitive information into
blockchains, features to redact or correct objects in blockchains
might evolve to an important requirement and may often
be even legally obliged. For example, the upcoming general
data protection regulation (GDPR)2 of the European Union
imposes the Right to be Forgotten as a key Data Subject Right.
In light of this regulation, it is no longer legally possible
to use immutable blockchains in processes where personal
data are recorded within blockchains. Also various other legal
regulations such as the United States Fair Credit Reporting Act,
the Gramm-Leach-Bliley Act, and the Securities and Exchange
Commission’s Regulation S-P are relevant here.3

Mitigation Strategies. To mitigate this problem, there are
different strategies that can be used. Central to the problem are
thereby the questions of (1) who is allowed to perform these
modifications and (2) what data can be modified. Thereby it
seems desirable that (1) the person who introduces an object
into the blockchain should be able to determine who will be
able to modfiy the object if required and (2) only the object,
i.e., the transaction, can be modified, while the blockchain (i.e.,
the chaining of the blocks) does not need to be touched. As
we will discuss below, some straight-forward solutions do not
satisfactorily address these issues.

A first strategy is to simply create new objects, i.e., a new
version of a transaction or smart contract, to be integrated into
the next block of the blockchain. This new object points to
the old one and invalidates it. However, this keeps a history of
all modification which is not always desired. Moreover, this
may also infringe laws, e.g., EU privacy laws, and in particular
the Right to be Forgotten, when the objects include sensitive
and/or person related data, as in this case, the content does
effectively not disappear from the blockchain.

Another strategy could be to simply perform a hard-fork
whenever transactions in some block require to be edited or
fixed, and to develop the new blockchain from there. Apart
from being not oblivious to the users, i.e., it requires every user
to download new client software which accepts the new chain,
this is a significant intervention in the blockchain ecosystem
on every correction. In particular, one needs to invalidate
all confirmed later blocks including the modified one. The
impractically of the method, for example, becomes apparent
when thinking of a block from years ago, which needs to be
removed due to data protection reasons.

Another solution is to rewind and replay the blockchain
to the point where the modification needs to take place and
to recompute everything from this point including a new

2https://www.eugdpr.org
3https://www.nytimes.com/2016/09/10/business/dealbook/downside-of-

virtual-currencies-a-ledger-that-cant-be-corrected.html

consensus finding for all already computed blocks. For the
same reasons as discussed above, this is highly inefficient,
does not scale, and—likewise to the hard-fork strategy—is not
oblivious to the users.

Arguably all the above strategies, besides their inefficiency,
neither allow to control who will be able to modify nor what
can be modified. A more desirable strategy is one which is
controlled by the users in a fine-grained way, oblivious to the
other users, highly efficient, and only requires changes that
are local to the point where a transaction needs to be edited.
A solution providing those properties may seem too good to
be true, especially because the hash function involved in the
block computation (or transaction aggregation) prevents any
modification, i.e., any alteration of a transaction will change
the hash value and break the link to the following block.

Existing Solution. Recently, Ateniese, Magri, Venturi, and
Andrade [6] came up with a clever idea and showed that
the problem of rewriting entire blocks in a blockchain can be
efficiently solved by means of chameleon-hash functions [31].
A chameleon-hash (CH) is a hash function, where hashing is
parametrized by a public key pk. It behaves like a collision-
resistant hash function as long as the trapdoor (the secret key sk
corresponding to pk) is not known. Conversely, if the trapdoor
sk is known, arbitrary collisions can be found. Using such
hash functions as a replacement for collision-resistant ones in
blockchains allows to introduce some entity that possesses the
trapdoor. By computing collisions in the hash function, this
entity can efficiently edit the blockchain. This solution has
recently seen practical adoption by Accenture.4

Although very elegant, the approach by Ateniese et al. is
rather limited. Firstly, it considers rewriting of a blockchain
on the block level, i.e., to replace the hash of an entire
block, which seems to be far too coarse-grained and powerful
and rewriting on a transaction level seems more reasonable.
Secondly, it can only be decided in a coarse-grained way who
can compute collisions. This is because one always hashes with
respect to a single fixed public key. Consequently, a single
fixed secret key is useful to find collisions. Furthermore, the
party who computes the hash is totally oblivious about who is
later able to compute collisions in the chameleon-hash. This
means that the party who computes the hash does not know
who is allowed to rewrite the blockchain (apart from the entity
behind pk). However, when an object should be included into
the blockchain, the party performing this operation should be
able to specify who is able to perform editing on this object
in a fine-grained way. For example, for every transaction, one
should be able to separately specify the identities of the user
or roles of users within an organization (e.g., a data protection
officer or a member of the board), which is required to later
update/correct the respective object.

Our Envisioned Improved Solution. Our starting point is
attribute-based access control (ABAC) [27], where users are
tagged by (ad-hoc) attributes and there are policies that express
(potentially complex) Boolean formulas over attributes. On a
very high level, access decisions are made by evaluating the
respective access policies on the set of attributes associated to a
user. For instance, assume that a user has associated attributes

4https://www.accenture.com/us-en/service-blockchain-financial-services
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{A,B,C} out of the attribute set {A,B,C,D} and access to a
resource, protected by a policy (A AND D) OR C, then access
for this user would be granted. Note that attributes can also
directly describe users’ identities {user1, user2, user3, . . . } and
restricting the Boolean formulas to OR’s allows for specifying
the set of authorized users, e.g., user1 OR user2 OR user3.

In addition, we consider a decentralized setting, where, in
general, every entity can play the role of an attribute authority
and tag other users with attributes (in our realization this
will amount to issuing keys for corresponding attributes to
those users). Then, when some user decides that some object
should be integrated into the blockchain, the user can “tag”
the object with an access policy corresponding to an attribute
authority (managed by some other user) of it’s choice (in our
realization this amounts to hashing the object with a novel type
of chameleon-hash). If at some later point in time the objects
needs to be modified, every user that satisfies the associated
policy can perform the update (in our realization this amounts
to computing a collision in the novel type of chameleon-hash).
An important property that we want to achieve thereby is
that original and modified objects cannot be told apart (are
indistinguishable) and that even if user keys associated to
attributes leak, no information about the history of an object
can be reconstructed (e.g., its previous state).

A. Contribution

In this work, we introduce a cryptographic solution to
the scenario outlined above, i.e., the scenario of rewriting
objects in blockchains in a flexible, controlled, and fine-
grained way. To achieve this goal, we introduce the notion
of policy-based chameleon-hashes (PCHs), which generalizes
chameleon-hashes in the sense that hashing additionally takes
an access policy as input and collision finding is much more
fine-grained than in existing chameleon-hashing, i.e., a colli-
sion can only be found by users satisfying the policy specified
during hashing. In particular, when computing a hash, an
access policy can be included so that only entities that possess
secret keys corresponding to attributes satisfying the access
policy can find collisions. We rigorously model the security
one would expect from such a primitive.

A cryptographic primitive that allows for elegantly mod-
eling the access-control requirements in such a setting is
ciphertext-policy attribute-based encryption (CP-ABE) which
was first envisioned by Goyal, Pandey, Sahai, and Waters [26]
and later efficiently instantiated by Bethencourt, Sahai, and
Waters [14]. Here, one specifies access policies over attributes
upon computing ciphertexts, and secret keys are associated to
attributes. Only someone who possesses a secret key whose
corresponding attributes satisfy the access policy is able to
decrypt. The important feature thereby is that the encrypting
party does not even need to know the entities who will later
be able to decrypt, but only needs to specify an access policy.

However, it turns out to be non-trivial to achieve a similar
functionality in the context of chameleon-hashes, e.g., by ex-
tending the approach of Ateniese et al. [6]. The main technical
hurdle, when going for a naive integration of the functionality
of CP-ABE into chameleon-hashes, is that the party who
computes a hash somehow needs to encrypt a trapdoor which
will later be useful to compute collisions. Now, in conventional

chameleon-hashes, the trapdoor, which enables computing
collisions, is essentially the secret key corresponding to the
public hashing key being fixed in the system parameters. This
trapdoor remains the same for all hashes computed with respect
to one public hashing key. Consequently, after computing
one collision, one could compute a collision for any other
chameleon-hash. Moreover, with such a naive solution, the
hashing party (although it might not be authorized at all) could
then compute arbitrary collisions. We, however, strive for a
solution which allows us to have a separate trapdoor per hash,
so that we are able to implement fine-grained access control.
Conventional chameleon-hashes provide no security guarantees
in such a setting.

To this end, we pursue a different path and carefully
integrate the CP-ABE functionality with the recent concept
of chameleon-hashes with ephemeral trapdoors (CHETs) [16]
and present a generic construction of PCHs. For access policies
representing the class of monotone Boolean formulas (which
is well suited for access control), we can additionally take
advantage of recent progress in very efficient CP-ABE schemes
due to Agrawal and Chase [1]. Along the lines, we also
introduce a novel CHET which is more efficient than the
most practical known instantiation proposed by Camenisch
et al. [16]. Putting all together, we obtain a very efficient
concrete instantiation of a PCH. We support this claim with
an implementation of our primitive.

We discuss the application of PCHs for transaction-level
rewriting of blockchains (cf. Section V). Another application
that comes to mind is the usage of PCHs instead of conven-
tional chameleon-hashes in sanitizable signatures [4] to achieve
more expressive delegations of editing rights. We leave a
concrete and formal treatment open for future work. Moreover,
we believe that PCHs will find many other applications.

