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Abstract—One major shortcoming of permissionless blockchains
such as Bitcoin and Ethereum is that they are unsuitable
for running Computationally Intensive smart Contracts (CICs).
This prevents such blockchains from running Machine Learning
algorithms, Zero-Knowledge proofs, etc. which may need non-
trivial computation.

In this paper, we present YODA, which is to the best of
our knowledge the first solution for efficient computation of
CICs in permissionless blockchains with guarantees for a threat
model with both Byzantine and selfish nodes. YODA selects
one or more execution sets (ES) via Sortition to execute a
particular CIC off-chain. One key innovation is the MultI-Round
Adaptive Consensus using Likelihood Estimation (MIRACLE)
algorithm based on sequential hypothesis testing. MIRACLE
allows the execution sets to be small thus making YODA efficient
while ensuring correct CIC execution with high probability. It
adapts the number of ES sets automatically depending on the
concentration of Byzantine nodes in the system and is optimal
in terms of the expected number of ES sets used in certain
scenarios. Through a suite of economic incentives and technical
mechanisms such as the novel Randomness Inserted Contract
Execution (RICE) algorithm, we force selfish nodes to behave
honestly. We also prove that the honest behavior of selfish nodes
is an approximate Nash Equilibrium. We present the system
design and details of YODA and prove the security properties
of MIRACLE and RICE. Our prototype implementation built on
top of Ethereum demonstrates the ability of YODA to run CICs
with orders of magnitude higher gas per unit time as well as
total gas requirements than Ethereum currently supports. It also
demonstrates the low overheads of RICE.

I. INTRODUCTION

Permissionless blockchain protocols, which originated with
Bitcoin [18], allow an arbitrarily large network of miners
connected via a peer-to-peer overlay network to agree on the
state of a shared ledger. More recent blockchains extend the
shared ledger concept to allow programs called smart contracts
to run on them [6], [25]. Smart contracts maintain state that can
be modified by transactions. One of the major shortcomings of
these blockchains is that they are unsuitable for smart contracts
which require non-trivial computation for execution [7]. We
call such smart contracts Computationally Intensive Contracts
(CIC). CICs can potentially run intensive machine learning
algorithms [29], zero-knowledge proofs [4], [9] etc.

One reason for this shortcoming is that every transaction is

executed on-chain, that is by all miners, and this computation
must be paid using the transaction fee. Hence CIC transactions
require very high transaction fees.1 A second reason is the
Verifier’s Dilemma [16]. A miner must normally start mining
a new block on an existing block only after verifying all its
transactions. If the time taken to verify these transactions is
non-trivial, it delays the start of the mining process thereby
reducing the chances of the miner creating the next block.
Skipping the verification step will save time but at the risk of
mining on an invalid block, thereby leaving a rational miner
in a dilemma of whether to verify transactions or not.

One mechanism to side-step the Verifier’s Dilemma is
to break a computationally-heavy transaction into multiple
light-weight transactions and spread these out over multiple
blocks [16]. This mechanism has several shortcomings. First,
the total fees of these transactions may be prohibitively high.
Second, how to split a single general purpose transaction into
many while ensuring the same resulting ledger state is not
obvious. Third, the number of blocks over which the light-
weight transactions are spread out grows linearly with the size
of the total computation.

Another approach is to execute smart contracts off-chain,
i.e. by only a subset of nodes2 to cut down transaction fees
and avoid the Verifiers Dilemma [12], [26]. The off-chain
methods proposed so far, however, work under the limited
threat model of nodes being rational and honest but not
Byzantine. Moreover, they require on-chain computation of
a part of a CIC to determine its correct solution in some
cases. Note that off-chain CIC computation is not the same
as achieving consensus about blocks using shards [2], [10],
[14], [15], [31]. Blocks can in general take many valid values
and are computationally easy to verify unlike CIC solutions
which have only one correct value and are expensive to verify.
Our Goal. Our goal is to design a mechanism for off-chain
CIC execution with the following properties.

1) BAR Threat model. It should work under a Byzantine,
Altruistic, Rational (BAR) model which considers both
Byzantine and Rational entities. BAR models are more
realistic and challenging to analyze than threat models
which consider only one of Byzantine or rational enti-
ties [1].

2) Adaptive to Byzantine fraction. It should make fewer
nodes perform off-chain computation if the fraction of
Byzantine nodes is smaller.

3) Scalability: CICs are never executed or verified on-chain

1Transaction verification is to some extent subsidized by mining fees.
2For clarity, we use the term node for an entity performing off-chain com-

putation and the term miner for an entity performing all on-chain computation.
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either fully or partially. Further, the number of CICs that
can be executed in parallel must scale with increasing
number of nodes in the system.

4) Fair and timely reward. As CIC execution is expensive, all
nodes performing off-chain computation correctly must be
compensated fairly and in a timely manner.

Our Approach. In this paper we present YODA, which is
to the best of our knowledge the first solution for efficient
computation of CICs in permissionless blockchains which
gives security guarantees in a BAR threat model. The threat
model allows at most a fraction fmax < 0.5 of Byzantine
nodes in the overall system and the remaining can be quasi-
honest. Note that the actual fraction f of Byzantine nodes is
unknown a priori and can be anywhere between 0 and fmax.
Although YODA is designed for the worst case (f = fmax),
it adapts to smaller values of f , by evaluating CICs more
efficiently.

Quasi-honest nodes are selfish nodes which seek to maximize
their utility by skipping CIC computation using information
about its solutions which may already be published on the
blockchain by other nodes. We call this a free-loading attack.
They may also try to collude with each other to reduce their
computation. More details about quasi-honest nodes are given
in §II-A. YODA is robust to DoS attacks, Sybil attacks, and
ensures timely payouts to all who execute a CIC.

YODA’s modus operandi is to make only small sets of
randomly selected nodes called Execution Sets (ES) compute
the CICs. ES nodes submit their solutions, or just a small digest
of them, on the blockchain as transactions. YODA then study
the counts of various solutions submitted in order to identify
the correct solution from among them. While a small ES
improves system efficiency, it can occasionally be dominated
by Byzantine nodes which may form a majority and submit
incorrect solutions. Hence, a simple majority decision does not
work even in a setting with only honest and Byzantine nodes.

To determine the correct CIC solution, YODA uses a novel
MultI-Round Adaptive Consensus using Likelihood Estimation
(MIRACLE) algorithm. In MIRACLE, miners compute the
likelihood of each received digest which primarily depends on
the counts of different digests and the fraction f of Byzantine
nodes. If the likelihood of any digest crosses a particular
threshold, MIRACLE declares its corresponding solution as
the correct one. Otherwise, it iteratively selects additional ES
sets until the likelihood of a digest crosses required threshold.
We call the selection of each such ES a round.3 MIRACLE
is adaptive, that is the expected number of rounds it takes to
terminate is smaller the smaller f is. MIRACLE guarantees
selection of the correct digest with probability at least 1 − β
for a design parameter β. Moreover, for the special case of
f = fmax, if all Byzantine node submit the same incorrect di-
gest, MIRACLE optimally minimizes the expected number of
rounds. Interestingly, the strategy for Byzantine nodes to make
MIRACLE accept an incorrect solution with highest probabil-
ity is to submit the same incorrect solution (refer VII-A).

This analysis for MIRACLE, however, assumes that all
quasi-honest nodes submit correct solution. Since MIRACLE
itself does not enforce honest behaviour, other mechanisms are
necessary to make quasi-honest nodes submit correct solutions.

3Rounds are different from block-generation epochs and are specific to
CICs. A round may span multiple blocks.

Without additional mechanisms, a quasi-honest node may be
tempted to free-load on solutions already submitted in earlier
rounds, thus saving on computational power. In case quasi-
honest nodes free-load on incorrect solutions, MIRACLE has
a higher probability of terminating with an incorrect solution.

To mitigate the free-loading attack of quasi-Honest nodes, we
design the Randomness Inserted Contract Execution (RICE),
an efficient procedure to change the digest from one round to
the next. We achieve this by making the digest dependent on
a set of pseudo-randomly chosen intermediate states of a CIC
execution. This ensures, that despite digests changing from one
round to the next, the miners running MIRACLE are able
to map digests from different rounds to the same CIC state
they represent. We prove that RICE adds little computational
overhead to CIC execution. To be precise, if T denotes the
total computation for a transaction execution without RICE,
then RICE adds computation overhead of O((log2T )2). In the
presence of free-loading attacks, we show via a game theoretic
analysis that honest behavior from all quasi-honest nodes is an
ε−Nash equilibrium with ε ≥ 0.

We have implemented YODA with MIRACLE and RICE,
in Ethereum as a proof-of-concept and provide many experi-
mental results supporting our theoretical claims.

II. THEAT MODEL, ASSUMPTIONS AND CHALLENGES

In YODA, a blockchain is an append-only distributed ledger
consisting of data elements called blocks. A blockchain starts
with a pre-defined genesis block. Every subsequent block
contains a hash pointer to the previous block resulting in a
structure resembling a chain. The blockchain contains accounts
with balances, smart contracts, and transactions. A transaction
is a signed message broadcast by a account owner which can be
included in a block provided it satisfies certain validity rules.
For example, transactions modifying an account balance must
be signed by the corresponding private key to be valid. YODA
assumes that the underlying blockchain provides guarantees
about its Safety and Availability. Safety means that all smart
contract codes are executed correctly on-chain, and availability
means that all transactions sent to the blockchain get included
in it within bounded delay and cannot be removed thereafter.

