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Abstract— We discuss how symbolic execution can be used
to not only find low-level errors but also analyze the semantic
correctness of protocol implementations. To avoid manually
crafting test cases, we propose a strategy of meta-level search,
which leverages constraints stemmed from the input formats to
automatically generate concolic test cases. Additionally, to aid
root-cause analysis, we develop constraint provenance tracking
(CPT), a mechanism that associates atomic sub-formulas of path
constraints with their corresponding source level origins. We
demonstrate the power of symbolic analysis with a case study on
PKCS#1 v1.5 signature verification. Leveraging meta-level search
and CPT, we analyzed 15 recent open-source implementations
using symbolic execution and found semantic flaws in 6 of them.
Further analysis of these flaws showed that 4 implementations
are susceptible to new variants of the Bleichenbacher low-
exponent RSA signature forgery. One implementation suffers
from potential denial of service attacks with purposefully crafted
signatures. All our findings have been responsibly shared with
the affected vendors. Among the flaws discovered, 6 new CVEs
have been assigned to the immediately exploitable ones.

I. INTRODUCTION

Developing a deployable cryptographic protocol is by no
means an easy feat. The journey from theory to practice is
often long and arduous, and a small misstep can have the
security guarantees that are backed by years of thorough
analysis completely undone. Given well-defined cryptographic
constructs originated from mathematical problems that are be-
lieved to be hard to solve, proving their functional correctness
with respect to the relevant assumptions and security models
is hardly the end of the journey. Because of the restrictive
assumptions used in designing cryptographic constructs, in
reality, additional glue protocols are often needed to generalize
such constructs into being able to handle inputs of diverse
length and formats. Sometimes glue protocols are also used to
wrap around cryptographic constructs for exploiting the duality
of certain security guarantees to achieve alternative properties.
After careful designs have been devised and standardized,
it is also necessary for implementations to faithfully adhere
to the specification, in order to ensure the retention of the
original designed security and functionality goals in actual
deployments. Implementations that deviate from the standard

and do not achieve the prescribed level of robustness can lead
to a plethora of attacks [9], [20], [22], [27].

The PKCS#1 v1.5 signature scheme, surrounding the RSA
algorithm, is one such glue protocol that is widely deployed
in practice. Used in popular secure communication protocols
like SSL/TLS and SSH, it has also been adapted for other
scenarios like signing software. Prior work has demonstrated
that lenient implementations of PKCS#1 v1.5 signature veri-
fication can be exploited in specific settings (e.g., when small
public exponents are being used) to allow the forgery of
digital signatures without possession of the private exponent
nor factorizing the modulus [3], [5], [13], [20], [24], [25],
[27]. The identification of such implementation flaws, however,
has been mostly based on manual code inspection [20], [27].
The focus of this paper is thus to develop a systematic and
highly automated approach for analyzing semantic correctness
of implementations of protocols like PKCS#1 v1.5 signature
verification, that is, whether the code adheres to and enforces
what the specification prescribes.

Our approach. For identifying semantic weaknesses of proto-
col implementations, we propose to perform symbolic analysis
of the software [26]. Directly applying off-the-shelf symbolic
execution tools [14], [28] to test PKCS#1 v1.5 implementa-
tions, however, suffers from scalability challenges. This is due
to the fact that the inputs to such protocols are often structured
with variable length fields (e.g., padding), and can sometimes
contain sophisticated ASN.1 objects (e.g., metadata).

One might question the applicability of symbolic analysis
on implementations of a cryptographic protocol. The key
intuition that we leverage in our approach, is that while the
underlying mathematics of cryptographic constructs are typi-
cally non-linear in nature, which are often difficult to analyze
with constraint solvers, the various variable-sized components
used in glue protocols like PKCS#1 v1.5 often exhibit linear
relations among themselves and with the input buffer (e.g.,
sum of component lengths should equal to a certain expected
value). Using linear constraints stemming from such relations,
we can guide symbolic execution into automatically generating
many meaningful concolic test cases, a technique we refer to
as meta-level search.

To further address scalability challenges faced by symbolic
execution, we draw insights from the so-called human-in-the-
loop idea [21]. With domain knowledge on the protocol design
and input formats, human expertise can partition the input
space in a coarse-grained fashion by grouping together parts
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of the input buffer that should be analyzed simultaneously,
making them symbolic while leaving the rest concrete. A
good partition strategy should constrain and guide symbolic
execution to focus on subproblems that are much easier to effi-
ciently and exhaustively search than the original unconstrained
input space, and hence achieve good coverage while avoiding
intractable path explosions due to loops and recursions.

To facilitate root-cause analysis of an identified devia-
tion, we design and develop a constraint provenance tracking
(CPT) mechanism that maps the different clauses of each path
constraint generated by symbolic execution to their source
level origin, which can be used to understand where certain
decisions were being made inside the source tree. Our carefully
designed CPT mechanism has been demonstrated to incur only
modest overhead while maintaining sufficient information for
identifying the root-cause of deviations in the source code.

Case Study. The PKCS#1 v1.5 signature scheme is a good
candidate for demonstrating the effectiveness of our approach
in analyzing semantic correctness, as the protocol itself in-
volves diverse glue components. As we will explain later, to
our surprise, even after a decade since the discovery of the
original vulnerability [20], several implementations still fail to
faithfully and robustly implement the prescribed verification
logic, resulting in new variants of the reported attack.

Findings. To show the efficacy of our approach, we first
use it to analyze 2 legacy implementations of PKCS#1 v1.5
signature verification that are known to be vulnerable. Our
analysis identified not only the known exploitable flaws,
but also revealed some additional weaknesses. We then an-
alyze 15 recent open-source implementations with our ap-
proach. Our analysis revealed that 6 of these implementa-
tions (i.e., strongSwan 5.6.3, Openswan 2.6.50, axTLS 2.1.3,
mbedTLS 2.4.2, MatrixSSL 3.9.1, and libtomcrypt 1.16) ex-
hibit various semantic correctness issues in their signature
verification logic. Our analysis in an existing theoretical frame-
work shows that 4 of these weak implementations are in fact
susceptible to novel variants of Bleichenbacher’s low-exponent
RSA signature forgery attack [20], [27], due to some new
forms of weaknesses unreported before. Exploiting these newly
found weaknesses, forging a digital signature does not require
the adversary to carry out many brute-force trials as described
in previous work [27]. Contrary to common wisdom, in some
cases, choosing a larger security parameter (i.e., modulus)
actually makes various attacks easier to succeed, and there
are still key generation programs that mandate small public
exponents [7]. One particular denial of service attack against
axTLS 2.1.3 exploiting its signature verification weakness can
be launched even if no Certificate Authorities use small public
exponents. Among the numerous weaknesses discovered, 6
new CVEs have been assigned to the exploitable ones.

Contributions. This paper makes the following contributions:

1) We propose and develop a principled and practical ap-
proach based on symbolic execution that enables the
identification of exploitable flaws in implementations of
PKCS#1 v1.5 signature verification. Specifically, we dis-
cuss how to enhance symbolic execution with meta-level
search in Section II.

2) To aid root-cause analysis when analyzing semantic cor-
rectness with symbolic execution, we design and im-

plement a constraint provenance tracker; which is of
independent interest. We explain in Section III how this
can help identify root causes of observed implementation
deviations with only a modest overhead.

3) We demonstrate our approach with a case study on
implementations of PKCS#1 v1.5 signature verification.
Our analysis of 2 known buggy (Section IV-D) and 15
recent implementations (Section V) of PKCS#1 v1.5 not
only led to the discovery of known vulnerabilities but
also various new forms of weaknesses. We also provide
theoretical analysis and proof-of-concept attacks based on
our new findings in Section VI.

II. SYMBOLIC EXECUTION WITH META-LEVEL SEARCH

While symbolic execution is a time-tested means for an-
alyzing programs, the practicality challenges that it faces are
also well understood. When dealing with complex structured
inputs, one strategy to workaround scalability issues is to draw
on domain knowledge to strategically mix concrete values with
symbolic variables in the (concolic) test input. When done
correctly, this should allow symbolic execution to reach beyond
the input parsing code (which makes frequent use of loops and
recursions) and explore the post-parsing decision making logic.

As explained in previous work [15], inputs like X.509
certificates that are DER-encoded ASN.1 objects, can be
viewed as a tree of {Tag, Length, Value} triplets, where the
length of Value bytes is explicitly given. Hence, if all the
Tag and Length are fixed to concrete values, the positions of
where Value begins and ends in a test input buffer would also
be fixed. Hence, one can generate a few concrete inputs, and
manually mark Value bytes of interests as symbolic to obtain
meaningful concolic test cases. In fact, just a handful of such
manually produced test cases managed to uncover a variety of
verification problems [15].

However, cryptographic glue protocols like PKCS#1 v1.5
signatures sometimes involve not only an encoded ASN.1
object, but also input components used for padding purposes,
where the length is often implicitly given by an explicit
termination indicator. In PKCS#1 v1.5, since padding comes
before its ASN.1 structure, the extra room gained due to
(incorrectly) short padding can be hidden in any later parts
of the input buffer, including many leaf nodes of the encoded
ASN.1 object. This means there could be many combinations
of lengths of components that constitute the input buffer,
all meaningful for testing. Consequently, the concretization
strategy used in previous work [15] in this case requires a huge
amount of manual effort to enumerate and prepare concolic
inputs, and would easily miss out on meaningful corner cases.

To achieve a high degree of automation while preserving
a good test coverage, we propose to use symbolic variables
not only as test inputs, but also to capture some high-level
abstractions of how different portions of the test inputs could
be mutated, and let the SMT solver decide whether such
mutations are possible during symbolic execution. The key
insight is that, the lengths of input components used by
protocols like PKCS#1 v1.5 exhibit linear relations with each
other. For example, the size of padding and all the other
components together should be exactly the size of the modulus,
and in benign cases, the length of a parent node in an encoded
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ASN.1 object is given by the sum of the size of all its
child nodes. By programatically describing such constraints,
symbolic execution can automatically explore combinations of
possible component lengths, and generate concolic test cases
on the fly by mutating and packing components according to
satisfiable constraints.

Given that the input formats of many other protocols also
exhibit similar patterns, the meta-level search technique should
be applicable to them as well. We will explain how to fit this
technique specifically for PKCS#1 v1.5 signatures and discuss
other engineering details in Section IV.

III. CONSTRAINT PROVENANCE TRACKING FOR EASIER
ROOT CAUSE ANALYSIS

In this section, we present the design, implementation,
and empirical evaluation of the constraint provenance tracking
(CPT) mechanism. CPT aids one to identify the underlying
root-cause of an implementation deviation, identified through
the analysis of the relevant path constraints generated by
symbolic execution. CPT is of independent interest in the
context of semantic correctness checking, as it can be used
for many other protocols beyond PKCS#1 v1.5.