B. Related Work

We already briefly discussed the work due to Ateniese et
al. [6] which inspired our work. In another work Puddu et
al. [37] present mutable transactions for blockchains where in
their system all transactions are encrypted and mutation means
that the respective decryption key is not provided anymore by
validators. Mutations are subject to access-control policies, but
all the mechanisms are not cryptographic in nature.

Ferrara et al. [22] discuss cryptographically enforced role-
based access control (cRBAC) with the aim of introducing a
precise syntax for a computational version of RBAC as well
as rigorous definitions for cryptographic policy enforcement
of a large class of RBAC security policies. They also show
that an implementation of RBAC based on key-policy and
ciphertext-policy attribute-based encryption (KP-ABE and CP-
ABE, respectively) meets their security notions. Although their
work has a totally different focus than ours, it shows that the
use of attribute-based encryption is a good choice in realizing
secure access control that meets real-world needs.

Damgård et al. [21] introduced a primitive denoted as
Access Control Encryption (ACE), which was later extended
in [7], [29]. It allows a central party (called the sanitizer) to
control for a set of parties which party is allowed to receive and
send which message to other parties. This sanitizer processes
all the messages and thereby enforces access-control policies.
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Although related (in that access-control policies need to be
enforced), this primitive is not helpful in our setting.

C. Preliminaries and Notation

We use κ to denote the security parameter and we use
sans-serif letters, e.g., A, B, to denote algorithms. If not stated
otherwise, all algorithms are required to run in probabilistic
polynomial time (PPT), i.e., their running time can be bounded
by a polynomial in their input length. Furthermore, all algo-
rithms return a special symbol ⊥ on error. By y ← A(1κ, x),
we denote that y is assigned the output of the potentially
probabilistic algorithm A on input x and and fresh random
coins. We assume 1κ to be an implicit input to all algorithms.
If ∀c∃κ0∀κ ≥ κ0 : |f(κ)| ≤ 1/κc for a function f , then we
say f is negligible. For algorithms representing adversaries in
the security experiments we use calligraphic letters, e.g., A.
Furthermore, we assume that all oracles defined within security
experiments return ⊥, as soon as any of the internally executed
algorithms returns ⊥. This allows for a more compact notation.
Finally, similar to our notation in the context of algorithms, we
use y←$ S to denote that an element is sampled uniformly at
random from a finite set S and assigned to y.

II. CRYPTOGRAPHIC BUILDING BLOCKS

In this section, we provide some background including
collision-resistant hashing, ciphertext-policy attribute-based
encryption (CP-ABE), introduce the notion of access structures
that are associated to ciphertexts in CP-ABE formally and
discuss how to encode such access structures. Then, we recall
(and strengthen) chameleon-hashes with ephemeral trapdoors,
which we require as an ingredient to our main construction.

Definition 1 (Access Structure). Let U denote the universe of
attributes. A collection A ∈ 2U \ {∅} of non-empty sets is an
access structure on U. The sets in A are called the authorized
sets, and the sets not in A are called the unauthorized sets. A
collection A ∈ 2U \ {∅} is called monotone if ∀ B,C ∈ A : if
B ∈ A and B ⊆ C, then C ∈ A.

Attribute-Based Encryption. Let us recall the description of
a CP-ABE scheme.

Definition 2 (CP-ABE). A ciphertext-policy attribute-based
encryption (CP-ABE) scheme is a tuple (SetupABE,KGenABE,
EncABE,DecABE) of PPT algorithms:

SetupABE(1
κ) : Takes as input a security parameter κ in

unary and outputs a master secret and public key
(mskABE,mpkABE). We assume that all subsequent al-
gorithms will implicitly receive the master public key
mpkABE as input which implicitly fixes a message and
attribute space M and U, respectively.

KGenABE(mskABE,S) : Takes as input the master secret key
mskABE and a set of attributes S ⊆ U and outputs a
secret key skS.

EncABE(M,A) : Takes as input a message M ∈ M and an
access structure A and outputs a ciphertext C.

DecABE(skS, C) : Takes as input a secret key skS and a cipher-
text C and outputs a message M or ⊥ in case decryption
does not work.

Correctness is straightforward and given in the full version
of this paper.

Security of CP-ABE. In the following, we recall IND-CCA2
security for CP-ABE (where we explicitly model key handles,
cf. [30]).

ExpIND-CCA2
A,ABE (κ):

(mskABE,mpkABE)← SetupABE(1
κ)

b← {0, 1}
Q,S ← ∅, i← 0
(m0,m1,A∗, state)← AO(mpkABE)

where O ← {KGen′ABE(mskABE, ·),KGen′′ABE(mskABE, ·),
Dec′ABE(·, ·)}

and KGen′ABE(mskABE, ·) on input S:
return KGenABE(mskABE,S) and set S ← S ∪ S

and KGen′′ABE(mskABE, ·) on input S:
ssk← KGenABE(mskABE,S) and set Q ← Q∪ {(i, ssk)}
i← i+ 1

and Dec′ABE(·, ·) on input j, c:
return ⊥, if (j, ssk) /∈ Q for some ssk
return DecABE(ssk, c)

if m0,m1 /∈M ∨ |m0| 6= |m1| ∨ A∗ ∩ S 6= ∅, let c∗ ← ⊥
else c∗ ← EncABE(mb,A∗)

b∗ ← AKGen′′′ABE(mskABE,·),KGen′′′′ABE(mskABE,·),Dec′′ABE(·,·)(c∗, state)
where KGen′′′ABE(mskABE, ·) on input S:

return ⊥, if S ∈ A∗
return KGenABE(mskABE,S)

and KGen′′′′ABE(mskABE, ·) on input S:
let ssk← KGenABE(mskABE,S) and set Q ← Q∪ {(i, ssk)}
i← i+ 1

and Dec′′ABE(·, ·) on input j, c:
return ⊥, if (j, ssk) /∈ Q for some ssk ∨ c = c∗

return DecABE(ssk, c)
if b∗ = b return 1, else return 0

Fig. 1: ABE IND-CCA2 Security

Definition 3 (IND-CCA2-Security of CP-ABE). Let the ad-
vantage of an adversary A in the IND-CCA2 experiment
ExpIND-CCA2

A,ABE (κ) be:

AdvIND-CCA2
A,ABE (κ) :=

∣∣∣Pr
[
ExpIND-CCA2

A,ABE (κ) = 1
]
− 1/2

∣∣∣ .
We call a CP-ABE scheme ABE is IND-CCA2 secure if
AdvIND-CCA2

A,ABE (κ) is a negligible function in κ for all PPT
adversaries A.

Monotone Span Programs. Monotone span programs
(MSP) [28] (or, essentially linear secret-sharing schemes
(LSSS) [11]) consist of an integer matrix M which encodes
monotone access structures. Monotone access structures are
often represented as Boolean formulas over attributes with
AND and OR operators and input attributes satisfy the formula
if it evaluates to 1. Another way of representing such formulas
is to think of access trees. In such a tree, the leafs form
the input attributes while inner nodes are associated with the
operators AND and OR. In the full version [34, Appendix G]
of [35], Lewko and Waters describe an easy way to transform
Boolean formulas with AND and OR operators into MSP (or,
LSSS) matrices M (this transform is also used in the ABE
scheme FAME by Agrawal and Chase [1] that we chose as
a core building block for our instantiation in Section IV-D).
Essentially, the encoding is as follows. The sharing vector of
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the LSSS matrix is (1, 0, . . . , 0) and the root of the tree is
labeled with vector (1). Further, let l be a counter variable
set to 0 in the beginning. We now go recursively down the
tree levels. If the node is an AND operator, label one of
the two children with (v||1), where v is the label of the
AND node padded with 0s to length l and || denotes the
concatenation. The other child is labeled with length-(l + 1)
vector (0, . . . , 0,−1) and l is increased afterwards. If the node
is an OR operator, label both children with v and do not
increase l. Next, go on to the next node. Once labeling is
completed, we now collect the labels of the leaf (i.e., attribute)
nodes one-by-one to form the rows of the matrix M. If there
are empty matrix entries, fill them with 0s. The rows of M
are associated with a function π that maps the row number
to the corresponding attribute. The output of the encoding is
(M, π). Note that we assume a canonical encoding of the
access structure A and the tree s.t. computing M from a given
A is deterministic. Decoding (M, π) works as follows. Let S
be a set of attributes. For π(i) ∈ S there exist coefficients
λi ∈ {0, 1,−1} such that

∑
π(i)∈S λi(M)i = (1, 0, . . . , 0),

where (M)i is the i-th row of M. The output of decoding is
the list (λi)π(i)∈S.

Chameleon-Hashes. Subsequently, we recall chameleon-
hashes using the notion from Camenisch et al. [16].

Definition 4 (Chameleon-Hashes). A chameleon-hash CH with
message space M consists of five algorithms (PPGenCH,
KGenCH,HashCH,VerifyCH,AdaptCH), such that:

PPGenCH(1
κ). The algorithm PPGenCH, on input security

parameter κ in unary, outputs public parameters PPch.
For brevity, we assume that PPch is an implicit input to
all other algorithms.

KGenCH(PPch). The algorithm KGenCH, given the public
parameters PPch, outputs the secret and public key
(skCH, pkCH).

HashCH(pkCH,m). The algorithm HashCH gets as input the
public key pkCH and a message m ∈ M, and outputs a
hash h and randomness r.

VerifyCH(pkCH,m, r, h). The deterministic algorithm VerifyCH
gets as input the public key pkCH, a message m, ran-
domness r, and hash h. It outputs a decision d ∈ {0, 1}
indicating whether the hash h is valid.

AdaptCH(skCH,m,m
′, r, h). The algorithm AdaptCH, on input

of the secret key skCH, message m, randomness r, hash
h, and a additional message m′, outputs randomness r′.

