
ExSpectre: Hiding Malware in Speculative Execution

Jack Wampler
University of Colorado Boulder

jack.wampler@colorado.edu

Ian Martiny
University of Colorado Boulder

ian.martiny@colorado.edu

Eric Wustrow
University of Colorado Boulder

ewust@colorado.edu

Abstract—Recently, the Spectre and Meltdown attacks re-
vealed serious vulnerabilities in modern CPU designs, allowing
an attacker to exfiltrate data from sensitive programs. These
vulnerabilities take advantage of speculative execution to coerce
a processor to perform computation that would otherwise not
occur, leaking the resulting information via side channels to an
attacker.

In this paper, we extend these ideas in a different direction,
and leverage speculative execution in order to hide malware from
both static and dynamic analysis. Using this technique, critical
portions of a malicious program’s computation can be shielded
from view, such that even a debugger following an instruction-
level trace of the program cannot tell how its results were
computed.

We introduce ExSpectre, which compiles arbitrary malicious
code into a seemingly-benign payload binary. When a separate
trigger program runs on the same machine, it mistrains the CPU’s
branch predictor, causing the payload program to speculatively
execute its malicious payload, which communicates speculative
results back to the rest of the payload program to change its
real-world behavior.

We study the extent and types of execution that can be
performed speculatively, and demonstrate several computations
that can be performed covertly. In particular, within specula-
tive execution we are able to decrypt memory using AES-NI
instructions at over 11 kbps. Building on this, we decrypt and
interpret a custom virtual machine language to perform arbitrary
computation and system calls in the real world. We demonstrate
this with a proof-of-concept dial back shell, which takes only
a few milliseconds to execute after the trigger is issued. We
also show how our corresponding trigger program can be a pre-
existing benign application already running on the system, and
demonstrate this concept with OpenSSL driven remotely by the
attacker as a trigger program.

ExSpectre demonstrates a new kind of malware that evades
existing reverse engineering and binary analysis techniques. Be-
cause its true functionality is contained in seemingly unreachable
dead code, and its control flow driven externally by potentially
any other program running at the same time, ExSpectre poses a
novel threat to state-of-the-art malware analysis techniques.

I. INTRODUCTION

Modern CPU designs use speculative execution to main-
tain high instruction throughput, with the goal of improving
performance. In speculative execution, CPUs execute likely

future instructions while they wait for other slower instructions
to complete. When the CPU’s guess of future instructions is
correct, the benefit is faster execution performance. When its
guess is wrong, the CPU simply discards the speculated results
and continues executing along the true path.

Previously, it was assumed that speculative execution re-
sults remain invisible if discarded, as careful CPU design main-
tains strict separation between speculative results and updates
to architectural state. However, recent research has revealed
side channels that violate this separation, and researchers
have demonstrated ways to exfiltrate results from speculative
computation. Most notably, the Spectre vulnerability allows
attackers to leak information from purposefully mis-speculated
branches in a victim process [28]. The Meltdown vulnerability
uses speculative results of an unauthorized memory read to
sidestep page faults and leak protected memory from the
kernel [33]. Both of these vulnerabilities focus on extracting
secret data from a process or operating system. Recent follow-
up work has revealed other Spectre “variants”, including
speculative buffer overflows, speculative store bypass, and
using alternative side channels besides the cache [27], [36]. In
addition, several attacks have leveraged Spectre to attack Intel’s
SGX [10], [40], [8], and perform remote leakage attacks [49].

In this paper, we explore another attack enabled by specula-
tive execution: ExSpectre, which hides computation within the
“speculative world”. Taking advantage of the CPU’s specula-
tion to secretly perform computation, we can produce binaries
that thwart existing reverse engineering techniques. Because
the speculative parts of a program never “truly” execute, we
can hide program functionality in the unreachable dead code
in a program. Even a full instruction trace, captured by a
hardware debugger or software emulator, will be unable to
capture the logic performed speculatively. This technique could
lead to sophisticated malware that hides its behavior from both
static and dynamic analysis.

Existing malware use several techniques to evade detection
and make it difficult for analysts to determine payload behavior
of reported malware. For example, binary packers or crypters
encode an executable payload as data that must be “unpacked”
at runtime, making it difficult to tell statically what a program
will do [21]. Malware may also use triggers that only run
the payload when certain conditions are present, preventing
it from executing when it is inside an analysis sandbox or
debugger [3], [47].

However, with some effort, these existing malware tech-
niques can be defeated. Analysts can use dynamic execution
to unpack malware and reveal its behavior [3], and can use
symbolic execution or code coverage fuzzers to determine the

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA
ISBN 1-891562-55-X
https://dx.doi.org/10.14722/ndss.2019.23409
www.ndss-symposium.org

inputs or triggers that will reveal malicious behavior [38], [48],
[56], [12].

ExSpectre provides a new technique to malware authors,
allowing them to hide program functionality in code that
appears to not execute at runtime by leveraging Spectre as a
feature [20]. This technique defeats existing static and dynamic
analysis, making it especially difficult for malware analysts to
determine what a binary will do.

PayloadTrigger

jmp *%rax
...
...
retq
...
jmp *%rbx

call (*fn_ptr)

target_fn

cache_timing

1

2

3

4 CPU cache

Legend
Actual Exec. Path
Speculative Exec. Path Data Exfiltration

Data Utilization

Extra Process BarrierSpeculative State Barrier

Fig. 1. ExSpectre — Both the trigger and payload binaries perform the same
initial series of indirect jumps (Step 1), with the goal of having the trigger
program (mis)train the branch predictor. In the payload program, fn_ptr
has been set to point to the cache_timing function but is flushed from
cache. Following the pattern in the trigger program, the branch predictor mis-
predicts the jump (Step 2) and instead speculatively jumps to target_fn
(red line). target_fn briefly executes speculatively (Step 3), until the
fn_ptr is resolved and the process redirects computation to the (correct)
cache_timing function (Step 4). This function then measures information
computed in the speculative target_fn by measuring a covert cache side
channel.

At a high level, ExSpectre consists of two parts: a payload
program, and a trigger. The trigger can take the form of a
special input (as in typical malware), or an unrelated program
running on the same system. When run without the trigger,
the payload program executes a series of benign operations,
and measures a cache-based side channel1. Once the trigger
activates—either by the attacker providing specially crafted
input, or the trigger program running—it causes the CPU to
briefly speculatively execute from a new target location inside
the payload program.

This target location can be in a region that is neither read
nor executed normally by the payload program, making this
logic effectively dead code to any static or dynamic reacha-
bility analysis. After the CPU discovers the mis-speculation
at the target location, it will discard the results and continue
executing from the correct destination. However, this still
gives the payload program a limited speculative window where
it can perform arbitrary computation, and can communicate
results back to the “real world” via a side channel. Figure 1

1We note that other side channels could be used in place of a cache

shows the variant of ExSpectre that uses a trigger program
to mis-train the CPU’s indirect branch predictor, causing the
payload program to briefly execute a hidden target function
speculatively.

It is also possible for a trigger program to be a benign
program already on the victim’s computer. We show this
using the OpenSSL library as a benign trigger program in
Section V-A, activating a malicious payload program when an
adversary repeatedly connects to the infected OpenSSL server
using a TLS connection with a specific cipher suite.

We also show it is possible to obviate the trigger program
entirely, and instead use trigger inputs, which are data inputs
the attacker provides directly to the payload, causing the
CPU to speculatively execute at the attacker’s chosen address.
Unlike traditional malware input triggers, these inputs cannot
be inferred from the payload binary using static analysis or
symbolic execution, as the logic these triggers activate happen
speculatively in the CPU, which existing analysis tools do
not model. We describe this technique in more detail in
Section V-B.

Simulating or modelling the speculative execution path
is a difficult task for a program analyst hoping to reverse
engineer an ExSpectre binary. First, the analyst must reverse
engineer and accurately model the closed-source proprietary
components of the target CPU, including the branch predictor,
cache hierarchy, out-of-order execution, and hyperthreading,
as well as taking into account the operating system’s process
scheduling algorithm. In contrast, the ExSpectre author only
has to use a partial model of these components and produce
binaries that take advantage of them, while the analyst’s model
must be complete to capture all potential ExSpectre variants.
Second, the analyst must run all potential trigger programs
or inputs through the simulator, including benign programs
with real world inputs. Both of these contribute to a time-
consuming and expensive endeavor for would-be analysts,
giving the attacker a significant advantage.

In order to study the potential of ExSpectre, we implement
several example payload programs and trigger variants, and
evaluate their performance. We find that a payload program’s
speculative window is mainly limited by the CPU’s reorder
buffer, which allows us to execute up to 200 instructions spec-
ulatively on modern Intel CPUs. While brief, we show how to
perform execution in short steps, communicating intermediate
results back to the “real world” part of the payload program.
Using this technique, we demonstrate implementing a universal
Turing machine (demonstrating arbitrary computation), a cus-
tom instruction set architecture that fits within the constraints
of speculative execution, and show the ability to perform AES
decryption using AES-NI instructions.

Using these building blocks, we demonstrate the prac-
ticality of hiding arbitrary computation by implementing a
reverse shell in our speculative instruction set, with instructions
decrypted in the speculative world. We show that this simple
payload is able to perform several system calls in a reasonable
time, ultimately launching a dial-back TCP shell in just over
2 milliseconds after the trigger is present.

2

II. BACKGROUND

Modern CPU designs employ a wide range of tricks in
order to maximize performance. In this section, we provide
preliminary background as they are relevant to our system, as
well as a brief summary of the Spectre vulnerability.