A. Motivation

While the logical formulas extracted by symbolic execution
capture the implemented decision-making logic of the test tar-
get with respect to its inputs, which enable analysis of semantic
correctness and provide a common-ground for differential
testing as demonstrated by previous work [15], we argue that
after discrepancies have been identified, a root-cause analysis
from formula level back to code level is non-trivial to perform,
as multiple different code locations of an implementation could
have contributed to the various constraints being imposed on a
specific symbolic variable. This is further exacerbated by the
fact that, modern symbolic engines, like KLEE for example,
would actively simplify and rewrite path constraints in order
to reduce the time spent on constraint solving [14].

Take the following code snippet as a running example.
Assuming that each char is 1-byte long and A is a symbolic
variable, a symbolic execution engine like KLEE would dis-
cover 3 possible execution paths, with the return value being
0, 1, and 2, respectively.

1 int foo( char A ){
2 char b = 10, c = 11;
3 if (!memcmp(&A, &c, 1))
4 return 0;
5 if (memcmp(&A, &b, 1))
6 return 1;
7 return 2;
8 }

(Eq 10 (Read w8 0 A))

Example 1: A code snippet with 3
execution paths. The path constraint
shown above corresponds to the path
that gives a return value of 2.

Although the path that returns 2 falsifies the two branching
conditions due to the if statements (i.e., A=11 and A 6=10), in
the end, the simplified constraint only contains the falsification
of the second branching condition (i.e., A 6=10), as shown
in the path constraint. This is because the falsification of the
second if condition imposes a more specific constraint on
the symbolic variable than the first one, and a simplification
of the path constraints would discard the inexact clauses in
favor of keeping only the more specific and restrictive ones
(i.e., A 6= 11 ∧ A = 10↔ A = 10).

As illustrated by the example above, although the extracted
path constraints faithfully capture the implemented logic, using
them to trace where decisions were made inside the code is
not necessarily straightforward even on a toy example.

In order to make root-cause analysis easier when it comes
to finding bugs with symbolic execution, on top of merely
harvesting the final optimized path constraints like previous
work did [15], we propose a new feature to be added to
the execution engine, dubbed Constraint Provenance Tracking
(CPT). The main idea is that, during symbolic execution,
when a new clause is to be introduced, the engine can
associate some source level origin (e.g., file name and line
number) with the newly added clause, and export them upon
completion of the execution. We envision that when it comes
to finding root-causes of implementation flaws, this is better
than stepping through an execution using a common debugger
with a concrete input generated by the symbolic execution.
This is because path constraints offer an abstraction at the
level of symbolic variables, not program variables. While
one might have to mentally keep track of potentially many
different program variables and their algebraic relations when
stepping with a debugger (especially when entering some
generic functions, e.g., a parser), in symbolic execution those
are all resolved into constraints imposed on symbolic variables,
and CPT offers insights on where did such impositions happen.

B. Design of CPT

1) Performance Considerations: While clause origin can
be obtained directly from the debugging information produced
by compilers, the constraint optimization needs to be han-
dled delicately. On one hand, such optimizations significantly
improve the runtime of symbolic execution [14], on the
other, they are often irreversible, hindering root-cause analysis.
Striving to balance both performance and usability, in our
implementation of CPT, we introduce a separate container for
path constraints and their source level origins. The intuition
behind introducing the separate container is to let the engine
continue performing optimization on the path constraints that
drive the symbolic execution, so that runtime performance
would not suffer significantly, but then the unoptimized clauses
and their origins could be used to assist root-clause analysis.
This is essentially trading space for time, and as we show later,
the memory overhead is modest. We refer to this as CPT v1.0.

2) Function Filtering: Another interesting consideration
in implementing CPT is what constitutes the origin of a
clause. Blindly copying source level information corresponding
to the current program counter during symbolic execution is
possible, but many times this does not result in a meaningful
outcome, because most real software systems are designed and
implemented in a modular manner using various libraries.

Consider again the path that returns 2 from the running
example (i.e., A 6= 11 ∧ A = 10), CPT v1.0 would give the
following provenance information, where the origins of the
clauses are shown to be from the instrumented C standard
library which implements the memcmp() function:

(Eq false
(Eq 11 (Read w8 0 A))) @libc/string/memcmp.c:35

(Eq 10 (Read w8 0 A)) @libc/string/memcmp.c:35
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While this is technically accurate, from the perspective of
analyzing the semantic correctness of a protocol implemen-
tation, this is not particularly meaningful. In such a setting,
one would most likely not be very interested in analyzing the
implementation of the underlying low-level library (e.g. the C
standard library) and would prefer to have instead the caller
of memcmp() to be considered as the origin of the clauses.

To this end, we propose to trace stack frames and filter out
functions that one would like to ignore in tracking origins of
clauses. One can, for example, configure the CPT to not dive
into functions from the C standard library through blacklisting
exported functions known from the API, and track instead the
caller of those functions as the clause origins, which would
produce the following CPT output for the same path that
returns 2, clearly more useful in understanding the semantics
of a protocol implementation:

(Eq false
(Eq 11 (Read w8 0 A))) @Example1.c:3

(Eq 10 (Read w8 0 A)) @Example1.c:5

In addition to the C standard library, we have observed
that several cryptography implementations have their own
shim layers mimicking the standard library functions (e.g.
OPENSSL_memcmp() in OpenSSL). This is often done for
the sake of platform portability (e.g. use the C standard library
and some platform-specific extensions if they are available, and
use a custom imitation if they are not), and is sometimes used
to provide custom constant-time alternatives to avoid timing
side-channel leakages. All these additional functions can be
filtered similarly in CPT as well.

We note that when filtering function calls, there are two
possible heuristics. (1) One is to consider the most recent
caller of the blacklisted library functions as the clause origin.
(2) Another alternative is to consider function calls to have a
boundary, where once a blacklisted function has been called,
the execution stays in a blacklisted territory until that function
returns. While the first heuristic is better at handling callback
functions, we have chosen heuristic 2, because fully blacklist-
ing all the library functions that CPT should not dive into (or,
equivalently, whitelisting all the possible origin functions from
a protocol implementation) could be complicated. For example,
specific implementations of C standard libraries may use their
own undocumented internal functions to implement functions
that are exported in the API. Acquiring this knowledge ahead
of time could be laborious and hinders generalization.

We use CPT v2.0 to refer to the CPT with function filtering
heuristic 2. In the end, we implemented CPT v2.0 by adding
less than 750 lines of code to the KLEE toolchain. We chose
KLEE as our symbolic execution engine because it is widely
used, robust, and is actively maintained.

C. Performance Evaluation

We now evaluate the performance of KLEE [14] equipped
with CPT, and compare it with vanilla KLEE. The goal of
this evaluation is to demonstrate that both the memory and
runtime overheads induced by the CPT feature are tolerable,
as a significant increase in either of the two would severely
hinder the practicality of using KLEE in software testing.

The overheads are reported by measuring time and memory
needed by KLEE (with and without CPT) to symbolically

TABLE I. PERFORMANCE EVALUATION OF KLEE WITH CPT
(AVERAGE OVER 3 TRIALS)

Program KLEE
version

Paths
Completed Time (s) maxMem

(MB)
avgMem

(MB)

[ Original 1789 63.06 29.75 27.01
CPT v2.0 1789 62.76 29.79 27.07

base64 Original 2097957 3,600.01 41.42 34.57
CPT v2.0 2091665 3,600.01 41.44 34.65

basename Original 14070 9.20 22.81 22.59
CPT v2.0 14070 9.15 22.88 22.64

cat Original 2261170.67 3,600.01 23.68 23.24
CPT v2.0 2248991.67 3,600.01 23.76 23.32

chcon Original 480351 3,600.02 59.75 57.82
CPT v2.0 477896 3,600.01 59.95 57.94

chgrp Original 705117.33 3,600.04 479.42 286.97
CPT v2.0 703403.33 3,600.05 478.46 288.03

chmod Original 430347.00 3,600.05 393.30 221.09
CPT v2.0 427392.33 3,600.12 378.08 211.71

chown Original 550473.67 3,600.06 353.46 201.40
CPT v2.0 543620.67 3,600.04 349.93 200.03

chroot Original 1496 7.25 23.83 23.16
CPT v2.0 1496 7.58 23.98 23.23

cksum Original 2552 7.91 24.81 23.64
CPT v2.0 2552 7.74 24.85 23.75

comm Original 3895174.33 3,600.01 92.59 68.91
CPT v2.0 3857897.33 3,600.01 91.86 68.51

cp Original 497.00 3,625.05 28.76 28.37
CPT v2.0 496.33 3,615.35 28.81 28.44

cut Original 3824504.33 3,600.01 26.21 25.76
CPT v2.0 3826345 3,600.01 26.31 25.84

date Original 3564.67 3,602.71 60.79 39.59
CPT v2.0 3560.00 3,602.82 61.21 39.60

dd Original 1069290.67 3,600.02 26.48 26.07
CPT v2.0 1075813.33 3,600.02 26.67 26.19

df Original 5016.33 3,600.13 71.27 48.18
CPT v2.0 4127.33 3,600.10 68.98 47.64

dircolors Original 1019074.33 3,600.02 25.00 24.64
CPT v2.0 1007623.67 3,600.03 25.21 24.77

dirname Original 4167 8.42 23.43 22.93
CPT v2.0 4167 8.52 23.53 22.98

du Original 179.67 3,600.55 55.21 43.97
CPT v2.0 179.33 3600.52 55.32 43.65

echo Original 5134030 3,600.01 22.60 22.42
CPT v2.0 5081012 3,600.01 22.91 22.54

env Original 508649 942.72 24.04 23.07
CPT v2.0 508649 925.12 24.13 23.15

expand Original 3466952.00 3,600.01 63.96 54.49
CPT v2.0 3377675.67 3,600.01 64.05 54.36

expr Original 4653 3,600.09 363.95 212.91
CPT v2.0 4645 3,600.14 363.82 212.58

factor Original 618634.33 3,600.06 381.06 208.15
CPT v2.0 619403.33 3,600.06 381.57 208.66

false Original 23 0.08 20.85 20.68
CPT v2.0 23 0.08 20.90 20.72

fmt Original 1330 3,610.77 25.88 25.36
CPT v2.0 1308 3,610.72 25.96 25.42

fold Original 4498176 3,600.01 23.46 23.20
CPT v2.0 4426844 3,600.01 23.56 23.28

head Original 1445240 3,600.02 2,073.72 1,496.51
CPT v2.0 1445458 3,600.03 2,073.82 1,497.35

hostid Original 1022352.00 3,600.01 25.79 25.46
CPT v2.0 1021386.67 3,600.04 25.99 25.59

hostname Original 991770.67 3,600.01 25.23 24.89
CPT v2.0 994186.67 3,600.01 25.40 25.01

execute a suite of target programs. Following what had been
previously investigated in the original KLEE paper [14], we
use the GNU coreutils package1 for our evaluation, which
consists of various basic tools like cat and ls used on many
Unix-like operating systems. Over the years, coreutils itself
has been tested extensively, so we do not intend to find new
bugs or achieve a higher code coverage in our experiments.

