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Abstract—GitHub and similar platforms have made public
collaborative development of software commonplace. However, a
problem arises when this public code must manage authentication
secrets, such as API keys or cryptographic secrets. These secrets
must be kept private for security, yet common development
practices like adding these secrets to code make accidental leakage
frequent. In this paper, we present the first large-scale and
longitudinal analysis of secret leakage on GitHub. We examine
billions of files collected using two complementary approaches: a
nearly six-month scan of real-time public GitHub commits and
a public snapshot covering 13% of open-source repositories. We
focus on private key files and 11 high-impact platforms with
distinctive API key formats. This focus allows us to develop
conservative detection techniques that we manually and automat-
ically evaluate to ensure accurate results. We find that not only
is secret leakage pervasive — affecting over 100,000 repositories
— but that thousands of new, unique secrets are leaked every day.
We also use our data to explore possible root causes of leakage
and to evaluate potential mitigation strategies. This work shows
that secret leakage on public repository platforms is rampant
and far from a solved problem, placing developers and services
at persistent risk of compromise and abuse.

I. INTRODUCTION

Since its creation in 2007, GitHub has established a massive
community composed of nearly 30 million users and 24 million
public repositories [1], [11], [55]. Beyond merely storing
code, GitHub is designed to encourage public, collaborative
development of software. The rise in popularity of public,
“social” coding also comes at a time where software, perhaps
more than ever, relies on external online services for essential
functionality. Examples include APIs for maps, credit card
payments, and cloud storage, to say nothing of integration with
social media platforms. As part of this integration, developers
generally have to authenticate to the service, typically by using
static random API keys [35], which they must manage securely.
Developers may also need to manage cryptographic public and
private keys for access control (e.g., SSH) or TLS.

Unfortunately, the public nature of GitHub often comes
in conflict with the need to keep authentication credentials
private. As a result, these secrets are often — accidentally or
intentionally — made public as part of the repository. Secrets

leaked in this way have been exploited before [4], [8], [21], [25],
[41], [46]. While this problem is known, it remains unknown to
what extent secrets are leaked and how attackers can efficiently
and effectively extract these secrets.

In this paper, we present the first comprehensive, longi-
tudinal analysis of secret leakage on GitHub. We build and
evaluate two different approaches for mining secrets: one is able
to discover 99% of newly committed files containing secrets in
real time, while the other leverages a large snapshot covering
13% of all public repositories, some dating to GitHub’s creation.
We examine millions of repositories and billions of files to
recover hundreds of thousands of secrets targeting 11 different
platforms, 5 of which are in the Alexa Top 50. From the
collected data, we extract results that demonstrate the worrying
prevalence of secret leakage on GitHub and evaluate the ability
of developers to mitigate this problem.

Our work makes the following contributions:

• We perform the first large-scale systematic study
across billions of files that measures the prevalence
of secret leakage on GitHub by extracting and val-
idating hundreds of thousands of potential secrets.
We also evaluate the time-to-discovery, the rate and
timing of removal, and the prevalence of co-located
secrets. Among other findings, we find thousands of
new keys are leaked daily and that the majority of
leaked secrets remain available for weeks or longer.

• We demonstrate and evaluate two approaches to
detecting secrets on GitHub. We extensively validate
the discovery coverage and rejection rates of invalid
secrets, including through an extensive manual review.

• We further explore GitHub data and metadata
to examine potential root causes. We find that
committing cryptographic key files and API keys
embedded directly in code are the main causes of
leakage. We also evaluate the role of development
activity, developer experience, and the practice of
storing personal configuration files in repositories (e.g.,
“dotfiles”).

• We discuss the effectiveness of potentially mitigat-
ing practices, including automatic leakage detectors,
requiring multiple secret values, and rate limiting
queries on GitHub. Our data indicates these techniques
all fail to limit systemic large-scale secret exposure.
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We are not the first to recognize and attempt to measure
secret leakage on GitHub [4], [8], [25], [33], [46], [48], [53],
[63], [65]. However, much of this work has used techniques
that provide superficial conclusions (e.g., merely reporting
search query hits), fail to evaluate the quality of their detection
heuristics, operate on a scale orders of magnitude smaller
than this work, or fail to perform in-depth analyses of the
problem. To the best of our knowledge, no peer-reviewed
research has addressed this issue apart from a single short
paper [53] published in 2015. We believe our findings present
significant added value to the community over prior work
because we go far beyond noting that leakage occurs, providing
a conservative longitudinal analysis of leakage, as well as
analyses of root causes and the limitations of current mitigations.
Throughout this work, we take conservative approaches to
increase confidence in the validity of our results. Consequently,
our work is not exhaustive but rather demonstrates a lower
bound on the problem of secret leakage on GitHub. The full
extent of the problem is likely much worse than we report.

The remainder of this paper is organized as follows:
Section II analyzes related work; Section III describes our secret
detection process and experimental methodology; Section IV
contains an ethical statement from the authors; Section V char-
acterizes secret leakage; Section VI evaluates our methodology;
Section VII performs data analysis to investigate root cause of
leakage; Section VIII considers various case studies; Section IX
discusses potential mitigations; Section X acknowledges threats
to validity; and Section XI concludes the paper.

II. RELATED WORK

GitHub is the world’s most popular site for storing code [2]
and thus is a popular place for software engineering research.
Researchers have analyzed GitHub data to see how software
engineers track issues [7], [10], [37], resolve bugs [54], use
pull requests [61], [66], and even investigate gender bias in
open-source projects [57]. Due to GitHub’s research popularity,
researchers have created tools such as GHTorrent [31] and
Boa [13] to assist others, and Google maintains a snapshot of
open-source repositories in BigQuery [28], [36].

Despite its importance, security-sensitive secret information
is regularly leaked. Data breaches regularly compromise users’
PII and secrets [26]. A clever Google search can reveal files
containing passwords and keys to an attacker [29], [44]. Popular
resources such as Docker images and AWS VMs can be full of
security issues to the publisher, consumer, and manager of an
environment [64]. These images, which are often public, have
frequently been found to contain leftover secrets that can be
easily obtained by attackers [5] or have numerous vulnerabilities
that threaten contained secrets [52].