A. Out-of-Order Execution

Many CPUs attempt to keep the pipeline full by executing
instructions out of order, with the CPU allowing future instruc-
tions to be worked on and executed while it waits for slower
or stalled instructions to complete. To maintain correctness
and the original (Von Neumann) ordering, instructions are
tracked in a reorder buffer (ROB), which keeps the order of
instructions as they are worked on out of order. Instructions are
retired from the ROB when they are completed and there are
no previous instructions that have yet to retire. Upon retiring,
an instruction’s results are committed to the architectural state
of the CPU. Thus, the ROB ensures that the program (or
debugger) view of the CPU state always updates in program
execution order, despite out of order execution.

B. Speculative Execution

CPUs also attempt to keep their pipeline full by predicting
the path of execution. For example, a program may contain a
branch that depends on a result from a prior slow instruction.
Rather than wait for the result, the CPU can speculatively
execute instructions down one of the paths of a branch, storing
the results of the speculative instructions in the ROB. If the
guess of the branch target turns out to be correct, the CPU can
quickly retire all the instructions it has speculatively executed
while waiting. If the guess is incorrect, the CPU must discard
the (incorrectly) speculated instructions from the ROB, and
continue executing from the correct branch target.

C. Branch Prediction

When a CPU mispredicts a branch, the speculative exe-
cution results are discarded, costing the CPU several cycles
as the pipeline is flushed. To minimize this, CPUs employ
branch predictors that attempt to guess the path of execution.
Branch predictors maintain a short history of previous branch
targets for a particular branch (e.g. whether a certain branch
is frequently taken or not taken), and use this to inform the
CPU’s guess for speculative execution.

There are two kinds of branches a CPU handles: direct and
indirect. A direct branch may either jump to a provided address
or continue executing straight through depending on the state
of the CPU (e.g. condition registers). While there are only two
statically-known targets for a direct branch, the CPU may not
know if the branch is taken or not until preceding instructions
retire. An indirect branch is always taken, but its address is
determined by the value of a register or memory address.
Direct branches are typically used for control flow such as if
or for/while statements, while indirect branches are used
for function pointers, class methods, or case statements.

D. Spectre

In early 2018, researchers revealed the Spectre vulnerabil-
ity, which allows an attacker to leak information from a victim

program [28], [23], [34]. Spectre uses the fact that speculative
execution can influence system state via side channel. In
Spectre, an attacker mistrains the branch predictor of a CPU
running a victim program by providing inputs to it. Once
mistrained, the attacker then sends a new input that will cause a
different in-order execution path. However, because the CPU’s
branch predictor has been mistrained, it will still speculatively
execute the previous path.

Consider the following code snippet from the Spectre
paper [28]:

i f (x < a r r a y 1 s i z e)
y = a r r a y 2 [a r r a y 1 [x] ∗ 2 5 6] ;

The if statement correctly protects an out-of-bounds reads
from array1. But if the branch predictor makes an incorrect
guess on the branch’s direction and speculatively executes in-
side the if statement, it may cause a read beyond the boundary
of array1. The result of this will then (speculatively) be mul-
tiplied by 256 and used as an index into array2. Although
the CPU will not commit the speculative update to y, it will
still issue a memory read to array2[array1[x]*256],
which will be cached. Importantly, even after the CPU realizes
the branch misprediction, it does not rollback the state of the
cache, as this does not directly influence program correctness.
However, the set of cached values is observable to the program
via a side-channel: by timing reads to array2[i], the fastest
read will reveal the speculative value of array1[x]*256,
for any value of x. An attacker that is able to perform such a
side-channel inference on the cache can learn the speculative
result of an out-of-bounds read from array1.

Spectre can also be applied to indirect branches. Branch
predictors use the history of previous branches to predict the
destination of an indirect jump when the destination is not
yet known. For direct branches, only one of two destinations
(taken or not taken) are possible to speculatively execute.
But for indirect branches, a mistrained branch predictor can
potentially be coerced into speculatively executing from any
target instruction in the binary.

We take advantage of the behavior of indirect branch
prediction to hide the location of our speculative computation.

III. ARCHITECTURE

ExSpectre malware is comprised of two independent
pieces: a payload program, and a trigger. The payload, and
some form of the trigger, must be installed on the victim’s
computer (e.g. via trojan, remote exploit, or phishing). A
running payload performs innocuous operations while waiting
for the trigger to become present.

One form the trigger can take is another local program that
interacts with the payload via the indirect branch predictor.
In this case, both programs must run on the same physical
CPU. We note that this constraint is not a significant burden,
as programs can either use taskset, or, if not available, run
multiple instances or wait for the OS scheduler to execute both
programs on the same core.

At a high level, the trigger program performs a series of
indirect jumps in a loop, training the branch predictor to this
pattern. Meanwhile, the payload program performs a subset of

3

this jump pattern, then forces the CPU to speculate by stalling
the resolution of an indirect branch via a slow memory read.
The CPU will (mistakenly) predict the jump to follow the
pattern performed by the trigger program, and speculatively
execute that destination in the payload program.

The trigger can also take the form of a special input to the
payload program, rather than a separate program. In this case,
the payload program parses input data and performs innocuous
operations with it. Once the trigger input is provided, it causes
the program to speculatively overflow a buffer, despite correct
bounds checks in the program. The speculative buffer overflow
(described in Section V-B) causes the program to speculatively
execute at an address chosen by the trigger input and controlled
by the attacker.

A. Threat Model

We assume a scenario where an adversary wishes to hide
or obscure the behavior of a malicious program (malware)
from an analyst attempting to reverse engineer it. We note
this is distinct from the goals of evading malware detection,
where malware escapes classification by an anti-virus or other
automated tool. While we believe ExSpectre could also be used
to make automated detection more difficult, our main focus
is on reverse engineer resistance, useful for evading manual
classification concerned with malware behavior. For anti-virus
evasion, we refer the reader to several existing techniques that
are sufficient to defeat existing anti-virus systems [24], [39],
[45], [52], [55].

We assume the adversary is able to install binaries on the
target machine (e.g. via a trojan or remote exploitation), and
the analyst is attempting to determine what the malware will do
using traditional debugging tools. We assume the analyst may
be aware that speculative execution is used to obfuscate be-
havior, but does not have special-purpose hardware that allows
introspection of the CPU’s speculative state. This assumption is
realistic, as modern processors do not allow developers or other
users to directly interact with proprietary CPU optimizations
and features.

We further assume that the malware has a specific trigger
that the analyst is not privy to, and the adversary can influence.
In our examples, this trigger is often behavior exhibited by
some other (potentially benign) process running on the same
system as the malware. As the adversary is able to control
when such a trigger is deployed (potentially remotely), the
analyst will not be able to observe or force this trigger to
happen at will. We emphasize that while this may also be
true for existing trigger-based malware, analysts can often
reverse engineer the trigger out of the malware, for example
by observing control flow within the malware and using
adaptive fuzzers [61], [51] to generate inputs that explore
other execution paths of the binary. In contrast, ExSpectre
malware’s trigger influences behavior of the payload program
speculatively, making it effectively invisible to the analyst.
As with typical malware, the analyst may attempt to reverse
engineer the trigger to reveal the malware’s behavior, but we
will show (in Section IV-B1) how this type of analysis can be
defeated.

B. Indirect jumps

In this subsection, we will describe the trigger program
variant, and defer discussion on how input data can be used
as a speculative trigger to Section V-B.

In ExSpectre, we cause the CPU to mis-speculate the
destination of an indirect branch in the payload program,
causing it to speculatively execute instructions that are never
truly executed. We term the destination where speculation
begins the speculative entry point. ExSpectre uses indirect
jumps to allow speculative execution from any instruction in
the payload process’ address space. Because it can jump to
any instruction, the malware analyst has a difficult task in
determining where a payload program’s speculative entry point
is.

In fact, the location of this entry point is not determined
by the payload program, but rather the corresponding trigger
program. This means that with only the payload program,
an analyst does not posses enough information to find the
speculative entry point.

Indirect branch predictors allow the CPU to predict the
destination address of a branch based solely off its source
address and a brief history of previous branch sources and
destinations. While the inner-working details of modern CPU
branch predictors are proprietary, it is possible to reverse
engineer parts of their behavior, which we do for ExSpectre.

We observe that Intel CPUs consider three types of
x86 64 indirect branches: retq, callq *%rax, and
jmpq *%rax

2. We created a simple trigger program that
performs a series of indirect branches using jmpq *%rax
instructions. Between each jump, we incremented %rax ac-
cordingly to continue on to the next jump. After these jumps,
we load a function pointer into %rax and do a final indirect
branch using callq *%rax. In our trigger, we perform these
jumps repeatedly in a loop.

In our payload program, we first perform the same indirect
jumps. We ensure the source and destination addresses of these
jumps is the same as in the trigger program by manually
defining their containing function at a fixed address inside a
linker script. We also do the final indirect call to a function
pointer, but with two differences. First, the destination in
the function pointer is a different address, and second, the
memory location of the function pointer itself is uncached.
This forces the CPU to predict the destination of the final
indirect call while it waits for the function pointer to load
from memory. Due to the similar history of branches with
the trigger program, the CPU will (incorrectly) predict the
destination to be the same as the one in the trigger program,
which determines the speculative entry point for the payload.
Even though the in-order execution of payload program never
executes or even reads from this address, the CPU will briefly
execute instructions there speculatively.

In Table I we analyze the number of necessary train-
ing indirect jumps various processors require to consistently
(> 95%) have the payload program enter the speculative world
at the chosen speculative entry point in the trigger program.
We found that 28 indirect jumps was sufficient for our trigger

2other general purpose registers besides %rax can be used as well

4

Processor Released
Micro-
arch.