Note that we assume that the AdaptCH algorithm always
verifies if the hash it is given is valid, and outputs ⊥ otherwise.

Correctness. Correctness is straightforward and given in the
full version of this paper. Note that the randomness is drawn by
HashCH, and not outside. The intention is to capture “private-
coin” constructions [6]. We provide the security notions in
Appendix A1 and stress that we rely on the notions from [16]
with the exception that we provide a stronger form of indis-
tinguishability, where the adversary is even allowed to know
the secret key.

CHs with Ephemeral Trapdoors. We recall the notion of cha-
meleon-hashes with ephemeral trapdoors (CHET) from [16].
This primitive is a variant of a chameleon-hash where, in
addition to the long-term trapdoor, another ephemeral trapdoor
(chosen during hashing) is required to compute collisions.

Definition 5 (Chameleon-Hashes with Ephemeral Trapdoors).
A chameleon-hash with ephemeral trapdoors CHET for mes-
sage space M is a tuple of five algorithms (PPGenCHET,
KGenCHET,HashCHET,VerifyCHET,AdaptCHET), such that:

PPGenCHET(1
κ) : On input security parameter κ in unary, this

algorithm outputs the public parameters PP. We assume
that they implicitly define the message space M.

KGenCHET(PP) : On input the public parameters PP, this al-
gorithm outputs the long-term key pair (skCHET, pkCHET).

HashCHET(pkCHET,m) : On input the public key pkCHET and a
message m, this algorithm outputs a hash h, correspond-
ing randomness r, as well as the ephemeral trapdoor etd.

VerifyCHET(pkCHET,m, h, r) : On input the public key pkCHET,
a message m, a hash h, and randomness r, this algorithm
outputs a bit b.

AdaptCHET(skCHET, etd,m,m′, h, r) : On input secret key
skCHET, ephemeral trapdoor etd, a message m, a message
m′, hash h, randomness r, and trapdoor information etd,
this algorithm outputs randomness r′.

Note that we assume that the AdaptCHET algorithm always
verifies if the hash it is given is valid, and outputs ⊥ otherwise.

Correctness. Correctness is straightforward and given in the
full version of this paper.

For security, chameleon-hashes with ephemeral trap-
doors are required to be indistinguishable, publicly collision-
resistant, and privately collision-resistant. We postpone the
formal definitions of these properties to Appendix A2. In a
nutshell, indistinguishability requires that an adversary cannot
decide whether randomness was created through hashing or
adaption. Public collision-resistance requires that an outsider
cannot find any collisions by itself, while private collision-
resistance enforces that even the holder of the long-term
trapdoor cannot find collisions, if the ephemeral secret key
is not known.5

III. POLICY-BASED CHAMELEON-HASHING

In this section, we introduce and define a novel primitive
which we term policy-based chameleon-hash. In Section III-A,
we formally define policy-based chameleon-hashes. In Sec-
tion III-B, we show how to generically construct policy-
based chameleon-hashes from a combination of the relatively
recent concept of chameleon-hashes with ephemeral trapdoors
(CHET) and ciphertext-policy attribute-based encryption (CP-
ABE) schemes and rigorously prove the security of this generic
construction. Later in Section IV-D, after having discussed the
selection of the underlying primitives, we present a practically
efficient instantiation of our generic construction for the class
of policies represented by monotone access structures. The
efficiency of this concrete instantiation is then confirmed with
a practical implementation in Section IV-E.

5Actually, we require some stronger definitions, which we also introduce.
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A. Definitions

We define policy-based chameleon-hashes and its security.

Definition 6 (Policy-Based Chameleon-Hashes). A policy-
based chameleon-hash PCH with message space M consists
of five algorithms (PPGenPCH,KGenPCH,HashPCH,VerifyPCH,
AdaptPCH) which are defined as follows.

PPGenPCH(1
κ) : On input a security parameter κ in unary,

this algorithm outputs the secret and public key
(skPCH, pkPCH) where pkPCH is implicitly available to all
algorithms and determines M.

KGenPCH(skPCH,S) : On input a secret key skPCH and a set
of attributes S ⊆ U, key generation outputs a secret key
skS.

HashPCH(pkPCH,m,A): On input a public key pkPCH, access
structure A ⊆ 2U, and a message m ∈ M, the hash
algorithm outputs a hash h and randomness r.

VerifyPCH(pk,m, h, r): On input public key pkPCH, message
m, hash h, and randomness r, the verification outputs a
bit b.

AdaptPCH(skS,m,m
′, h, r): On input a secret key skS, mes-

sages m and m′, hash h, and randomness r, the adapta-
tion algorithm outputs randomness r′.

Note that we assume that the KGenPCH outputs ⊥ if S is
not contained in U and the AdaptPCH algorithm always verifies
if the hash it is given is valid, and output ⊥ otherwise.

Correctness. For correctness, we require that for all κ ∈ N,
for all A ⊆ 2U, for all S ∈ A, for all (skPCH, pkPCH) ←
PPGenPCH(1

κ), for all skS ← KGenPCH(skPCH,S), for all m ∈
M, for all (h, r)← HashPCH(pkPCH,m,A), for all m′ ∈ M,
for all r′ ← AdaptPCH(skS,m,m

′, h, r), we have that that 1 =
VerifyPCH(pkPCH,m, h, r) = VerifyPCH(pkPCH,m

′, h, r′).

Furthermore, we require the following security properties.

Indistinguishability. Informally, indistinguishability requires
that it be intractable to decide whether for a chameleon-hash
its randomness is fresh or was created using the adaption
algorithm even if the secret key is known. While such a
property was not required in the work by Ateniese et al. [6],
we believe that it could be useful in the blockchain context,
because it helps to prevent outsiders (which later become
insiders) from learning whether adaptations of certain objects,
e.g., transactions, in the blockchain have taken place, when
seeing the respective hashes and randomness. The security
experiment grants the adversary access to the secret key and
a left-or-right style HashOrAdapt oracle. It requires that the
randomnesses r does not reveal whether it was obtained
through HashPCH or AdaptPCH. The messages are adaptively
chosen by the adversary.

Definition 7 (Indistinguishability). We define the advantage of
an adversary A in the Ind experiment ExpInd

A,PCH(κ) as

AdvInd
A,PCH(κ) :=

∣∣∣Pr
[
ExpInd

A,PCH(κ) = 1
]
− 1/2

∣∣∣ .
We say a PCH scheme is indistinguishable, if AdvInd

A,PCH(κ)
is a negligible function in κ for all PPT adversaries A.

ExpInd
A,PCH(κ)

(skPCH, pkPCH)← PPGenPCH(1
κ)

b← {0, 1}
b∗ ← AHashOrAdaptPCH(sk,·,·,·,·,b)(skPCH, pkPCH)

where HashOrAdaptPCH(sk, ·, ·, ·, ·, b) on input m,m′,S,A:
(h0, r0)← HashPCH(pkPCH,m

′,A)
(h1, r1)← HashPCH(pkPCH,m,A)
skS ← KGenPCH(sk,S)
r1 ← AdaptPCH(skS,m,m

′, h1, r1)
return (hb, rb)

return 1, if b = b∗

return 0

Fig. 2: PCH Indistinguishability

Outsider Collision-Resistance. Outsider collision-resistance
essentially addresses, to some extent, the same requirements
as covered by “enhanced collision-resistance” in the work by
Ateniese et al. [6]. That is, it grants the adversary A adaptive
access to an AdaptPCH oracle, and requires that it be intractable
to find collisions for messages which were not queried to
AdaptPCH. We note that this definition, analogous to [16], is
even stronger than key-exposure freeness [5], [19].6

ExpCROut
A,PCH(κ)

(skPCH, pkPCH)← PPGenPCH(1
κ)

Q,M← ∅, i← 0

(m∗, r∗,m′∗, r′∗, h∗)← AKGen′PCH(skPCH,·),Adapt
′
PCH(·,·,·,·,·)(pkPCH)

where KGen′PCH(skPCH, ·) on input S:
skS ← KGenPCH(sk,S)
Q ← Q∪ {(i, skS)}
i← i+ 1

and Adapt′PCH(·, ·, ·, ·, ·) on input j,m,m′, h, r :
return ⊥, if VerifyPCH(pkPCH,m, h, r) 6= 1 ∨
(j, skS) /∈ Q for some skS
r′ ← AdaptPCH(pkPCH, skS,m,m

′, h, r)
M←M∪ {m,m′}
return r′

return 1, if
VerifyPCH(pkPCH,m

∗, h∗, r∗) = 1 ∧
VerifyPCH(pkPCH,m

′∗, h∗, r′∗) = 1 ∧
m∗ /∈M ∧ m∗ 6= m′∗

return 0

Fig. 3: PCH Outsider Collision-Resistance

Definition 8 (Outsider Collision-Resistance). We define the
advantage of an adversary A in the CRout experiment
ExpSCRout

A,PCH(κ) as

AdvSCRout
A,PCH(κ) := Pr

[
ExpSCRout

A,PCH(κ) = 1
]
.

We say that a PCH scheme provides outsider collision-
resistance, if AdvSCRout

A,PCH(κ) is a negligible function in κ for
all PPT adversaries A.

Insider Collision-Resistance. Insider collision-resistance ad-
dresses the requirement that not even insiders who possess
secret keys with respect to some attributes can find collisions
for hashes which were computed with respect to policies which

6Key-exposure only means that once a collision is made public, anyone can
extract the secret key.
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are not satisfied by their keys (oracle KGen′PCH). Intuitively,
this notion enforces the attribute-based access-control policies,
even if the adversary sees collisions for arbitrary attributes
(oracles KGen′′PCH and Adapt′PCH).