Tools exist that work to identify secrets in text for secrets
of both fixed and variable formats. Since variable format pass-
words and API keys can have high degrees of entropy [12], [60],
one approach for finding secrets is searching for high entropy
strings; this technique is employed by tools like TruffleHog [59].
For finding secrets with fixed structures, regular expressions
can be effective. Targeted regular expressions have been built
to extract API keys from Android applications on Google
Play [12], [62] and have recently been added to TruffleHog [59].
Unfortunately, these tools are prone to large numbers of false

positives as they use an inaccurate set of regular expressions
that often match generic Base64 strings, and they generally
have a smaller set of targets than our work. Supervised neural
networks have been built to attempt to solve these issues [12],
but ultimately fall victim to the same problems due to their
limited training data. Essentially, there is no existing tool that
can be used to confidently mine GitHub at a large-scale.

Secret leakage via GitHub first gained significant attention
in 2013 when people used GitHub’s search tool with targeted
strings to find thousands of keys and passwords [21], [25], [41].
This problem remains, and leakage cannot easily be fixed with
a commit to remove the secret as the secret can be recovered
from Git history [50]. Tools exist to automatically recover
secrets from history [32], although they cannot be used at a
large-scale. Websites have discussed this problem [4], [8], [33],
[46], [48], [63], [65], but they use naive techniques that result
in shallow or non-validated conclusions.

The work closest to ours is by Sinha et al. [53], which, to our
knowledge, is the only peer-reviewed work on GitHub secret
leakage. This short paper identified AWS keys in a sample of
repositories using regular expressions and light static analysis.
This work only investigated Java files in 84 repositories for a
single credential type with unvalidated heuristics. In our paper,
we develop more accurate techniques to mine for 19 types of
secrets at a large-scale. We also examine related issues like
root causes and potential mitigations.

III. SECRET DETECTION

In this section, we describe our approach for detecting and
validating secrets. We define a “secret” as a cryptographic
key or API credential whose privacy must be maintained for
security. We briefly outline the overall strategy here before
discussing details in the following subsections.

A major issue in detecting secrets is avoiding false positives
from non-secret random strings. Naively using tools from prior
work, such as scanning for high entropy strings or writing
regular expressions matching known secret formats, may result
in high numbers of false positives as strings detected by these
methods are not guaranteed to be secret. In order to avoid this
problem, we developed a rigorous multi-phase process that
combined multiple methods to detect candidate secrets and
then validate them to obtain high confidence in their sensitivity.

Our multi-phase process is shown in Figure 1. We began
in Phase 0 by surveying a large set of API credentials and
cryptographic keys to identify any with distinct structures
unlikely to occur by chance, giving high confidence in their
validity if detected. We then wrote regular expressions to
recognize these secrets. Note that we did not attempt to examine
passwords as they can be virtually any string in any given file
type, meaning they do not conform to distinct structures and
making them very hard to detect with high accuracy.

Then, in Phases 1a and 1b, we pursued two complementary
approaches for locating files that may contain secrets. In Phase
1a, we developed targeted queries for GitHub’s Search API
to collect “candidate files”, which were files likely to contain
secrets. We continuously searched this API to identify new
secrets as they are committed in real-time. In Phase 1b, we
searched for secrets in a snapshot of GitHub maintained as a
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Fig. 1: Our secret collection methodology involves various phases to identify secrets with high confidence

public dataset in Google BigQuery [28]. This provided a large
sample of repositories, especially those that may have been
updated before we began our continuous search on GitHub. We
chose the BigQuery snapshot instead of alternative collections
of GitHub data (e.g. GHTorrent) [31] because BigQuery
contains searchable file contents. Creating this dataset ourselves
by cloning and examining each repository was infeasible due
to computational constraints and GitHub rate limits.

In Phase 2, we used the regular expressions developed in
Phase 0 to scan the candidate files from Phase 1 and identify
“candidate secrets.” Candidate secrets were then scanned by
three filters in Phases 3a, 3b, and 3c to flag and remove
candidate secrets that were unlikely to be valid. After the
filtering in Phase 3, we considered the remaining candidates to
be “valid secrets” that we then used in later analyses. We note
that the secrets classified in Phase 3 as “valid” are not always
“sensitive.” For example, an RSA key used in an OpenSSL unit
test may be valid — because it is, in fact, a key — but is
non-sensitive as its secrecy is not required. We examine the
impact of this issue on our results in Section V-B.

A. Phase 0: Survey of Popular APIs

Identifying secrets within code or data files can be a difficult
task as secrets take on a wide variety of forms depending on
their type, application, and platform. As shown by Phase 0 in
Figure 1, we worked to identify a set of keys that conform to
highly distinct structures. Because of their distinct structures,
these keys are unlikely to occur by random chance, and so their
detection gives high certainty in their validity. We call these
types of keys our “distinct secrets.” For these distinct secrets, we
manually constructed “distinct secret regular expressions” that
could be used in a later phase to extract candidate secrets with
high confidence from a given input file. In total, we identified
15 API key types and 4 asymmetric private key types that
have distinct signatures. While these types are not exhaustive,
they represent many of the most popular secrets in use by
software developers, and their highly distinct structures allow
us to construct a high confidence lower bound evaluation of
leakage on GitHub.

1) API Keys: Some popular API services add a distinct
signature to their randomly generated values when creating
API secrets. For example, all Amazon AWS Access Key ID
values start with the string AKIA and Google API keys start
with AIza [53]. Such an approach does not degrade the security

of the API secret in terms of its randomness, but it does make
searching for leaked keys significantly easier.

We began looking for services with distinct keys by
enumerating all websites and services in the Alexa Top 50
Global and United States lists and in an open-source list of
popular public APIs [49]. Next, we searched these lists to
identify around 50 well-known and commonly-used services
that provide a public API and whose key leakage would entail
a security risk. We evaluated security risk by analyzing the
functional scope of the APIs to determine how the different
services could be abused; for example, AWS keys could be used
to authorize expensive computation (monetary risk) or to access
and modify data in cloud storage (data integrity and privacy).
Finally, for each high-risk API, we registered and created 10
unique sets of developer credentials to confirm whether the
provided secrets showed a distinct signature and, if so, we
manually developed a regular expression that tightly matched
those secrets. In total, we were able to compile signatures for
11 unique platforms (e.g., Google) and 15 distinct API services
(e.g., Google Drive), of which 5 of the platforms and 9 of the
APIs are for websites in the Alexa Top 50 for the U.S. at time
of writing. These APIs, their keys, and their respective risks if
compromised are shown in Table I. The regular expression we
used for each key can be found in Table III in the Appendix.