Nested
Spec.

Indirect
jumps

µ-ops
(nop)

Intel Xeon CPU E3-1276 v3 2014 Haswell 26 178
Intel Core i5-7200U 2016 Skylake X 26 220
Intel Xeon CPU E3-1270 v6 2017 Skylake X 28 220
AMD EPYC 7251 2017 Ryzen 4 178

TABLE I. PROCESSOR FEATURES— WE ANALYZED THE CAPABILITY
OF EXSPECTRE ON THREE INTEL PROCESSORS AND ONE AMD. BOTH

SKYLAKE PROCESSORS WERE CAPABLE OF NESTED SPECULATION
(SECTION III-C5). INDIRECT JUMPS IS THE NUMBER OF COMMON

TRAINING INDIRECT JUMPS NEEDED IN THE TRIGGER PROGRAM TO
RELIABLY (> 95% OF THE TIME) COERCE THE PAYLOAD PROGRAM TO
FOLLOW THE PATTERN AND JUMP TO THE SPECULATIVE ENTRY POINT
SPECIFIED IN THE TRIGGER PROGRAM. µ-OPS IS THE UPPER BOUND OF

µ-OPS THAT CAN BE PERFORMED SPECULATIVELY.

Fig. 2. Cache latency — Cumulative distribution function of the cache hit
and miss latency for an Intel Xeon-1270 and AMD Epyc 7251. If a cache
miss is used to force CPU speculation, the CPU must wait at least 300-800
cycles before the speculated branch can be resolved. However, we find the
CPU is occasionally limited to far fewer instructions speculatively, suggesting
another limit is at play.

program on each of the test processors to reliably ensure the
speculative execution began at the correct speculative entry
point.

Eventually, the de-reference of the uncached function
pointer in the payload program will be resolved, and the
CPU will recognize it has incorrectly predicted the destination
of its callq instruction. The results from the speculative
entry point instructions will be discarded, and the CPU will
continue executing from the correct destination. However, the
speculative code can change what is loaded into the cache
based on its computation, allowing it to covertly communicate
its results to the “real world” program.

C. Limits of Speculative Execution

We performed several experiments to determine how much
computation can be performed speculatively, as well as what
components are responsible for the limit. We report results
from our experiments on an Intel Xeon-1270 (Sandy Bridge),
though we note we found similar results across other Intel
processor generations, including an i5-7200U (Kaby Lake), an
i5-4300U (mobile Haswell), an i5-4590 (desktop Haswell), as
well as an AMD EPYC 7251.

1) Cache Miss Duration: When executing instructions
speculatively we rely on a memory load of a function pointer
from uncached memory. Thus, one limit on our computation
comes in the form of the time it takes for the memory read
to return with a result (and for the CPU to determine the
result was mis-predicted). We measured the number of cycles

a cache miss takes to return by artificially evicting an item
from cache and timing reads from its address. Figure 2 shows
the CDF of cycles taken. In the typical case, an evicted
item takes approximately 300 clock cycles to load from the
Level 3 cache (L3), which would allow a limit of roughly
300 speculative instructions (depending on specific cycles per
instruction (CPI)) to be executed during that time. We note that
when an item is not in L3, it takes considerably longer to load,
in theory allowing for thousands of speculative instructions in
a significant fraction of runs.

2) Reorder Buffer Capacity: We also measured the capacity
of the reorder buffer (ROB) using a method outlined by [58].
We measure the maximum number of cycles taken to perform
two uncached memory reads, and vary the number of filler
instructions between them. If the number of filler instructions
is small, both memory reads will fit inside the ROB, and it
can issue their memory reads in parallel. However, if the filler
instructions fill the ROB, the second memory read will have
to wait for the first to return before it can be issued, causing a
noticeable step increase in the cycle count. Figure 3 shows this
step occurs at approximately 220 instructions for our processor,
suggesting a hard upper bound regardless of how long the
cache miss takes to resolve.

3) Speculative Instruction Capacity: To verify the upper
limit of speculative instructions, we instrumented our trigger
and payload programs to test a simple gadget of variable-length
before it communicated a signal to the real world via a cache
side channel. If the cache side channel revealed no signal in
the real world, then we know the speculative execution did
not make it to the signal instructions before the mis-speculated
branch was resolved.

We also tested whether instruction complexity or data
dependencies impact the number of instructions that can be
completed. We find that data dependencies and instruction
complexity both have an impact on the number of instructions
that can be executed. Instruction complexity is determined by
the number of µ-ops that the instruction uses, which appears
to be what is tracked in the ROB. For instance, on our Skylake
architecture, the 64-bit idiv instruction takes 57 µ-ops, and
we can execute up to 3 of them in the speculative world.
Meanwhile, we can execute up to 18 32-bit idiv instructions,
which each take 10 µ-ops [17]. This suggest we can execute
on the order of 175 µ-ops before the speculative world expires.

Most notably instructions that use the extended x86 reg-
isters are still valid within the speculative context. Specif-
ically, Intel’s hardware accelerated AES-NI encryption and
decryption instructions, which each use 128-bit registers. As
shown in Figure 3, speculative environments can complete a
significant number of AES rounds—over 100 rounds in our
experiments, more than enough to decrypt a full block using
simple AES modes (e.g. AES-CTR). We investigate the use
of AES instructions in the speculative environment further in
Sections IV-B.

We find that when executing speculatively, the number of
instructions completed has a soft limit and a hard limit. The
duration in cycles applies a soft limit, as shown in Figure 3
with the idiv (32-bit), mul, and aesdec instructions.
As we attempt to execute more instructions speculatively, we
see a steep drop in in the fraction of trials that are able to

5

Fig. 3. Speculative limits — We placed a memory read after an increasing number of (speculatively executed) instructions and measured the fraction of times
the loaded value was subsequently in cache. This tells us the upper bound of instructions we can reliably execute speculatively. We identify two limitations on
the speculative lifetime: cache miss latency resolving the speculative branch, and the CPU’s reorder buffer (ROB) size. We observe that different instructions
have varying speculative limits: for example, a 32-bit idiv can complete only 18 instructions (not including 14 single µ-op instructions for the signal gadget),
as each instruction inserts 10 µ-ops into the ROB, while cheaper instructions that use fewer µ-ops can execute more instructions.

signal via the cache-side channel. However, this speculative hit
fraction does not drop to zero until the later hard limit, imposed
by the number of CPU micro-operations (µ-ops) composing
those instructions. Figure 3 demonstrates that the number of
µ-ops of the instructions is the major limiting factor that define
an upper bound of approximately 150 instructions3.

4) Hyperthreading: When running our tests, we assign the
payload and trigger program to the same core using taskset.
We note in the absence of taskset, we can run multiple
instances of trigger programs to occupy all cores, eventually
having the payload program and trigger program become co-
resident.

We also explore using hyperthreading, where the CPU
presents two virtual cores for each physical core, allowing the
OS to schedule programs to each simultaneously. In effect,
this can cause the interleaving of instructions between two
programs to be much finer-grained: at the instruction level
rather than changing only at the OS-controlled context switch.
We find that this has two effects on speculative programs. First,
the finer-grained interleaving allows for a higher hit rate from
the cache, suggesting that each indirect jump pattern is more

3While nop is able to execute up to the full 220 ROB capacity, instructions
that do useful work (and/or use multiple µ-ops) cannot reach this limit.
In addition, data dependency and execution unit availability add further
complications to modelling the exact number of instructions that can be
executed speculatively.

Fig. 4. Hyperthreading — We measured the impact hyperthreading has on
speculative execution. Trigger and payload programs running on the same
logical core require a context switch to alternate processes, but allows each to
have full utilization of the ROB and execution units when they run. Running
the programs on parity hyperthreads (denoted by (P)) allows them to run
simultaneously without context switching, but we observe this configuration
effectively halves the amount that each program can speculatively execute,
suggesting that hyperthreads share parts of the ROB or execution units.

likely to result in speculatively executing from the intended
position. Second, because the physical CPU is being shared,
it effectively halves the number of instructions that can be run
in the speculative context. Figure 4 shows the instructions that
can be run when running trigger and payload on a single core
vs. a pair of hyperthreaded cores.

We note that Single Thread Indirect Branch Predictors
(STIBP) have been implemented in most environments to
prevent cross thread branch predictor interference. While this
does remove the ExSpectre trigger’s influence in scenarios
where a process runs on an isolated cpu, in most modern
environments tasks are scheduled to all available processors.
This means that the trigger and payload will be coresident
eventually, allowing progress to continue.

5) Nested Speculation: We explore the ability for the CPU
to “double speculate”, where a second stalled indirect jump
while the CPU is already speculating causes it to predict the
target and speculate a second time. For instance, suppose a
payload program truly jumps to target A, but the CPU is
mistrained by a trigger program that jumps to B, thus causing
the payload program to speculatively execute at B. At B,
suppose there is a second indirect jump, perhaps using the
same register as the first jump (which has still not resolved).
If the trigger program jumps to C, the payload program may
speculate a second time and continue speculative execution
at C. Figure 6 demonstrates Nested Speculation in action.

We find that not all Intel CPUs support nested specula-
tion. For example, it appears Haswell chips do not speculate
while already speculating, but nonetheless support non-nested
ExSpectre. Both Sandy Bridge (which preceded Haswell)
and Kaby Lake (which followed Haswell) support nested
speculation. We find that when a CPU does support nested
speculation, there appears to be no limit to nested depth besides
the speculative instruction limit. We use a 16-deep nested
speculation in Section VI-B to protect speculative decryption
keys from reverse engineering.