We follow the experiment setup [1] used in the KLEE paper
[14] to run 2 different versions of KLEE on coreutils version
6.11 [2], that is, the original version of KLEE, and the one
with CPT v2.0. For each version, we repeat the execution on
each coreutil program 3 times and report the average values
of runtime and memory measurements. The experiments were
conducted on a machine powered by an Intel Core i7-6700
3.40GHz CPU and with 32GB RAM. Table I shows our

1https://www.gnu.org/software/coreutils/coreutils.html
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measurements on the first 30 programs in coreutils.

To obtain measurement numbers in each experiment, we
use the klee-stat tool provided by KLEE toolchain. For
memory usage, we report both the peak (maxMem) and average
consumption (avgMem), averaged over the 3 executions. Since
some of the target programs need an enormous amount of
time to finish, following previous work [1], [14], we halt an
execution after 1 hour, which explains why some programs
in Table I have a total runtime of about 3600 seconds (e.g.,
base64, cat, and chcon). In such cases, the mere total
execution time is insufficient in showing the time overhead.
Hence we also report the average number of completed paths
during the 3 executions, which can be used to compare the
runtime efficiency of the different versions of KLEE.

To make the number of completed paths comparable, and
since we are not focused on code coverage, we also changed
the search heuristic used by KLEE into a depth-first search
(DFS), instead of a random search as prescribed by the recipe
[1], to avoid non-determinism. We also increased the maximum
memory usage for each execution to 16GB from the prescribed
1GB [1]. However, as can be seen in Table I, none of the tested
programs approached close to this limit.

All in all, the two versions of KLEE yielded comparable
total runtime (or, paths completed) and memory usages. CPT
v2.0 in general consumes a little more memory and is slightly
slower than the original KLEE, though the overheads are in-
significant. In the rest of the paper, unless explicitly mentioned,
we will be using KLEE with CPT v2.0 by default.

IV. A CASE STUDY ON PKCS#1 V1.5 RSA SIGNATURE
VERIFICATION

We center our analysis around the problem of PKCS#1
v1.5 signature verification. This is particularly suitable for
showcasing the merit of enhancing symbolic execution with
meta-level searching, as it features diverse glue components
including explicitly terminated padding with implicit length, as
well as a sophisticated ASN.1 structure. Despite the PKCS#1
family has newer algorithms like RSA-PSS [RFC8017], the
v1.5 signature scheme continues to be widely-used in Web
PKI and other security-critical network protocols like SSH
[RFC4253] and IKEv2 [RFC7296] for authentication purposes.

A. Technical Background

In this section, we provide a brief overview of RSA
signature verification while using PKCS#1 v1.5 as the padding
scheme. For the ease of exposition, we provide a list of the
notations we use and their meaning in Table II.

Following the usual RSA notations, we use d, e, and n
to denote the RSA private exponent, public exponent, and
modulus, respectively. 〈n, e〉 constitutes an RSA public key.
We use |n| to denote the size of the modulus in bits. Suppose m
is the message for which an RSA signature is to be generated.
In the context of X.509 certificates (and CRLs), m would be
the ASN.1 DER-encoded byte sequence of tbsCertificate
(and tbsCertList) [RFC5280].

Benign signature generation. For generating an RSA sig-
nature of message m in accordance to PKCS#1 v1.5, the
signer first computes the hash of m, denoted H(m), based

TABLE II. NOTATION USED

Symbol Description Symbol Description
n RSA modulus e RSA Public Exponent
d RSA Private Exponent |n| length of modulus in bits
m message to be signed mv message received by verifier
I formatted input to the signer’s RSA operation
S Signature, S ≡ Id mod n in benign cases
O verifier’s RSA output, O ≡ Se mod n

H(ms) signer’s version of H(m), contained inside O

H(mv) verifier’s computed hash of mv

Iv verifier’s construction of I given H(mv)

Symbol Description Symbol Description
BT Block Type PB Padding Bytes
AS ASN.1 Structure, containing H(ms)

w ASN.1 Length of AS.DigestInfo
u ASN.1 Length of algorithm OID
x ASN.1 Length of AlgorithmIdentifier
y ASN.1 Length of parameters
z ASN.1 Length of Digest

on the hash algorithm of choice (e.g., SHA-1). Then, H(m)
and the corresponding meta-data identifying the used hash
algorithm and other relevant parameters (if any) are packed
into an ASN.1 DER-encoded structure. The necessary amount
of padding and other meta-data are prepended to the ASN.1
structure to create a structured input I of size |n|, which is
then used as an input to the signer’s RSA operation. The exact
format of I is discussed below. Then, the signature will be
S = Id mod n.

Signature verification. Upon receiving a signed object (say an
X.509 certificate), the verifier parses S from it and computes
O := Se mod n, where O represents the output of the
verifier’s RSA operation, formatted just like I in correct cases.
Given mv (say tbsCertificate of a received certificate),
the verifier then computes H(mv) and compare it against the
H(ms) contained in O. Like previous work has discussed [27],
this comparison could be done in the following two manners.

Construction-based verification. Using this approach, the
verifier takes H(mv) and prepares Iv , similar to how the signer
is expected to prepare I prior to signing. If Iv ≡ O then the
signature is accepted.

Parsing-based verification. Many implementations seem to
prefer a parsing-based approach, and this is where things can
potentially go wrong. In essence, the goal of this approach
is to parse H(ms) out of O. Many parsers are, however, too
lenient even when O is malformed, which gives room for the
so-called Bleichenbacher low-exponent brute-force attack.

Structured input (I) and output (O) format. In the benign
case, I and O should be formatted as follows:

0x00 || BT || PB || 0x00 || AS
BT is often referred to as the block type [RFC2313],
and PB represents the padding bytes. For the purpose
of signature generation and verification, BT ≡ 0x01 and
PB ≡ 0xFF 0xFF . . . 0xFF. Additionally, PB has to be at
least 8-byte long, and also long enough such that there would
be no extra bytes following AS. The 0x00 after PB signifies
the end of padding. AS is an ASN.1 DER-encoded byte stream
that looks like this (assuming H() being SHA-1):
/** all numbers below are hexadecimals **/
/* [AS.DigestInfo] */
30 w // ASN.1 SEQUENCE, length = w

/* [AlgorithmIdentifier] */
30 x // ASN.1 SEQUENCE, length = x
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06 u 2B 0E 03 02 1A // ASN.1 OID, length = u
05 y // ASN.1 NULL parameter, length = y

/* [Digest] */
04 z // ASN.1 OCTET STRING, length = z

/* H(m), H()=SHA-1(), m = "hello world" */
2A AE 6C 35 C9 4F CF B4 15 DB
E9 5F 40 8B 9C E9 1E E8 46 ED

Since DER encoded ASN.1 structures are essentially a tree
of {Tag, Length ,Value} triplets, the length of a parent triplet
is defined by the summation of the length of its child triplets.
Assuming SHA-1, we can derive the following semantic re-
lations among the different length variables for benign cases:
u = 5; z = 20; x = 2 + u+ 2 + y; w = 2 + x+ 2 + z.

For most common hash algorithms like MD5, SHA-1, and
the SHA-2 family, the algorithm parameter has to be NULL
and y ≡ 0 [RFC2437, RFC4055]. Historically there were
confusions on whether the NULL algorithm parameter can be
omitted, but now both explicit NULL and absent parameters are
considered to be legal and equivalent [RFC4055]. This could
be a reason why some prefer parsing-based over construction-
based, as in the latter approach the verifier would have to
try at least two different constructions {Iv1 , Iv2} to avoid
falsely rejecting valid signatures. We focus on the explicit NULL
parameter case in this paper, as it had been shown that the
lenient processing of the parameter bytes can lead to signature
forgery [27], and rejecting absent parameter is a compatibility
issue easily identifiable with one concrete test case.

When PKCS#1 v1.5 signatures are used in other protocols
like SSH and IKEv2 not involving X.509 certificates, the afore-
mentioned steps work similarly with a different input message
m (e.g., m could be the transcript containing parameters that
were exchanged during a key exchange algorithm).

B. Testing Deployed Implementations with Our Approach

We now discuss the different challenges and engineering
details of how to make the implementations amenable to
symbolic analysis. As discussed before, we use KLEE with
CPT as our choice of symbolic analysis tool. Building an
implementation for KLEE generally takes a few hours of trial-
and-error to tune its build system into properly using LLVM.

1) Scalability Challenges: Since the length of O is given
by |n|, for the best coverage and completeness, ideally one
would test the verification code with a |n|8 -byte long symbolic
buffer mimicking O. For implementations that use the parsing-
based verification approach, however, since there are possibly
many parsing loops and decisions depend on values of the
input buffer, using one big symbolic buffer is not scalable.

To workaround scalability challenges, we use a two-stage
solution. We first draw on domain knowledge to decompose
the original problem into several smaller subproblems, each of
which symbolic analysis can then efficiently and exhaustively
search. Then for each subproblem we apply the meta-level
search technique to automatically generate concolic test cases.

Stage 1. Coarse-grained decomposition of input space.
In the first stage, we partition the input space influencing the
exploration of the PKCS#1 v1.5 implementations in a coarse-
grained fashion. Our coarse-grained partitioning resulted in
three partitions, each corresponds to a dedicated test harness.
For each implementation, the 3 test harnesses focus on testing

various aspects of signature verification while avoiding scal-
ability challenges. Across different implementations, each of
the 3 test harnesses—denoted {TH1, TH2, TH3}—is focused
on the same high-level aspect of testing. The test harnesses
would invoke the implementations’ PKCS#1 v1.5 signature
verification functions, just like a normal application does.
Depending on the API design of a specific implementation,
the test harnesses also provide the appropriate verification
parameters like an RSA public key, H(mv) (or in some cases,
mv directly) and a placeholder signature value.