We refer to any entity performing off-chain CIC execution
in YODA as a node. We call the set consisting of all nodes
the Stake Pool (SP).4 Without loss of generality each node
in SP controls an account in the ledger with its private key.
The account itself is identified by the public key. We assume
that the network is synchronous, i.e., transactions broadcast by
nodes get delivered within a known bounded delay. However,
unlike [15] we do not assume the existence of an overlay
network among nodes. Also, we do not assume the presence
of a secure broadcast channel or a PKI system. We abstract
the source of randomness required for RICE to a function
RandomGen() (given in §VI) which can be accessed by all
nodes in YODA. This can be built as a part of YODA or as
an external source using techniques from [10], [15], [24].

For the rest of the paper, unless otherwise stated, if some
event has negligible probability, it means it happens with prob-
ability at most O(1/2λ) for some security parameter λ. Any
event whose complement occurs with negligible probability is

4The choice of the name will be discussed when we discuss blockchain
specifics.
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said to occur with high probability or w.h.p.

A. Threat Model and Assumptions.
Systems like permissionless blockchains cannot be assumed

to have all honest nodes. They rely heavily on incentives and
the rationality of nodes in order to work correctly. Rational
nodes are those which seek to maximize their utility. However,
assuming that all nodes are rational is not practical either. Real
systems may contain Byzantine nodes, that is those which do
not care about their returns.

We consider two kinds of nodes: Byzantine and quasi-
Honest. Byzantine nodes are controlled by an adversary and
these nodes can deviate arbitrarily from the YODA protocol.
The adversary can make all Byzantine nodes collude with
perfect clock synchrony. They can add or drop messages
arbitrarily and not execute CICs correctly. We assume that
at most fmax < 1

2 fraction of nodes in SP are Byzantine.
Additionally the adversary has state information of the CIC
from all previous rounds and can successfully communicate
this (potentially false) state information about previous rounds
to any node in SP. However, we assume cryptographic primi-
tives are computationally secure.

Modeling rational nodes in these systems, taking into account
all possible means of profits, costs, and attacks is non-trivial
and is beyond the scope of the paper. However to bring our
model close to reality we work with quasi-honest nodes which
deviate from the protocol in the following manner.
Quasi-Honest. Quasi-honest nodes will skip execution of a
CIC either completely or partially, for example by not execut-
ing some of its instructions, if and only if the expected reward
in doing so is more than that for executing the transaction
faithfully. They do not share information with any other node
if that information can lead to reduction of their reward.
They are conservative when estimating the potential impact
of Byzantine adversaries in the system, i.e. a quasi-honest
node while computing its utility assumes that the Byzantine
adversary acts towards minimizing its (quasi-honest node’s)
rewards [1].

Quasi-honest nodes may skip computation using one of two
methods. The first is “free-loading” where they attempt to
guess the correct state of a CIC after execution of a transaction
from the information of the corresponding transaction already
published on the blockchain. Free-loading also includes the
case where a quasi-honest node tries to guess the state when
an adversary presents the pre-image of hashes among this
information already published on the blockchain.

The second is by colluding with other ES nodes of the
same round to submit an identical CIC solution without
evaluating it. A quasi-honest node only colludes with nodes
whose membership in the ES it can verify. YODA has checks
(refer § VI ) which prevent nodes from directly proving their
ES membership. Hence nodes must use Zero-Knowledge-Proof
techniques like zk-SNARK [4] to establish their membership
in ES. YODA allows use of smart-contracts as shown in [11] to
establish rules of collusion. However we assume that a quasi-
Honest node does not know for sure if the node it is colluding
with is quasi-honest or Byzantine. Additionally, both free-
loading and collusion have costs associated with them. These
cost are due to processing of information available on the
blockchain or received from peers, producing and verifying zk-
Proofs, bandwidth and computation costs etc. In case neither

free-loading nor collusion gives a better expected reward than
executing CICs correctly, a quasi-honest node will execute the
CIC correctly.

B. Challenges
Enabling off-chain execution of CICs in the presence of a

Byzantine adversary is fraught with many challenges. Allowing
non-Byzantine nodes to deviate from the protocol makes the
problem more interesting and even more challenging. Apart
from recently studied challenges like preventing Sybils [18],
[31] and generating an unbiased source of randomness in the
distributed setting [10], [15], [24], our system must tackle the
following challenges:

• to prevent quasi-honest nodes from Free-loading and
collusion.

• since the size of any ES is small, an ES becomes
vulnerable to Lower cost DoS Attacks than a DoS attack
on the set of all nodes taken together.

• to provide guarantees of correctness without requiring re-
execution of any part of the CIC on-chain.

III. MIRACLE: MULTI-ROUND ADAPTIVE CONSENSUS
USING LIKELIHOOD ESTIMATION

In this section we describe MIRACLE as an abstract con-
sensus protocol and later get into its blockchain specifics.
Problem Definitions. Let Ψ be a deterministic function that
when given arbitrary input x produces output y. We denote
this as y ← Ψ(x).5 Let SP contain at most fmax fraction of
Byzantine nodes. All other nodes are honest, i.e. they strictly
adhere to the protocol. Let ni be a node in SP where i =
1, 2, . . . , |SP |. Let Ψi be the function ni executes when asked
to execute Ψ and let yi ← Ψi(x) be the corresponding result.
For all honest nodes, clearly Ψi = Ψ.

Our goal is to achieve consensus on the true value of
Ψ(x) by making only one or more small randomly chosen
subsets called Execution Sets (ES) of nodes evaluate Ψ(x).
Further, nodes ni ∀i after executing Ψi(x) broadcast a digest
of yi, say hash(yi) to all other nodes. MIRACLE proceeds
in rounds where in each round a new ES is selected. We
require MIRACLE to correctly reach consensus on Ψ(x) with
probability greater than 1 − β for any given user-specified
parameter β, given fmax and E[|ES|], while minimizing the
expected number of rounds to terminate. Formally, MIRACLE
must guarantee the following properties.

• (Termination) For any fmax < 1/2, MIRACLE must
terminate within a finite number of rounds.
• (Agreement) All honest nodes in SP, agree on the result

that MIRACLE returns on terminating.
• (Validity) MIRACLE must achieve consensus on the true

value of Ψ(x) with probability 1− β.
• (Efficiency) When the fraction of Byzantine nodes is
fmax and given a particular E[|ES|], MIRACLE must
terminate in the optimal number of rounds. Further,
for any given f ≤ fmax, if Nf denotes the expected
number of nodes performing off-chain execution then
Nf ≤ Nfmax

5We use ← for function executions, with the function and its inputs on its
right and the returned value on its left.
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A. Overview and Simplistic algorithms
We motivate MIRACLE by describing two simplistic al-

gorithms for achieving consensus regarding Ψ(x). In these
two algorithms each node in SP belongs to a particular ES
with probability q independent of other nodes, thus E[|ES|] =
q|SP |. Note that MIRACLE in general need not have the same
E[|ES|] in every round, although in this paper we present
a version which does. Studying other possible MIRACLE
algorithms is part of our future work.
Naive Solution 1 (NS1): Suppose we use a single subset ES
from SP to compute Ψ(x). If more than 50% of nodes in
the ES publish the same execution result then this is chosen
as Ψ(x). One shortcoming of this scheme is that for lower
β (more security), the size of ES must be a large fraction of SP.
A second shortcoming is that if the actual fraction of Byzantine
nodes f is much smaller than fmax then we end up using an
ES much larger than required. For example, with β = 10−20

as the error, starting with |SP | = 1600 and fmax = 0.35, NS1
will always pick |ES| ≈ 900 independent of f .
Naive Solution 2 (NS2): In this solution we relax the require-
ment of achieving consensus in one round. If in an ES, the
fraction of nodes submitting a particular solution exceeds some
threshold then we terminate with that solution. This threshold
should be high enough to ensure the correct solution w.h.p. In
NS1 for example, the threshold is 1/2. In general, the smaller q
is the larger will the threshold be. If we do not reach consensus
then a new round is triggered.

The advantage is that we can use an ES in each round of size
smaller than the ES used in NS1. In NS2, in certain instances
such as when f = 0, a single round may still be sufficient to
reach consensus. One shortcoming is that the number of rounds
to terminate can be large because NS2 does not optimally
combine the results of all rounds in order to reach consensus.
Results of one round are forgotten in future rounds.

B. Design and Algorithm
In MIRACLE, we employ the multi-round strategy of NS2

to achieve gains in case f � fmax. In contrast to NS2, each
round uses all hitherto published results to decide whether to
terminate or not. For a given Ψ(x), let d1, d2, ..., dm be the
m unique digest values broadcast up to and including the ith
round. Let ck,i denote the number of times dk is repeated in
the ith round. Let Ci denote the total number of submissions
(ES nodes) in the ith round, i.e. Ci =

∑m
k=1 ck,i.

The problem we are addressing is to decide among one of
may solutions broadcast. We present a novel model of this
problem as a multiple hypothesis testing problem where we
have one hypothesis for each solution submitted and the test
must decide which hypothesis is true.
Primer on Hypothesis Testing. For the reader unfamiliar
with Hypothesis testing, we now describe a standard example.
Consider a communication system in which a source is trans-
mitting one symbol selected from a known small master set to
a receiver over a noisy channel. In the simplest case, only two
symbols are allowed, one each for communicating bit 0 and
bit 1. The receiver’s task is to decide which symbol (and hence
which corresponding bit(s)) was transmitted given the observa-
tion. To solve the problem, one proposes a hypothesis for each
potential symbol which claims that the corresponding symbol
was transmitted. The goal is to determine which hypothesis is

true. To do so, the receiver computes the probability of the
observation conditioned on every hypothesis being true. Only
if one of these probabilities is much larger than the others can
one say with confidence that the corresponding hypothesis is
true with high probability.