D. Speculative Primitive

We summarize our findings into a speculative primitive,
which allows our payload program to speculatively (and
covertly) perform on the order of 100 arbitrary instructions
while an accompanying trigger program is running, and com-
municate a short (e.g. single byte) result to the real world
via a cache side channel. These speculative instructions are

6

able to read from any cpu state accessible to the process
in the real world including memory and registers, but they
cannot perform updates or writes directly. To read memory
the speculative primitive makes use of the ability to bring
things into cache. If a load for an uncached memory location is
initiated speculatively it will not finish within the speculative
window (meaning no value can be exfiltrated to the real world).
However, the memory read is not canceled and the value
will be available from cache when the processor accesses
it speculatively again. To update memory, the speculative
instructions must communicate to the real world. We use a
cache side channel to do so, but other side channels compatible
with Spectre could also be used [27].

We note a performance tradeoff between the size of com-
munication (e.g. 4 bits vs 8 bits) and the time it takes the
real world to recover the result from the side channel. Using
Flush+Reload [60] as our cache side channel, recovering the
result requires accessing all elements in an array exponential
in the size of the result (e.g. 28 array reads to recover an
8-bit result). Therefore, there is a performance advantage
for keeping the size of the result small, and communicating
out small pieces of information that are aggregated by the
real world over multiple speculative executions. Meanwhile,
smaller channels introduce more overhead in recovering infor-
mation. We investigate this tradeoff in Section VI-B, and find
that 8 bits is near optimal in practice.

IV. APPLICATION PAYLOADS

While the amount of computation done in a single specu-
lative execution is small, we demonstrate several applications
that can take advantage of multiple speculative runs to carry
out computation.

As a first step, we observe that the speculative primitive can
be used to trivially implement a finite state machine: logic can
be done in the speculative world, while updates to the state are
communicated to the real world where they are stored. On the
next run of the speculative instructions, the state is read from
the real world state (along with any inputs), state transitions
are computed and communicated back. In this mode, the state
is maintained by the real world, while updates are controlled
by code executed speculatively.

We further observe we are not limited to finite state
machines, but can support any model of computation where
updates to any state are finite (i.e. can fit within the bandwidth
constraints of the speculative primitive). This encompases Tur-
ing machines [53] as well as certain random access machines,
which we investigate next. Figure 5 demonstrates the execution
flow of a sample ExSpectre malware.

A. Turing Machine

To demonstrate that arbitrary computation can be per-
formed cooperatively between the speculative world and real
world, we implement a Turing machine, and configure it
to run a 5-state Busy Beaver function [53], [9], [22]. This
configuration allows us to run a large number of steps with
very minimal logic.

Updates to this Turing machine are computed speculatively,
while the real world keeps track of the state and full tape of the

Flush ptr &
Probe Array

Jump Pattern

Reload /
Time Cache

Update State

Probe
Array

State

Speculated
Speculative

Gadget

Real World Speculative World

Execution Path Data

Data

Resolved

Speculative
Execution

Payload

Jump to ptr

Fig. 5. ExSpectre model — General model of speculative computation within
the payload process when triggered. The Speculative Gadget has read-only
access to all memory within the process, but can only return updates/results
via a cache side channel (by accessing the probe_array). The process can
subsequently Reload from the cache side channel to learn the speculatively-
computed result, and update the state of the Real World process.

machine. Thus, the logic of the machine is entirely contained in
the speculative world, while the state may be externally visible
(e.g. to a dynamic debugger). We note that the machine only
operates when the trigger executes, making it difficult for an
analyst with only access to the Turing machine to determine
exactly what the machine will do from its initial state.

However, this toy example is meant only as an illustrative
example of arbitrary computation, not as a robust means of
obfuscation. Indeed, even the initial state of a Turing machine
alone may reveal a significant amount of information. Further-
more, the analyst may attempt to locate potential speculative
entry points, even without the help of the trigger program. We
describe ways to address both of these next.

B. Unpacking and Decryption

While a Turing machine demonstrates that arbitrary spec-
ulative computation is possible, hiding malware this way has
several drawbacks. First, Turing machines are a poor choice
for practical computation, as they are inefficient and have no
direct way to interface with the rest of the system (e.g. via
system calls). Second, as mentioned, they leave a great deal
of information available to the analyst, including the initial tape
state, and a potentially small (enumerable) number of possible
speculative entry points.

We explore a more practical application of using ExSpec-
tre to perform decryption speculatively. To hide keys from
the analyst, the key and decryption code only occur in the
speculative world, while the initial payload program contains
only the ciphertext. While partial plaintext will be available
in the real world during execution, we emphasize that this
only occurs when the trigger runs. Before this, the state of
the program reveals only the ciphertext that will be decrypted.
While the speculative entry point enumeration attack could be

7

used to reveal the keys used to decrypt this ciphertext, we
describe a way to derive the decryption key entirely from the
trigger program. Thus, an analyst that only has access to the
payload program will be unable to learn the key or decrypt the
embedded ciphertext.

We also note that even when the trigger runs, decryption
does not occur outside the speculative context, meaning that
any traditional traps or debugging breakpoints placed on de-
cryption instructions or routines will not occur, even as they are
used speculatively. These instructions could even be obfuscated
themselves by placing them in other misaligned instructions,
and choosing a speculative entry point that jumps to the middle
of other instructions.

We note that 200 instructions is too short for most software-
implemented cryptography. However, modern Intel CPUs pro-
vide hardware support for AES, which we find only takes
a handful of µ-ops to perform the instructions needed in
AES decryption. We discuss details of our speculative AES
decryption in Section VI-B.

1) Obfuscating keys with nested speculation: As men-
tioned, even with encryption, an analyst that can locate the
speculative entry point and discover the decryption key. For
instance, the analyst could locate the speculative entry point
by searching for AES-NI instructions in the payload program,
ultimately discovering the keys it derives and uses.

We can overcome this by having the trigger program
communicate the decryption key to the payload program via
the branch predictor. While prior work has used the branch
predictor to exfiltrate keys from other sensitive processes [2],
we inject a key into the speculating payload program from
the external trigger program. To do this, we use multiple
speculative entry points, each that derives a unique decryption
key before calling a common decryption routine. Since the
exact speculative entry point is determined by the trigger
program, an analyst cannot trivially discover the decryption
key directly from the payload program.

Still, an analyst could enumerate all potential entry points,
testing each one until they find one that correctly decrypts the
ciphertext. In a 1 MB binary, there are (at most) only 1 million
possible entry points, providing just 20 bits of security, trivial
for an analyst to brute force. An analyst simply needs to test
each of the 220 entry potential entry points to discover the
correct key.

To increase security, we instead use nested speculation
to chain entry points together. Rather than derive the key
from a single entry point, we have each potential entry
point perform another indirect jump that the CPU cannot
immediately resolve, forcing it to speculate while already
executing speculatively. In other words, in the speculative
world, we make an indirect jump that depends on a cache-
evicted variable, prompting the CPU to double-speculate. The
predicted target of that jump will also be driven by the trigger
program’s (mis)training of the indirect branch predictor. On
CPUs that support double (or arbitrarily nested) speculation,
we can repeat this process, with each new subsequent entry
point determined by the trigger program. At each entry point,
we shift in additional bits to a register as the AES key. Without
the trigger program, an analyst cannot determine the path the
payload program will take speculatively.

Gadget

Trigger Payload

Matching
Jump

Pattern

Matching
Jump
Pattern

Jump to ptrJump Addr 1

Jump Addr 2

Jump Addr...

Jump Addr K

Load Key frag.
Jump to ptr

Load Key frag.
Jump to ptr

Addr 2

Addr 1

...

Decryption
Gadget

Addr K

Exfiltration
Detection

Jump to ptr

Speculative Execution

Fig. 6. Nested Speculation — Some CPUs support nested speculation,
allowing the branch predictor to speculate a branch while already executing
speculatively. We use this to obfuscate key derivation. The trigger program
executes a sequence of indirect jumps, which the payload program will follow
speculatively. Each jump target in the payload program will add a small
number of bits to a speculatively-computed key. Without knowing the exact
pattern of jump targets (specified only in the trigger program), the analyst will
be unable to determine the key when a sufficient speculative depth/number of
targets is used. In our implementation, we used a speculative depth of 16 with
28 targets to derive a 128-bit key. While the decryption gadget may be easy
for an analyst to find, without the key, the encrypted data remains inaccesible.

As an illustrating example, imagine a trigger program
makes 30 training jumps, followed by 10 additional indirect
jumps, and the payload program performs the same 30 training
jumps before a stall. At this point, the CPU will predict
the payload program will also perform the next 10 jumps,
speculatively following the pattern of the trigger program.

If each nested speculative jump has the potential to land in
4096 (212 possible locations, each entry point can shift in 12-
bits to the key, for a total of 120-bits over the 10 jumps before
calling the common decryption routine. A key constructed in
this way would be infeasible for an analyst to brute force, as
the payload program yields no information about which of the
potential 2120 keys will be derived.

We describe our implementation of nested speculative
execution in Section VI-B, where we speculatively derive a
128-bit AES key. Figure 6 demonstrates this in practice, the
trigger program running a series of training jumps followed by
indirect jumps influences the payload program to follow the
same path.

C. Emulation

To combine our encryption and arbitrary computation in
an efficient way, we implemented an emulator that gets its
instructions from the speculative decryption described previ-
ously. In the payload program, the emulated instructions are
initially encrypted under a key that will be delivered by the
trigger, as described previously. Once the trigger executes, it
will cause instructions to be decrypted and run by the emulator.

Traditional reverse engineering methods will reveal only
that emulation is being done, while the program being em-
ulated remains encrypted. Even when the trigger is running,
only the parts of the code that execute would be revealed to

8

a careful analyst observing the CPU’s committed state, while
the remainder of the emulated program would remain hidden.