Among the different harnesses, TH1 is designed to in-
vestigate the checking of BT, PB, z the length of H(ms),
and the algorithm parameters, while TH2 is geared towards
the matching of OID in AlgorithmIdentifier. Both
TH1 and TH2 use a varying length of PB but the ASN.1
length variables u,w, x, y, z are kept concrete. In contrast,
TH3 has everything else concrete, reminiscent of a correct
well-formed O, but u,w, x, y, z are made symbolic, to see
how different length variables are being handled and whether
an implementation would be tricked by absurd length values.
In general, loops depending on unbounded symbolic variables
poses threats to termination, however, as we would discuss
below, in the context of PKCS#1 v1.5 signatures, one can
assume all the length variables are bounded by some linear
functions of |n| and still achieve meaningful testing.

Stage 2. Meta-level search using relations between glue
components. Following the meta-level search idea discussed in
Section II, in both TH1 and TH2, we provide linear constraints
that describe the relations between w, x, y, z, |n|8 and |PB|.
As such, during symbolic execution, many different possible
concolic test input buffers would be packed with respect to the
given constraints in TH1 and TH2, which effectively expand
the two test harnesses automatically into many meaningful test
cases, without the need to manually craft a large number of
test harnesses, one for each test case. This is essentially a form
model counting. Including effort of studying the PKCS#1 v1.5
specification, developing the meta-level search code for {TH1,
TH2} took a few days. This is however a one-time effort, as the
code is generic and was reused across all implementations that
we tested. Finally, TH3 covers the extra cases where w, x, y, z
are not constrained in terms of each other and |n|8 .

2) Memory Operations with Symbolic Sizes: We note,
however, performing memory allocation and copy (e.g.,
malloc() and memcpy()) with symbolic lengths would
result in a concretization error where KLEE would try to
concretize the length and continue the execution with one
feasible concrete length value, hence missing out on some
possible execution paths.

Explicit loop introduction. To avoid such concretization
errors, when implementing the meta-level search in TH1 and
TH2, we use some simple counting for-loops, as shown
below, to guide KLEE into trying different possible values of
the symbolic lengths. What happens is that for each feasible
value (with respect to known constraints that are imposed on
those symbolic variables), KLEE would assign it to k and fork
the execution before the memory allocation and copy, hence
being able to try different lengths and not cutting through the
search space due to concretization.

size_t k; for (k = 0; i < sym_var; k++){}
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/** execution forks with possible values of k **/
dest = malloc(k); // k already concretized
memcpy(src, dest, k); // k already concretized

Bounding parameter length. Since explicit loop intro-
duction is essentially trading time and space for coverage,
it will not work practically if the range of possible values
is very large. Fortunately, in PKCS#1 v1.5, the size of O
is bounded by |n|. We leverage this observation to make
our symbolic analysis practical, by focusing on a small |n|.
Specifically, in our test harnesses, we assume the SHA-1 hash
algorithm, as it is widely available in implementations, unlike
some other older/newer hash functions, and that |n| is 48-
byte long (except for MatrixSSL, explained later), so that even
after the minimum of 8-byte of PB there would still be at
least 2 bytes that can be moved around during testing. Though
in practice a 384-bit modulus is rarely used, and SHA-1 is
now considered weak and under deprecation, since |n| and the
hash algorithm of choice are just parameters to the PKCS#1
v1.5 signature verification discussed in Section IV-A, assuming
uniform implementations, our findings should be extensible to
signatures made of a larger |n| and other hash algorithms.

3) Accessing relevant functions for analysis: Finally,
in order to make the implementation amenable to symbolic
execution, one would need a customary, minuscule amount of
modifications to the source tree. In this case, the modifications
are made mainly to (1) change the visibility of certain internal
functions; (2) inject the test buffer into the implementation’s
verification code. Test buffer injection is typically added to
the underlying functions that implement the RSA public key
operation which compute O := Se mod n, easily identifiable
with an initial test harness executed in an instrumented man-
ner. Writing the test harnesses and adding the modifications
generally take a few hours. In the case of unit tests (and stub
functions) for signature verification are readily available (e.g.
in Openswan), we can simply adapt and reuse their code.

C. Identifying semantic deviations

Path constraints extracted by symbolic execution can be
analyzed in the following two ways to identify implementation
flaws. When testing recent implementations, we would use
both. Recall that PKCS#1 v1.5 is a deterministic padding
scheme and we focus on the explicit NULL parameter case.
For each test harness, if more than one accepting paths can
be found by symbolic execution, then the implementation is
highly likely to be deviant. (1) With CPT, one can inspect
the path constraints and the origins of their clauses, as well
as the generated test cases, to identify the faulty code. (2) To
help highlight subtle weaknesses, we adopt the principle of
differential testing [19] by cross-validating path constraints of
different implementations, similar to previous work [15].

D. Feasibility Study

To validate the efficacy of our approach, we first apply
it to test historic versions of OpenSSL and GnuTLS that are
known to exhibit weaknesses in their signature verification,
without using differential cross-validation for fairness reasons.
The summary of results can be found in Table III.

As expected, both OpenSSL 0.9.7h and GnuTLS 1.4.2 use
the parsing-based approach for verification. In fact, because

TABLE III. RESULT SUMMARY OF TESTING KNOWN VULNERABLE
PKCS#1 V1.5 IMPLEMENTATIONS WITH SYMBOLIC EXECUTION

Implementation
(version)

Test
Harness

Lines
Changed

Execution
Time ‡

Total Path
(Accepting)

GnuTLS
(1.4.2)

TH1
6

00:01:32 2073 (3)
TH2 01:03:12 127608 (21)
TH3 8 00:07:35 1582 (1)

OpenSSL
(0.9.7h)

TH1
4

00:07:23 4008 (3)
TH2 00:00:46 1432 (3)
TH3 6 00:33:24 3005 (4)

‡ Execution Time measured on a commodity laptop with an Intel i7-3740QM CPU
and 32GB DDR3 RAM running Ubuntu 16.04.

both of them also perform some memory allocations based on
parsed length variables that are made symbolic in TH3, they
both needed explicit loop introduction as discussed before.

For OpenSSL 0.9.7h, the numerous accepting paths in TH1,
TH2 can be attributed to the fact that it accepts signatures
containing trailing bytes after AS, which is exactly the original
vulnerability that enables a signature forgery when e = 3 [4],
[20]. On top of that, with TH3, we found that in addition to the
one correct accepting path, there exists other erroneous ones.
Specifically, we found that for the ASN.1 length variables y
and z, besides the benign values of y = 0 and z = 20, it
would also accept y = 128 and z = 128, which explains
why there are four accepting paths. This is due to the leniency
of the ASN.1 parser in OpenSSL 0.9.7h, which when given
certain absurd length values, it would in some cases just use
the actual number of remaining bytes as the length, yielding
overly permissive acceptances during verification. Though not
directly exploitable, this is nonetheless an interesting finding
highlighting the power of symbolic analysis, and we are not
aware of prior reports regarding this weakness.

For GnuTLS 1.4.2, the multiple accepting paths induced
by TH1 are due to the possibility of gaining extra free bytes
with an incorrectly short padding and hiding them inside the
algorithm parameter part of AS, which will then be ignored
and not checked. This is the known flaw that enabled a low-
exponent signature forgery [25], [27]. Additionally, with TH3,
we found that there exist an opportunity to induce the parser
into reading from illegal addresses, by giving u a special value.
Specifically, assuming SHA-1, after the parser has reached but
not consumed u, there are still 30 bytes remaining in AS.
Despite the several sanity checks in place to make sure that
the parsed length cannot be larger than what is remaining, by
making u exactly 30, it does not violate the sanity checks, but
at a later point when the parser attempts to read the actual
OID value bytes, it would still be tricked into reading beyond
AS, which resulted in a memory error caught by KLEE.

The 21 accepting paths (1 correct and 20 erroneous)
induced by TH2 in GnuTLS 1.4.2 can be attributed to how
the parser leniently handles and accepts malformed algorithm
OIDs. This over-permissiveness in signature verification does
not seem to have been reported before.

By both recreating known vulnerabilities and finding new
weaknesses in the old versions of GnuTLS and OpenSSL, we
have demonstrated the efficacy of our proposed approach.

V. FINDINGS ON RECENT IMPLEMENTATIONS

Here we present our findings of testing 15 recent open-
source implementations of PKCS#1 v1.5 signature verification.
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TABLE IV. RESULT SUMMARY OF TESTING VARIOUS NEW PKCS#1
V1.5 IMPLEMENTATIONS WITH SYMBOLIC EXECUTION

Implementation
(version)

Test
Harness

Lines
Changed

Execution
Time †

Total Path ‡
(Accepting)

axTLS
(2.1.3)

TH1
7

01:42:14 1476 (6)
TH2 00:00:05 21 (21)
TH3 9 00:00:10 21 (1)

BearSSL
(0.4)

TH1
3

00:01:55 3563 (1)
TH2 00:00:06 42 (1)
TH3 00:00:00 6 (1)

BoringSSL
(3112)

TH1
3

00:06:09 3957 (1)
TH2 00:00:08 26 (1)
TH3 00:00:00 6 (1)

Dropbear SSH
(2017.75)

TH1
4

00:46:10 1260 (1)
TH2 00:00:11 23 (1)
TH3 00:00:15 7 (1)

GnuTLS
(3.5.12)

TH1
4

00:01:35 570 (1)
TH2 00:00:06 22 (1)
TH3 00:00:01 4 (1)

LibreSSL
(2.5.4)

TH1
4

00:10:27 4008 (1)
TH2 00:01:40 1151 (1)
TH3 6 00:25:45 1802 (1)

libtomcrypt
(1.16)

TH1 5 00:01:13 2262 (3)
TH2 16 00:00:11 805 (3)
TH3 5 00:04:49 7284 (1)

MatrixSSL
(3.9.1)

Certificate

TH1
8

00:01:54 4554 (1)
TH2 00:00:04 202 (1)
TH3 00:00:22 939 (2)

MatrixSSL
(3.9.1)
CRL

TH1
4

00:01:55 4574 (21)
TH2 00:00:04 202 (61)
TH3 00:00:07 350 (7)

mbedTLS
(2.4.2)

TH1
7

00:14:56 51276 (1)
TH2 00:00:03 26 (1)
TH3 00:00:00 38 (1)

OpenSSH
(7.7)

TH1
6

00:07:00 3768 (1)
TH2 00:00:08 22 (1)
TH3 00:00:00 2 (1)

OpenSSL
(1.0.2l)

TH1
4

00:06:31 4008 (1)
TH2 00:00:56 1148 (1)
TH3 6 00:16:16 1673 (1)

Openswan
(2.6.50) *

TH1
4

00:01:07 378 (1)
TH2 00:00:04 26 (1)
TH3 00:00:00 6 (1)

PuTTY
(0.7)

TH1
12

00:03:22 3889 (1)
TH2 00:00:07 42 (1)
TH3 00:00:00 6 (1)

strongSwan
(5.6.3) *

TH1
6

00:01:32 2262 (3)
TH2 00:16:36 15747 (3)
TH3 00:00:24 216 (6)

wolfSSL
(3.11.0)

TH1
10

00:04:05 14316 (1)
TH2 00:00:06 26 (1)
TH3 00:00:00 6 (1)

† Execution Time measured on a commodity laptop with an Intel i7-3740QM CPU
and 32GB DDR3 RAM running Ubuntu 16.04.