One of our novel contributions in MIRACLE is to formulate
the problem of determining the true Ψ(x) as a hypothesis
testing problem. This is not obvious because traditional hy-
pothesis tests are designed to handle real-world phenomena
such as signals in noise. In our problem we have an intelligent
adversary which is hard to model as there is no restriction on
what solution it can submit. It can submit any of 2n digests
if the digest is n bits long. Hence unlike the communication
problem described above, there is no small master set of
potential correct solutions known a priori to YODA.

However, in the worst case when the fraction of Byzantine
nodes is maximum, i.e. f = fmax, we do have a probability
distribution on the total number of Byzantine nodes in an
ES. Similarly we have a probability distribution of the total
number of quasi-honest nodes in an ES. These probability
distributions are sufficient for us to compute a likelihood and
perform a hypothesis test. In the case the adversary submits
only a single incorrect solution, MIRACLE is optimal in
the number of rounds it takes to converge. However, if it
submits many solutions then our assumed distributions for
different hypotheses are not exact. Fortunately, if the adversary
submits more than one solution, it is to his own detriment as
MIRACLE will converge to the correct solution with higher
probability than if it submitted only a single solution.

MIRACLE uses multiple parallel Sequential Probability
Ratio Tests (SPRT) to choose the correct solution [28] whose
details are given next.
MIRACLE as Parallel SPRT: We model the problem as
m simultaneous two-hypotheses Sequential Probability Ratio
Tests (SPRT) [28]. The kth SPRT is given by:

• Null Hypothesis, Hk : dk is the solution.
• Alternative Hypothesis, H∗k : dk is not the solution.

The log-likelihood ratio is defined as the log of the ratio of
probabilities of the observations (ck,i) conditioned on the two
hypotheses. We approximate this log-likelihood ratio after i
rounds by a quantity we loosely call the likelihood. We denote
it by Lk,i, and proceed as follows. We give a formula for the
likelihood subsequently. For appropriately chosen threshold T,
in round i we perform

• If Lk,i ≤ T, make no decision.
• If Lk,i > T, decide in favor of Hk.

When any one SPRT, say the kth, terminates in favor of
its Null Hypothesis Hk, we halt all other SPRTs and declare
dk as the digest. If no SPRT terminates, we proceed to the
next round. Algorithm 1 demonstrates the general MIRACLE
algorithm for any given Lk,i and T.
MIRACLE and YODA. We now present our specific choices
for the likelihood Lk,i and threshold T which we use in
YODA. MIRACLE can in general use other choices for the
same quantities, and such generalisations are part of future
work.

Recall that nodes are selected randomly and with the same
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Algorithm 1 MIRACLE
1: i← 1
2: while Lk,i ≤ T ∀k do
3: i← i+ 1
4: Pick next ES to execute Ψ(x)
5: end while
6: declare dk′ to be correct where Lk′,i > T

probability q for any ES. We set

Lk,i =

i∑
j=1

(
c2k,j − (Cj − ck,j)2

)
=

i∑
j=1

((2ck,j − Cj)Cj)

(1)
and the threshold to:

T =

(
ln

1− β
β

)
2q(1− q)M(1− fmax)fmax

(1− fmax)− fmax
. (2)

The above choice of Lk,i is indeed the log-likelihood ratio
when the adversary submits a single incorrect solution in all
rounds, assuming a Gaussian distribution for the number of
quasi-honest and Byzantine nodes in any ES. Under the same
assumptions, in Section VII-A we describe how this choice
of threshold gives an optimal solution in terms of number of
rounds to terminate along with required security.

IV. RICE: RANDOMNESS INSERTED CONTRACT
EXECUTION

MIRACLE by itself does not force quasi-honest nodes
to behave honestly. In fact, a free-loading attack by quasi-
honest node is a real possibility. Here quasi-honest nodes
in an ES of one round may simply replay the digest with
highest likelihood of previous submissions in earlier rounds.
Even though this enables a quasi-honest node to save on
heavy CIC computation, this attack can make increase the
probability of accepting an incorrect solution to larger than
β. Specifically, in scenarios where the corresponding digest is
an incorrect solution, as an adversary can sometime dominate
a large fraction in ES, free-loading can lead to acceptance of
an incorrect solution.

To address this in this section we describe Randomness
Inserted Contract Execution (RICE), a procedure to pseudo-
randomly change the digest of Ψ(x) from one round to the
next to mitigate the free-loading problem. Other attacks, such
as collusion of quasi-honest nodes within the same ES and
copying digests submitted by nodes in the same round are
addressed in §VI.

So far we have looked at Ψ as a very abstract function
without describing any of its details. We now formally define
the semantics of Ψ required to understand RICE.

A. Design of RICE
Setup. We assume Ψ to be a stateful function similar to a
smart contract. Let σ be the state on which Ψ operates by
taking an input x. The output of Ψ(σ, x) is the modified state
σ∗. Call root(σ) (or simply root) a unique digest of σ. For
example, root can represent the root of a Merkle tree where
leaves of the tree correspond to the contents of σ.

Let j (≥ 1) be the MIRACLE round number. We wish to
generate a pseudorandom digest in each round. At the same

time, to compute likelihoods, we must be able to map digests
across different rounds to each other. To solve the paradox,
we generate a digest (seed(j,.), root), where seed(j,.) is a
pseudorandom number which changes from one round to the
next. The seed is initialized as:

seed(j,0) ←

{
RandomGen() if j = 1

hash(seed(j−1,0)) otherwise
(3)

Array Model for RICE. Consider an execution model in
which all machine level instructions that Ψ(σ, x) executes
are stored in an imaginary “instruction array”, that is the ith
instruction executed is stored in the ith array position. RICE
then interrupts execution6 of Ψ(σ, x) at certain intermediate
indices of the array where state of the CIC is σ′ and updates
the seed as follows:

seed(j,l+1) ← hash(seed(j,l)||root(σ′)) (4)

By choosing these different indices pseudorandomly in differ-
ent rounds, RICE produces a different digest every round. ES
nodes then submits (seed(j,φ), root(σ∗)) as the digest after
executing Ψ(σ, x), where φ is the total number of times the
seed has been updated.

Due to the deterministic nature of the Ψ, all nodes computing
Ψ(σ, x) correctly will have the same root across rounds. The
seed values of all honest nodes will be identical within any
round, but will differ from one round to the next. Malicious
nodes may submit the correct root but the wrong digest, an
attack we guard against in §VI
Details. Let t denote the indices in the instruction array where
t ∈ [1 : T ] where T is the total number of instructions
executed as a part of Ψ(σ, x). Note that T is unknown a
priori, but assumed to be bounded. Specifically, for systems
such as Ethereum where CIC transactions have a gas limit,
T is guaranteed to be bounded (refer §VI). Thus to update
digest, instead of executing the entire Ψ array in a single run,
RICE progressively executes a subarray of Ψ array between
two index ti (initial) and tf (final), updates the seed, and
repeats the process with the next sub-array and so on until
it reaches T .

Formally, let Ψ[ti : tf ] denote an arbitrary subarray from
Ψ with ti and tf its initial and final index. RICE consists of
a new deterministic contract execution function Ψ′ with the
following semantics. Inputs to Ψ′ are two indices ti, tf , an
intermediate CIC state σ′ and x. Given input (ti, tf , σ

′, x), Ψ′

executes subarray Ψ[ti : tf ] (both ti, tf inclusive) with state
σ′ and data x. After execution, Ψ′ returns a modified state
and the last successfully executed index. In the special case
where T < tf for some (ti, tf ), Ψ′(ti, tf , σ

′, x) runs only till
Ψ[ti : T ] and returns σ∗, T as its output. Formally,

(σ′, tf ), if tf < T

(σ∗, T ), if tf ≥ T

}
← Ψ′(ti, tf , σ

′, x), where σ∗ = Ψ(σ, x)

After executing (l + 1)th subarray of Ψ(σ, x), RICE updates
the seed via (4).

Algorithm 2 gives the pseducode of RICE.

6Blockchains such as Ethereum count gas used after each instruction. Hence
additional interrupts are not required for Ethereum-like blockchains.
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Algorithm 2 RICE

1: input seed(j,0), σ, x
2: σ′ ← σ, l← 0
3: ti, tf ← NEXT . Next subarray indices
4: while true do
5: σ′, tl ← Ψ′(σ′, ti, tf , x)
6: if tl is T then
7: return (seed(j,l), root(σ′))
8: end if
9: seed(j,l+1) ← hash(seed(j,l)||root(σ′))

10: l← l + 1
11: ti, tf ← NEXT
12: end while

B. Choosing the indices.
A naive strategy is to choose indices tf as multiples of a

fixed number, say ∆. Note that ∆ cannot be a function of T
which is not known prior to computing Ψ. This strategy leads
to overheads of O(T ).

Another problem arises because indices do not change from
one round to the next. Suppose a quasi-honest node of the
current wants to free-load the root values at these indices
from an earlier round. It can ask any node from an earlier
ES to provide these root values and use (4) to verify that they
indeed corresponded to the digest submitted by that node,
thereby giving it confidence that these root values are correct.
It can then reuse these root values to create its own digest
without performing the computation. In case the ES node
queried is malicious, the quasi-honest node will submit an
incorrect solution.

A second naive strategy is to choose the sub-array sizes
randomly but with mean size exponentially increasing as
Ψ progresses. For example, choose tf − ti randomly from
[2k : 2k+1] where k increments by 1 from one sub-array to
the next. On the positive side, this will lead to O(log2T ) seed
updates (and consequently overheads of that order) and also
will produce a different set of indices from one round to the
next with large probability.