We design a custom emulator and instruction set—SPASM
(Speculative Assembly)—that accommodates the constraints of
our speculative primitive. SPASM is a 6-bit Instruction set,
where all instructions (including operand, registers, and argu-
ments) fit within 6-bits. This allows each step of the speculative
world to emit a single SPASM instruction to the real world for
emulation by a light-weight SPASM emulator. Using SPASM,
developers can write programs, assemble and encrypt them into
a payload program. When the associated trigger program runs,
the payload will decrypt SPASM instructions in the speculative
world, and execute them one at a time.

While the custom emulator that we developed gives higher
level abstraction to an author, it still requires programs to
be written in a custom assembly language. We note that the
ExSpectre model is not intrinsically linked to the SPASM em-
ulator. A wrapper could be implemented around other existing
emulators to construct instructions incrementally through the
fixed-width channel (e.g. using 4 8-bit reads to reveal a single
32-bit ARM instruction), allowing for encrypted payloads to
be written in higher-level languages. We also note that this
provides flexibility to the authors, allowing them to completely
redefine instructions or use a different instruction set altogether
to hamper detection.

V. TRIGGERS

So far, we have described using a custom program as a
trigger, which performs a pattern of indirect jumps to mistrain
the indirect branch predictor, leading the payload program
to its speculative entry point. In this section, we describe
alternative triggers, including using benign programs already
on the system, and recent Spectre variants.

A. Benign Program Triggers

Custom trigger programs that are installed with malicious
payload programs may be easy for an analyst to pair up and
analyze. As an alternative to trying to hide the trigger program
from the analyst, ExSpectre can use benign programs already
installed on the system as a trigger.

For example, if a benign application makes a series of
indirect jumps—thus training the indirect branch predictor—
an ExSpectre payload can make similar indirect jumps leading
up to its speculative entry point. The payload’s speculative
entry point will be determined by the benign application, but
may be even more difficult for an analyst to discover, as
now the ExSpectre trigger could be any application running
concurrently on the system.

a) OpenSSL: We experimented using the OpenSSL
library as a potential benign trigger application, as its source
code has a gratuitous use of function pointers which compile
to indirect jumps. In addition, it has many complicated code
paths that can be easily selected by remote clients through their
choice of cipher suite. This allows a remote attacker to trigger
ExSpectre malware on a server running a (benign) TLS stack
supported by OpenSSL, simply by making a large number of
TLS connections with a specific cipher suite. We describe our
implementation using OpenSSL as a trigger in Section VI-D.

In addition, an adversary could use a benign application
(like OpenSSL) to communicate information covertly to the
malicious payload program. For example, with OpenSSL, the
attacker could have a pair of uncommon cipher suites, where
using one results in communicating a 1-bit, while use of
the other communicates a 0-bit to the payload. To receive
data, the payload would have to do indirect jump patterns
corresponding to OpenSSL code for processing both cipher
suites, with the corresponding speculative entry points shifting
in the appropriate bit. Thus, an adversary can communicate
remotely (over a network) to the payload program indirectly
via a benign application.

We observe that communication could also go in the
other direction: from the payload program back to the re-
mote adversary, also via the benign application intermediary.
The payload program could influence the performance of the
benign application, and the adversary could time responses
from the benign application to receive covert information from
the malicious payload [49]. This would allow the malicious
payload to operate entirely speculatively, without assistance
from the real world for keeping state.

B. Speculative Buffer Overflow

In addition to using separate trigger programs, ExSpectre
can also use trigger inputs to a payload program to initiate
its malicious behavior. While existing fuzzers and symbolic
execution tools can discover traditional input triggers, we can
leverage other Spectre variants to obfuscate our triggers.

To do this, we use Speculative Buffer Overflows
(SBO) [27] to redirect control flow to a speculative entry point
specified by user input. We design a payload program that takes
arbitrary user input and performs appropriate bounds checks to
ensure no traditional control flow violations could be exploited.
However, using the Spectre 1.1 variant, control flow can still
be violated speculatively, allowing the adversary to force a
speculative entry point based entirely off the input provided.
This allows the trigger to be an input, potentially even provided
over a network if the payload program accepts network data.
Traditional symbolic execution and code coverage fuzzers will
be unable to discover this trigger input, as they do not model
the speculative state of the CPU.

To create an SBO-triggered payload program, we make
the following code pattern, as seen from Kiriansky and Wald-
spurger’s Spectre 1.1 description [27]:

i f (y < l e n c)
c [y] = z ;

With user controlled y and z and sporadically uncached lenc,
an attacker can speculatively overflow array c to overwrite a
return address (or function pointer, etc) and redirect control
flow. Note that the bounds check on y will ensure that this
program will not actually allow a buffer overflow to occur, but
the attacker can nonetheless use this to influence a speculative
entry point based on their choice of y and z.

We make use of this pattern in a willing payload such
that user input can intentionally mistrain the branch predictor
by repeatedly sending valid (in-bounds) values of y before
sending a value that would overflow the bounds of c. The

9

Fig. 7. Speculative buffer overflow warm-up — The direct branch predictor
must be trained to expect that a branch will go a specific way before
speculative buffer overflows can be used. We varied the number of times
a branch was trained to be taken and observed the fraction of times we
achieved a speculative buffer overflow execution immediately after (measured
by observing if a speculatively-loaded value was present in cache avgeraged
over 20,000 trials). We find that a branch must be trained in a direction
hundreds of times before it can be reliably used in a speculative buffer
overflow.

speculative entry point is also chosen by the trigger in this
scenario as z contains the address of the speculative entry
point, allowing the attacker to create a ROP-style speculative
execution path through the payload.

We implemented an experiment to determine the number
of times a branch needs to be “trained” before it can be used
as a speculative buffer overflow. Figure 7 shows that several
hundred benign inputs are needed to reliably be able to observe
speculative buffer overflow behavior.

C. Speculative Store Bypass

Speculative Store Bypass (SSB) (Spectre variant 4) can
similarly be used to construct an internal (input-based) trigger
using the CPU’s speculative load-store forwarding [37]. In a
speculative store bypass, the CPU incorrectly speculates that a
store will not alias with a future load, and uses a stale (wrong)
value for the result of the speculative load.

To redirect control flow, a payload program could use
a function pointer or indirect branch target register as the
destination for a speculative store bypass, causing the CPU
to use a stale value to speculatively determine where it would
go. The stale value could be controlled by a previous unrelated
input, allowing an adversary to specify the speculative entry
point in a carefully crafted data input. While the program never
executes at this stale address in reality, the CPU will briefly
speculatively execute there, enabling ExSpectre payloads. Like
the speculative buffer overflow, this trigger also allows ROP
style chains to execute a series of speculative gadgets.

VI. IMPLEMENTATION AND EVALUATION

In this section, we discuss implementation details for our
payload and trigger programs.

A. Turing Machine

We designed our Turing machine implementation to work
with our custom trigger program, with 28 indirect jumps
mimicked by the Turing payload program. We implemented
a 2-symbol 5-state Busy Beaver Turing machine logic at the
speculative entry point (in 42 x86-64 instructions), returning

the state update, symbol to write, and tape move direction in
a single byte via a cache side channel.

We observed in our implementation that it is important
that all values used in the speculative world—as well as the
code itself—be cached. If these are evicted, the speculative
code may fail to run, or the CPU may speculate on the value
of the uncached item, which may be incorrect. While this
does not impact the correctness of normal programs whose
incorrect speculations will be resolved, our speculative code
reports results back to the real world before this resolution.
In our Turing example, we observed this as incorrect state
transitions.

This error is particularly devious, as it is not an error of
bit flips or noise, but rather the processor speculating what
the speculative gadget will read from memory. Thus, error
correcting codes on the reported result do not improve the
situation.

Instead, we repeat the execution several times and look for
the modal value over all iterations. We measured the error rate
of our implementation as a function of how many redundant
iterations of the same step, and found that 10 redundant
iterations resulted in 1 error every million Turing steps, with
the error rate dropping exponentially as iterations increase.
We choose 11 iterations as a conservative bound (error rate
measured to be 0), and computed 1 million Turing steps at a
rate of 1351 steps per second.

B. AES Decryption

The speculative world is able to take advantage of the
AES-NI instructions to decrypt messages. However, the spec-
ulative upper-limit of about 175 µ-ops is not enough to
allow us to compute the key expansion, even using the
aeskeygenassist instructions. To avoid this, we can either
preload the expanded key schedule into the program (instead
of the key), or use a cheaper (non-standard) key expansion
algorithm. For the former, we note that an analyst could
observe the structure of a normal key schedule, but we can
avoid this by simply selecting 11 random round keys. We note
that this should not weaken the security of AES, as we can
ensure the round keys are not linearly related.

We wrote our AES decryption payload in 35 x86 64
instructions and 2 lines of C (which compiles to an additional
31 x86 64 instructions). The payload implements AES-CTR
mode decryption, reading a global index and returning the
decrypted byte at that location in the ciphertext via the cache
side channel. In this model, the speculative function decrypts
a full 16-byte AES block each iteration, but only returns the
bits specified by the index.

We demonstrate the speed that information can be de-
crypted via the speculative world, and we vary the channel
width of the side channel from 1 to 12 bits to measure its per-
formance. At low channel width, reading from the cache side
channel requires timing reads from only 2 locations, while at
12-bits, the side channel requires reading 212 locations. On the
other hand, there is a fixed overhead per speculative iteration
that favors increased channel width to maximize bandwidth.
As shown in Figure 8, 8 bits is the optimal side channel
width, allowing us to decrypt over 5,000 bits per second (625

10

Fig. 8. Speculative Bandwidth — Using our speculative primitive, 1KB
of data can be decrypted and exfiltrated at a speed of 5.38 Kbps from
the speculative world with 20 redundant iterations per round (to ensure
correctness). Increased channel width exfiltrates more data per round, but takes
longer to measure the cache side channel. Optimal throughput is achieved with
an 8-bit channel.