‡ Shaded cells indicate no discrepancies were found during cross-validation.
* Configured to use their own internal implementations of PKCS#1 v1.5.

We take the construction-based approach as the golden stan-
dard. For each of the test harnesses, while the occurrence of
multiple accepting paths signifies problems, it is worth noting
that just because an implementation gave only one accepting
path does not mean that the implemented verification is robust
and correct. In fact, as we show later, some lone accepting
paths can still be overly permissive. The summary of results
can be found in Table IV.

Cross-validation. For performing cross-validation, we use
GnuTLS 3.5.12 as our anchor, as it seems to be using a robust
construction-based signature verification, and it gave the small-
est number of paths with TH1. We ran the cross-validation on a
commodity laptop with at most 8 query instances in parallel at
any time. For each implementation, cross-validating it against

the anchor for a particular test harness typically finishes in
the scale of minutes. In general, the exact time needed to
solve such queries depends on the size and complexity of the
constraints, but in this particular context, we have observed
that the overall performance is around 1200 queries per every
10 seconds on our commodity laptop.

In the rest of this section, when we show code snippets,
block comments with a single star are from the original source
code, and those with double stars are our annotations.

1) Openswan 2.6.50: Openswan is a popular open source
IPSec implementation, currently maintained by Xelerance Cor-
poration. Depending on the target platform, Openswan can be
configured to use NSS, or its own implementation based on
GMP, for managing and processing public-key cryptography.
We are particularly interested in testing the latter one.

The verification of PKCS#1 v1.5 RSA signatures in
Openswan employs a hybrid approach. Given an O, everything
before AS is processed by a parser, and then AS is checked
against some known DER-encoded bytes and the expected
H(mv), which explains why TH2 and TH3 both found only
a small number of paths, similar to the other hybrid imple-
mentations like wolfSSL and BoringSSL. Those paths also
successfully cross-validated against the anchor.

Interestingly, despite TH1 yielding only 1 accepting path,
Openswan turns out to have an exploitable vulnerability in its
signature verification logic.

Ignoring padding bytes (CVE-2018-15836): As shown
in Snippet 1, during verification, the parser calculates and
enforces an expected length of padding. However, while the
initial 0x00, BT, and the end of padding 0x00 are verified,
the actual padding is simply skipped over by the parser. Since
the value of each padding byte is not being checked at all, for a
signature verification to succeed, they can take arbitrarily any
values. As we will explain later in Section VI-1, this simple
but severe oversight can be exploited for a Bleichenbacher-
style signature forgery.

Snippet 1. Padding Bytes skipped in Openswan 2.6.50

/* check signature contents */
/* verify padding (not including any DER digest info! */
padlen = sig_len - 3 - hash_len;
... ...
/* skip padding */
if(s[0] != 0x00 || s[1] != 0x01 || s[padlen+2] != 0x00)
{ return "3""SIG padding does not check out"; }

s += padlen + 3;

2) strongSwan 5.6.3: strongSwan is another popular open
source IPSec implementation. Similar to Openswan, when
it comes to public-key cryptography, strongSwan offers the
choice of relying on other cryptographic libraries (e.g.,
OpenSSL and libgcrypt), or using its own internal implementa-
tion, which happens to be also based on GMP. We are focused
on testing the latter one. To our surprise, the strongSwan
internal implementation of PKCS#1 v1.5 signature verification
contains several weaknesses, many of which could be exploited
for signature forgery.

Not checking algorithm parameter (CVE-2018-16152):
TH1 revealed that the strongSwan implementation does not
reject O with extra garbage bytes hidden in the algorithm
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parameter, a classical flaw previously also found in other
libraries [13], [25]. As such, a practical low-exponent signature
forgery exploiting those unchecked bytes is possible [27].

Accepting trailing bytes after OID (CVE-2018-16151):
TH2 revealed another exploitable leniency exerted by the
parser used by strongSwan during its signature verification.
The asn1_known_oid() function is used to match a series
of parsed OID encoded bytes against known OIDs, but the
matching logic is implemented in a way that as soon as a
known OID is found to match the prefix of the parsed bytes,
it considers the match a success and does not care whether
there are remaining bytes in the parsed OID left unconsumed.
One can hence hide extra bytes after a correctly encoded OID,
and as we will explain in Section VI-3, this can be exploited
for a low-exponent signature forgery.

Accepting less than 8 bytes of padding: In fact,
strongSwan has another classical flaw. The PKCS#1 v1.5
standard requires the number of padding bytes to be at least
8 [RFC2313, RFC2437]. Unfortunately, during our initial
testing with TH1, we quickly realized that strongSwan does
not check whether PS has a minimum length of 8, a flaw
previously also found in other implementations [24]. Since
PS is terminated with 0x00, during symbolic execution, our
initial TH1 automatically generated test cases where some
early byte of PS is given the value of 0x00, and hence the
subsequent symbolic bytes would be considered to be part
of AS. And because strongSwan attempts to parse AS using
an ASN.1 parser, this resulted in many paths enumerating
different possible ASN.1 types with symbolic lengths. After
finding this flaw, we have added additional constraints to TH1
to guide the symbolic execution into not putting 0x00 in PS,
which in the end resulted in a reasonable number of paths.

Lax ASN.1 length checks: Additionally, the weaknesses
regarding algorithm parameter and algorithm OID also led
to lenient handling of their corresponding length variables, u
and y. This is the reason why TH3 found several accepting
paths, as the parser used during verification enumerated various
combinations of values for u and y that it considers acceptable.

3) axTLS 2.1.3: axTLS is a very small footprint TLS
library designed for resource-constrained platforms, which has
been deployed in various system on chip (SoC) software
stacks, e.g., in Arduino for ESP82662, the Light Weight IP
stack (LWIP)3 and MicroPython4 for various microcontrollers.

Unfortunately, the signature verification in axTLS is some
of the laxest among all the recent implementations that we
have tested. Its code is aimed primarily at traversing a pointer
to the location of the hash value, without enforcing rigid
sanity checks on the way. The various weaknesses in its
implementation can lead to multiple possible exploits.

Accepting trailing bytes (CVE-2018-16150): We first
found that the axTLS implementation accepts O that contains
trailing bytes after the hash value, in order words, it does
not enforce the requirement on the length of padding bytes,
a classical flaw previously found in other implementations [5],
[20], [27]. This is also why for both TH1 and TH2 there are
multiple accepting paths.

2https://github.com/esp8266/Arduino/tree/master/tools/sdk/lib
3https://github.com/attachix/lwirax
4https://github.com/micropython/micropython/tree/master/lib

Ignoring prefix bytes: On top of that, we found that
this implementation also ignores the prefix bytes, including
both BT and PB, which also contributes to the various
incorrect accepting paths yielded by TH1 and TH2. As shown
in Snippet 2, this effectively means that the first 10 bytes of O
can take arbitrarily any values. Such a logic deviates from what
the standard prescribes [RFC2437], and as we will explain
later in Section VI-8, an over-permissiveness like this can be
exploited to forge signatures when e is small.

Snippet 2. Block Type and Padding skipped in axTLS 2.1.3

i = 10;/* start at the first possible non-padded byte */
while (block[i++] && i < sig_len);
size = sig_len - i;
/* get only the bit we want */
if (size > 0) {... ...}

Ignoring ASN.1 metadata (CVE-2018-16253): Moreover,
we found that axTLS does not check the algorithm OID and
parameter. In fact, through root-cause analysis, we found that
this could be attributed to the parsing code shown in Snippet 3
below, which skips the entire AlgorithmIdentifier part
of AS (achieved by asn1_skip_obj()), until it reaches
the hash value (type OCTET STRING), making this even laxer
than the flaws of not checking algorithm parameter previously
found in other libraries [13], [27].

Snippet 3. Majority of ASN.1 metadata skipped in axTLS 2.1.3

if (asn1_next_obj(asn1_sig, &offset, ASN1_SEQUENCE) < 0
|| asn1_skip_obj(asn1_sig, &offset, ASN1_SEQUENCE))
goto end_get_sig;

if (asn1_sig[offset++] != ASN1_OCTET_STRING)
goto end_get_sig;

*len = get_asn1_length(asn1_sig, &offset);
ptr = &asn1_sig[offset]; /* all ok */

end_get_sig:
return ptr;

Trusting declared lengths (CVE-2018-16149): Further-
more, using our approach, we have automatically found several
test cases that could trigger memory errors at various locations
of the axTLS source code. This is because given the various
length variables in the ASN.1 structure that are potentially
under adversarial control, the parser of axTLS, partly shown in
Snippet 3, is too trusting in the sense that it uses the declared
values directly without sanity checks, so one can put some
absurd values in those lengths to try to trick the implementation
into reading from illegal memory addresses and potentially
crash the program. This is an example of CWE-130 (Improper
Handling of Length Parameter).

This is also part of the reason why for TH1, it took more
than 1 hour to finish the execution, as KLEE discovered many
test cases that can trick the parsing code into reading z, the
ASN.1 length of H(ms), from some symbolic trailing bytes,
which led to several invocations of malloc() with huge sizes
and hence the long execution time.

4) MatrixSSL 3.9.1: MatrixSSL requires |n| to be a multi-
ple of 512, so in our test harnesses, we have adjusted the size
of the test buffer and padding accordingly. Interestingly, we
have observed that MatrixSSL contains 2 somewhat different
implementations of PKCS#1 v1.5 signature verification, one
for verifying signatures on CRLs, and the other for certificates.
Both are using a parsing-based verification approach. Why the
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two cases do not share the same signature verification function
is not clear to us. Nevertheless, we have tested both of them,
and to our surprise, one verification is laxer than the other, but
both exhibit some forms of weaknesses.

Lax ASN.1 length checks: We first note that for both
signature verification functions, their treatments of some of
the length variables in AS are overly permissive. Quite the
opposite of axTLS, we found that MatrixSSL does not fully
trust the various ASN.1 lengths, and imposes sanity checks on
the length variables. Those, however, are still not strict enough.