However, there remains the problem of skipping computing
the last sub-array of the instruction array. Suppose a quasi-
honest node in the current round’s ES has learned the value of
T from ES nodes of earlier rounds. It can perform computation
of Ψ for all sub-arrays except for the last one. Then it can
use a value of root submitted in an earlier round in (4) to
obtain the final seed value, without computing the last sub-
array. For this strategy the last sub-array can be as large as T/2,
leading to nodes skipping as much as half of the computation.
Hence although overheads have reduced to O(log2T ), the
computation skipped at the end is O(T ). We seek to find a
sweet spot between the two with our choice of indices for
RICE.
Our Approach. RICE uses a hybrid of the two index
locating procedures described above. The idea is to di-
vide the array Ψ′ into sub-arrays of size 2k where k =
1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, . . .. In other words, every value of
k repeats k times. Thus, like the second naive scheme
the sub-array size increase, but much more gradually (sub-
exponentially) so that the last sub-array which might be
skipped is smaller. More precisely, for a sub-array of size 2k

Algorithm 3 Next subarray indices

1: Let K = [1, 2, 2, 3, 3, 3, 4, 4, 4, 4, . . .]
2: procedure NEXT(seed, σ, index, tf )
3: k ← K[index]
4: pivot← tf − int(seed[1 : k]) + 2k

5: nextSeed← hash(seed||root(σ′))
6: ti ← tf + 1
7: tf ← pivot+ int(nextSeed[1 : k])
8: return ti, tf
9: end procedure

we choose the index to update the seed as int(seed[1 : k])
away from the beginning of the sub-array, where int(seed[1 :
k]) denotes the integer whose binary representation is identical
to the first k bits of seed. Algorithm 3 demonstrates our
approach.

V. CIC PRELIMINARIES

Smart Contracts and its Execution. A smart contract in
YODA is denoted by its state σ = (cid, code, storage).
Here cid denotes its immutable globally unique cryptographic
identity, and code represents its immutable program logic
consisting of functions. The state can be modified by a
transaction invoking its code and its execution can only begin
at a function. Functions may accept data from sources external
to the blockchain which must be included in the transactions
invoking them. In YODA smart contracts are stateful and state
is maintained as (key, value) pairs which together we refer to
as storage.

A transaction τ in YODA is the tuple (tid, funId, data, ξ).
Here tid is a globally unique transaction identity and funId
is the function it invokes. All external inputs required for the
function are part of data and ξ consists of meta-information
about the account that generated the transactions along with
a cryptographic proof of its authenticity. Hereafter we assume
all transactions are validated using ξ before being included in
a block and hence we drop ξ.

Executions of functions in YODA are modeled as transaction
driven state transitions. We use Ψ to denote a Deterministic
State Transition Machine (Possibly Turing complete). For-
mally, we denote this as σ∗ ← Ψ(σ, τ) where σ∗ is the state
of the contract after executing Ψ.
Intensive Transactions. Intensive Transactions (IT) are trans-
actions which cannot be executed on-chain due to either of two
problems: its execution time exceeds the typical interspacing
between blocks, or it competes with PoW time (the Verifier’s
Dilemma). The first problem can occur in permissioned ledgers
such as Hyperledger, Quorum, R3-Corda etc., and both prob-
lems in permissionless blockchains such as Ethereum and Bit-
coin. The exact definition of an IT will depend on parameters
of the blockchain system under consideration. Transactions
which are not ITs are called non-ITs.

We give one example of a IT for Ethereum using the concept
of gas, a measure of cost of program execution [6]. Ethereum
associates a fixed cost with each machine level instruction
that a smart contract executes and enforces the constraint that
all transactions included in a block can consume a maximum
combined gas of blockGasLimit which is set to prevent the
Verifier’s Dilemma. Every time a transaction τ is broadcast, its
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creator specifies τ.gasLimit, an upper bound on the gas it is
expected to consume. Clearly τ.gasLimit < blockGasLimit
for any transaction to be included in a block. Transactions
which violate this condition are thus ITs.
Computationally Intensive Contracts. We term all smart
contracts that execute ITs as Computationally Intensive Con-
tracts. Since YODA allows transactions of different CICs as
well as on-chain transactions to run in parallel we make
some assumptions as well as provide special mechanisms to
prevent race conditions from occurring. First, we assume that
transactions of CIC that are run off-chain cannot modify the
storage of any other smart contract whether CIC or non-CIC.
Second, we assume that on-chain transactions cannot modify
the state of any CIC if any off-chain transaction execution of
the CIC is in progress. Third, we ensure that all transactions
of all CICs are ordered on-chain before their execution by a
special on-chain smart contract called the Master Contract7
(MC).
Master Contract. The MC maintains a queue Qσ in which
all transactions (ITs and non-ITs) of CIC σ are stored before
being executed. The transaction at the queue’s head is executed
first and a new incoming transactions added to its tail. In case
a non-IT is at the head of Qσ , miners execute the transaction
on-chain otherwise the transaction is executed off-chain.

The MC performs many tasks in YODA. Since each CIC has
its own queue, ITs of different CICs can be executed in parallel
off-chain. In addition, the MC embodies the rules of YODA
like creating CICs, ordering their transactions and initiating
off-chain execution, running MIRACLE, distributing rewards
to the ES node, enabling YODA nodes to join SP by collecting
their deposits etc.
Stake Pool. YODA prevents sybil entries in SP [8]. To join
SP, a node needs to deposit stake Dsp by sending a transaction
to MC. This deposit acts as insurance for misbehavior of
SP nodes. The SP once selected remains valid for a system
defined interval of time denoted by δsp beyond which YODA
re-initiates the SP selection procedure. Note that SP could
potentially include all miners in the entire network, especially
in a small blockchain network maintained by several hundred
nodes such as blockchains that are built using Hyperledger [3].
Execution Set. YODA selects a subset of nodes from SP
known as the Execution Set (ES) to execute Ψ(σ, τ).
CIC creation and deployment. To deploy a CIC with state
σ on the blockchain, anyone can broadcast a transaction re-
questing creation of CIC containing the tuple (code, storage).
Miners use RandomGen() to generate a unique identity cid for
the CIC. An entry is registered in the Master Contract (MC)
corresponding to the new CIC along with an empty transaction
queue Qσ . Then miners deploy σ on the blockchain like any
other smart-contract.
External Functions. The following functions are used in
YODA and are assumed to be accessible to all nodes.
• (o, π) ← CheckSort(pk, sk, nonce, threshold). This

function on invocation internally runs Secret Crypto-
graphic Sortition (SCS) [10]. The threshold is used to set
the probability q that an SP node is in ES. If CheckSort()
returns ⊥ it implies the node was not selected. Otherwise

7Systems can be built where all rules in MC are part of the basic System
protocol instead of making it a smart contract. Our implementation makes MC
a smart contract.

the node is selected and o is indistinguishable from a truly
random number to anyone without sk [17]. However, it
is easy to prove that CheckSort() 6=⊥, given π and pk.

• r ← RandomGen() on invocation produces an unbiased
distributed random string. It can be practically built using
the Randhound protocol given in [24] or using block
headers of a sufficiently long set of blocks. A simple
and efficient block nonce generation procedure is using k
historical block hashes for sufficiently large k as in [10],
[15]. Alternatively, one can use a NIST randomness
beacon relayed through a data feeding mechanism such
as Town Crier [32].

VI. ENABLING CICS IN BLOCKCHAIN

In this section we describe how on receiving an IT τ , YODA
executes it off-chain. We have described two of YODA’s
key ingredients in detail: MIRACLE, which enables efficient
CIC computation with small sets of nodes, and RICE which
makes guessing the seed of one round difficult from submitted
digests in earlier rounds. The other mechanisms we describe
here address the other challenges mentioned in §II-B, such as
preventing sybil attacks, collusion, DoS, and certain variants
of free-loading attacks.
S1. CIC Transaction Deployment. On receiving an IT, τ ,
miners generate string nonce using RandomGen() which is
used in CheckSort() to elect an ES. It is important that the
nonce be created during or only after inclusion of τ on-
chain. Otherwise, if the nonce is known a priori, the node
generating τ can perform the following attack to dominate the
ES formed. It can enroll with key-pairs (pk, sk) in SP such that
the Sortition Check §VI results for the key-pairs will guarantee
it a large membership in ES. It then broadcasts the transaction,
dominates the resulting ES, and submits false solutions which
may be accepted.

The creator of τ deposits (Dmin+gasPrice∗gasLimit) in
the MC where Dmin is the minimum amount to pay for the
fixed costs of S4 and S5, and gasPrice and gasLimit denote
the gas price and gas limit respectively specified by τ . Any
extra deposit after execution of τ is refunded.
S2. Sortition Check and RICE of CICs. Nodes decide if they
are in ES corresponding to τ by computing (5) given below.
The node is part of the ES if and only if its sort res 6=⊥. All
nodes selected for the ES then execute the corresponding CIC
in RICE as given in §IV, generate the corresponding RICE
digest and proceed to S3.

sort res← CheckSort((pk, sk), τ.nonce, threshold) (5)

By using SCS, YODA prevents Byzantine nodes from joining
an ES at will. Also SCS protects ES nodes from DoS attacks
since their selection is secret until they reveal the fact. Because
YODA uses a commit-reveal mechanism (see below), ES nodes
are not vulnerable to DoS attacks before they submit their
commit transaction. After the commit step, ES nodes may
be easier to identify and hence the DoS attack can be more
effective. In the second “reveal” step, an ES node broadcasts
a single on-chain transaction after a certain number of blocks
have been generated. We assume that a node is sufficiently
DoS resilient to be able to receive block headers in a timely
manner and also to broadcast a small transaction.
S3. Commitment and Release. Let digestk, and sort resk
denote the digest of Ψ(σ, τ), and the result of CheckSort()
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respectively for node nk ∈ ES for k = 1, 2, . . . , |ES|. The
commitment nk generates is sek and is given by

sek ← hash(digestk||sort resk)

Assuming existence of a VRF and Ideal Hashing, w.h.p
sort resk 6= sort resi for i 6= k and hence sei 6= sek even
if digestk = digesti. Nodes in ES then broadcast sek to the
blockchain as a transaction which miners include on-chain if
the node is in SP.