Bytes/sec). We note an improvement over this rate by loading
multiple values into the probe array during speculation. Instead
of a single probe array of 1024 entries communicating 10-bits,
we can split the array into four sections of 256 entries each,
and signal four times (one per section) during speculation.
This provides a 32-bit channel overall, while still only having
to probe 1024 entries. This method is capped by the limited
µ-operation budget, however our implementation using these
parameters (four sections of 256 entries) is able to decrypt
over 11 Kbps (1,425 Bytes/sec).

We also implemented our nested speculation technique for
obfuscating keys, making 256 speculative landing spots that
each shift 8 unique bits into the 128-bit register %xmm0, and
then performing an indirect jump. We then had a custom
trigger program perform 16 indirect jumps (after the initial 28)
that corresponded with 16 randomly-chosen landing spots in
the payload program, training the branch predictor. When the
payload program reaches the first speculative jump, it follows
the same pattern speculatively, eventually filling %xmm0 with
the corresponding 16 ∗ 8 bits. We then used the aesenc
instruction to expand these 128-bits to a full key schedule, and
performed decryption as described previously. Thus, without
the trigger program, an analyst has no information about what
key is used to decrypt the ciphertext in the payload.

C. Emulator

We have implemented our custom instruction set
architecture—SPASM—as a model using two pseudo-registers,
and 6-bit instruction length which allows for a relatively direct
programming model in which structured values can be entered
into memory locations before making a systemcall.

In this model of computation there are effectively no
instruction arguments, as we must return an entire instruction
from the speculative world inside the limited-width cache
side channel. Although other small instruction sets exist, they
either allow variable instruction lengths, are too long even in
reduced form, or did not have significant support to make them
favorable for developers.

We used 6 bits in the construction of this instruction set
as our goal is to limit the length of each opcode as much as

possible. Note that this is different from the goal in maximiz-
ing bandwidth, as our goal now is to maximize instruction
throughput. Given our short instructions, loading values into
registers requires shifting in 4-bits at a time. SPASM has two
registers that act as a pointer and working register, that can
be used to perform jumps, arbitrary memory reads and writes,
and basic arithmetic. We also have a syscall instruction that
makes a real system call to the underlying operating system
with parameters loaded from the SPASM state, allowing us to
interact with the real world.

In SPASM we have implemented multiple example pro-
grams that we encrypted and loaded into a ExSpectre pay-
load, which decrypts and emulates SPASM instructions only
when the corresponding trigger program is running. We have
implemented a HelloWorld program that prints to stdout,
and a FizzBuzz program that demonstrates control flow and
arithmetic operations while printing to stdout. Finally, we
implemented a ReverseShell program that opens and connects
a TCP socket to an attacker-chosen location before executing
a local shell and allowing the remote adversary to issue shell
commands on the victim machine. Figure 9 details the high-
level flow of a SPASM payload.

Our ReverseShell program consists of 355 SPASM instruc-
tions, and makes six system calls to open a socket, connect
to it, duplicate I/O file descriptors, and perform an execve
system call to open a shell. In our tests using 5 iterations per
decrypted instruction, the ReverseShell program takes just over
2ms to launch a reverse shell once triggered.

D. OpenSSL Trigger

To demonstrate a benign trigger application, we imple-
mented an ExSpectre payload that would trigger when running
concurrently with OpenSSL. We disable ASLR for simplifi-
cation, but note that branch predictors can also be used to

Flush ptr &
Probe Array

Jump Pattern

Reload /
Time Cache

SPASM
Emulator

Probe
Array

State

Speculated
Decryption

Gadget

Real World Speculative World

Execution Path Data

Encrypted
Binary

Resolved

Speculative
Execution

SPASM Payload

Jump to ptr

SPASM
Instruction

SRIP

SRSP
PTR
VAL

SRAX

...

Stack

SRBX

Emulator
State

Fig. 9. SPASM model — Our SPASM emulator speculatively decrypts in-
structions, and emulates them in the real world. The Speculative Computation
decrypts the encrypted SPASM binary using AES, returning the result through
the side channel to allow the Real World to update the emulated state and make
system calls on behalf of the speculative world.

11

determine ASLR offsets of co-resident applications, and our
attack adjusted accordingly [14].

We used gdb to run an instance of an OpenSSL server
(version 1.0.1f), and printed out every instruction executed and
its address after a breakpoint on the SSL_new function. We
then made a TLS connection to the server, which produced
over 13 million instructions, including over 359,000 direct
jumps and 28,000 indirect jumps. We then searched for the
longest repeated set of more than 28 indirect jumps that ends
with a unique jump (i.e. source and destination do not occur
in the previous 28+ indirect jumps).

We discovered a candidate that corresponds to code in
OpenSSL’s nistp256.c that contained 31 indirect jumps
repeated 254 times each handshake. This code is used during
the TLS key exchange as the server computes the ECDHE
shared secret. We made a list of 31 source-destination address
pairs for these indirect jumps, and constructed a jump/ret
chain to mimic the same jump pattern in our payload pro-
gram. Our payload program mimics the first 30 indirect jump
source/destination pairs, with a final jump going to a cache
timing function in our payload program. However, due to
the prior pattern, this last jump is frequently mis-speculated
(about 3.5% of the time), and instead goes to the destination
corresponding to the 31st jump in OpenSSL, which serves as
our speculative entry point.

We ran experiments on an Intel Haswell i5-4590 CPU, with
OpenSSL and our payload program pinned to the same core
using taskset. We induced the jump pattern in OpenSSL by
running Apache benchmark against it to generate thousands
of TLS connections using the ECDHE key exchange with
the secp256r1 curve (ECDHE-RSA-AES256-GCM-SHA384).
When running Apache benchmark locally, our payload pro-
gram reliably executes (speculatively) at the intended spec-
ulative entry point about 3.5% of the time. When apache
benchmark runs on a remote machine, this rate drops to
approximately 2.0%. Nonetheless, these are both sufficient to
perform computation, as our payload can simply increase the
amount of iterations needed to extract meaningful results from
the speculative world.

We verified that our payload program did not execute at the
speculative entry point when we ran other programs that simply
consumed CPU on the same core. In addition, when we used
Apache benchmark to create thousands of connections with
a different cipher suite (DHE-RSA-AES128-GCM-SHA256),
we similarly saw no speculation at the entry point. This could
allow an adversary to use an obscure or uncommon cipher
suite to trigger a malicious ExSpectre payload program on a
remote server.

VII. DISCUSSION

A. Defenses

We now address possible defenses to detecting and reverse
engineering malware that uses ExSpectre.

1) Implemented Mitigations: Multiple patches and micro-
code updates have been developed to mitigate Spectre vulner-
abilities, however, none of these entirely prevent ExSpectre
malware from working, as they are generally not designed to
protect programs that willingly use Spectre against themselves.

a) Indirect Branch Predictor Barrier: IBPB is used
when transitioning to a new address space, allowing a program
to ensure that earlier code’s behavior does not effect its branch
prediction. IBPB requires CPU and operating system support.
However, we observe on Linux that processes running under
the same user group do not receive IBPB protection, enabling
ExSpectre when the trigger and payload run under the same
group. Furthermore, IBPB does not prevent the speculative
buffer overflow variant of ExSpectre described in Section V-B.

b) Single Thread Indirect Branch Predictors: STIBP
prevents sibling hyperthreads from interacting via the indirect
branch predictor. However, this does not prevent co-resident
processes from cooperating when they run on the same logical
core.

c) Indirect Branch Restricted Speculation: IBRS pre-
vents code in less privileged prediction modes from influencing
indirect branch prediction in higher privileges (e.g. the kernel).
This does not prevent speculative execution in a willing
payload program in a less privileged speculation mode.

d) Retpoline: is a software mitigation that replaces
indirect jumps with a special call/overflow/return sequence,
controlling where the CPU will speculate the indirect branch
to a contained (and benign) section [54]. However, this defense
is opt-in which ExSpectre binaries could simply choose to
not use, or alternatively use the unaffected speculative buffer
overflow variant.

2) Malware Detection: While not a primary goal of
ExSpectre, we consider the ability of ExSpectre malware to
hide from detection.

When using the cache side channel variant of ExSpectre,
the payload program must at least occasionally watch this side
channel, offering a potential method for detecting ExSpectre
malware. Analysts could search for telltale signs of cache
inference behavior, such as the use of clflush instructions or
reading cycle timings. At the cost of performance, ExSpectre
could choose to use a more subtle cache side channel that does
not require this, such as Prime+Probe, or by exploiting race
conditions between multiple threads to allow the speculative
world to influence the behavior of the real world.