For the certificate signature verification, the first 2 ASN.1
lengths variables, w, and x (lengths of the two ASN.1
SEQUENCE in AS), are allowed ranges of values in the veri-
fication. For w, the only checks performed on it are whether it
is in the long form, and whether it is longer than the remaining
buffer containing the rest of O. Similarly, there exist some san-
ity checks on x but they are nowhere near an exact match war-
ranted by a construction-based approach. The 2 accepting paths
yielded by TH3 are due to a decision being made on whether
x matches exactly the length of the remaining SEQUENCE
(OID and parameters) that had been consumed, which indicates
whether there are extra bytes for algorithm parameters or not.
However, this check is done with a macro psAssert(),
which terminates only if HALT_ON_PS_ERROR is defined in
the configuration, a flag that is considered to be a debugging
option [23], not enabled by default and not recommended for
production builds, meaning that many possible values of x,
even if they failed the assertion, would still be accepted. When
the length of the encoded OID is correct (i.e., 5 for SHA-1),
the length of algorithm parameters, y, is not checked at all.

For the CRL signature verification function, the treatments
of length variables w, x, and y are also overly permissive,
similar to what is done in certificate signature verification. On
top of that, the checks on z the declared size of H(ms) in AS
is also overly permissive, similar to those on w.

Comparing to a construction-based approach, these imple-
mentations are overly permissive and the weaknesses discussed
allow some bits in O to take arbitrary any values, which means
the verification is not as robust as it ideally should be.

Mishandling Algorithm OID: We found that for the CRL
signature verification, there exists another subtle implementa-
tion weakness in how it handles the OID of hash algorithms.

As shown in the following snippet, upon finishing parsing
the algorithm OID, the verification code would see whether the
length of hash output given by the parsed algorithm matches
what the caller of the verification function expects. However,
since this is again done by the psAssert() macro, which
as discussed before, does not end the execution with an error
code even if the assertion condition fails, and the execution
would just fall through. This explains the numerous accepting
paths found by TH2 and TH3.

Snippet 4. Checking Signature Hash Algorithm in MatrixSSL (CRL)

/** outlen := length of H(m) provided by caller,
oi is the result of OID parsing **/

if (oi == OID_SHA256_ALG)
{ psAssert(outlen == SHA256_HASH_SIZE); }

else if (oi == OID_SHA1_ALG)
{ psAssert(outlen == SHA1_HASH_SIZE); }

... ...
else { psAssert(outlen == SHA512_HASH_SIZE); }

The implications of this flaw is that for the algorithm OID
bytes (the length of which is subject to the checks discussed
before), they can be arbitrarily any values, since in the end,
it is the expected length of H(m) provided by the caller
of the verification function that dictates how the rest of the
parsing would be performed. Hence the verification is overly
permissive and one can get at most 9 arbitrary bytes in the
OID part of O this way (e.g., with H() being SHA-256).

Besides, even if psAssert() would actually terminate
with errors, the above implementation is still not ideal, as the
assertion conditions are done based on the length of H(m), not
the expected algorithm. We note that the hash size and length
of OID are not unique across hash algorithms. Since there are
pairs of hash algorithms (e.g., MD5 and MD2; SHA-256 and
SHA3-256) such that (1) the length of their OIDs are equal,
and (2) the length of their hash outputs are equal, the parser
would consider algorithms in each pair to be equivalent, which
can still lead to an overly permissive verification. Ideally, this
should be done instead by matching the parsed OID against a
caller provided expected OID.

5) GnuTLS 3.5.12: Based on our testing and root-cause
analysis, GnuTLS is now using a construction-based approach
in its PKCS#1 v1.5 signature verification code, which is
a considerable improvement to some of its own vulnerable
versions from earlier [25], [27]. This is also reflected in the
small number of paths yielded by our test harnesses, even less
than those that adopt a hybrid approach. Consequently, we
choose this as the anchor for cross-validation.

6) Dropbear SSH 2017.75: Dropbear implements the SSH
protocol, and uses libtomcrypt for most of the underlying
cryptographic algorithms like the various SHA functions and
AES. Interestingly, instead of relying on libtomcrypt’s RSA
code, for reasons unbeknownst to us, Dropbear SSH has
its own RSA implementation, written using the libtommath
multiple-precision integer library. Based on our root-cause
analysis, it appears that the PKCS#1 v1.5 signature verification
implemented in the RSA implementation of Dropbear SSH
follows the construction-based approach, hence it successfully
cross-validated with the anchor and no particular weaknesses
were found. In contrast to the bundled libtomcrypt which
has some signature verification weaknesses (explained below),
having its own RSA implemented actually helped Dropbear
SSH to avoid some exploitable vulnerabilities.

Comparing to other implementations of construction-based
verification (e.g., BoringSSL), the TH1 of Dropbear SSH took
a significantly longer time to run, mainly due to the final
comparison after constructing the expected Iv is done in the
multiple-precision integer level, not with a typical memory
comparison function like memcmp(). Nevertheless, it still
managed to finish within a reasonable amount of time. As
a side benefit, symbolic execution also covered part of the
multiple-precision integer libtommath code.

7) libtomcrypt 1.16: Based on our test results, we found
that libtomcrypt is also using a parsing-based approach, and
its signature verification contains various weaknesses5.

5Some of the weaknesses had been independently found by other re-
searchers, leading to certain fixes being introduced in version 1.18.
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Accepting trailing bytes: Similar to axTLS, libtomcrypt
also has the classical flaw of accepting signatures with trailing
bytes after H(ms), hence a practical signature forgery attack
is possible when the public exponent is small enough. This is
the reason why for TH1 and TH2, there are 3 accepting paths.

Accepting less than 8 bytes of padding: Interestingly,
libtomcrypt also has the classical flaw of not checking whether
PS has a minimum length of 8, similar to strongSwan. Through
root-cause analysis, we quickly identified the lax padding
check as shown below. Give this verification flaw, to avoid
scalability challenges due to symbolic padding bytes, we apply
the same workaround to TH1 as we did for strongSwan.

Snippet 5. Padding Check in libtomcrypt 1.16

for (i = 2; i < modulus_len - 1; i++)
{ if (msg[i] != 0xFF) { break; } }

/* separator check */
if (msg[i] != 0) {

/* There was no octet with hexadecimal value
0x00 to separate ps from m. */

result = CRYPT_INVALID_PACKET;
goto bail;

}
/** ... start ASN.1 parsing at msg[i+1] ... **/

Lax AlgorithmIdentifier length check: Furthermore, de-
spite the fact that TH3 yielded only one accepting path, it
turns out there is another subtle weakness in libtomcrypt. We
found that in AS, the length x of AlgorithmIdentifier
(the inner ASN.1 SEQUENCE) is checked only loosely, despite
the constraints imposed on x by the verification code. This is
because the constraints are mostly simple sanity and boundary
checks such that x cannot be too small or too large, but the x
is not required to match exactly to a concrete value (i.e., 9 with
explicit NULL parameter and H() being SHA-1). This is partly
because the ASN.1 parser used by libtomcrypt, re-encodes
the bytes of an ASN.1 simple type that were just parsed, to
calculate the actual length that was consumed. Hence, when
given a child of ASN.1 OID, the length of the parent SEQUENCE,
as in the case of AlgorithmIdentifier, was not checked
strictly. This is also why for TH2 it needed to change a handful
of lines more, to workaround the re-encoding of OID which
has decisions to be made for each byte, depending on whether
it is less than 128 (short form) or not (long form).

Because the verification code would accept a range of
values for x, this gives some bits in the middle of AS that
one can choose arbitrary and is hence overly permissive.

8) mbedTLS 2.4.2: Based on the results of our testing,
mbedTLS appears to be also using the parsing-based verifica-
tion approach. The relatively larger number of paths from TH1
and TH3 can be attributed to the underlying ASN.1 parser,
as there are various decisions (e.g., whether the lengths are
in the long form or not) to be made during parsing. We
note that despite each of {TH1, TH2, TH3} gave exactly one
accepting path, only the paths extracted by TH1 and TH2 were
successfully cross-validated with the other implementations.
Upon close inspection of the one and only accepting path
yielded by TH3, we realized it contains a subtle verification
weakness, which was also caught by cross-validation.

Lax algorithm parameter length check: Interestingly,
in mbedTLS 2.4.2, the checks imposed on y, the length of
algorithm parameter, are in fact too lenient. Through root-
cause analysis with CPT, we found that the only constraints

imposed came from the parser, as shown in Snippet 6. There
are 2 constraints, one is whether the most significant bit is on,
which the parser uses to decide how it should obtain the actual
length. The other one is whether the declared length is longer
than what is remaining in the buffer.

Snippet 6. Only parsing and sanity checks imposed on y in mbedTLS 2.4.2

if( ( **p & 0x80 ) == 0 ) *len = *(*p)++;
else { ... ... }

if( *len > (size_t) ( end - *p ) )
return( MBEDTLS_ERR_ASN1_OUT_OF_DATA );

Since after the parser consumed y, there would be 22 bytes
left in the buffer (assuming no parameter bytes, 2 + 20 for a
SHA-1 hash), it turns out the verification code would accept
any values of y not larger than 22, which allows some bits of
AS to be arbitrarily chosen and is hence overly permissive.

9) BoringSSL 3112, BearSSL 0.4 and wolfSSL 3.11.0:
BoringSSL is a fork of OpenSSL, refactored and maintained
by Google. We found its PKCS#1 v1.5 signature verification
uses a hybrid approach. Everything before AS in O is handled
and checked by a parser that scans through the buffer, and then
AS is copied out. The verification code then constructs its own
expected version of ASv using H(mv) and some hard-coded
ASN.1 prefixes, and then compares ASv against AS. This
observed behavior is consistent with what was reported earlier
[13]. Consequently, the total number of paths are reasonably
small, with each of {TH1, TH2, TH3} yielding exactly one ac-
cepting path. BearSSL and wolfSSL both behaved quite similar
to BoringSSL, and all 3 implementations successfully cross-
validate against the anchor with no discrepancies observed.
wolfSSL yielded more paths in TH1 due to a slightly different
handling of PB, and BearSSL yielded more paths in TH2 due
to extra handling of the case of absent parameter.

10) OpenSSL 1.0.2l and LibreSSL 2.5.4: We found that
OpenSSL adopts a parsing-based verification approach, which
partly explains why some higher number of paths were yielded
by TH2 and TH3. The slightly longer execution time of TH3
can partly be attributed to the concretization workaround.
Despite these, no verification weaknesses were found in this
recent version of OpenSSL, which is perhaps unsurprising
given that it had gone through years of scrutiny by security
researchers [27]. LibreSSL is a fork of OpenSSL maintained
by the OpenBSD community since 2014 after the infamous
Heartbleed vulnerability. The two are actually quite similar
when it comes to PKCS#1 v1.5 signature verification, both
using a similar parsing-based approach and the test harnesses
all yielded comparable numbers of execution paths.