ES nodes must broadcast their commitment within a time
window wsrc or commitment period starting from the block
that includes τ . Window wsrc is transaction dependent,
recorded in MC and measured in number of blocks. It is set
based on the gas limit mentioned in τ as by design Ψ(σ, τ)
will run for at most τ.gasLimit instructions.

A node is required to keep sort resk secret during this
period and forfeits its deposit if it fails to do so. This deters
ES nodes from colluding. However, as mentioned in §II-A,
ES nodes can use of ZK-proofs to prove that they are in an
ES without revealing sort resk. We perform a game theoretic
analysis of such an attack in §VII-D.

After wsrc, nodes in ES wait for a buffer period wbuf
before sending their unhashed digests and sortition results to
the blockchain. Nodes in ES which have submitted commit-
ments earlier, are required to submit a transaction containing
(digestk||sort resk) within a time window wsr or release
period and failure to do so results in their forfeiting deposits
and being removed from SP.

The reason for keeping this buffer period of length wbuf
is to prevent an adversary from launching a DoS attack
which we term the Chain Forking Attack (CFA).8 CFA can
occur in blockchains where block creation does not guarantee
block finalization and nodes need to wait for certain number
of blocks before becoming certain about a block’s finality
w.h.p. Assume the absence of this buffer period. If this buffer
did not exist then if an honest node publishes its opened
commitment after wsrc and expects its inclusion in a future
block, an adversary can create an alternate chain where it
includes this transaction before the end of wsrc and can thereby
penalizes the honest node. To prevent this from happening, the
introduction of wbuf between wsrc and wsr ensures that the
attacker will have to create a fork which is long enough to be
prohibitively expensive to create.
S4. MIRACLE for CICs. The blockchain miners then execute
one round of MIRACLE using the submitted digests. All
digests with the same root are considered by MIRACLE
to be the same solution irrespective of which seed they
contain. Steps S2-S4 are repeated if necessary till MIRACLE
converges.
S5. State Update, Reward Distribution and Cleanup. Once
MIRACLE terminates, all nodes in the ES broadcast one or
more transactions to the blockchain miners containing informa-
tion required for updating the state of the CIC to σ∗, the state
corresponding to the winning digest along with corresponding
proof.9 Any miner, on receiving such a transaction validates it

8According to the blockchain safety and liveness assumptions of our threat
model, CFA will never arise and we can safely consider wbuf = 0. However
for blockchains reminiscent to Ethereum, CFA is a practical concern, thus we
have added a non-zero wbuf in our implementation §VIII.

9For a Merkle tree implementation of σ it will suffice to send only the
Merkle paths of all modified variables in σ.

using the root contained in the winning digest in MIRACLE
and then gossips it to other miners. To avoid flooding the
network, it does not gossip any other transactions about the
same state.

To disincentivize nodes from submitting either false seed
or root values, YODA rewards ES nodes as follows. Let I
denote the round in which MIRACLE terminates with root.
The deposits of all ES nodes who submitted a digest with
different root from the winning one are forfeited. For a round
i|i ≤ I , let seedk|k ∈ {1, 2, . . .K} be the K different seed
values submitted in digests containing root and let ek be their
count. YODA then rewards only the ES nodes corresponding to
the seedi for which ei∑K

j=1 ej
> th1 where th1 > 0.50. YODA

confiscates the deposit of all ES nodes for which ei∑K
j=1 ej

<

th2 and YODA neither rewards nor punishes the rest. These
forfeited deposits are either burned or transfered to the MC.

The intuition behind using thresholds is as follows. Although
MIRACLE identifies the correct root with probability 1−β, it
cannot say which of many digests (with different seed values),
both containing the correct root in a particular round, is cor-
rect. Rewarding both would encourage free-loading. A naive
solution would be to reward the set of nodes corresponding
to maxk{ek} and punish the rest. There are, however, rare
instances in which Byzantine nodes can exceed quasi-honest
nodes in a round. If Byzantine nodes publish the correct root
but with an incorrect seed, the naive method would severely
punish the honest nodes. The set of quasi-honest nodes will
however not be a very small fraction of an ES. Hence threshold
th2 is chosen small enough to ensure that quasi-honest nodes
which behave honestly will not be punished w.h.p, while at
the same time punishing lone quasi-nodes which try to guess
the correct seed. Quasi-nodes have to collude in large numbers
to cross the th1 threshold, an attack which is non-trivial and
analyzed in §VII-D

Lastly, blockchain miners perform a cleanup, where they
deallocate space used for execution of Ψ(σ, τ). This includes
the space for storing commitments, sortition results etc. Fol-
lowing this miners check whether the transaction queue Qσ
is empty or not. If it is non-empty, SP nodes to initiates the
protocol for off-chain execution of the transaction at the head
of the queue and the cycle continues.

VII. SECURITY ANALYSIS

In this section we analyze the security properties of YODA.
We first analyze MIRACLE and prove many results, the most
important being that it is optimal in the expected number of
rounds under certain constraints. Incidentally, given MIRA-
CLE, Byzantine nodes maximize the probability of choosing
an incorrect solution by all submitting the same incorrect
solution. Ironically, MIRACLE is optimal given this particular
strategy of Byzantine nodes.

We then analyze RICE, proving bounds on the number of
update indices, and the amount of computation that can be
skipped at the end. We also prove that w.h.p. every round
will have update indices which have not been encountered in
previous rounds. This makes free-loading difficult.

We then present a Game-theoretic analysis of our incentive
schemes proving them to have Nash Equilibria [19]. We finally
stitch together all our results to show how they meet the goals
mentioned in §I. Lastly we discuss why guarantees in YODA
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are likely to work in an even more realistic setting with a
stronger adversary and where quasi-honest nodes are allowed
more protocol deviations.

A. MIRACLE Analysis
In this section we present the security analysis and guarantees

provided by MIRACLE. Let M be the total size of SP, i.e.
M = |SP | containing f fraction of Byzantine nodes. Let the
probability of any node in SP getting chosen for an ES be q.
Let N b, Nh denote the total number of Byzantine and quasi-
honest (here assumed to be honest) nodes in an ES. Let N b

i , N
h
i

denote i.i.d Bernoulli random variable indicating if the ith

Byzantine or honest node is selected for the ES or not. Then

N b =

fM∑
i=1

N b
i , and Nh =

(1−f)M∑
i=1

Nh
i

We approximate Nh, N b by a Gaussian distribution, since they
are a sum of large number of i.i.d random variables. Let µh, µb
denote the mean of Nh, N b respectively and ν2b , ν

2
h denote

their variances. These are µh = E[Nh] = q(1 − f)M , and
ν2h = V ar[Nh] = q(1−f)M(1−q). Similarly, µb = E[N b] =
qfM , and ν2b = V ar[N b] = qfM(1− q).

Theorem VII.1. If f = fmax and the adversary submits only a
single incorrect digest, then MIRACLE reduces to an optimal
Sequential Probability Ratio Test (SPRT) [28]. The threshold
(see (2)) provides an optimal expected number of rounds for
a given β. The expected number of rounds is given by

E[# of rounds] ≈
(1− β) ln 1−β

β + β ln β
1−β

(µh−µb)2+ν2
h−ν

2
b

2ν2
b

+ ln νb
νh

(6)

Proof: Consider the case where all Byzantine nodes
consistently provide the same solution. Let the solutions be
d1 and d2. The problem of determining the correct solution
boils down to choosing between two hypotheses over multiple
rounds: Hk : dk is the correct solution; k = 1, 2. Let ck,j
denote the number of solutions equal to dk in round j. Then
the optimal solution [28] is given by an SPRT in which the
log-likelihood ratio after i rounds is

Li =

i∑
j=1

− (c1,j − µh)2

2ν2h
− (c2,j − µb)2

2ν2b
+

(c1,j − µb)2

2ν2b
+

(c2,j − µh)2

2ν2h

=
1

2q(1− q)M

[
(1− fmax)− fmax

(1− fmax)fmax

] i∑
j=1

(c21,j − c22,j)

If Li > ln((1 − β)/β), then the SPRT chooses Hi. This is
equivalent to MIRACLE.
Remark 1: MIRACLE is optimal in case f = fmax. In case
f < fmax, the expected number of rounds will be less than
that specified in ( 6), while still ensuring that the probability of
incorrectly deciding σ∗ is less than β. Specifically, let R(f) be
the expected number of rounds MIRACLE takes to terminate
as a function of f . In Figure 1 , for β = 10−20, we choose
q such that, R(fmax) = 5. We then empirically evaluate the
number of rounds MIRACLE takes to terminate when f ≤
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Figure 1: Number of rounds MIRACLE takes to terminate with f ≤
fmax when designed for worst case (f = fmax) expected number
of rounds for termination to be 5 i.e R(fmax) = 5. For the case
fmax = 0.45, for all f ≤ 0.30, MIRACLE terminates in one round.

fmax over 10000 runs of MIRACLE. Key points to observe
in the Figure 1 is that MIRACLE terminates early for f ≤
fmax. Specifically, with fmax = 0.45, on average MIRACLE
terminates in one round up to f ≈ 0.30.
Remark 2: The probability of choosing a node to belong to the
ES, q, can be set to any value which fixes the expected size of
ES in any round. We recommend that q be chosen such that if
all nodes in the first ES are honest then the likelihood crosses
the threshold T in that round itself. This ensures that more
than one round can occur only if there are some Byzantine
nodes in SP. Solid line from graph in Figure 2 demonstrates
minimum required |ES| with |SP |=1600 and f = 0 for one
round termination of MIRACLE.
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Figure 2: Dashed line shows E[|ES|] required for R(fmax) = 1.
Solid line shows E[|ES|] when R(0) = 1. For the case fmax = 0.35,
|ES| ≈ 200 guarantees R(fmax) = 1. In addition with E[|ES|] ≈
60, for the same fmax, MIRACLE terminates in 1 round when f = 0
and β = 10−20.