ExSpectre could also use another side channel method that
avoids the cache to exfiltrate information from the speculative
gadgets, such as the branch predictor itself [16], memory
bandwidth, power utilization, or contention over other shared
resources [27]. While cache channels tend to have the highest
throughput, they are not the only resource that must be
monitored to detect or prevent these types of attacks.

a) Anti-Virus Detectors: We verified that modern Anti-
Virus technologies were unable to detect and flag ExSpec-
tre malware. We used ClamAV, BitDefender and rkhunter,
which mainly rely on signature and string based detection.
BitDefender does feature support for unpacking or extracting
malware, though appears to simply try unpacking using several
known packers and encoding formats [1]. Thus, it is not
surprising that these tools cannot detect ExSpectre.

b) Bare Metal: Modern malware often uses hardware
minutia to identify and fingerprint execution environments in
order to detect when it is under debugging or inspection [32],

12

[3], [43]. To prevent such identification, analyzers often em-
ploy “bare metal” execution [25], running the malware on
dedicated hardware that allows introspection and observation
of the system without interfering with its normal operation.
This prevents malware from using so-called “red pill” checks
to observe that it is under test (and hide its malicious behav-
ior) [26]. However, to the best of our knowledge, no publicly
available bare-metal environments allow introspection on the
speculative state of the CPU, making it difficult to analyze
ExSpectre malware. However, such environments could be
useful for observing the behavior of ExSpectre malware in
the presence of its trigger if available, as modifications in the
real world could be easily tracked.

Symbolic execution has also been used to find environ-
mental red pill checks [48]. However, such analysis would be
ineffective against ExSpectre, as symbolic execution does not
reason about speculative paths and how they might influence
a program.

3) Reverse-engineering triggers: For program-based trig-
gers, an analyst could attempt to find the trigger program by
examining the execution path of the payload program, and
locating a common indirect jump pattern between payload
and potential triggers. Since both programs must share a
common indirect jump pattern to interact via the indirect
branch predictor, there must be some overlap which is unlikely
to occur randomly between two programs.

We note that while the analyst may learn the execution path
(and thus true indirect jump pattern) of the payload program,
they may not be able to capture every potential execution path
in all potential triggers. For example, in the OpenSSL trigger,
the analyst may not have captured all potential indirect jump
patterns, as doing so would require exhaustively connecting to
OpenSSL with different cipher suites, extensions, and failed
handshakes. However, the analyst can still make a list of indi-
rect jump locations in a suspected trigger program, comparing
these to the jumps taken by the payload. If there is significant
overlap, the analyst could spend time to discover what inputs
to the trigger program produce similar indirect jump patterns,
thus discovering the trigger.

ExSpectre malware could attempt to thwart this analysis
by using decoy indirect jumps that do not correspond with
the trigger, but potentially correspond with other (non-trigger)
binaries. In addition, this analysis method is ineffective at
inspecting the speculative buffer overflow variant described in
Section V-B, as it does not use a separate trigger program.

Alternatively an analyst may attempt to identify sections
of the program or dead code that will be used to access
the probe array and thereby find the speculative gadgets.
However, identifying sections of memory that will access the
probe array is equivalent to the “Must Alias” or “Points-
To Problem” which has been proven undecidable without
significant restrictions [46], [30].

B. Future Work

ExSpectre demonstrates a general model for hiding execu-
tion in the speculative world and examines the implications
and limitations on modern processors. Given the wide-spread
nature of the Spectre vulnerability and the ubiquity of side-
channels, we believe that this work can be directly extended to

other architectures, such as ARM, and other processors making
use of speculative branch prediction.

1) Multiple Triggers: To create further difficulties for an
analyst, or to further target the execution environment, it is
possible to have the payload program to combine multiple
triggers. Instead of requiring only a single trigger program, the
payload could require multiple trigger programs to be running
simultaneously, or in a particular order. Alternatively, the
payload could combine trigger programs with input triggers,
forcing an analyst to understand multiple variants simultane-
ously.

This could allow fine-grained targeting of malware. For
instance, the attacker could distribute trigger programs through
different channels to target different sets of victims, and
have the ultimate payload only operate at the intersection of
these groups. As an example, one trigger program could be
distributed to a particular country (e.g. Iran), and another to
a particular device globally (centrifuge controllers), resulting
in the malicious payload (Stuxnet) only being revealed and
executed on the intersection of these two groups.

2) Virtual Machines: Virtual environments could also be
host to ExSpectre malware and triggers. For instance, malware
on one EC2 instance could potentially be triggered by a trigger
program on another seemingly unrelated instance. We have
found that the hypercall context switch from guest to host
on VirtualBox is lightweight enough that a trigger program
running in a guest can activate a payload program running in
the host on the same CPU core. However, we have so far been
unable to go in the opposite direction, and similarly have yet
to achieve guest-to-guest interference. More work is needed
to determine if such barriers are possible to overcome, and if
stronger isolation is needed in the virtual machine context.

VIII. RELATED WORK

A. Weird Machines

ExSpectre shares many properties with weird machines—
a machine which takes advantage of bugs or unexpected
idiosyncracies in existing systems to perform arbitrary com-
putation [6], [7]. In particular ExSpectre showcases the ability
to use CPU speculation to compute.

Recently there has been a trend of features in modern
processors such as multiple threads sharing system resources
and optimizations done across the process isolation boundary
which lead to opportunities for “weird machines” [11]. In
particular, previous examples of “weird machines” include
traditional vulnerabilities such as buffer overflows, format
string exploits and return oriented programming [41], [19],
[50]. Weird machines have also been built using operating
system page faults, enabling the computation of arithmetic and
logic operations without the use of traditional instructions [4].
ExSpectre extends research in “weird machines”, and takes
advantage of speculative execution to execute instructions that
otherwise appear to be dead code.

B. Covert Channels

Spectre builds upon prior work on cache side channels, and
similarly uses them to leak information from processes [44],
[62], [42]. In ExSpectre, we use the branch predictor as a

13

covert channel [29] between the trigger program and malware
payload, allowing the malware’s (speculative) execution path
to be influenced by the trigger.

Previous work has examined how to share information
over covert channels, such as across virtualized environments
on cloud systems [59], using L1 and L2 cache to share
information [44], measuring temperature to create a thermal
covert channel [35], [5], and taking advantage of processor
architecture to leak information [57]. This includes using the
branch predictor itself as a covert channel [15], [13], which
ExSpectre similarly uses.

However, we note that the covert channel used in ExSpectre
need not involve two cooperative programs, and we demon-
strate using the benign OpenSSL as a non-colluding program
involved in utilizing this covert channel.

C. Speculative Execution

ExSpectre builds on Spectre [28] and Meltdown [33] which
leverage speculative execution to leak sensitive information
from vulnerable processes. Follow up work has identified
several new Spectre variants, including speculative buffer
overflows and speculative store bypass [27], [37], and has
investigated additional ways to leak information using branch
predictors as a side channel [16]. Researchers have also
leveraged Spectre and speculative execution more generally
to demonstrate web-based vulnerabilities [18], [49] as well
as to leak control flow, keys, and other information from the
hardware isolation provided by Intel SGX [40], [10], [8], [31].
Spectre has additionally been proposed as a way to thwart
taint tracking by using speculative execution to copy data
between buffers [20]. ExSpectre likewise takes advantage of
speculative execution, but with the goal of hiding arbitrary
computation from reverse engineering, rather than extracting
secrets from vulnerable programs. ExSpectre also benefits
from new Spectre variants: as we showed, speculative buffer
overflows (“Spectre 1.1”) can be used as an alternative trigger
for malware.

IX. CONCLUSION

We have presented ExSpectre, a model for hiding compu-
tation in speculative execution that is fundamentally different
than existing methods of code obfuscation. Through a series of
experiments we have classified the capabilities and limitations
of this speculative primitive and demonstrated various example
applications. We have demonstrated the potential of using spec-
ulative execution in several applications, including a Turing
machine, SPASM emulator, remotely-triggered payloads, and
AES decryption. We have also examined Intel’s responses to
Spectre and Meltdown and noted how their defenses affect
ExSpectre and how further variants of Spectre can be adapted
to ExSpectre. Current analysis techniques for reverse engi-
neering are insufficient to reason about the behavior of these
programs.

Ultimately, silicon and microarchitecture patches will be
needed to secure CPUs against this kind of malware. Until
then, attackers may iterate and find new variants of ExSpectre-
like malware. In the meantime, new detection techniques and
software-level mitigations are desperately needed.

ACKNOWLEDGEMENTS

We would like to thank Aimee Coughlin, Daniel Genkin,
and Yuval Yarom for their initial discussions on the ExSpectre
idea, and we additionally thank our reviewers and paper
shepherd, Ahmad-Reza Sadeghi for helpful feedback on our
work.

REFERENCES

[1] “Bitdefender antivirus technology,” 2018. [Online].
Available: https://www.bitdefender.com/files/Main/file/BitDefender

Antivirus Technology.pdf
[2] O. Acıiçmez, Ç. K. Koç, and J.-P. Seifert, “Predicting secret keys via

branch prediction,” in Cryptographers Track at the RSA Conference.
Springer, 2007, pp. 225–242.

[3] D. Balzarotti, M. Cova, C. Karlberger, E. Kirda, C. Kruegel, and
G. Vigna, “Efficient detection of split personalities in malware.” in
NDSS, 2010.

[4] J. Bangert, S. Bratus, R. Shapiro, and S. W. Smith, “The page-fault
weird machine: Lessons in instruction-less computation.” in WOOT,
2013.

[5] D. B. Bartolini, P. Miedl, and L. Thiele, “On the capacity of thermal
covert channels in multicores,” in Proceedings of the Eleventh European
Conference on Computer Systems. ACM, 2016, p. 24.

[6] S. Bratus, “What hacker research taught me,” In
Rss, 2009, accessed: 2018-05-01. [Online]. Available:
http://www.cs.dartmouth.edu/sergey/hc/rss-hacker-research.pdf

[7] S. Bratus, M. Locasto, M. Patterson, L. Sassaman, and A. Shubina,
“Exploit programming: From buffer overflows to weird machines and
theory of computation,” {USENIX; login:}, 2011.