The listed API keys have varying levels of secrecy and
complexity to compromise because they may require additional
information to be fully utilized. For example, sensitive Amazon
AWS requests require both the Access Key ID, which has
a distinct structure, and the Access Key Secret, which does
not. Similarly, we note that Google’s OAuth ID is often not
considered secret, but its presence can allow us to locate
an adjacent OAuth secret. In Table I, we distinguish keys
that require additional pieces of information as “multi-factor
secrets”, while keys that are used alone are classified as “single-
factor secrets”. Importantly, we show in Section V-D that
compromising multi-factor secrets is not difficult because we
can leverage the distinct secret to identify associated secrets
with high probability. Another potential hurdle for compromise
is that some platforms allow users to place restrictions on their
keys. For example, attacking OAuth flows may be difficult due
to restrictions placed on redirect URIs, although compromise
may still be possible with misuse and misconfiguration [14],
[15], [43], [56]. Despite these considerations, in general, all
identified keys lead to information whose leakage would

3



TABLE I: Keys for many popular APIs have distinct structures whose compromise would result in
security risk

Domain Platform/API Key Type
Single-factor Primary Risks

or Monetary Privacy Data Message
Multi-factor Loss Integrity Abuse

Social Media

Twitter Access Token M X X X
Facebook Access Token S X X X

YouTube
a API Key S X X

OAuth ID M X X X
Picatic API Key S X X X

Finance

Stripe Standard API Key S X XRestricted API Key S

Square Access Token S X XOAuth Secret S
PayPal Braintree Access Token S X X
Amazon MWS Auth Token M X X X X

Communications

Gmail (same as YouTube)a (same as YouTube)a X X X
Twilio API Key S X X X

MailGun API Key S X X X
MailChimp API Key S X X X

Storage Google Drive (same as YouTube)a (same as YouTube)a X X

IaaS Amazon AWS Access Key ID S X X X
Google Cloud Platform (same as YouTube)a (same as YouTube)a X X X

Private Keys

RSA Cryptographic key M X X X X
EC Cryptographic key M X X X X

PGP Cryptographic key M X X X X
General Cryptographic key M X X X X

a These secrets share the same format as part of the Google platform, but have different risks and are thus considered
different

compromise the security of an account, irrespective of difficulty.

2) Asymmetric Private Keys: Asymmetric cryptography is
used frequently for many applications. For example, authen-
tication over SSH often uses a private key located in one’s
˜/.ssh/id_rsa file, or certificate-based authentication for
OpenVPN may include the private key within the *.ovpn
configuration file. In many cases, the private key will be
stored in Privacy-enhanced Electronic Mail (PEM) format,
which is identifiable due to its header consisting of the text
-----BEGIN [label]-----, where label may be one
of many strings such as RSA PRIVATE KEY [38], [42]. We
identify 4 commonly leaked types of private keys, including
those generated using popular tools such as ssh-keygen,
openssl, and gpg, shown in Table I. The regular expression
for each can be found in Table IV in the Appendix.

B. Phase 1A: GitHub Search API File Collection

In this section, we describe the first approach for collecting
candidate files to be scanned with our distinct secret regular
expressions, shown as Phase 1a in Figure 1. GitHub provides
a search engine API that allows users to query repositories for
code contents, metadata, and activity [22]. We carried out a
longitudinal analysis of GitHub by continually querying this
API for almost 6 months, from October 31, 2017 to April
20, 2018. Because this API [22] provides results in near real-
time as files are pushed to GitHub, all search results are from
actively developed repos.

The Search API is a flexible, powerful tool, but it does have
two limitations that we had to address: no support for regular
expressions and set limits on call rate and result count. Querying
the Search API requires two parameters: the query string and
the sort type. Unfortunately, advanced search techniques such
as regular expressions are not supported in the query string
[24]. To address this limitation, we first created a set of queries
that would identify files likely to contain secrets. These queries
on their own are not sufficient to find secrets, but we are able

to download the resulting files and then scan them offline with
our regular expressions in Phase 2. There were two separate
groups of queries that we executed: (1) general queries against
any potential secret without targeting a specific platform (e.g.,
api_key) and (2) specific queries created to target the distinct
secrets identified in Section III-A derived from their regular
expression (e.g., AKIA for Amazon AWS keys). These queries
are shown in Table V in the Appendix. For the sort type
parameter, we always used sort=indexed which returns the
most recently indexed results, ensuring we received real-time
results. We excluded .gitignore files from these results as
they rarely contained secrets but made up a large percentage of
search results1. For each query, the API returned a collection
of files and their metadata. We then perform another request to
the API’s content endpoint [18] to get the contents of the file.

GitHub provides stipulations on their search platform,
namely that only a maximum of 1,000 results are returned
and only files less than 384KB are indexed for search [22],
[24]. In addition, GitHub imposes a rate limit; an authenticated
user may only perform 30 search queries a minute [23] and a
separate total of 5,000 non-search queries an hour [17]. In our
experiments, each individual query required at most 10 search
requests and 1,000 non-search queries for contents. Only 5
queries could be carried out an hour in this manner. However,
since many of the search queries do not generate 1,000 new
results per hour, we could only collect files that were new
to the dataset to reduce API calls. This way, we can run all
queries every thirty minutes within the rate limits using a
single API key. We show in Section VI-A that this interval
achieves 99% coverage of all files on GitHub containing our
queries. Ultimately, the rate limit is trivial to bypass and is not
a substantial obstacle to malicious actors.