Although we have proved that MIRACLE is optimal if an
adversary chooses a single solution, the question arises as to
whether the adversary has a better strategy for MIRACLE in
which it chooses more than one solution. The next theorem
states that this is not the case. Indeed, the best strategy for
the adversary, given that YODA uses MIRACLE is to choose
only a single incorrect solution.

Theorem VII.2. With MIRACLE as the consensus algorithm,
the best strategy for an adversary controlling all byzantine
nodes is to only submit a single incorrect solution. Any other
strategy reduces the probability of choosing incorrect solution
by the system.

Proof: Consider a strategy in which adversary submits
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solution d2, d1, ..., dm for m ≥ 2 and the solution submitted
by honest nodes is d1. Let us call this strategy ST1. Consider
another strategy ST2, in which the adversary only submits a
single solution denoted by s′2 and the honest nodes submits
s′1. For an round i in ST2, let the corresponding likelihood be
L′2,i and the number of solutions submitted is c′2,i. We assume
that total number of submissions for an round j ≤ i are the
same in both ST1 and ST2. Hence, it is trivial to see that
ck,j ≤ c′2,j∀ k ≥ 2. Also,

Lk,i =

i∑
j=1

(2ck,j − Cj)Cj ≤
i∑

j=1

(2c′k,j − Cj)Cj

=

i∑
j=1

(2c′k,j − C ′j)C ′j

= L′2,i,∀ k ≥ 2,∀i

Thus
max
k≥2

Lk,i ≤ L′2,i (7)

Hence the result follows.
For each solution submitted MIRACLE has one likelihood

which is compared with T. The question arises as to whether
or not more than one likelihood can simultaneously exceed the
threshold, thus leading to multiple solutions for the transaction.
The following theorem proves that this cannot happen.

Theorem VII.3. MIRACLE can terminate with only a single
solution being adjudged correct.

Proof: Assume there are multiple solutions d1, d2, .., dt
with t ≥ 2 for which

∑
j (2ck,j − Cj)Cj > T > 0. Then

summing them
t∑

k=1

∑
j

(2ck,j − Cj)Cj > 0

⇒
∑
k

∑
j

2ck,jCj > t
∑
j

C2
j . (8)

Consider the left hand side of the previous equation.

2
∑
j

Cj
∑
k

ck,j ≤ 2
∑
j

Cj(Cj) ≤ t
∑
j

C2
j (9)

Equation 8 and 9 contradict each other. Hence our assumption
was wrong.

B. RICE Analysis
In this section we prove that RICE adds low overhead and

is secure.

Lemma VII.1. Given RICE terminates in an subarray of size
2k, let φ be the number of times Ψ(σ, τ) is interrupted to
update the seed in RICE, then

(k − 1)k

2
< φ ≤ k(k + 1)

2
(10)

Proof Sketch: Due to the slow k increase strategy, the total
number of times storage root is updated i.e φ is

k−1∑
j=1

j < φ ≤
k∑
j=1

j

which proves the lemma.
Given the bounds on number of times seed is updated in

RICE, we now proceed to find a relationship between the T
and φ. Thus we first find relationship between T and k and
then proceed further.

Lemma VII.2. The relationship between k and T is

2k(k − 2) + 2 < T ≤ 2k+1(k − 1) + 2 (11)

Proof Sketch: From the slow k increase strategy we have

k−1∑
j=1

j2j < T ≤
k∑
j=1

j2j (12)

Simplifying further we have the result.

Theorem VII.4. (RICE Efficiency) The number of times seed
is updated in a single RICE run i.e φ is Θ((log2 T )2).

Proof Sketch: Taking log on both sides of the result of
Lemma VII.2 we have k is Θ(log2 T ). This combined with
equation 10 from Lemma VII.1 proves the theorem.

We now identify the possible point where last seed update
happens in RICE for Ψ(σ, τ)

Lemma VII.3. With T as the length of array representing
Ψ(σ, τ), the last seed update happens at O( 1

log2T
) fraction

prior to T .

Proof: Let tl be the index of last seed update and let tl
lies inside a segment of length 2k then T ≤ tl + 2k + 2k+1.
Hence we want T−tl

T is O
(

1
log2T

)
T >

k∑
i=1

i2i = k2k+2 + 2

T − tl
T

≤ 2k + 2k+1

T
<

3

4k
≤ 3

4log2T

As discussed earlier, it is important for different rounds to
use a different set of indices for updating the seed to prevent
free-loading attacks. We thus prove how RICE prevents free-
loading attacks in YODA.

Definition VII.1. (Unmatched index) Let RICEi and RICEj ,
with i 6= j be two RICE runs in distinct rounds in YODA.
Then Mi = {tmi | m ∈ [1 : φ]} and Mj = {tmj | k ∈ [1 : φ]}
denote the set of indices where seed is updated in rounds i
and j. An index tmi ∈ Mi is said to be an Unmatched index
with respect to RICEj iff tmi 6∈Mj .

Definition VII.2. Strong Unmatched Index. An index in
RICEi is called Strong Unmatched Index if it is an unmatched
index ∀ RICEj where j < i.

We now evaluate the distribution of number of strong un-
matched index in RICEi. The presence of even a single strong
unmatched index implies that even if an adversary assists a
quasi-honest node in a free-loading attack, by revealing root
values corresponding to indices in earlier rounds, these prove
insufficient to compute the digest of RICEi.
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Theorem VII.5. Let Xk denote the number of strong un-
matched indices in RICEi where Ψ′ terminates in an segment
of size 2k. Then Xk is strictly smaller than a Poisson Binomial
Distribution [30] with mean µ = (k−1)k

2 −2(i−1) and variance
ν2 ≈

∑k−1
n=1 n(1− i−1

2n ) i−12n .

Proof: The occurrence of a strong unmatched index in a
segment of size 2m in RICEi is a Bernoulli random variable
with mean lower bounded by 1 − (i−1)

2m . This is a tight
bound and the event corresponding to the lower bound occurs
when all previous rounds have strong unmatched indices in
this segment. There are m such segments of length 2m. In
the case where all RICEj have strong unmatched indices in
all segments, X is random variable with Poisson binomial
distribution [30] with mean and variance given in the statement
of the theorem.

Given the above we proceed to find a lower bound on the
probability that the number of strong unmatched index Xk

is greater than some xk. We achieve this by finding a lower
bound on P (X ≥ x) in the ith round with the tail of a
Binomial Random variable. As CIC size T → ∞ we prove
that for a series xk → ∞, the tail of the binomial and hence
P (Xk ≥ xk) goes to 1. This means that the number of strong
indices increases without bound w.h.p. as T increases. This in
turn reduces the chances of success of a free-loading attack
as it becomes virtually impossible for a node to guess the
root values at an increasingly large set of strongly unmatched
indices.

Theorem VII.6. Let Ψ(σ, τ) in the ith round of MIRACLE
ends in a segment of size 2k. Given Xk defined as in Theorem
VII.5, we can lower bound the tail probability of Xk i.e
P (Xk ≥ xk) for any xk ≤ k(k−1)/2 with the tail probability
of B

(
(k−1)k

2 − (b2−1)b2
2 , xk, 1− i−1

2b2

)
for any b2 ≤ k where

B(n, ., p) is a binomial distribution with n trials with p as
success probability of each trial.

Proof Sketch: Call the occurrence of a strong unmatched
index in a segment of size 2m in RICEi as a trial in that
segment. The trial is a Bernoulli random variable with mean
lower bounded by 1 − (i−1)

2m . If m > b2 then the mean has
lower bound 1 − (i − 1)/2b2 and if m ≤ b2 the mean is
lower bounded by 0. Hence Xk which is the sum of all trials
has tail distribution strictly higher than the tail of the sum
of (b2 − 1)b2/2 i.i.d. Bernoulli random variables with mean
1−(i−1)/2b2 . There are (k−1)k

2 − (b2−1)b2
2 number of segments

with m > b2. The result follows.

Lemma VII.4. As k →∞, P (X >
√
k)→ 1.

Proof Sketch: Choose xk =
√
k. The result follows from the

above Theorem and the use of the well-known bound on the
tail distribution of B(n, l, p) given by

P (B(n, ., p) > l) ≥ 1− e−2
(np−l)2

n

Remark 1: Recall that MIRACLE allows the system designer
to choose an appropriate |ES| size to achieve an expected
number of rounds. In this way, the number of rounds can be
limited to less than a constant i w.h.p.