[8] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel SGX kingdom with transient out-of-order
execution,” in 27th USENIX Security Symposium (USENIX Security
18). Baltimore, MD: USENIX Association, 2018. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck

[9] G. J. Chaitin, “Computing the busy beaver function,” in Open Problems
in Communication and Computation. Springer, 1987, pp. 108–112.

[10] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “SGX-
PECTRE attacks: Leaking enclave secrets via speculative execution,”
arXiv preprint arXiv:1802.09085, 2018.

[11] S. M. D’Antoine, “Exploiting processor side channels to enable cross
vm malicious code execution,” Ph.D. dissertation, Rensselaer Polytech-
nic Institute, 2015.

[12] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on automated
dynamic malware-analysis techniques and tools,” ACM computing sur-
veys (CSUR), vol. 44, no. 2, p. 6, 2012.

[13] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Covert channels
through branch predictors: a feasibility study,” in Proceedings of the
Fourth Workshop on Hardware and Architectural Support for Security
and Privacy. ACM, 2015, p. 5.

[14] ——, “Jump over ASLR: Attacking branch predictors to bypass ASLR,”
in 49th Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO). IEEE, 2016, pp. 1–13.

[15] ——, “Understanding and mitigating covert channels through branch
predictors,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 13, no. 1, p. 10, 2016.

[16] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, D. Ponomarev et al.,
“Branchscope: A new side-channel attack on directional branch pre-
dictor,” in Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems. ACM, 2018, pp. 693–707.

[17] A. Fog, “Instruction tables: Lists of instruction latencies, throughputs
and micro-operation breakdowns for intel, AMD and VIA CPUs,”
Copenhagen University College of Engineering, vol. 93, p. 110, 2011.

[18] D. Genkin, L. Pachmanov, E. Tromer, and Y. Yarom, “Drive-by key-
extraction cache attacks from portable code,” 2018.

14

[19] gera and riq, “Advances in format string exploiting.” Phrack
Magazine , 59(7), July 2001., 2001. [Online]. Available:
http://www.phrack.org/archives/59/p59-0x07.txt

[20] S. Guelton, “Spectre is not a Bug, it is a Feature,”
https://blog.quarkslab.com/spectre-is-not-a-bug-it-is-a-feature.html,
2018.

[21] F. Guo, P. Ferrie, and T.-C. Chiueh, “A study of the packer problem
and its solutions,” in International Workshop on Recent Advances in
Intrusion Detection. Springer, 2008, pp. 98–115.

[22] R. Herken, “The universal Turing machine: A half-century survey,”
1992.

[23] J. Horn, “Project Zero: Reading privileged memory with a
side-channel,” https://googleprojectzero.blogspot.com/2018/01/reading-
privileged-memory-with-side.html, 2018, accessed: 2018-05-01.

[24] S. Jana and V. Shmatikov, “Abusing file processing in malware detectors
for fun and profit,” in Security and Privacy (SP), 2012 IEEE Symposium
on. IEEE, 2012, pp. 80–94.

[25] D. Kirat, G. Vigna, and C. Kruegel, “Barebox: efficient malware
analysis on bare-metal,” in Proceedings of the 27th Annual Computer
Security Applications Conference. ACM, 2011, pp. 403–412.

[26] ——, “Barecloud: Bare-metal analysis-based evasive malware detec-
tion.” in USENIX Security Symposium, 2014, pp. 287–301.

[27] V. Kiriansky and C. Waldspurger, “Speculative buffer overflows: Attacks
and defenses,” arXiv preprint arXiv:1807.03757, 2018.

[28] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in 40th
IEEE Symposium on Security and Privacy (S&P’19), 2019.

[29] B. W. Lampson, “A note on the confinement problem,” Communications
of the ACM, vol. 16, no. 10, pp. 613–615, 1973.

[30] W. Landi, “Undecidability of static analysis,” ACM Letters on Program-
ming Languages and Systems (LOPLAS), vol. 1, no. 4, pp. 323–337,
1992.

[31] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, “Inferring
fine-grained control flow inside SGX enclaves with branch shadowing,”
in 26th USENIX Security Symposium, USENIX Security, 2017, pp. 16–
18.

[32] M. Lindorfer, C. Kolbitsch, and P. M. Comparetti, “Detecting
environment-sensitive malware,” in International Workshop on Recent
Advances in Intrusion Detection. Springer, 2011, pp. 338–357.

[33] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in 27th USENIX
Security Symposium (USENIX Security 18), 2018.

[34] G. Maisuradze and C. Rossow, “Speculose: Analyzing the secu-
rity implications of speculative execution in CPUs,” arXiv preprint
arXiv:1801.04084, 2018.

[35] R. J. Masti, D. Rai, A. Ranganathan, C. Müller, L. Thiele, and
S. Capkun, “Thermal covert channels on multi-core platforms.” in
USENIX Security Symposium, 2015, pp. 865–880.

[36] M. Miller, “Analysis and mitigation of speculative store
bypass (CVE-2018-3639),” May 2018. [Online]. Avail-
able: http://www.guru3d.com/news-story/intel-has-to-delays-patches-
for-new-spectre-ng-vulnerabilities.html

[37] ——, “Analysis and mitigation of speculative
store bypass (cve-2018-3639),” 2018. [Online]. Avail-
able: https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-
mitigation-of-speculative-store-bypass-cve-2018-3639/

[38] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution
paths for malware analysis,” in Security and Privacy, 2007. SP’07. IEEE
Symposium on. IEEE, 2007, pp. 231–245.

[39] J. Oberheide, M. Bailey, and F. Jahanian, “Polypack: an automated
online packing service for optimal antivirus evasion,” in Proceedings
of the 3rd USENIX conference on Offensive technologies. USENIX
Association, 2009, pp. 9–9.

[40] D. O’Keeffe, D. Muthukumaran, P.-L. Aublin, F. Kelbert, C. Priebe,
J. Lind, H. Zhu, and P. Pietzuch, “Spectre attack against

SGX enclave,” 2018, accessed: 2018-05-01. [Online]. Available:
https://github.com/lsds/spectre-attack-sgx

[41] A. One, “Smashing the stack for fun and profit.” Phrack Magazine,
1996. [Online]. Available: phrack.org/issues/49/14.html#article

[42] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and coun-
termeasures: the case of AES,” in Cryptographers Track at the RSA
Conference. Springer, 2006, pp. 1–20.

[43] R. Paleari, L. Martignoni, G. F. Roglia, and D. Bruschi, “A fistful
of red-pills: How to automatically generate procedures to detect CPU
emulators,” in Proceedings of the USENIX Workshop on Offensive
Technologies (WOOT), vol. 41, 2009, p. 86.

[44] C. Percival, “Cache missing for fun and profit,” 2005.
[45] G. Poulios, C. Ntantogian, and C. Xenakis, “Ropinjector: Using return

oriented programming for polymorphism and antivirus evasion,” Black-
hat USA, 2015.

[46] G. Ramalingam, “The undecidability of aliasing,” ACM Transactions
on Programming Languages and Systems (TOPLAS), vol. 16, no. 5, pp.
1467–1471, 1994.

[47] J. Rutkowska, “redpill... or how to detect VMM
using (almost) one CPU instruction,” 2004. [On-
line]. Available: https://web.archive.org/web/20110726182809/
http://invisiblethings.org/papers/redpill.html

[48] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted
to know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask),” in Security and privacy (SP), 2010
IEEE symposium on. IEEE, 2010, pp. 317–331.

[49] M. Schwarz, M. Schwarzl, M. Lipp, and D. Gruss, “NetSpectre: Read
arbitrary memory over network,” 2018.

[50] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proceedings of the 14th
ACM conference on Computer and communications security. ACM,
2007, pp. 552–561.

[51] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution.” in NDSS, vol. 16, 2016,
pp. 1–16.

[52] A. Swinnen and A. Mesbahi, “One packer to rule them all: Empiri-
cal identification, comparison and circumvention of current antivirus
detection techniques,” BlackHat USA, 2014.

[53] A. M. Turing, “On computable numbers, with an application to the
Entscheidungsproblem,” Proceedings of the London mathematical soci-
ety, vol. 2, no. 1, pp. 230–265, 1937.

[54] P. Turner, “Retpoline: a software construct for pre-
venting branch-target-injection,” 2018. [Online]. Available:
https://support.google.com/faqs/answer/7625886

[55] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G. Bringas, “SoK:
Deep packer inspection: A longitudinal study of the complexity of run-
time packers,” in 2015 IEEE Symposium on Security and Privacy (SP).
IEEE, 2015, pp. 659–673.

[56] F. Wang and Y. Shoshitaishvili, “angr - the next generation of binary
analysis,” in Cybersecurity Development (SecDev), 2017 IEEE. IEEE,
2017, pp. 8–9.

[57] Z. Wang and R. B. Lee, “Covert and side channels due to processor
architecture,” in Computer Security Applications Conference, 2006.
ACSAC’06. 22nd Annual. IEEE, 2006, pp. 473–482.

[58] H. Wong, “Measuring reorder buffer capacity,” May 2013. [Online].
Available: http://blog.stuffedcow.net/2013/05/measuring-rob-capacity/

[59] Z. Wu, Z. Xu, and H. Wang, “Whispers in the hyper-space: High-speed
covert channel attacks in the cloud.” in USENIX Security symposium,
2012, pp. 159–173.

[60] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high resolution, low
noise, l3 cache side-channel attack,” in USENIX Security Symposium,
2014, pp. 719–732.

[61] M. Zalewski, “American fuzzy lop,” 2015.
[62] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-VM side

channels and their use to extract private keys,” in Proceedings of
the 2012 ACM conference on Computer and communications security.
ACM, 2012, pp. 305–316.

15