ExpCRIns
A,PCH(κ)

(skPCH, pkPCH)← PPGenPCH(1
κ)

S,H,Q ← ∅, i← 0
(m∗, r∗,m′∗, r′∗, h∗)← AO(pkPCH)

where O ← {KGen′PCH(skPCH, ·),KGen′′PCH(skPCH, ·),
Hash′PCH(pkPCH, ·, ·),Adapt′PCH(pkPCH, ·, ·, ·, ·)}

and KGen′PCH(skPCH, ·) on input S:
skS ← KGenPCH(sk,S)
S ← S ∪ {S}
return skS

and KGen′′PCH(skPCH, ·) on input S:
skS ← KGenPCH(sk,S)
Q∪ {(i, skS)}
i← i+ 1

and Hash′PCH(pkPCH, ·, ·) on input m,A:
(h, r)← HashPCH(pkPCH,m,A)
H ← H∪ {(h,A,m)}
return (h, r)

and Adapt′PCH(pkPCH, ·, ·, ·, ·, ·) on input m,m′, h, r, j:
return ⊥, if (j, skS) /∈ Q for some skS
r′ ← AdaptPCH(pkPCH, skS,m,m

′, h, r)
if (h,A,m) ∈ H for some A, let H ← H∪ {(h,A,m′)}
return r′

return 1, if
VerifyPCH(pk,m∗, h∗, r∗) = VerifyPCH(pk,m′∗, h∗, r′∗) = 1 ∧
(h∗,A, ·) ∈ H, for some A ∧ m∗ 6= m′∗ ∧ A ∩ S = ∅ ∧
(h∗, ·,m∗) /∈ H

return 0

Fig. 4: PCH Insider Collision-Resistance

Definition 9 (Insider Collision-Resistance). We define the
advantage of an adversary A in the SCRin experiment
ExpSCRin

A,PCH(κ) as

AdvSCRin
A,PCH(κ) := Pr

[
ExpSCRin

A,PCH(κ) = 1
]
.

We say that a PCH scheme is insider collision-resistant, if the
function AdvSCRin

A,PCH(κ) is a negligible function in κ for all
PPT adversaries A.

B. Generic Construction

Our PCH construction is based on an IND-CCA2-secure
CP-ABE scheme and a chameleon-hash with ephemeral trap-
doors (CHET). We will sketch the overall idea first. The PCH
setup runs the setup and the key generation of the CHET
scheme as well as the key generation of the CP-ABE. Every
participant obtains a secret key of the CHET and a secret key
for the CP-ABE associated to a set of attributes. Hashing a
message m to an access structure A means computing a CHET
to the message m and encrypting the ephemeral trapdoor under
A using the encryption algorithm of the CP-ABE. Collision-
finding is possible if the AdaptPCH algorithm has access to
the secret key of the CP-ABE for attributes S such that S ∈ A
is satisfied. This allows reconstructing the ephemeral trapdoor
which in turn allows computing a collision in the CHET. The
construction is depicted in Scheme 1.

PPGenPCH(1
κ) : Return skPCH ← (mskABE, skchet) and

pkPCH ← (mpkABE, pkchet), where

PPchet ← PPGenCHET(1
κ),

(skchet, pkchet)← KGenCHET(PPchet), and
(mskABE,mpkABE)← SetupABE(1

κ).

KGenPCH(skPCH,S) : Parse skPCH as (mskABE, skchet) and re-
turn skS ← (skchet, ssk′), where

ssk′ ← KGenABE(mskABE,S).

HashPCH(pkPCH,m,A) : Parse pkPCH as (mpkABE, pkchet) and
return (h, r)← ((hchet, C), rchet), where

(hchet, rchet, etd)← HashCHET(pkchet,m
′), and

and C ← EncABE(etd,A).

VerifyPCH(pkPCH,m, h, r) : Parse pkPCH as (mpkABE, pkchet),
h as (hchet, C), and r as rchet. Return 1 if the following
check holds and 0 otherwise:

CHET.Verify(pkchet,m, hchet, rchet) = 1.

AdaptPCH(skS,m,m
′, h, r) : Parse skS as (skchet, ssk′) and

h as (hchet, C), and r as rchet. Check whether
VerifyPCH(pk,m, h, r) = 1 and return ⊥ otherwise. Com-
pute etd← DecABE(ssk′, C) and return ⊥ if etd = ⊥. Let
r′ ← r′chet, where

r′chet ← AdaptCHET(skchet, etd,m,m′, h, rchet).

Return ⊥, if VerifyPCH(pkPCH,m
′, h, r′) = 0 and r′

otherwise.

Scheme 1: Black-box construction of a PCH scheme

Remark 1. In Scheme 1, a hash and also its verification does
not allow to decide whether decrypting the ABE ciphertext
will actually allow to compute a collision. We believe that
many application scenarios do not require this. For instance,
in the (permissioned) blockchain setting, when a party inserts
a transaction, it is in the parties’ best interest that this happens
correctly and that its transaction could be rewritten if required.
While one could clearly make the construction (as well as the
model of PBCH) stronger, e.g., by requiring a non-interactive
zero-knowledge (NIZK) proof that the CP-ABE ciphertext
encrypts a valid CHET trapdoor, this would add a significant
performance penalty. Obtaining an efficient construction in
such a strong model, is a valuable avenue for future work.

Remark 2. We have based our construction on conven-
tional CP-ABE, but to support multiple attribute authorities
per policy, one could instead use a multi-authority CP-ABE
scheme [17], [35]. We leave this for future work.

Now, we investigate the security of the PCH in Scheme 1.

Theorem 1. If the PCH scheme in Scheme 1 is based on
a strongly indistinguishable CHET, then the PCH scheme is
strongly indistinguishable.

The theorem above can be proven by a straight forward re-
duction to strong indistinguishability of the underlying CHET.
We provide the proof in the full version.

Theorem 2. If the PCH scheme in Scheme 1 is based on
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a publicly collision-resistant CHET, then the PCH scheme is
outsider collision-resistant.

The theorem above can be proven by a straightforward re-
duction to public collision-resistance of the underlying CHET.
We provide the proof in the full version.

Theorem 3. If the PCH scheme in Scheme 1 is based on
a strongly privately collision-resistant CHET and an IND-
CCA2-secure ABE, then the PCH scheme is insider collision-
resistant.

Proof: We prove the theorem above in a sequence of
games, where we use Pr[Si] to denote the success probability
of the adversary in Game i. In addition we let the number of
queries to the oracle Hash′ be denoted by q.

Game 0. This is the original CRin security experiment from
Figure 4 played with Scheme 1.

Game 1. As Game 0, but we guess the index i∗ corresponding
to the query to Hash′ which returns the hash h∗ which will be
attacked by the adversary. We store the hash h∗ = (h∗CHET, C

∗)
as well as the corresponding randomness r∗ and the ephemeral
trapdoor etd∗. If we detect that our guess is wrong at some
point during the simulation, we abort.

The winning probability in Game 1 is the same as in
Game 0, unless an abort happens. Therefore we have that
Pr[S1] = Pr[S0] · 1/q.

Game 2. As Game 1, but whenever we receive an adapt query
for a hash h = (hCHET, C), where C = C∗ we do not decrypt,
but directly adapt using etd∗.

The winning probability in Game 2 is the same as in
Game 1 under the perfect correctness of the encryption
scheme, i.e., Pr[S2] = Pr[S1].

Game 3. As Game 2, but we change the simulation of
the Hash algorithm within the i∗-th query to the Hash′CHET
oracle: instead of running C ← ΠABE.Enc(etd,A), we run
C ← ΠABE.Enc(0|etd|,A) and locally store etd.

We claim that Game 2 and Game 3 are indistinguishable
under the IND-CCA2 security of ΠABE, i.e., |Pr[S3]−Pr[S2]| ≤
AdvIND-CCA2

B,ABE (κ). To prove the claim, we show that we can
use an adaptive IND-CCA challenger to effectively interpolate
between Game 2 and Game 3. In particular, consider the fol-
lowing hybrid game: Upon setup we obtain mpk from an IND-
CCA challenger, set msk← ⊥ and complete the remainder of
the setup honestly. To simulate queries to the key generation
oracles we use the respective oracles provided by the chal-
lenger. Decryption within the adapt oracle is done by using
the decryption oracle provided by the challenger. Furthermore,
upon the i∗-th query to Hash′, we output (etd, 0|etd|,A, state)
to the challenger to obtain (C∗, state) and set C ← C∗.
For adapt queries with respect to the hash returned upon the
i∗-th query to Hash′, we directly adapt using etd without
prior decryption. Now, observe that aborting as soon as we
detect that our guess of index i∗ is wrong ensures that we
will never have to answer queries which involve queries to
the challenger’s oracle which would not be answered. This, in
turn, means that if the bit b of the challenger is 0 we perfectly

simulate Game 2, whereas we perfectly simulate Game 3 if
b = 1. This proves the claim.