Remark 2: Since
√
k grows unboundedly with k, it follows

that for large sized ITs, and some finite round i, the number of

strong indices grows unboundedly w.h.p. Since the root values
at these strong indices are not known w.h.p. (except for trivial
CICs where storage does not change over indices) the final
seed also cannot be known w.h.p.

The next result shows that the probability of occurrence of
any particular seed value is vanishingly small assuming the
roots at different strong indices are mutually independent.

Theorem VII.7. Let the probability mass distribution of the
root at all strongly unmatched indices in round i be upper
bounded by 1 − λ for some λ > 0. Let the last segment of
the CIC be of size 2k. Then as k → ∞ the probability mass
function of the seed at the end of RICEi is negligible assuming
an ideal hash function, and that the root at different unmatched
indices are mutually independent.

Proof Sketch: Let j ∈ [1 : X] denote the X strongly
unmatched indices, and rj and sj the corresponding root and
seed. Since the hash function is ideal, it maps unique inputs
to unique outputs.

Thus P (hash(sj ||rj)) = P (sj , rj) = P (sj)P (rj). The
last equality is due to the independence assumption.
We assume that s1, the seed at the first strong
unmatched index, is known to the node and hence
P (s1) = 1. Denoting seedX+1 as the final seed, we have
P (seedX+1) =

∏
j P (rj) ≤

∏
j maxP (rootj) ≤ (1 − λ)X .

Since X is larger than
√
k w.h.p. as k → ∞ we have

P (sX+1)→ 0.

Remark: The roots of indices “far apart” being independent
is not unrealistic, except for trivial CICs. Strong unmatched
indices are in different segments and hence except for neigh-
boring indices, they are separated by whole segments, and
hence we conjecture that the independence assumption is a
good approximation in practice. We also conjecture that the
same result holds for weaker assumptions than stated in the
theorem and leave the proof for future work.

C. Free-loading attack
We now analyze a free-loading attack where a quasi-honest

node skips computation of the CIC by using information
available on the blockchain and/or state information of Ψ(σ, τ)
from previous rounds received from an adversary §IV. We
consider the best case scenario for the free-loading node where
it knows the correct root of the digest w.h.p. but has to
guess the seed. We analyze the case where Byzantine nodes
have maximum fraction fmax in SP and all submit the same
incorrect root with the same seed in order to maximize the
probability of MIRACLE selecting their solution, and where
quasi-honest nodes do not collude.

Denote the profile where all quasi-honest nodes execute the
CIC as −→a and the profile where only a single quasi-honest
node ni free-loads as −→a −i. With −→a the analysis of MIRACLE
with honest and Byzantine nodes holds. Hence quasi-honest
nodes win reward R with probability 1 − β, and lose their
deposits D with probability β. The cost of computing the CIC
is c1. Hence the utility for ni with this profile is

Ui(−→a ) = (1− β)R− βD − c1 (13)

Let γ be the probability of ni guessing the correct seed while
free-loading. If it guesses the correct seed then its probabilities
of winning a reward and losing its deposit are (1−β) and β as
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above. If it guesses the wrong seed then it loses its deposit. We
denote by c2 the cost of bandwidth consumed for downloading
intermediate storage of previous rounds from an adversary
and analyzing them to predict the seed. Then the utility

Ui(−→a −i) = γ((1− β)R− βD)− (1− γ)D − c2 (14)

From (13) and (14) we obtain Ui(−→a )− Ui(−→a −i) > 0 iff

R+D >
c1 − c2

(1− β)(1− γ)
≈ c1 − c2 (15)

where the last approximation is due to the fact that γ is
vanishingly small in practice and β is a design parameter
chosen to be small. Since R > c1, that is the reward must
be more than the cost of computation, we see that (15) is true.
Hence profile −→a is a Nash equilibrium [19].

D. Collusion Attack
We now consider the case where a group C of ES nodes

collude to submit a common seed. We assume they know the
correct root w.h.p, that Byzantine nodes all submit the same
incorrect root with the same seed in order to maximize the
probability of MIRACLE selecting their solution, and that all
other quasi-honest nodes execute the CIC correctly. Since |ES|
is random, nodes in C cannot be entirely sure if |C| is larger
than th1|ES| or less than th2|ES|. Suppose |C| > th1|ES|
with probability γ1 and |C| < th2|ES| with probability γ2. The
computation cost of colluding requires solution of ZK-proofs
since nodes need to prove they belong to ES without revealing
their Denote the associated costs by c3 and this profile by−→a −C .

In case the Byzantine nodes win MIRACLE, C lose their
deposits. In case the correct root is selected by MIRACLE, C
win a reward with probability γ1, and lose their deposits with
probability γ2. Hence utility for node ni ∈ C

Ui(−→a −C) = γ1((1− β)R− βD)− γ2D − c3 (16)

In case γ1 = 1, Ui(−→a ) is a ε-Nash equilibrium [22] with
ε = c3 − c1. In this special case, if the c3 is larger than the
CIC computation cost itself, the nodes are better off being
honest. Note that higher |C| increases γ1, but also increases c3
because of more ZK proofs, and related communication costs.

E. Meeting the Requirements.
We here summarize how various mechanisms in YODA meet

the goals listed in §I. Most requirements are met due to MIRA-
CLE. For all fmax < 0.50, MIRACLEterminates and thus off-
chain execution of a CIC also Terminates. MIRACLE allows
a system parameter β which is the probability of accepting a
incorrect solution, thus achieving Validity with tunable high
probability. Agreement on off-chain CIC execution trivially
follows from the safety guarantees of the blockchain. Recall
in YODA, to initiate the reward mechanism process ES nodes
need to submit the correct storage root in the blockchain and
the miners verify it before its inclusion ensuring Availability
of the post-execution state σ∗.

Since YODA never requires the blockchain to verify the CIC
execution on-chain, YODA is Oblivious. YODA requires ES
to be much smaller than naive approaches discussed in §III
thus making YODA Efficient. MIRACLE is Adaptive to the
fraction of Byzantine nodes in SP, and terminates earlier the
smaller this is §III. For appropriate choice of th1, th2 in §VI
YODA ensures weak-Fairness.

F. Stronger Adversary Scenarios with Rational Nodes
We now discuss how YODA may perform if we replace

quasi-honest nodes by rational nodes and also allow stronger
adversaries. Unlike quasi-honest nodes, rational nodes are
not conservative (ref. §II-A) towards Byzantine nodes. The
stronger adversary is allowed to try to reveal information about
the current round to a rational node, and not just information
about past rounds.

Consider the case where an adversary A is actively providing
information about the root at intermediate RICE indices for the
current round. Recall from RICE §VII-B that for each round
we will have a large number of strong unmatched indices with
large probability, and thus for all such unmatched indices, a
rational node N , has to obtain the root from A. How will
A convince N about the correctness of the states at these
intermediate points? One mechanism is that A commits its
digest in the current round and gives a zk-Proof to N about
it. A challenge for N is that it does not know whether A
is Byzantine or rational. Even if we consider that rational
nodes commit correct digest, when A is Byzantine then its
commitment could be false.

Consider the case where two or more rational nodes in an
ES want to collaborate to generate the correct digest. Consider
one rational node NR interacting with another node NU which
might potentially be Byzantine. First, both nodes must prove
that they belong to ES. Ruling out a non-Interactive zk-Proof,
NR and NU have to produce an interactive zk-Proof, and
this may be vulnerable to DoS attacks. Once the proofs are
established, one strategy could be to split the execution among
them. This situation again boils down to trusting the result
claimed by NU about its execution.

Finally we discuss pragmatic concerns related to a collusion
attack. In our utility analysis we considered the case where
all nodes in the colluding set C are all quasi-honest but in
practice it will possibly contain Byzantine nodes as well. This
will possibly lower the probability γ1 of successful collusion.
Since the success of the collusion attack depends on |ES|,
imperfect knowledge of |ES| during the commitment phase of
RICE lowers γ1 even more. Interestingly even with knowledge
of |ES| prior to collusion and |C| ≥ th1|ES|, the success truly
depends on the behavior of Byzantine nodes in C.

VIII. IMPLEMENTATION AND EVALUATION

To experimentally evaluate the scalability of YODA, we
have implemented a prototype which includes all parts of
YODA except SP selection, on top of the popular Ethereum
geth client version 1.8.7 and evaluate them in a private
network. The SP selection procedure is independent of CIC
transaction gas limits and hence does not impact scalability.
Our implementation consists of ∼500 lines of code (LOC) in
Solidity (for the Master Contract and sample CICs) and ∼2000
LOC in python on top of the interface for the modified client
whose task is detailed below.
Experimental Environment. We use 8 physical machines
each with a 2.80 × 8 GHz intel Core-i7 processor with 8GB
RAM and running Ubuntu 17.10 to simulate 16 off-chain
clients. Each client emulates 100 YODA nodes thus making
M = |SP | = 1600. Since off-chain CIC execution requires
considerable computations resources, we restrict the number of
clients per machine to two. All these 16 clients are connected
to an Ethereum network created using geth which we consider
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Figure 3: Measured CIC execution time with
varying gas usage.
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Figure 4: Average digest commit time with
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Figure 5: Change in Expected number of rounds
vs. fmax for |SP | = 1600, q = 0.125.

to be the blockchain network. The blockchain runs on Proof
of Authority in geth which is a developer mode option in
the Ethereum private network to keep the block mining time
fixed. A separate physical machine with similar specifications
handles transactions and mines blocks. To achieve a required
|ES| we allow a single client to execute an IT only once
and submit commitments for multiple SP nodes based on how
many of its nodes are selected by Sortition. For each execution
we regulate q to achieve an appropriately sized ES.
Executing CICs in the EVM. To execute ITs off-chain, each
client in our system runs a modified EVM supported with an
implementation of RICE. This EVM provides the interface
for off-chain execution of a CIC. The clients deploy the
contract in their local EVM whenever a CIC is created on the
blockchain. When a IT is broadcast on-chain, clients download
the transaction and execute them locally in the EVM based on
the sortition result. After execution each client broadcasts a
transaction containing the digest for each of its ES nodes. An
identical mechanism is used to reveal the commitment.