11) PuTTY 0.7: We found that the PuTTY implementation
of PKCS#1 v1.5 signature verification is highly reminiscent
of a construction-based approach. The left-most 2 bytes of O
containing 0x00 and BT are checked first, followed by a check
on PB with an expected length (which depends on |n|), and
then AS before H(ms) is checked against some hard-coded
ASN.1 encoded bytes, and finally, H(ms) is checked. Cross-
validation found no discrepancies and no signature verification
weaknesses were detected.

Interestingly, even after sufficient rejection criteria has been
hit (e.g., BT is not 0x01), the verification continues with other
checks, until all has been finished and then an error would fi-
nally be returned. Since the later checks before the verification
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function returns do not alter a rejection return code back into
an acceptance, this is not a verification weakness. We suspect
this insistence on traversing the whole buffer containing O
might be an attempt to avoid timing side channels.

However, as explained below with Example 2, such an
implementation presents a small hurdle for symbolic execution,
as the number of paths due to if statements (the series of
checks) exhibits a multiplicative build-up, leading to a scal-
ability challenge observed in our first round experiment with
TH1. Consequently, we modified the source to adopt an ‘early
return’ logic, like a typical implementation of memcmp()
would do. That is, once a sufficient rejection condition has
been reached, the verification function returns with an error
without continuing with further checks, so that the number of
paths would build up additively. This explains why the number
of lines changed in PuTTY is slightly higher than the others.

if (symBuf[0] != 0) ret = 0;
if (symBuf[1] != 1) ret = 0;
if (symBuf[2] != 2) ret = 0;
return ret;

if (symBuf[0] != 0) return 0;
if (symBuf[1] != 1) return 0;
if (symBuf[2] != 2) return 0;

Example 2: For number of execution paths, the snippet on right builds up
additively, but the one on left does so multiplicatively.

12) OpenSSH 7.7: OpenSSH is another open source
SSH software suite. For handling PKCS#1 v1.5 signatures,
it relies on OpenSSL (calling RSA_public_decrypt())
to perform the RSA computation and process the paddings
of O. Afterwards, it compares the AS returned by OpenSSL
against its constructed version, hence it is somewhat of a
hybrid approach. Cross-validation found no discrepancies and
no weaknesses were detected in the verification.

Interestingly, instead of simply using memcmp(), the
comparison against the constructed AS is done using a custom
constant time comparison, as shown below:

/** p1,2 point to buffers of equal size(=n) **/
for (; n > 0; n--) ret |= *p1++ ˆ *p2++;
return (ret != 0);

This explains why TH3 found in total only 2 paths of relatively
larger constraints, as such a timing safe comparison would
aggregate (with OR) the comparison (with XOR) of each byte
in the two buffers. Semantically, the 2 execution paths mean
either all length variables u,w, x, y, z in TH3 match their
expected values exactly, or at least one of them does not.

VI. EXPLOITING OUR NEW FINDINGS

Here we discuss how to exploit the several weaknesses
presented in the previous section. For ease of discussion,
we focus on SHA-1 hashes, but the attacks can be adapted
to handle other hash algorithms by adjusting the lengths of
appropriate components. Though low-exponent RSA public
keys are rarely seen in the Web PKI nowadays [18], there are
specific settings where low-exponent keys are desired (e.g.,
with extremely resource-constrained devices). Historically, a
small public exponent of e = 3 has been recommended for
better performance [RFC3110], and there are key generation
programs that still mandate small public exponents [7].

1) Signature forgery against Openswan: The flaw of
ignoring padding bytes effectively means Openswan would
accept a malformed O′ in the form of

0x00 || 0x01 || GARBAGE || 0x00 || AS ,

which can be abused in a manner similar to the signature
forgery attack exploiting the weakness of not checking al-
gorithm parameters found in some other implementations as
discussed in previous work [27].

This has serious security implications. We note that
in the context of IPSec, the key generation program
ipsec_rsasigkey forces e = 3 without options for choos-
ing larger public exponents [7]. Since the vulnerable signature
verification routine is used by Openswan to handle the AUTH
payload, the ability to forge signatures might enable man-
in-the-middle adversaries to spoof an identity and threaten
the authentication guarantees delivered by the IKE_AUTH
exchange when RSA signature is used for authentication.

Given the implementation flaw allows for certain bytes in
the middle of O′ to take arbitrarily any values, the goal of the
attack is to forge a signature S′ = (k1 + k2), such that when
the verifier computes O′ = S′

3
= (k1+k2)

3 = k1
3+3k1

2k2+
3k2

2k1 + k2
3, the following properties would hold:

1) the most significant bits of k13 would be those that need to
be matched exactly before the unchecked padding bytes,
which is simply (0x00 || 0x01);

2) the least significant bits of k23 would become those that
need to be matched exactly after the unchecked padding
bytes, which is simply (0x00 || AS);

3) the most significant bits of k23 and the least significant
bits of k13, along with 3k1

2k2 + 3k2
2k1, would stay in

the unchecked padding bytes.

One influential factor to the success of such attack is
whether there are enough unchecked bytes for an attacker to
use. An insufficient amount would have the terms of expanding
(k1 + k2)

3 overlapping with each other, make it difficult
for the three properties to hold. However, since the flaw
we are exploiting is on the handling of padding bytes, the
number of which grows linearly with |n|, assuming the same
public exponent, a longer modulus would actually contribute
to the attacker’s advantage and make it easier to forge a
signature. Specifically, assuming SHA-1 hashes and e = 3,
given |n| ≥ 1024 bits, it should be easy to find k1 and k2 that
satisfy the three properties without worrying about overlaps.

Finding k1. The main intuition used is that a feasible k1 can
be found by taking a cubic root over the desired portion of O′.
For instance, in the case of |n| = 1024 bits, 0x00 || 0x01
|| 0x00 ... 0x00 is simply 21008 (with 15 zero bits in
front), hence a simple cubic root would yield a k1 = 2336.

In the more general cases where |n| − 15 − 1 is not a
multiple of 3, the trailing garbage could be used to hide an
over-approximation. One can first compute t1 = d 3

√
2|n|−15−1e

and then sequentially search for the largest possible r such that
((t1/2

r + 1) · 2r)3 gives 0x00 || 0x01 || GARBAGE.
Then k1 would be (t1/2

r + 1) · 2r. This is to make as many
ending bits of k1 to be zero as possible, to avoid overlapping
terms in the expansion of (k1 + k2)

3. For example, when
|n| = 2048 bits, we found r = 676 bits and k1 = 3 · 2676.

Finding k2. The intuition is that to get (0x00 || AS) with
k2

3, the modular exponentiation can be seen as computed
over a much smaller n′′ instead of the full modulus n. While
finding φ(n) reduces to factorizing n, which is believed to be
impractical when n is large, finding φ(n′′) can be quite easy.
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One can consider S′′ =(0x00 || AS) and n′′ = 2|S
′′|,

where |S′′| is the size of AS in number of bits plus 8 bits for
the end of padding 0x00.

Now k2 has to satisfy k2
e ≡ S′′ (mod n′′). Since n′′ is

a power of 2, we can guarantee k2 and n′ are coprime by
choosing an odd numbered S′′ with a fitting hash value. Also,
φ(n′′) = φ(2|S

′′|) = 2|S
′′|−1.

One can then use the Extended Euclidean Algorithm to find
f such that ef ≡ 1 (mod 2|S

′′|−1). With f found, k2 would
simply be S′′f (mod n′′).

We have implemented attack scripts assuming e = 3 and
SHA-1 hashes, and were able to forge signatures that would
be successfully verified by Openswan 2.6.50 given any |n| =
1024 and |n| = 2048 moduli.

2) Signature forgery (1) against strongSwan: The flaw of
not checking algorithm parameter can be directly exploited for
signature forgery following the algorithm given in [27] (which
is very similar to the attack we described previously against
Openswan). Assuming e = 3, |n| = 1024 bits and SHA-1
hashes, the expected iterations required to brute-force a fake
signature is reported to be 221 [27].

3) Signature forgery (2) against strongSwan: Likewise,
the flaw of accepting trailing bytes after OID can be ex-
ploited following the steps used in the forgery attack against
Openswan as described before, by adjusting what k13 and k23

represent. Under the same parameter settings, it should require
a comparable number of iterations as signature forgery (1) does
discussed above.

4) Signature forgery (3) against strongSwan: Interest-
ingly, the flaw of accepting less than 8 bytes of padding can be
exploited together with the algorithm parameter flaw to make
it easier to forge signatures. In fact, the two flaws together
means such an O′ with no paddings at all would be accepted:

/** all numbers below are hexadecimals **/
00 01 00 30 7B 30 63 06 05 2B 0E 03 02 1A 05 5A
GARBAGE 04 16 SHA-1(m’)

The length of algorithm parameter 0x5A is calculated based on
|n| (in this case 1024 bits) and the size of hash. Then by simply
adjusting what k13 and k2

3 represent in the attack against
Openswan, given e = 3 and |n| ≥ 1024 bits, the forgery will
easily succeed. We implemented this new variant of attack and
confirmed that the fake signatures generated actually work.

5) Signature forgery (4) against strongSwan: Similarly,
the forgery attack exploiting trailing bytes after OID could
also benefit from the absence of padding, as an O′ like the
followings would be accepted by strongSwan:

/** all numbers below are hexadecimals **/
00 01 00 30 7B 30 63 06 5F 2B 0E 03 02 1A
GARBAGE 05 00 04 16 SHA-1(m’)

The length of algorithm OID 0x5F is calculated based on |n|
(in this case 1024 bits) and the size of hash. The attack against
Openswan would work here as well, simply by adjusting what
k1

3 and k2
3 represent. Signature forgery would again easily

succeed given e = 3 and |n| ≥ 1024 bits. We have also
implemented this new attack variant and confirmed that the
fake signatures generated indeed work.

6) Signature forgery (1) against axTLS: Given that there
exist performance incentives in using small exponents with the
kinds of resource-constrained platforms that axTLS targets, a
practical signature forgery attack as described in [27] could
be made possible by the flaw of accepting trailing bytes.
Specifically, when |n| = 1024, assuming e = 3 and SHA-
1 hashes, the expected number of trials before a successful
forgery is reported to be around 217 iterations, which takes
only several minutes on a commodity laptop [27]. As a larger
|n| would allow for more trailing bytes, hash algorithms that
yield longer hashes could be attacked similarly, e.g., assuming
e = 3 and SHA-256 hashes, a modulus with |n| = 2048 bit
should easily yield a successful forgery. Similarly, such an
attack would also work against a larger public exponent with
an accordingly longer modulus.