Reduction to Strong Private Collision-Resistance. Now
we are ready to describe the reduction to private collision-
resistance. In particular, we obtain PPCHET from a private
collision-resistance challenger C and honestly complete the
setup. Then we simulate all oracles except the hash and the
adapt oracle as in Game 3. In particular, we can internally
simulate KGenCHET and all queries to the Hash′CHET oracle
up to the i∗-th query. In the i∗-th query to the Hash′CHET
oracle, we use the Hash′ oracle provided by the private
collision-resistance challenger to obtain (hchet, rchet). As the
ciphertext C already encrypts 0|etd| instead of etd we do
not require to know etd. Likewise, for the adaption ora-
cle, we only modify the simulation for queries with respect
to the etd returned upon the i∗-th query to Hash′CHET in
that we use the adaption oracle provided by the challenger
to compute the adapted hashes. If the adversary eventually
outputs a collision (m∗, r∗chet,m

′∗, r′∗chet, (h
∗
chet, C

∗)), we out-
put (m∗, r∗chet,m

′∗, r′∗chet, h
∗
chet) as a private collision for the

CHET. Consequently, we have that AdvSCRpriv
C,CHET(κ) ≥ Pr[S3].

Overall Bound. As we have shown above, the advantage of
any adversary in the final game is bounded by the advantage
of any adversary in the private collision freeness game, i.e.,
Pr[S3] ≤ AdvSCRpriv

C,CHET(κ). This yields the following bound for
the original game AdvsCRin

A,PCH(κ) ≤ q · (AdvIND-CCA2
B,ABE (κ) +

AdvSCRpriv
C,CHET(κ)), which concludes the proof.

C. On the Choice of Access Policies

The policy expressiveness of our PCH construction is
given by the policy expressiveness of the underlying CP-ABE
scheme. In general, the most basic and reasonable access
policies offer at least monotonic operators such as AND and
OR. If we speak of access policies in this work, we refer
to monotone access policies. For access policies, we use
monotone span programs (MSPs) as described in Section II
for encoding the access policy.

More expressive policies are known in the cryptographic
literature, e.g., ones that allow for NOT-gates to be present
within an access policy. However, the provided ABE schemes
are often not as efficient compared to their monotonic coun-
terparts in a practical sense. In [26], Goyal et al. describe
an inefficient way of realizing more general access policies
to allow the NOT operator. Furthermore, we can allow even
for access policies that are represented as general circuits as
described by the work of Gorbunov et al. [25] based on lattices
and by the work of Garg et al. [24] based on multilinear maps.
However, those scheme are not at all efficient yet. Hence,
for practical considerations, schemes in the bilinear group
setting supporting monotone access policies (i.e., monotone
span programs) currently seem to be the optimal choice.

IV. INSTANTATION AND EVALUATION

In this section, we start with discussing the choice of
primitives to come up with an efficient instantiation of our
generic approach to PCHs. We then present our construction
and report on the evaluation of an implementation of our
concrete PCH.
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A. Selecting a CP-ABE Scheme

In terms of practical CP-ABE instantiations, we consider
the recent work by Agrawal and Chase on a very efficient
CP-ABE scheme they dubbed FAME [1]. FAME supports
unbounded ABE universes, has no restrictions on the monotone
policies used, is based on efficient Type-III pairings, has
constant-time decryption, and is adaptively secure under a stan-
dard assumption. Those features make FAME very versatile
in practical environments as used in our context. The only
restriction is that FAME does not support multiple attributes
in a ciphertext policy (which is commonly referred to as one-
use restriction). However, FAME can be adapted to allow up
to a constant number of the repeating attributes within a policy
by increasing the ciphertext and keys by a small factor.

The CP-ABE scheme by Waters [39] yields a good candi-
date for our scenario as well; in particular, since his construc-
tion does not have the one-use restriction. However, Waters’
scheme is only selectively secure and requires a q-type (i.e.,
non-standard and non-static) assumption. In a selective security
model, the adversary has to output the target access policy
before receiving the public parameters of the system which is
clearly not a realistic scenario and too weak for the security
required by PCHs. Furthermore, encryption and decryption is
less efficient compared to FAME [1].

We also considered the state-of-the-art adaptively secure
CP-ABE scheme from the literature, i.e., the work by Chen,
Gay, and Wee [18]. Their scheme is fairly efficient (see [1]
for comparisons); however, not suitable for our scenario due
to the restriction of a bounded universe of attributes.

Finally, we end up with selecting FAME [1]. Since FAME
only provides IND-CPA security, but we require IND-CCA2
security, we apply a variant of the well known Fujisaki-
Okamoto transform [23] (cf. [30]) to FAME. Basically, the
encryption algorithm will encrypt as its message (m, r) with
m the original message and r a sufficiently large randomly
sampled bitstring (this requires to injectively encode (m, r)
into the message space of ABE). The ABE encryption is
derandomized and uses as the random coins H(r,A) where
H is a hash function modeled as a random oracle and A the
used access policy to obtain the ciphertext C. The decryption
algorithm applies the original decryption algorithm from IND-
CPA-secure ABE to receive (m′, r′). Then, it re-encrypts
(m′, r′) using random coins H(r,A) to obtain ciphertext C ′.
If it holds that C = C ′, it outputs m′ and otherwise it outputs
⊥. Note that if we want to use the resulting scheme as an IND-
CCA2-secure KEM, we can simply sample a random (say `
bit) key k and use (k, r) as the message to be encrypted with
the ABE and k as the key (and also need to include k as input
to H). Observe, that clearly for the transformation to work, A
needs to be known to the decryption algorithm. We can safely
assume that this can be inferred from a given ciphertext (of the
IND-CPA-secure variant of ABE), i.e., by simply appending a
canonical representation of A to the ciphertext.

B. Modified CHET

Camenisch et al. in [16] provide, among others, a generic
construction of a CHET by combining two chameleon-hashes,
both requiring collision-resistance even in presence of a

collision-finding oracle. The keys for the second chameleon-
hash are drawn freshly for each new hash. Thus, the secret
key for the second chameleon-hash is the ephemeral trapdoor.
In this section, we provide a construction which is essentially
the one given by Camenisch et al. [16], but we additionally
check whether a hash h is valid after adaption and add the
two public keys to the hash-computation, as already done by
Krenn et al. [32], but in a slightly different context. This
allows us to prove our stronger notion of private collision-
resistance required in this work. The formal definitions are
given in Appendix A while our generic construction is given
in Scheme 2.

PPGenCHET(1
κ) : On input a security parameter κ, let

PPCH ← PPGenCH(1
κ). Return PPCHET ← PPCH.

KGenCHET(PPCHET) : On input PPCHET = PPCH, return
(sk1CH, pk1CH)← KGenCH(PPCH).

HashCHET(pkCHET,m) : On input of pkCHET = pk1CH
and m, let (etd, pk2CH) ← KGenCH(PPCH). Let
(h1, r1) ← HashCH(pk1CH, (m, pk1CH, pk2CH)) and
(h2, r2) ← HashCH(pk2CH, (m, pk1CH, pk2CH)). Return
((h1, h2, pk1CH, pk2CH), (r

1, r2)).
VerifyCHET(pkCHET,m, h, r) : On input of pkCHET = pk1CH,

m, h = (h1, h2, pk1CH, pk2CH) and r = (r1, r2), return
1, if VerifyCH(pk1CH, (m, pk1CH, pk2CH), h

1, r1) = 1 and
VerifyCH(pk2CH, (m, pk1CH, pk2CH), h

2, r2) = 1. Otherwise,
return 0.

AdaptCHET(skCHET, etd,m,m′, h, r) : On input a secret key
skCHET = sk1CH, etd, messages m and m′, a hash
h = (h1, h2, pk1CH, pk2CH) and r = (r1, r1), first check
that VerifyCHET(pkCHET,m, h, r) = 1. Otherwise, return
⊥. Let r′1 ← AdaptCH(sk1CHET, (m, pk1CH, pk2CH), (m

′,
pk1CH, pk2CH), r

1, h1) and r′2 ← AdaptCH(etd, (m, pk1CH,
pk2CH), (m

′, pk1CH, pk2CH), r
2, h2). Let r′ ← (r′1, r′2). If

VerifyCHET(pkCHET,m
′, h, r′) = 0, return ⊥. Return r′.

Scheme 2: Construction of a CHET

Theorem 4 (Security of Scheme 2). If CH is strongly in-
distinguishable, collision-resistant, and correct, then the con-
struction of a CHET given in Construction 2 is strongly in-
distinguishable, publicly collision-resistant, strongly privately
collision-resistant, and correct.

We provide a proof of this theorem in Appendix C.

Concrete Instantiation. For our concrete instantiation of the
CHET, we use the RSA-based CH from [16] which builds
upon the one presented by Brzuska et al. [15]. We recall this
construction in Appendix B1 and show its security in our
stronger model.

C. Selection of Suitable Parameters

Subsequently, we discuss the selection of parameters for
the required cryptographic building blocks considering the
cryptanalytic state-of-the-art.

Bilinear Groups. We assume that the reader is familiar with
bilinear maps. In a nutshell, let BilGen be an algorithm
outputting the parameters (p, ê,G1,G2,GT , g1, g2) for a Type-
III pairing. For our instantiation, we choose the BN curve
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family [9] and in particular the BN254 curve, which gives
us around 100 bit of security. If one wants to go for a larger
security level with comparable performance, one can follow
the same lines as Zcash7 and choose the BLS curve family [8]
and in particular the curve BLS12-381 giving roughly 120
bits of security.8

RSA. To have a security level of RSA parameters that is
comparable to the one for our chosen bilinear groups, we
selected moduli of 2048 bits in size.

D. A Concrete PBCH

We now present an efficient instantiation of a PCH. In
particular, we instantiate our PCH using the concrete CHET
introduced in Section IV-B. We stress that although we end
up in a construction that instantiates one component based on
the RSA setting and the other one in a prime order group,
neither influences the other regarding choice of the security
parameters and it is a compromise to obtain a good overall
efficiency.