A. Scalability of CICs.
We start with a CIC containing a parameterizable function

called Compute() with parameter η which sets the amount
of gas to be used. Internally Compute() runs iterations
modifying a CIC state variable after performing arithmetic
operations. We start Compute() with gas usage 5.3 × 106

and increase this by a factor of 10 rising up to 5.3 × 1010.
Note that each Ethereum block can only accommodate up to
8M gas in 15 seconds (avg. block generation time) at the time
of writing and hence we conclude that its maximum gas usage
per second is 5.3× 105.
Varying Gas Usage. In Figure 3 we plot the average of mea-
sured time from the start of the round up to the commitment
(S1-S2) as a red line and the range of values as error bars.
Observe that the average time remains constant at about 20
secs till gas usage of 5.3 × 108 after which it increases to
about 30 secs for 5.3 × 109 and to about 100 secs after that.
The total submission time includes off-chain computation time
and in addition Ethereum on-chain delays, such as the time for
a transaction to be included in a block on-chain. Clearly for
gas 5.3×109 or less the on-chain delays dominate after which
off-chain delays dominate.

We also plot a bar graph depicting the windows for com-
mitting the storage root wsrc, the buffer period wbuf , and the

window to reveal the storage root value wsr. Among the three
only wsrc depends on gas usage since the computation of the
IT happens during this time. The total time for one round is
wsrc + wbuf + wsr.

From the experiment with CIC gas usage equal to 5.3×1010,
we see that YODA consumes 240 Million gas per second.
This amount is 450× more than the existing amount of gas
Ethereum can use per second. Note that this speedup is when
only a single IT is running. With parallel execution of ITs this
scales up further as we demonstrate in our next experiment.
Parallel CICs. We further test YODA by running up to 16
parallel ITs. Figure 4 shows the time taken for executing
different number of concurrent ITs. All ITs are invoked at
once in a single block on-chain and the gas usage of all are
kept identical. The red line in Figure 4 records the average of
the storage root commitment times and error bars are used to
indicate the range of these. Observe that the minimum commit
time remains almost constant, indicating that the time for off-
chain execution is the same. However the maximum value
increases. This is because more blocks are needed to include
the increased number of commitment transactions. As a result
the average commit time increases gradually. As future work
we will devise mechanisms to automatically provision wsrc
taking this phenomenon into account.
Evaluation of MIRACLE. We next evaluate the performance
of MIRACLE in the presence of a Byzantine adversary. In
our experiments the adversary uses the best strategy, that is it
submits a single incorrect solution for all nodes it controls.

For system design the expected number of rounds is a crucial
parameter. We determined this quantity experimentally and
compared it to its theoretical approximation. In Figure 5 we
plot E[# Rounds] versus the fraction of Byzantine nodes f for
different values of the probability of accepting an incorrect
storage root β in the range 10−3 to 10−10. For this experiment
we fixed parameter values q = 0.125,M = 1600 giving us an
ES of expected size 200. Notice that E[# Rounds] increases
with an increase in f and largely agrees with the theoretical
approximation. The theoretical approximation has an artifact
in that it can be less than 1 which is impossible because the
number of rounds is at least 1 always.
Evaluation of RICE. We next evaluate the overheads associ-
ated with RICE when implemented on the EVM geth client.
For this experiment, we measure CIC execution time on the
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unmodified EVM and then perform the same experiment in
a EVM modified with RICE implementation. For each gas
usage, we aggregate the results over 200 repetitions. Figure 6
shows the time difference of CIC execution with RICE and
without RICE. As expected, the absolute difference increases
as gas increases due to the presence of more update indices.
More interesting to observe is Figure 7 where we plot gas
usage vs. relative execution time i.e ratio of absolute time
difference and CIC execution time without RICE. First observe
that the relative overhead due to RICE is extremely low. As gas
increases, the relative time decreases because the RICE indices
become sparse in later segments and hence add less overhead.
During the early part of the graph wee see a small aberration.
This is because time with and without RICE are small and
hence minor variations in the absolute time difference get
magnified relative to time without RICE.
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Figure 6: Absolute overhead of RICE in CIC execution plotted against
increasing gas usage.
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increasing gas usage.

IX. RELATED WORK

The threat model of combining Byzantine and selfish nodes
in distributed systems dates back to Aiyer et al. [1] Prior to
their work threat models in distributed systems either con-
sidered the presence of perfectly honest nodes and Byzantine
nodes, or only selfish nodes. The Byzantine Altruistic Rational
(BAR) considered a more realistic scenario combining the two
models in a permissioned cooperative service with PKI [1].
Our threat model is of the BAR variety.

Most analysis of blockchain consensus protocols in the
permissionless case limit themselves to a threat model of
Byzantine with honest nodes which are not BAR models.
These include works on Fruitchains [20], Algorand [10], and
the sleepy model of consensus [21]. In the sleepy model,
honest nodes may go offline and not participate in the protocol.
Ouroboros [13] introduces ε-Nash Equilibrium for a proof-of-
stake protocol. Selfish mining [23] shows in case a non-zero
fraction miners in PoW blokchains behave selfishly, honest
behaviour is no longer an equilibrium, because individuals
unilaterally benefit by joining hands with the attacker. All these
works solve a very different problem from YODA, namely that

of block consensus. Blocks can potentially take many values
and are easy to verify. In contrast, CIC computation can have
only one correct value and are computationally intensive to
verify.

Truebit is a proposal to enable CICs on permissionless
blockchains, in the presence of selfish nodes [26]. Truebit
requires a single Solver to execute and upload the results of
the transaction, and any number of volunteer verifiers to verify
the Solver’s solution. There is no bound on the number of
verifiers unlike in YODA. Moreover Truebit does not claim to
provide guarantees for probability of correct CIC computation
under a threat model. In fact, recent work shows that Truebit is
susceptible to a Particpation Dilemma, where if all participants
are rational, an equilibrium exists with only a single verifier
which can cheat at will [12]. It also makes payouts to verifiers
rare events, unlike YODA which pays ES members rewards
immediately.

Arbitrum is a system for scalable off-chain execution
of private smart contracts developed concurrently with our
work [12]. In Arbitrum, each smart contract can assign a set
of managers who execute its transactions off-chain. Any one
manager can submit a hash of the updated state on-chain. In
addition, any other manager can submit a challenge if this
earlier submitted state is incorrect. Arbitrum works under a
threat model with at least one honest manager and the rest of
the managers being rational. It has not been proved to work
in the presence of Byzantine managers, or with all managers
being rational. In contrast, YODA works in the presence of
both Byzantine and selfish nodes, none of which need to be
honest. YODA is also not restricted to private smart contracts.

Several other papers focus on sharding for improving per-
formance of permissionless blockchains [2], [14], [15]. None
of these, however, focus on the specific problem of executing
CIC transactions efficiently. They instead increase throughput
in terms of number of non-IT transactions executed over
time. The execution (or verification of correct execution) is
implicitly assumed to take little time, and all miners verify all
transactions.

X. DISCUSSION AND CONCLUSION

We have presented YODA which enables permissionless
blockchains to compute CICs efficiently. Experimental results
show that individual ITs with gas usage 450 times the maxi-
mum allowed by Ethereum can be executed using the existing
EVM. YODA uses various incentives and technical mecha-
nisms such as RICE to force rational nodes to behave honestly.
Our novel MIRACLE algorithm uses multiple rounds to
determine the correct solution and shows great savings in terms
of number of rounds when the actual Byzantine fraction of
nodes is less than the assumed worst case.

One advantage of YODA is its modular design. Several mod-
ules can be left intact, while replacing the others. Examples
of such modules are RICE, MIRACLE, SP selection, and ES
selection, which can in future be replaced by alternatives.

Several issues need to be addressed before YODA can
become a full fledged practical system. One open problem we
have not addressed is the issue of data. Often, large CICs are
likely to have large state and each IT can potentially modify
many state variable. Broadcasts of every update for every IT
can be costly in terms of communication. A possible alternative
to this state update could be storage of data in a Distributed File
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System like IPFS [5] and using Authenticated Data structures
such as Versum [27] to store a succinct representations of it
in the blockchain.

Another concern is regarding the number of additional
transactions needed to achieve consensus on a CIC. For each
round, MIRACLE requires each ES node to submit two short
transactions. Also the count of such transactions depends on
f . Observe from Figure 2 that in the best case YODA requires
only ≈ 70 transactions with f = 0 and β = 10−20. With
contemporary blockchain solutions that claims to scale up
to 1000s transaction per second [10], [31] these transactions
consume relatively small bandwidth.

The periods wsrc, wsr chosen for execution of CICs off-chain
will in practice also depend on the number of simultaneous
ITs being currently executed by YODA. This is because, as
the number of simultaneous ITs increase, the average CIC
workload on any node increases as well, since each node
may belong to multiple ES sets simultaneously. As CICs are
computationally expensive, the MC must further keep a limit
on ITs at any instant of time to reduce the maximum load on
an ES node.
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