1We return to the contents of .gitignore files in Section VIII.
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C. Phase 1B: BigQuery GitHub Snapshot File Collection

In addition to using GitHub’s Search API, we also queried
GitHub’s BigQuery dataset in Phase 1B. GitHub provides
a queryable weekly snapshot of all open-sourced licensed
repositories via Google BigQuery [27]. All repositories in
this dataset explicitly have a license associated with them,
which intuitively suggests that the project is more mature and
intended to be shared. This snapshot contains full repository
contents and BigQuery allows regular expression querying, so
we were able to query against the contents with our distinct
secret regular expressions from Section III-A to obtain files
containing matching strings. Unfortunately, BigQuery’s regular
expression support is not fully-featured and does not support
the use of negative lookahead or lookbehind assertions, and so
the query results were downloaded for a more rigorous offline
scan in later Phase 2, similar to in Phase 1A.

While both our file collection approaches queried GitHub
data, the two approaches allowed analysis of two mostly non-
overlapping datasets. BigQuery only provides a single snapshot
view of licensed repos on a weekly basis, while the Search
API is able to provide a continuous, near-real time view of all
public GitHub. Using both approaches simultaneously gave us
two views of GitHub. We collected BigQuery results from the
snapshot on April 4, 2018.

D. Phase 2: Candidate Secret Scan

Via Phase 1, we collected a large dataset of millions of
files potentially containing secrets. Next, we further scanned
these files offline using the distinct secret regular expressions
to identify files actually containing secrets and to extract the
secrets themselves. This process yielded a set of candidate
secrets that could undergo additional validation in a later step.
This scanning process is shown in Phase 2 of Figure 1.

Recall that limitations meant the files from the Search API
and from BigQuery in Phase 1 were retrieved using methods
that could not guarantee they contained a matching distinct
secret. These files were downloaded to be evaluated offline
against the distinct secret regular expressions from Phase 0.
In Phase 2, we performed this offline scan and noted files
and strings that match one or more of the regular expressions.
Note that each regular expression was prefixed with negative
lookbehind (?<![\w]) and suffixed with negative lookahead
(?![\w]) to ensure that no word characters appeared before
or after the regular expression match and improve accuracy.
The set of strings that resulted from this scan were classified
as “candidate secrets”.

E. Phase 3: Validity Filters

It is possible that the candidate secrets provided by Phase
2 were not actually secret, although they matched a regular
expression. In Phase 3, we passed the candidate secrets through
three independent filters that worked to identify whether a given
string should be considered “valid”. We define a valid secret as
a string that is a true instance of the distinct secret for which it
matches. As an example, consider that the regular expression
for the Amazon AWS secret, AKIA[0-9A-Z]{16}, would
match the string AKIAXXXEXAMPLEKEYXXX, which is likely
not valid, while AKIAIMW6ASF43DFX57X9 would be.

Unfortunately, it is a non-trivial task to identify a string as
being a valid secret for a certain target with complete accuracy,
even for a human observer. Intuitively, the best approximation
that a human observer could make is whether the candidate
secret appears random. We were inspired by and improve upon
the algorithms used by TruffleHog [59] and an open-source
neural-networked-based API key detector [12] to build our
filters. The filters perform three checks against a string: that
(1) the entropy of the string does not vary significantly from
similar secrets, (2) the string does not contain English words
of a certain length, and (3) the string does not contain a pattern
of characters of a certain length. A string failing any one of
these checks is rejected by the filter as invalid; all others are
accepted as valid. The valid secrets were stored in a database
and were used for all later analysis.

Entropy Filter While there is no guaranteed mathematical
test for randomness, a good estimator is Shannon Entropy.
Consider a discrete random variable X . We wish to quantify
how much new information is learned when X is observed.
The Shannon Entropy formula defines the average amount of
information transmitted for X [6], [12]:

H(X) = −
n∑

i=0

P (xi) log2 P (xi) (1)

where X has possible values x1, ..., xn and P (xi) is the
probability for X to be the value xi. Intuitively, a random
string should consist of a rare values, giving it a high entropy;
on the other hand, English text has been shown to have fairly
low entropy—roughly one bit per letter [12], [51].

To apply this stage of the filter, our goal was to eliminate
all strings that deviated significantly from the average entropy
for a given target secret. To do this, we failed a string for
this check if its entropy was more than 3 standard deviations
from the mean of all candidate strings for a given target secret,
effectively classifying it as an outlier. This approach relied on
the candidate set containing almost exclusively valid secrets;
we determined that this was the case for almost all targets, and
for those where it were not, the other stages of the filter could
still be applied.

Words Filter Another intuition is that a random string
should not contain linguistic sequences of characters [12]. For
this check, we compiled a dictionary of English words of length
as least as long as a defined threshold. Then we searched each
candidate string for each one of these words and failed the
check if detected.

A trade-off exists in choosing this threshold. If it is too
small, randomly occurring sequences that happen to create
words will create false negatives (marking valid secrets as
invalid), but if it is too large, legitimate words will be missed
and create false positives (marking invalid secrets as valid). In
our experiments, we set the word length threshold to be 5. This
threshold was chosen as a best judgment after careful manual
review; unfortunately, experimental derivation of this threshold
was not possible given limited initial ground truth.

A dictionary of every English word would contain words
that would not likely be used as part of a string in a code file and
cause high amounts of false negatives. Therefore, we took the
intersection of an English dictionary [45] and a dictionary of the
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most common words used in source code files on GitHub [40].
The resulting dictionary contained the 2,298 English words that
were likely to be used within code files, reducing the potential
for false negatives.

Pattern Filter Similar to linguistic sequences of characters,
random strings should also not contain mathematical sequences
of characters [12]. We identified three such possible patterns
to search for: repeated characters (e.g., AAAA), ascending
characters (e.g., ABCD), and descending characters (e.g., DCBA).
To apply this check, we searched each candidate string for one
of these patterns at least as long as a defined threshold and
failed the check if detected. We settled on a pattern length
threshold of 4, with the same trade-off considerations addressed
previously addressed.

IV. ETHICS AND DISCLOSURE

This paper details experiments collecting over 200,000
leaked credentials to services that could have serious con-
sequences if abused. In this section, we discuss issues related
to the ethical conduct of this research.

First and foremost, our institutional review board (IRB)
informed us that our data collection and analysis was exempt
from review because we only work with publicly available data,
not private data or data derived from interaction with human
participants.