Our Construction. In Scheme 3, we present our concrete
instantiation. Likewise to the abstract algorithmic definition
of PCHs, we assume that all algorithms implicitly have ac-
cess to pk. Note that we use the CP-ABE scheme, which
is made IND-CCA2 secure as discussed in Section IV-A.
This scheme is used as a CCA secure KEM and combined
with an IND-CCA2 secure symmetric encryption scheme to
obtain a CCA2 secure hybrid encryption scheme (using the
compiler formalized in [20]). Consequently, we encrypt the
ephemeral trapdoor using the symmetric scheme (denoted
by (KGenSE,EncSE,DecSE) in our construction). It is easy
to show that this modification preserves the adaptive IND-
CCA2 security of the modified CP-ABE scheme. We note that
the hash functions H1, H2, H3, H4 are modeled as a random
oracles (ROs) [13]9 and let enc : {0, 1}`+κ → GT be in
injective encoding function and ` be the maximum length of
keys output by KGenSE(1

κ).

Combining the results in Theorems 1-3, 4, and Theorem 1
from [16], we obtain the following.

Corollary 1. The construction in Scheme 3 is an indistinguish-
able, outsider and insider collision-resistant PCH.

E. Performance Evaluation

To evaluate the practicality of our scheme, we implemented
our construction from Scheme 3 in Python 3.5.3 and base
our implementation on the Charm [2] framework version
0.5010, the implementation of FAME from the authors of [1]11,
whereas we use our own implementation of CH. We performed
the measurements on a laptop with an Intel Core i7-7600U
CPU @ 2.80GHz with 16GB RAM running Ubuntu 18.04.
All frequent operations, i.e., KGen, Hash, Verify and Adapt

7https://z.cash/blog/new-snark-curve.html
8Estimates from a personal communication with Razvan Barbulescu.
9We note that any practical ABE scheme in literature that support an

unlimited number of attributes from an unbounded domain are proven secure
in the Random Oracle Model.

10https://github.com/JHUISI/charm
11https://github.com/sagrawal87/ABE

for a policy of 64 attributes (consist of two OR clauses with
32 attributes connected via AND) are significantly below a
second. Due to space constraints, we refer the reader to the
full version for the detailed performance analysis.

V. BLOCKCHAIN TRANSACTION-LEVEL REWRITING

In this section, we come back to the application of policy-
based chameleon-hash functions (PCHs) to rewriting objects in
blockchains, where we use the syntax of the Bitcoin blockchain
for our discussion. We recall that while Ateniese et al. [6]
target rewriting entire blocks within a blockchain, we propose
transaction-level rewriting. Here, blocks in the blockchain
remain intact but only specific transactions inside a block can
be rewritten. We deem this application much more important
than when focusing on blocks as it is much more fine-grained
and keeps the overall blockchain intact. We recall that each
block in a blockchain stores a compact representation of a set
of transactions, i.e., the root hash of a Merkle tree (denoted
TX ROOT) which accumulates all transactions associated to
a block. Now, one way to integrate transaction-level rewriting
capabilities into blockchains by means of PCHs is as follows.
Every participant who engages in the role of an attribute
authority includes pk using a transaction signed under the key
corresponding to the public key of an address owner (we stress
that there are various other ways of distributing the pk’s in
a way that they can be verified). The attribute authority can
then issue PCH secret keys to other users. If a user wants
to include a modifiable transaction the transaction needs to
be hashed using the PCH. In Figure 5, we consider a toy
example of a block (Bi) which accumulates four transactions
Ti,1, . . . , Ti,4. Let us assume that transaction Ti,1 should be
rewritable by users that satisfy access policy A. Then the
last three transactions (Ti,2 to Ti,4) are processed as usual,
i.e., input to the hash computation based on H , but the first
transaction is preprocessed by means of the PCH and the
hash value A is input in the Merkle tree. Observe that the
randomness ri is not included in the hash computation of
the aggregation and is provided as non-hashed part of the
transaction/block. When the transaction needs to be updated,
everyone with a secret key satisfying A can compute a collision
for hash value A and provide the new randomness r′i. Note
that in contrast to the scenario of Ateniese et al. [6], the hash
function used to chain blocks remains to be a conventional
collision-resistant hash function and the PREV H values are
never updated.

Let us briefly recall how the security properties of the PCH
come into play. Indistinguishability guarantees that it is not
detectable whether a hash computed by means of the PCH has
been adapted, i.e., whether a rewrite happened. We stress that
this even holds if PCH secret keys that would allow to compute
a collision are leaked. More importantly, the properties insider
and outsider collision-resistance guarantee that only someone
in possession of a secret key (trapdoor) whose attributes satisfy
the access policy used upon computing the hash is able to
perform editing.

VI. CONCLUSION

We tackle the problem of rewriting objects in blockchains
in a way, flexible enough for real-world needs regarding
the granularity of who can perform such an operation. With
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PPGenPCH(1
κ) : On input security parameter κ run

1) Choose prime e1 s.t. e1 > N ′ with N ′ = maxr{(N, ·, ·, ·, ·)← RSAKGen(1κ; r)}.
2) Run (N1, p1, q1, ·, ·) ← RSAKGen(1κ), choose a hash function H1 : {0, 1} → Z∗N1

. Compute d1 s.t. ed1 ≡ 1 mod (p1 − 1)(q1 − 1), set
skCHET ← (d1) pkCHET ← (κ,N1, e,H1).

3) Run (p, ê,G1,G2,GT , g1, g2) ← BilGen(1κ). Pick a1, a2, b1, b2←$ Z∗p and w1, w2, w3←$ Zp, hash functions H3 : {0, 1}∗ → G1 and H4 :
{0, 1}∗ → (Zp)2, an encryption scheme (KGenSE,EncSE,DecSE), and set

mpkABE ← (g2, q1 ← ga12 , q2 ← ga22 , T1 ← ê(g1, g2)
w1a1+w3 , T2 ← ê(g1, g2)

w2a2+w3 , H3, H4, (KGenSE, ,EncSE,DecSE)), and

mskABE ← (a1, a2, b1, g2, g
w1
1 , gw2

1 , gw3
1 )

and return skPCH ← (mskABE, skCHET) and pkPCH ← (mpkABE, pkCHET).
KGenPCH(skPCH, S) : On input skPCH = (mskABE, skCHET) and attribute set S, parse msk as (a1, a2, b1, g2, g

w1
1 , gw2

1 , gw3
1 ), pick ρ1, ρ2←$ Zp and compute

sk0 = (sk0,1, sk0,2, sk0,3)← (gb1ρ12 , gb2ρ22 , gρ1+ρ22 ).

For all s ∈ S and t = 1, 2 compute

sks,t ← H3(y‖1‖t)
b1ρ1
at ·H3(y‖2‖t)

b2ρ2
at ·H3(y‖3‖t)

ρ1+ρ2
at · g

σs
at
1 ,

where σs←$ Zp and set sks ← (sks,1, sks,2, g
−σs
1 ). Moreover, for t = 1, 2 compute

sk′t ← gwt1 ·H3(011‖t)
b1ρ1
at ·H3(012‖t)

b2ρ2
at ·H3(013‖t)

ρ1+ρ2
at · g

σ′
at
1 ,

where σ′←$ Zp and set sk′ ← (sk′1, sk
′
2.g

d3
1 · g

−σ′

1 ). Set skS,ABE ← (sk0, {sks}s∈S, sk′) and return (skCHET, skS,ABE).
HashPCH(pkPCH,m,M) : On input public key pk = (mpkABE, pkCHET), a message m and a matrix encoding M of access structure A, parse pkCHET =

(κ,N1, e,H1) and:
1) Run (N2, p2, q2, ·, ·)← RSAKGen(1κ), fix a hash function H2 : {0, 1} → Z∗N2

. Compute d2 s.t. ed2 ≡ 1 mod (p2 − 1)(q2 − 1).
2) Choose r1←$ Z∗N1

, r2←$ Z∗N2
, compute h1 ← H1((m,N1, H1, N2, H2))re1 mod N and h2 ← H2((m,N1, H1, N2, H2))re2 . set h′ ← (h1, h2)

and r′ ← (r1, r2).
3) Choose r←$ {0, 1}κ, k←$ KGenSE(1

κ) compute (u1, u2)← H4((r,A)) and ct0 ← (qu1
1 , qu2

2 , gu1+u2
2 ). Assuming M has ` rows and k columns,

then for i ∈ [`] and z = 1, 2, 3 compute

cti,z ← H3(π(i)‖z‖1)u1 ·H3(π(i)‖z‖2)u2 ·
k∏
j=1

[
H3(0‖j‖z‖1)u1 ·H3(0‖j‖z‖2)u2

](M)i,j .

Set cti ← (cti,1, cti,2, cti,3), K ← encode(k, r), compute ĉt← Tu1
1 · Tu2

2 ·K, c̃t←$ EncSE(k, d2), and set ct← (ct0, ct1, . . . , ct`, ĉt, c̃t).
Return (h, r)← ((h′, N2, H2, ct), r′).