7) Signature forgery (2) against axTLS: Separately, the
weakness of ignoring ASN.1 metadata as shown in Snippet 3,
can also be exploited for a low-exponent signature forgery.
Due to the majority of AS being skipped over, axTLS would
accept an O′ like this:

/** all numbers below are hexadecimals **/
00 01 FF FF FF FF FF FF FF FF 00 30 5D 30 5B
GARBAGE 04 16 SHA-1(m’)

where the lengths 0x5D and 0x5B are calculated based on
|n| and size of hash to make sure the skipping would happen
correctly. Then the forgery attack against Openswan described
before can be easily adapted to work here by adjusting what
k1

3 and k2
3 represent. Given |n| ≥ 1024, forgery should

easily succeed. We have tested the adapted attack script and
the forged signatures it generates indeed worked on axTLS.

8) Signature forgery (3) against axTLS: Knowing that
axTLS also ignores prefix bytes as shown in Snippet 2, the sig-
nature forgery (1) described above which exploits unchecked
trailing bytes can be made even easier to succeed, by making
the first 11 bytes all 0 (including the end of padding indicator).
Adapting the analysis from previous work [27], the signature
value O is essentially a number less than 2935 (assuming
|n| = 1024, the first 88 bits are all zeros, with 2 additional zero
bits from the first 0x30 byte of AS). The distance between
two consecutive perfect cubes in this range is

k3 − (k − 1)3 = 3k2 − 3k + 1 < 3 · 2624 − 3 · 2312 + 1

< 2626 (∵ k3 < 2935) (1)

which is less than the 656 bits that an attacker can choose
arbitrarily (46 bytes are fixed, due to the 35-byte AS containing
a desired SHA-1 hash and the 11 bytes in front), so a signature
forgery should easily succeed, by preparing an attack input
O′ containing hash of an attacker-chosen m′, and the attack
signature S′ can be found by simply taking the cubic root of
O′. Once the verifier running axTLS 2.1.3 received S′, it would
compute O′ := S′

3
mod n, and despite O′ being malformed,

the verification would go through.

9) Signature forgery (4) against axTLS: Furthermore,
the weakness of ignoring ASN.1 metadata, can be exploited
together with the previous attack, to make the signature forgery
even easier. The intuition is that, knowing the parsing code
would skip over the ASN.1 prefix (the two 0x30 ASN.1
SEQUENCE) according to the length declared, an attacker can
spend the minimal number of bytes on AS to keep the parser
entertained, with an O′ like this:
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/** all numbers below are hexadecimals **/
00 00 00 00 00 00 00 00 00 00 00 30 00 30 00 04
H().size H(m’) TRAILING

and spend the gained extra free bytes at the end as trailing
ones. While for SHA-256 and |n| = 1024, a signature forgery
attack exploiting only trailing bytes has the expected iterations
of about 2145 [27], however, if we use this joint attack strategy
instead, this bound can be pushed down much lower and the
attack becomes practical. Specifically, assuming SHA-256, the
joint attack strategy would have 11+6+32 = 49 bytes fixed,
and 79 trailing bytes (632 bits) at the end that the attacker
can choose arbitrarily, more than the bound of 626 bits on the
distance between two perfect cubes from eq. (1), so a forgery
should easily succeed by taking the cubic root as described
before. We have implemented attack scripts and successfully
performed this new variant of signature forgery on axTLS 2.1.3
with e = 3, |n| = 1024 and for both SHA-1 and SHA-256.

10) Denial of Service against axTLS: We further note that
because of the trusting nature of the parser in axTLS, an illegal
memory access attack against axTLS with absurd length values
is also possible, which might crash the verifier and result in
a loss of service. Specifically, following the previous forgery
attack, we prepared an attack script that generates signatures
which would yield a z (the length of hash) of 0x84, and
the illegal memory access induced by this absurd value had
successfully crashed the verifier in our experiments.

We further note that such a denial of service attack can be
even easier to mount than a signature forgery in the context of
certificate chain verification. This is due to the fact that axTLS
verifies certificate chains in a bottom-up manner, which con-
tributes to an attacker’s advantage: even if low-exponent public
keys are rarely used by real CAs in the wild, to crash a verifier
running axTLS, one can purposefully introduce a counterfeit
intermediate CA certificate that uses a low-exponent as the j-
th one in the chain, and forge a signature containing absurd
length values as described above and put it on the (j + 1)-
th certificate. Due to the bottom-up verification, before the
code traverses up the chain and attempts to verify the j-th
counterfeit certificate against the (j−1)-th one, it would have
already processed the malicious signature on the (j + 1)-th
certificate and performed some illegal memory access. While a
bottom-up certificate chain verification is not inherently wrong,
but because of the weaknesses in the signature verification, the
bottom-up design has an unexpected exploitable side effect.
This highlights why a signature verification code needs to
be robust regardless of the choice of e.

11) Signature forgery (1) against libtomcrypt: Just like
the flaw of accepting trailing bytes in axTLS, the same flaw
in libtomcrypt 1.16 can also be exploited in a signature forgery
attack if the e is small enough and |n| is large enough,
following the same attack algorithm described in [27].

12) Signature forgery (2) against libtomcrypt: We note
that the flaw of accepting less than 8 bytes of padding found
in libtomcrypt 1.16 also has serious security implications.
Combining this with the attack exploiting trailing bytes, the
low-exponent signature forgery can be made even easier.
Specifically, an attacker can craft an O′ like this:

/** all numbers below are hexadecimals **/
00 01 00 || AS || TRAILING || EXTRA TRAILING

The intuition behind is that one can shorten the padding
as much as possible, and spend the extra bytes at the end.
Assuming |n| = 1024, e = 3 and H() is SHA-1, this attack
has 38 bytes fixed, and hence 1024 − 38 · 8 = 720 bits
that the attacker can choose arbitrarily. Since in this case, O′
is essentially a number < 21010, the distance between two
consecutive perfect cubes in this range is

k3 − (k − 1)3 = 3k2 − 3k + 1 < 3 · 2674 − 3 · 2337 + 1

< 2676 (∵ k3 < 21010),

which is less than the 720 bits that can be chosen arbitrarily,
so a signature forgery would succeed easily. We have imple-
mented an attack script and verified the success of such a
signature forgery attack against libtomcrypt 1.16.

13) Other weaknesses: We note that not all the weaknesses
found can immediately lead to a practical Bleichenbacher-
style low-exponent signature forgery attack. For example,
even though the other weaknesses in mbedTLS 2.4.2, Ma-
trixSSL 3.9.1 and libtomcrypt 1.16 regarding lax length vari-
able checks allow for some bits to take arbitrary any values,
given that the number of free bits gained due to those weak-
nesses appear to be somewhat limited, it is not immediately
clear how to exploit them for signature forgery. Nevertheless,
those implementations are accepting signatures that should
otherwise be rejected, which is less than ideal and might
potentially be taken advantage of when combined with some
other unexpected vulnerabilities in a specific context.

VII. DISCLOSURE AND FIXES

In an effort of responsible disclosure, we have notified
vendors of the weak implementations so that they can have
their signature verifications hardened. CVEs are requested and
assigned selectively on the basis that a weakness can lead
to immediate practical attacks as outlined above. Developers
of MatrixSSL have acknowledged and confirmed our findings,
and are currently implementing fixes. strongSwan has fixed the
problems since version 5.7.0 and released further patches for
older versions. Openswan has fixed the exploitable weakness
since their 2.6.50.1 release and incorporated one of our forged
signatures into their unit tests. libtomcrypt developers have
created a ticket regarding the parser weakness and are currently
investigating it. We developed a patch for axTLS and tested
it with our approach before releasing it, and our patch has
been incorporated by the ESP8266 port of axTLS. At the
time of writing, we are awaiting responses from the vendor
of mbedTLS and upstream maintainer of axTLS.

VIII. RELATED WORK

Attacking PKCS#1 v1.5 implementations. Variants of imple-
mentation flaws in signature verification which enable possible
forgery attacks have been found in a variety of software over
the years [3], [5], [13], [20], [24], [25], [27], though the code-
level analysis and discovery process were mostly based on
manual inspection. We learn from these previous discoveries
and demonstrate how a principled approach can be used to find
subtle verification weaknesses and new variants of flaws.

Another class of prominent attacks on PKCS#1 v1.5 im-
plementations is the padding oracle attacks (POAs) [8], [10],
[11], [22]. The two classes of attacks capitalize on different
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issues. Signature forgery is made possible primarily due to
overly permissive input parsing logic that deviates from what
the specification mandates, an example of semantic correctness
issues. POAs typically exploit the leakage provided by some
error messages observable by the adversary. Padding oracles
have also been found on deployments of symmetric key block
ciphers [6], [8]. Specifications are often implicit and sometimes
underspecified on how to prevent padding oracles.

Testing semantic correctness. As tools like libFuzzer and AFL
as well as infrastructures like OSS-Fuzz are becoming prolific
at finding memory access and runtime errors, the research
community has seen an increased interests on identifying
semantic level defects. In the absence of a test oracle that
generates a correct output given an input [9], many research
efforts resort to the principle of differential testing [19].

Fuzzing has been used to analyze the semantic correctness
of TLS implementations [9]. Fuzzing can also be combined
with the L* algorithm to extract finite state machines (FSM)
out of TLS implementations, and semantic flaws can be found
by analyzing the FSM [17]. There is also a framework that
enable flexible configuration of message variables and se-
quences for evaluating TLS libraries and servers [29]. Fuzzing
with differential testing has also been used to investigate the
semantic correctness of implementations of X.509 certificate
chain validation [12], [16]. The most relevant effort to this
paper is SymCerts [15], where symbolic execution is used with
differential testing to analyze implementations of X.509 cer-
tificate chain validation. However, their test case concretization
strategy is not directly applicable to PKCS#1 v1.5.

IX. CONCLUSION

In this paper, we propose to enhance symbolic execution
with meta-level search and constraint provenance tracking, for
automatically generating concolic test cases and easier root-
cause analysis. As a demonstration, we analyzed 15 open-
source implementations of PKCS#1 v1.5 signature verification
and found semantic flaws in 6 of them. We plan to publicly
release the relevant source code and artifacts like extracted
path constraints, so other researchers and practitioners can re-
produce our work and leverage it to test other implementations.
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