Second, apart from our search queries, our methodology is
passive. All secrets that we collect were already exposed when
we find them, thus this research does not create vulnerabilities
where they did not already exist. We took a number of steps
to ensure that our collected secrets are unlikely to leak further.
These include running all experiments from a locked-down
virtual machine and ensuring that no secret data leaves our
collection database. Access to the database is only possible
through public-key-authenticated SSH.

Furthermore, we never attempt to use any of the discovered
secrets other than for the analytics in this paper, even for
innocuous purposes like to merely verify the secret could be
used successfully. This prevents the possibility that a secret
owner might be negatively impacted by our use of such a
secret, for example by causing a billing event or hitting a rate
limit cap. It also prevents us from obtaining any sensitive,
proprietary, or personal information from the secret owner.
Finally, it prevents the remote possibility that a service could
be negatively impacted by our testing.

Finally, as of the camera-ready we are currently working
to notify vulnerable repository owners of our findings.

V. SECRET LEAKAGE ANALYSIS

In this section, we use our collection of discovered secrets
to characterize how many projects on GitHub are at risk due to
secret exposure. Primarily, our focus is on identifying how many
exposed secrets are truly sensitive—we consider a “sensitive”
secret as one whose leakage is unintentional and discovery
presents security risk to the owner. First, we report high-level
statistics on the large numbers of exposed secrets that we
discovered via both data collection approaches (Section V-A).
Then, we show that most discovered secrets are likely sensitive
through a rigorous manual experiment (Section V-B). Next, we

compare single- and multiple-owner secrets to further confirm
the aforementioned section (Section V-C). We also demonstrate
that finding one secret can be leveraged to discover other
secrets with high probability (Section V-D). We show many
secrets are very infrequently removed from GitHub and persist
indefinitely (Section V-E). Finally, we focus specifically on
RSA keys to exemplify how an attacker could abuse exposed
keys (Section V-F).

A. Secret Collection

In this section, we provide high-level statistics on the set
of secrets we discovered. We detail the number of files at each
step in our collection methodology and culminate in the total
number of unique secrets that we discover. Here, we refer to
a “unique” secret as a secret that appears at least once in the
dataset; note that a unique secret can occur multiple times.

GitHub Search API The GitHub Search API collection
began on October 31, 2017 and finished on April 20, 2018.
During this period of nearly 6 months, we captured 4,394,476
candidate files representing 681,784 repos (Phase 1a of Figure
1), from which our distinct secret regular expression scan (Phase
2 of Figure 1) identified 307,461 files from 109,278 repos
containing at least one candidate string, giving a file hit rate
of approximately 7%.

Overall, we identified 403,258 total and 134,887 unique
candidate strings that matched our regular expressions. In
addition, our search collection collected a median of 4,258
and 1,793 unique candidate secrets per day, with a range from
2,516 to 7,159 total.

As discussed, some of the strings that match the regular
expression could be invalid secrets. We applied our filtering
heuristics to determine the number of valid secrets from
candidate strings (Phase 3 of Figure 1). In total, we found
that 133,934 of the unique candidate strings were valid, giving
an overall accuracy of 99.29% for the distinct signature regular
expressions used in Phase 2.

GitHub BigQuery We performed our query on a single
GitHub weekly BigQuery snapshot on April 4, 2018. We
were able to scan the contents of 2,312,763,353 files in
3,374,973 repos (Phase 1b of Figure 1). We identified at
least one regular expression match in 100,179 of these files
representing 52,117 repos (Phase 2 of Figure 1), giving a file
hit rate of approximately 0.005% across all open-source GitHub
repositories in BigQuery. Within the files with matches, we
identified 172,295 total strings and 73,799 unique strings, of
which 73,079, or 98.93%, were valid (Phase 3 of Figure 1).

Dataset Overlap Some of our secrets may appear in both
datasets since a file we see via the Search API could be
contained within the BigQuery snapshot, or a secret may simply
be duplicated in different files. After joining both collections,
we determined that 7,044 secrets, or 3.49% of the total, were
seen in both datasets. This indicates that our approaches are
largely complementary.

Breakdown by Secret Table II breaks down the total
and unique numbers of secrets by distinct secret. The most
commonly leaked were Google API keys. RSA private key
leakage was also common, although leakage of other keys, such
as PGP and EC, was orders of magnitude lower. Many of our
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TABLE II: The majority of secrets in the combined dataset
are used by a single-owner

Secret # Total # Unique % Single-Owner
Google API Key 212,892 85,311 95.10%
RSA Private Key 158,011 37,781 90.42%
Google OAuth ID 106,909 47,814 96.67%

General Private Key 30,286 12,576 88.99%
Amazon AWS Access Key ID 26,395 4,648 91.57%

Twitter Access Token 20,760 7,935 94.83%
EC Private Key 7,838 1,584 74.67%

Facebook Access Token 6,367 1,715 97.35%
PGP Private Key 2,091 684 82.58%

MailGun API Key 1,868 742 94.25%
MailChimp API Key 871 484 92.51%

Stripe Standard API Key 542 213 91.87%
Twilio API Key 320 50 90.00%

Square Access Token 121 61 96.67%
Square OAuth Secret 28 19 94.74%

Amazon MWS Auth Token 28 13 100.00%
Braintree Access Token 24 8 87.50%

Picatic API Key 5 4 100.00%
TOTAL 575,456 201,642 93.58%

API keys had relatively small incidents of leakage, likely due
to lower popularity of those platforms in the type of projects
on GitHub. Most importantly, we were able to identify multiple
secrets for every API we targeted.

B. Manual Review

Throughout this paper, we use statistical approaches and
heuristics to estimate the prevalence of secrets on GitHub. To
validate these results, we carried out a rigorous manual review
on a sample of the dataset. We collected a random sample
of 240 total candidate secrets, evenly split between Amazon
AWS and RSA keys. Two of three raters (all paper co-authors)
examined the file and repo containing the secret on GitHub’s
website. After considering the context of the secret, the raters
evaluated each secret as sensitive, non-sensitive, indeterminate,
or not a secret. Once every secret was coded, we evaluated the
interrater reliability of the two raters. We found a total of 88.8%
of the judgments were in agreement with a Cohen’s Kappa
of 0.753, lending confidence in the result. All disagreements
were mediated by the third rater, who independently rated each
disagreeing case without knowledge of the prior codings, and
then were settled by group consensus. In the results that follow,
we exclude secrets that could not be determined sensitive or
non-sensitive (5 total) or that were not valid secrets (4 total)2.