VerifyPCH(pkPCH,m, h, r) : On input public parameters pk = (mpkABE, pkCHET), message m, hash value h = (h′, N2, H2, ct), and randomness r =
(r1, r2), parse pkCHET = (κ,N1, e,H1), verify whether r1 ∈ Z∗N1

, r2 ∈ Z∗N2
, and whether h1 = H1((m,N1, H1, N2, H2))re1 mod N1 and

h2 = H2((m,N1, H1, N2, H2))re2 mod N2. If all checks hold, return 1 and 0 otherwise.
AdaptPCH(skS,m,m

′, h, r) : On input skS = (skCHET, skS,ABE) messages m and m′, hash value h = (h′, N2, H2, ct) and randomness r = (r1, r2) and
assuming that S satisfies the access policy A used for encryption and associated to the hash (otherwise return ⊥), parse skCHET = (d1) and:
1) Compute coefficients {λi}π(i)∈S for the MSP (M, π) associated to A as discussed in Section 2, compute

A← ĉt · ê(
∏
i∈I

ctλii,1, sk0,1) · ê(
∏
i∈I

ctλii,2, sk0,2) · ê(
∏
i∈I

ctλii,3, sk0,3),

B ← ê(sk′1 ·
∏
i∈I

skλi
π(i),1

, ct0,1) · ê(sk′2 ·
∏
i∈I

skλi
π(i),2

, ct0,2) · ê(sk′3 ·
∏
i∈I

skλi
π(i),3

, ct0,3),

K′ ← A ·B−1 and set (k′, r′)← encode−1(K′).

2) Compute (u′1, u
′
2)← H4((r′,A)) and ct′0 ← (q

u′
1

1 , q
u′
2

2 , g
u′
1+u

′
2

2 ). Assuming M has ` rows and k columns, then for i ∈ [`] and z = 1, 2, 3 compute

ct′i,z ← H3(π(i)‖z‖1)u
′
1 ·H3(π(i)‖z‖2)u

′
2 ·

k∏
j=1

[
H3(0‖j‖z‖1)u

′
1 ·H3(0‖j‖z‖2)u

′
2
](M)i,j .

Set ct′i ← (ct′i,1, ct
′
i,2, ct

′
i,3), compute ĉt

′ ← T
u′
1

1 · Tu
′
2

2 · K′, and set ct′ ← (ct′0, ct
′
1, . . . , ct

′
`, ĉt
′
). If ct 6= ct′ return ⊥. Otherwise compute

d′2 ← DecSE(k
′, c̃t′) and return ⊥ if d′2 = ⊥.

3) Check if h1 = H1((m,N1, H1, N2, H2))re1 mod N1 and h2 = H2((m,N1, H1, N2, H2))re2 mod N2 and return ⊥, if any of the
checks fails. Otherwise, let x1 ← H1((m,N1, H1, N2, H2)), x′1 ← H1((m′, N1, H1, N2, H2)), y1 ← x1re1 mod N1 as well as x2 ←
H2((m,N1, H1, N2, H2)), x′2 ← H2((m′, N1, H1, N2, H2)), y2 ← x2re2 mod N2, compute r′1 ← (y1(x

′−1
1 ))d1 mod N1, and finally

r′2 ← (y2(x
′−1
2 ))d2 mod N2.

4) Return ⊥ if h1 6= H1((m′, N1, H1, N2, H2))r′
e
1 mod N1 or h2 6= H2((m′, N1, H1, N2, H2))r′

e
2 mod N2.

Finally, return r′ ← (r′1, r
′
2).

Scheme 3: Concrete construction of a PCH

our challenging goal, to realize this functionality entirely by
means of cryptography, in mind, we introduce the notion of
policy-based chameleon-hashes (PCHs). This notion general-
izes chameleon-hashes in the sense that hashing additionally

takes a policy as input and collision finding is much more fine-
grained than in existing chameleon-hashing, i.e., a collision can
only be found by users satisfying the policy used during hash-
ing. We rigorously model the security and present a generic
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Fig. 5: Using a PCH for transaction-level rewrites

construction of this primitive from a CP-ABE scheme and a
modified CHET, and provide first implementation results.
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APPENDIX

A. Security Properties of CHs and CHETs

We now present the formal security definitions for CHs and
CHETs.

1) Security of CHs: Below we present security notions of
chameleon-hashes.

Strong Indistinguishability. Indistinguishability requires that
the randomnesses r does not reveal if it was obtained through
HashCH or AdaptCH. The messages are chosen by the ad-
versary. We, however, relax the perfect indistinguishability
definition of Brzuska et al. [15] to a computational version,
which is enough for most use-cases, including ours. However,
compared to the existing definition in [10], [16], [32], the
adversary is also allowed to know the secret key sk, but cannot
generate it.

Note that we need to implicitly return ⊥ in the
HashOrAdapt oracle (in case of an error), as the adversary may
try to enter a message m /∈ M, even if M = {0, 1}∗, which
makes the algorithm output ⊥. If we would not do this, the
adversary could trivially decide which case it sees. For similar
reasons these checks are also included in other definitions.

ExpSInd
A,CH(κ)

PPch ← PPGenCH(1
κ)

(skCH, pkCH)← KGenCH(PPch)
b← {0, 1}
a← AHashOrAdaptCH(skCH,·,·,b)(skCH, pkCH)

where HashOrAdaptCH(skCH, ·, ·, b) on input m,m′:
(h, r)← HashCH(pkCH,m

′)
(h′, r′)← HashCH(pkCH,m)
r′′ ← AdaptCH(skCH,m,m

′, r′, h′)
if b = 0:

return (h, r)
if b = 1:

return (h′, r′′)
return 1, if a = b
return 0

Fig. 6: CH Strong Indistinguishability

Definition 10 (Strong Indistinguishability). We define the ad-
vantage of an adversaryA in the Ind experiment ExpInd

A,PCH(κ)
as

AdvInd
A,CH(κ) :=

∣∣∣Pr
[
ExpSInd

A,CH(κ) = 1
]
− 1/2

∣∣∣ .
We say a CH scheme is indistinguishable, if AdvInd

A,CH(κ) is
a negligible function in κ for all PPT adversaries A.

Collision-Resistance. Collision-resistance says, that even if an
adversary has access to an adapt oracle, it cannot find any
collisions for messages other than the ones queried to the
adapt oracle. Note, this is an even stronger definition than
key-exposure freeness [5]: key-exposure freeness only requires
that one cannot find a collision for some new “tag”, i.e., for
some auxiliary value for which the adversary has never seen
a collision.

ExpCR
A,CH(κ)

PPch ← PPGenCH(1
κ)

(skCH, pkCH)← KGenCH(PPch)
Q ← ∅
(m∗, r∗,m′∗, r′∗, h∗)← AAdapt′CH(skCH,·,·,·,·)(pkCH)

where Adapt′CH(skCH, ·, ·, ·, ·) on input m,m′, r, h:
r′ ← AdaptCH(skCH,m,m

′, r, h)
return ⊥, if r′ = ⊥
Q ← Q∪ {m,m′}
return r′

return 1, if VerifyCH(pkCH,m
∗, h∗, r∗) = VerifyCH(pkCH,m

′∗,
r′∗, h∗) = 1 ∧ m′∗ /∈ Q ∧ m∗ 6= m′∗

return 0

Fig. 7: CH Collision-Resistance

Definition 11 (Collision-Resistance). We define the advantage
of an adversary A in the CR experiment ExpCR

A,CH(κ) as

AdvCR
A,CH(κ) := Pr

[
ExpCR

A,CH(κ) = 1
]
.

We say that a CH scheme is collision-resistant, if the func-
tion AdvCR

A,CH(κ) is a negligible function in κ for all PPT
adversaries A.

Definition 12 (Secure Chameleon-Hashes). We call a
chameleon-hash CH secure, if it is correct, indistinguishable,
and collision-resistant.

13

https://eprint.iacr.org/2018/847
https://eprint.iacr.org/2018/847
http://eprint.iacr.org/2010/351
http://eprint.iacr.org/2010/351


Note that we do not require the uniqueness property [16] in
the context of this paper which is why we omit the definition.

2) Security of CHETs: Subsequently we restate the security
properties of CHET schemes from [16], where we adapt the
notation to ours and also strengthen indistinguishability to
what we call strong indistinguishability and private collision
resistance to what we call strong private collision resistance.
We note that [16] additionally define uniqueness of CHET
schemes. However, in our case this notion is not required.

Strong Indistinguishability. Strong Indistinguishability re-
quires that it be intractable for outsiders to distinguish whether
a given randomness corresponds to an output of HashCHET

or AdaptCHET. Note that, when compared to the definitions
in [16], [10], the adversary additionally receives the secret key
sk, but cannot generate it.

ExpSInd
A,CHET(κ)

PPCHET ← PPGenCHET(1
κ)

(skCHET, pkCHET)← KGenCHET(PPCHET)
b←$ {0, 1}
b∗ ← AHashOrAdaptCHET(skCHET,·,·,b)(skCHET, pkCHET)

where HashOrAdaptCHET(sk, ·, ·, b) on input m,m′:
let (h0, r0, etd0)← HashCHET(pkCHET,m

′)
let (h1, r1, etd1)← HashCHET(pkCHET,m)
let r1 ← AdaptCHET(skCHET, etd1,m,m

′, h1, r1)
return (hb, rb, etdb)

return b = b∗

Fig. 8: CHET Strong Indistinguishability

Definition 13 (Strong Indistinguishability). We define the
advantage of an adversary A in the strong indistinguishability
experiment ExpSInd

A,CHET(κ) as

AdvInd
A,CHET(κ) :=

∣∣∣Pr
[
ExpSInd

A,CHET(κ) = 1
]
− 1/2

∣∣∣ .
We say that a CHET scheme is strongly indistinguishable,
if AdvInd

A,CHET(κ) is a negligible function in κ for all PPT
adversaries.

Public Collision-Resistance. Public collision-resistance grants
the adversary access to an AdaptCH oracle. It requires that it is
intractable to produce collisions, other than the ones produced
by the AdaptCH oracle. Due to lack of space and since the
formal definition is not required for the proofs presented in
this version we refer the reader to the full version or [16] for
a formal definition of this property.

Strong Private Collision-Resistance. Strong private collision-
resistance requires that it is even intractable for the holder of
the secret key sk to find collisions without knowledge of etd.
Compared to the definition by Camenisch et al. [16], however,
we also allow the adversary to request arbitrary collisions; the
ephemeral trapdoor to use is indexed by the handle. This allows
for a completely stateless primitive.

Definition 14 (Strong Private Collision-Resistance). We define
the advantage of an adversary A in the private collision-
resistance experiment ExpSCRpriv

A,CHET(κ) as

AdvSCRpriv
A,CHET(κ) := Pr

[
ExpSCRpriv

A,CHET(κ) = 1
]
.

ExpSCRpriv
A,CHET(κ)

PPCHET ← PPGenCHET(1
κ)

Q ← ∅
i← 0

(pk∗,m∗, r∗,m′∗, r′∗, h∗)← AHash′CHET(·,·),Adapt
′
CHET(·,·,·,·,·,·)(PPCHET)

where Hash′CHET on input pk, m:
(h, r, etd)← HashCHET(pk,m)
return ⊥, if r = ⊥
i← i+ 1
let Q ← Q∪ {(pk, h,m, etd, i)}
return (h, r)

and Adapt′CHET on input sk, h, r, m, m′, i:
return ⊥, if (pk, h′,m′′, etd, i) /∈ Q for some h′, m′′, etd, pk
r′ ← AdaptCHET(sk, etd,m,m′, h, r)
if r′ 6= ⊥, let Q ← Q∪ {(pk, h′,m, etd, i), (pk, h′,m′, etd, i)}
return r′

return 1, if VerifyCHET(pk∗,m∗, r∗, h∗) = 1 ∧
VerifyCHET(pk∗,m′∗, r′∗, h∗) = 1 ∧ m∗ 6= m′∗ ∧
(pk∗, h∗,m∗, ·, ·) /∈ Q ∧ (pk∗, h∗, ·, ·, ·) ∈ Q

return 0

Fig. 9: CHET Strong Private Collision-Resistance

We say that a CHET scheme provides private collision-
resistance, if AdvSCRpriv

A,CHET(κ) is a negligible function in κ for
all PPT adversaries.

B. Secure Chameleon-Hashes

1) Instantiation of a Secure CH: We recall a construction
from [16] in Scheme 4 after recalling an RSA key generator.

RSA Key-Generator. Let (N, p, q, e, d)← RSAKGen(1κ) be
an instance generator which returns an RSA modulus N = pq,
where p and q are distinct primes, e > 1 an integer co-prime
to ϕ(n), and de ≡ 1 mod ϕ(n). We require that RSAKGen
always outputs moduli with the same bit-length, based on κ.

PPGenCH(1
κ) : On input a security parameter κ it outputs

the public parameters PP ← (1κ, e), where e is prime
and e > N ′ with N ′ = maxr{N ∈ N : (N, ·, ·, ·, ·) ←
RSAKGen(1κ; r)}.

KGenCH(PP) : On input PP = (1κ, e) run (N, p, q, ·, ·) ←
RSAKGen(1κ), choose a hash function H : {0, 1}∗ →
Z∗N (modeled as a random oracle), compute d s.t. ed ≡ 1
mod ϕ(N), set sk ← d, pk ← (N,H), and return
(sk, pk).

HashCH(pk,m) : On input a public key pk = (N,H) and
a message m, choose r←$ Z∗N , compute h ← H(m)re

mod N and output (h, r).
VerifyCH(pk,m, h, r) : On input public key pk = (N,H), a

message m, a hash h, and a randomness r ∈ Z∗N , it
computes h′ ← H(m)re mod N and outputs 1 if h′ = h
and 0 otherwise.

AdaptCH(sk,m,m′, h, r) : On input a secret key sk = d,
messages m and m′, a hash h, and randomness val-
ues r and r′, the adaptation algorithm outputs ⊥ if
VerifyCH(pk,m, h, r) 6= 1. Otherwise, let x ← H(m),
x′ ← H(m′), y ← xre mod N and return r′ ←
(y(x′−1))d mod N .

Scheme 4: RSA-based Chameleon-Hash
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In [16] Camenisch et al. show that the chameleon-hash
in Scheme 4 is secure under the one-more RSA inversion
assumption [12] in the random oracle model (ROM) [13]. We
argue that the CH restated in Scheme 4 remains secure in our
strengthened model. All properties, but strong indistinguisha-
bility, have already been proven by Camenisch et al. [31].
Thus, it remains to prove strong indistinguishability.

Proof: We prove strong indistinguishability by a sequence
of games.

Game 0: The original strong indistinguishability game in the
case b = 0.

Game 1: As Game 0, but we now make the transition to b =
1.

Transition - Game 0 → Game 1: As there is exactly one se-
cret key (up to the group order, which can be ignored),
which makes adaption work correctly, which we explicitly
check, while r is always chosen randomly, the distribu-
tions are exactly equal and thus |Pr[S0] − Pr[S1]| = 0
follows.

In Game 0, we simulate the first distribution of the strong
indistinguishability game, in Game 1 the second one. Both
games are indistinguishable which concludes the proof.

C. Secure CHETs

The generic construction is given in Construction 2. This
construction is essentially the one given by Camenisch et
al. [16], but we additionally check whether a hash h is valid
after adaption, and add the two public keys to the hash-
computation, as already done by Krenn et al. [32]. This is
crucial to achieve our strengthened security properties.

Correctness follows from inspection and from the cor-
rectness of the underlying chameleon hash. Public collision
resistance of this construction was already proven in [16]. We
prove the remaining properties below.

Theorem 5. If CH is collision-resistant, then the construction
of a CHET given in Scheme 2 is strongly privately collision-
resistant.

Proof: Assume an adversary A who can break strong
private collision resistance. We can then construct an adversary
B which breaks the collision-resistance of CH.

In particular, the reduction works as follows. B receives
pkch = pkch

′ as its own challenge. Note that PPch is implicit
in pkch and let q be an upper bound on the number of queries
to the Hash′CHET-oracle. Our reduction draws a random index
i ← {1, 2, . . . , q}. It then initializes the adversary A by
supplying PPchet = PPch. For every adaption query j 6= i,
B generates a new key pair for a CH and proceeds honestly,
storing the corresponding secret and public keys. This does
not change the view of the adversary so far. For the ith query,
however, B embeds pkch

′ as the public key of the second CH
and for the respective query to the collision finding oracle
Adapt′CHET, B proceeds as follows if a collision is to be found
for the embedded challenge: B uses its own oracle to find the
collisions for h2, while h1 can be calculated honestly, as for
that the adversary supplies the secret key. If this case happens
can easily be identified due to the supplied handle. Note, we
always check whether adaption was successful. Clearly, this

simulation does not change the view of the adversary. Then,
after the adversaryA outputs (pk∗,m∗, r∗,m′∗, r′∗, h∗), where
r∗ = (r∗1 , r

∗
2), r

′∗ = (r′∗1 , r
′∗
2 ) and h∗ = (h∗1, h

∗
2, pk∗, pkch

′′),
B can return ((m∗, pk∗, pkch

′), r∗1 , (m
′∗, pk∗, pkch

′), r′∗1 , h
∗
1) as

its own forgery attempt, if pkch
′ = pkch

′′. In all other cases,
B must abort. Assuming that pkch

′ = pkch
′′ holds, we already

know that m∗ or pk∗ must be “fresh”, and thus (m∗, pk∗, pkch
′)

is fresh as well. This concludes the proof.

Theorem 6. If CH is strongly indistinguishable, then the
construction of a CHET given in Scheme 2 is strongly in-
distinguishable.

Proof: First, we prove strong indistinguishability by a
sequence of games.

Game 0: The original strong indistinguishability game in the
case b = 1.

Game 1: As Game 0, but instead of calculating the hash h1

as in the game, directly hash.
Transition - Game 0 → Game 1: We claim that Game 0 and

Game 1 are indistinguishable under the strong indistin-
guishability of CH. More formally, assume that the ad-
versary A can distinguish this hop. We can then construct
an adversary B which breaks the indistinguishability of
CH. In particular, the reduction works as follows. B
receives PPch as its own challenge, passing them through
to A within PPchet (generating the rest honestly), and
proceeds as in the prior hop, with the exception that
it uses the HashOrAdapt oracle to generate h1. Then,
whatever A outputs, is also output by B. Clearly, the
simulation is perfect from A’s point of view. Note, the
HashOrAdapt always checks if the adaption was success-
ful, and thus so does B, making the distributions equal.
|Pr[S0]− Pr[S1]| ≤ νCH-sInd(κ) follows.

Game 2: As Game 1, but instead of calculating the hash h2

as in the game, directly hash.
Transition - Game 1 → Game 2: We claim that Game 1 and

Game 2 are indistinguishable under the strong indistin-
guishability of CH. More formally, assume that the ad-
versary A can distinguish this hop. We can then construct
an adversary B which breaks the indistinguishability of
CH. In particular, the reduction works as follows. B
receives PPch as its own challenge, passing them through
to A within PPchet (generating the rest honestly), and
proceeds as in the prior hop, with the exception that
it uses the HashOrAdapt oracle to generate h2. Then,
whatever A outputs, is also output by B. Clearly, the
simulation is perfect from A’s point of view. Note, the
HashOrAdapt always checks if the adaption was success-
ful, and thus so does B, making the distributions equal.
|Pr[S1]− Pr[S2]| ≤ νCH-sInd(κ) follows.
We are now in the case b = 0. However, as the adversary
only sees negligible changes, strong indistinguishability
is proven.
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