We used these findings to estimate the overall sensitivity
of our entire data. We considered the sensitivity of AWS keys
representative of all API keys and the sensitivity of RSA
keys representative of all asymmetric keys. We then scaled
the percentages determined by the manual review experiment
against the base rate of each sub-type in our dataset. We
estimated that 89.10% of all discovered secrets are sensitive.
If we consider API and asymmetric key secrets separately, we
estimated that 93.74% of API secrets and 76.24% of asymmetric
keys are sensitive. This indicates that most of the discovered
secrets are sensitive and many users are at risk.

2We drew our random selection against non-filtered “candidate” secrets,
so the number of invalid secrets in this sample is not representative of the
effectiveness of our overall analysis pipeline.

C. Single- and Multiple-Owner Secrets

The results in Table II show a level of duplication of secrets
within our collection as the number of unique secrets is less
than the number of total secrets. Since we previously defined
a secret as a credential whose privacy must be maintained for
security, we evaluated this duplication to determine whether
it indicated our results were skewed towards non-sensitive
secrets. Intuitively, a secret should be kept private to the single
individual who “owns” it. While it would be a valid use case
to see duplication due to an individual using the same sensitive
secret in multiple files or repos, it would be unlikely to see
multiple users do so.

To verify this intuition, we further analyzed the results of
the Manual Review experiment from Section V-B. First, we
defined a secret with one owner as a “single-owner secret,”
and a secret with multiple owners as a “multiple-owner secret.”
As we were unable to identify the committer of a secret, and
because our data sources did not easily provide contributor
information3, we considered the repo owner as the entity who
owned the secret. Of the 240 secrets examined, we had also
evenly split the secrets between single- and multiple-owner
secrets, allowing us to examine whether there was a difference
in sensitivity between single- and multiple-owner secrets for
AWS and RSA keys. At a high-level, 91.67% of single-owner
AWS keys were sensitive compared to 66.67% multiple-owner
AWS keys, and respectively 75% versus 38.33% for RSA keys.
For AWS keys, we found a statistically significant difference
with a medium effect size (χ2 = 15.2, p < 10−4, r > 0.56),
and for RSA keys, we found a statistically significant difference
with a large effect size (χ2 = 35.7, p < 10−5, r > 0.56). These
findings confirmed our assertion that single-owner secrets are
more likely to be sensitive.

With our intuition confirmed, we classified every secret in
our dataset as single- or multiple-owner to evaluate the impact
of duplication. Table II shows the results of this classification
on the combined Search and BigQuery datasets. We show that
an overwhelming majority (93.58%) of unique secrets are found
in repos owned by a single owner, indicating that these are
more likely to be sensitive secrets4. Further, we computed the
Pearson correlation coefficient between the relative rates of
single- and multiple-owner secrets between the Search and
BigQuery datasets. We found that the two datasets had a
correlation of r = 0.944 and a p-value of 1.4×10−9, indicating
that they have a similar level of exposure and distribution of
sensitive secrets, irrespective of their size and perspective.

Critically, because almost all detected secrets had their
privacy maintained, we show that the observed duplication
does not suggest our results were skewed by non-sensitive
secrets. In fact, deeper investigation showed one major source
of duplication was a single developer using their secrets
multiple times; in the Search dataset, we found that the average
single-owner secret was used in 1.52 different files, with the
most duplicated appearing in 5,502 files. A second source of
duplication was from a very small number of secrets used

3BigQuery does not provide this information. It is possible to obtain it
via the GitHub API, but not at a large scale due to rate limiting.

4Technical limitations prevented us from retrieving repo owner information
for about 7,500 secrets from BigQuery, which where excluded from this
analysis.
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by many developers. This was particularly evident with RSA
private keys, where nearly 50% of all occurrences were caused
by the most common unique 0.1% keys, which were multiple-
owner secrets and likely test keys. Fortunately, since this
source duplication was restricted to a very small subset of
keys, duplication would have minimal impact on analysis done
on unique valid secrets. Consequently, we will only consider
the unique valid secrets in future sections of this paper.

D. Parallel Leakage

Some of our secrets require additional pieces of information
to be used, such as Google OAuth IDs which require the
OAuth Secret for privileged actions. We previously defined
these secrets as “multi-factor” secrets in Section III-A and
identified them in Table I. While these parallel secrets may
seem to improve security by reducing the impact of leakage,
in this section we show that the missing information is often
leaked in parallel to the main secret, making this protection
mostly inconsequential. The difficulty in detecting the parallel
secrets is that they may not have a sufficiently distinct structure
to be included within our distinct signatures. However, they
can still be matched by a crafted regular expression and located
with high confidence given prior knowledge of secret leakage.
We examined every file containing a distinct multi-factor secret
and then scanned for the parallel secrets5 in the 5 lines before
and after a secret. This context size was chosen based on prior
work that scanned Google Play applications [62].

Figure 2 shows the results of this experiment in terms of the
percent of files containing one of our secrets that has a parallel
secret. Every multi-factor secret in the Search dataset has at
least an 80% likelihood of leaking another parallel secret. For
example, even though Google OAuth IDs require another secret,
our ability to write regular expressions to identify them with
high fidelity allows us to discover one of the other secrets in
nearly 90% of cases. BigQuery shows lower rates of parallel
leakage, perhaps due to the data source containing more mature
files, but still has a worrying amount of leakage. Thus, we
argue that the fact that these multi-factor secrets have varying
levels of compromisability and secrecy is not a large hurdle.

Additionally, this parallel leakage was not restricted to
single types of secrets; many files containing one secret also
contained another secret. We identified 729 files that leaked
secrets for two or more API platforms within the same file.

E. Secret Lifetime

Once a secret is exposed by a user, a user may attempt to
retroactively remove the secret via a subsequent commit. To
quantify the prevalence of this, we began monitoring all secrets
collected via the Search API after they were discovered starting
on April 4th, 2018. For the first 24 hours from discovery, we
queried GitHub hourly to determine if the repo containing
the file, the file itself, and the detected secrets still existed on
the head of the default branch. After the initial 24 hours, we
performed the same check at a reduced daily frequency. The
results of the initial 24 hour short-term monitoring is shown
in Figure 3a, and the daily long-term monitoring is shown in
Figure 3b.

5The parallel targets we scanned for, and their regular expressions, can
be found in Table VI in the Appendix
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Fig. 2: All of the multi-factor distinct secrets have a high rate
of leakage of other pieces of secret information

We observe several trends. First, the largest drop in secret
presence occurred in the first hour after discovery, where about
6% of all detected secrets were removed. Second, secrets that
existed for more than a day tended to stay on GitHub long-
term—at the end of the first day, over 12% of secrets were
gone, while only 19% were gone after 16 days. Third, the rate
at which secrets and files were removed dramatically outpaces
the rate at which repos were removed; this indicates that users
were not deleting their repos, but were simply creating new
commits that removed the file or secret. Unfortunately, due
to the nature of the Git software, the secrets are likely still
accessible [50] (see Section VIII for more on this issue).

These conclusions suggest that many of the secrets discov-
ered were committed in error and that they were sensitive. 19%
of the secrets were removed at some point in roughly 2 weeks,
and most of those were done in the first 24 hours. This also
means 81% of the secrets we discover were not removed. It is
likely that the developers for this 81% either do not know the
secrets are being committed or are underestimating the risk of
compromise. In absolute terms, 19% of our results amounts of
tens of thousands of secrets and serves as a lower bound on
the number of discovered secrets that were sensitive, adding
confidence to our overall result.

Further, we examined whether users that removed their
secrets while keeping their repos performed any process to
rewrite history to remove the commit, as suggested by GitHub
[50]. For every such instance, we queried the GitHub Commits
API for information on the commit we discovered; if the commit
had been rewritten, it would no longer be accessible. We found
that none of the monitored repos had their history rewritten,
meaning the secrets were trivially accessible via Git history.

F. RSA Key Leakage

Table II shows a large portion of secrets in our dataset
were RSA keys, which is expected as they are used for a
large number of different applications. We performed various
experiments to investigate how many of these RSA keys pose
a significant risk if discovered.

Number of Valid Keys RSA keys contain a defined and
parseable structure. Thus, we can determine how many of these
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(a) Many secrets are removed in the first few hours after being
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(b) Secrets that still exist on GitHub for a day after commit tend to stay
on GitHub indefinitely

Fig. 3: Short and Long Term Monitoring of Secrets

keys were valid using the Paramiko library [47]. Out of the
25,437 secrets discovered via the Search API, we found that
25,370 keys, or 99.74%, were valid. From the BigQuery dataset,
of the 15,262 keys, 98.31% or 15,004 keys were valid.

Number of Encrypted Keys The Public Key Cryptography
Standard (PKCS) allows for private keys to be encrypted [39].
While leaking a key is never a good idea, an attacker will have
a much more difficult time compromising a leaked key if the
key is encrypted. Again, we used the Paramiko [47] library,
which can determine when a key is encrypted, on our keys
to count how many were encrypted. From this experiment, we
found that none of the leaked keys in the Search and BigQuery
datasets were encrypted, meaning an attacker could easily use
every single one.

OpenVPN Config Analysis Another application of RSA
keys is usage in OpenVPN configuration files, in which keys
may be embedded for client authentication to the VPN server.
As an additional layer of protection, OpenVPN recommends
clients specify the auth-user-pass option in the config
file. This option requires a user to also enter a valid password
to be connected to the VPN, which makes use of a stolen
key more difficult. In order to determine whether an attacker
could gain unauthorized access to VPN servers, we analyzed
how many OpenVPN configs containing RSA keys existed in
our dataset by looking for files with the .ovpn extension and
investigated whether they could be used without further effort.

In the Search dataset, we identified 1,890 total OpenVPN
config files in our dataset. Critically, 13.18% of these did not
use the auth-user-pass option, meaning the user could
easily be compromised by an attacker. In the BigQuery dataset,
we identified 5,390 total OpenVPN config files, of which
1.08% were vulnerable. There is a discrepancy between the
two datasets, likely because licensed repos are more mature
and contain more example files, but both datasets still revealed
a substantial number in absolute terms.

VI. METHODOLOGY EVALUATION

In this section, we evaluate the key aspects of our method-
ology. First in Section VI-A, we consider our data collection
methods. Second in Section VI-B, we evaluate the efficacy of
our secret validation filters.

A. Search API Evaluation

The Search API collection gave us near real-time insight
into files committed to GitHub. We performed two experiments
to validate this method. First, we found how long it took for
a known random string to appear in search results after being
committed. Second, we measured the percent of files we could
see using a single API key with the Search API out of all files
committed within a time period.

Time to Discovery If the time for GitHub to index and
return search results is long, users have a large period of time
to remove their secret before we could detect it. To determine
this time to discovery, we set up an experiment in which a
known string was pushed to a known repository. Immediately
after pushing, we started a timer and began querying the API
continuously until the string appeared, at which point the timer
was stopped. This time measures the time to discovery. We
ran this experiment once a minute over a 24 hour period to
compensate for variations with time of day.

We found that the median time to discovery was 20 seconds,
with times ranging from half a second to over 4 minutes,
and no discernible impact from time-of-day. Importantly, this
experiment demonstrates that our Search API approach is able
to discover secrets almost immediately, achieving near real-time
discovery of secrets. If a user does realize their secrets were
mistakenly pushed, this leaves little time for them to correct
the problem before their secrets would be discovered.

Coverage Since we only used a single GitHub key for
Search API scanning, we were restricted to searching at 30
minute intervals to avoid rate limiting issues. Running at this
rate created the possibility of missing results that were pushed
and removed between the scanning times. To evaluate how
much coverage we could achieve at our interval, we set up
the following experiment. For each query (running individually
to get better scanning granularity), we did an initial pull of
results on GitHub (the start set). For the next 30 minutes, we
constantly pulled all results for the query from GitHub non-
stop. This constant pull represented the theoretical maximum
of results that we could potentially have pulled with no rate
limiting (the max set). Finally, we pulled a final set of results
after the interval (the end set). Then, our total coverage is
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given by:

coverage = 1− |max set− (start set ∪ end set)|
|max set|

(2)

This experiment was repeated over a period of 3 days covering
both a weekend day and weekdays.

We found that the overall coverage across all our queries
was 98.92%. There was minimal fluctuation on the weekday
as compared to the weekend, with each achieving 98.85% and
99.02% coverage, respectively. This result shows that a single
user operating legitimately within the API rate limits imposed
by GitHub is able to achieve near perfect coverage of all files
being committed on GitHub for our sensitive search queries.
Of course, a motivated attacker could obtain multiple API keys
and achieve full coverage.

B. Regular Expression and Valid Secret Filter Evaluation

In this section, we discuss three experiments we performed
to validate our regular expressions and filters. We previously
defined a “valid” secret as a string that is a true instance of
the distinct secret for which it matches. The strings matching
our distinct secret regular expressions may not necessarily be
“valid” secrets, and therefore we designed and implemented a
series of filters on these strings to validate them using various
techniques. After collecting a large number of candidate secrets,
we were able to validate the performance of this filter.

Most Common Patterns and Words Recall that two of
the key stages for the validity filters were eliminating strings
containing patterns or English (and common GitHub) words.
To gain insight into which patterns were causing secrets to
be invalidated, we counted the individual patterns and words
detected by the filters on our dataset. The only word which
appeared more than 3 times in both datasets was “example”,
which appeared 9 times in Search and 20 times in BigQuery.

Patterns appeared more frequently. The most common
pattern was “XXXX”, which appeared 27 times in Search
and 46 times in BigQuery. There were over 90 patterns that
appeared more than 2 times. To count the relative occurrence,
each pattern was grouped into one of three categories: ascending
sequence, descending sequence, or repeated sequence. Ascend-
ing sequences were most common and comprised 52.91% of
all patterns, while repeated sequences made up 31.24% and
descending sequences made up 15.86% of the patterns.

The results of this experiment suggest that most of the
keys being invalidated by the pattern filter are example keys
or patterned gibberish sequences. Keys containing the word
“example” are most likely example keys. Patterns of letters that
perfectly fit one of the secret regular expressions are unlikely
to happen by chance, which suggests that users are typing
sequences on their keyboard to act as an example key.

Filter Validation Determining whether a given string is
a valid secret is a difficult task to do with perfect accuracy
as most secrets do not contain a verifiable structure. This
challenge also makes automatic validation of our filters itself
difficult. RSA private keys, however, do have a parseable and
verifiable structure. These keys were also one of the largest
sets of secrets we had. We validated our filters by checking
that the RSA private keys we collected were valid. We used

the Paramiko library [47] to try and parse each RSA key. This
library throws a specific exception if a key is not parseable,
allowing us to distinguish between errors due to parsing and
other issues (e.g. encryption errors). All keys that threw non-
parsing errors were excluded as we would not be able to verify
these keys. After running the library, which provided ground
truth, we ran our filters and analyzed its predicted performance.

In the Search dataset, we considered a total of 25,437
RSA keys. We find that our filters correctly confirmed 24,935
(98.03%) of them to be valid (24,918) or invalid (17). Further-
more, our filter only failed to invalidate 50 keys that were not
parseable by the library. In the BigQuery dataset, we considered
a total of 15,252 RSA keys, we find that our filter confirmed
97.97% of them to be valid or invalid, and 60 keys were not
parseable by the library.

The results of this experiment provide mixed insights. On
one hand, it shows that the filter was able to validate a large
number of secrets with minimal inaccuracy. On the other hand,
the experiment also reveals that the number of valid keys
dramatically outweighs the number of invalid keys. In total,
only 67 of the 25,437 were invalid. We believe that the targeted
secrets have such distinct structures that truly invalid keys are
rare and a minimal concern for an attacker, who would be able
to simply test the keys themselves against the target service.

Regular Expression Accuracy In this section, we measure
the performance of the distinct secret regular expressions. For
each regular expression, we calculate precision as number of
valid matches (validated by all filters) divided by the total
number of matches of the regular expression. Unfortunately,
because ground truth on all secret leakages on GitHub is simply
not available, we are unable to compute recall.

The main concern was that a loose regular expression would
match a large number of invalid strings and create many false
positives. However, this was not the case with our distinct
secret regular expressions. Our regular expressions achieved
99.29% precision in the Search dataset and 98.93% precision in
the BigQuery dataset. The precision of each regular expression
is shown in Figure 4. Only 4 of the distinct secret regular
expressions gave more than a 2% rejection rate in both datasets,
and these all had relatively small sample sizes. This shows that
our regular expressions themselves are sufficient to determine
valid keys for most of the secrets.

VII. POTENTIAL ROOT CAUSE ANALYSIS

It is now clear that secret leakage on GitHub puts a large
number of keys at risk. In this section, we demonstrate various
experiments that try to address the question of why secret
leakage is so extensive. Without asking developers directly,
we are unable to determine the root cause for each individual
leakage, but we are able to leverage our dataset to analyze
a number of potential contributing factors. Ultimately, we
find that most secret leakage is likely caused by committed
cryptographic key files and API keys embedded in code.

A. Repository and Contributor Statistics

In order to evaluate whether the metadata of repos contain-
ing secrets and information about their owners could reveal
interesting insights, we sourced such data from the GitHub API.
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Fig. 4: Most of the regular expressions had high precision
with minimal rejection by the filter

For each repo, we collected the number of forks, watchers, and
contributors. We chose these features as they indicate the level
of activity, and it may be the case that more active repos are
less (or more) likely to leak secrets. For each repo contributor,
we queried the user’s number of public repos, contributions in
the repo, and contributions in the past year across GitHub.
We chose these features because they act as a proxy for
developer experience with GitHub, and we question whether
less experienced developers are more likely to leak secrets or if
it occurs irrespective of experience. For a comparison, we also
collected a control group by randomly sampling approximately
100,000 GitHub repos and collecting the same information.

With both sets of metadata, we conducted a Mann-Whitney
U-test to determine if there were meaningful differences on the
variables. Our control dataset featured 99,878 repos and 360,074
developers, while our leakage dataset featured 95,456 repos
and 180,101 developers. Because we examine large datasets,
slight differences in the datasets have a strong probability of
passing statistical significance tests. We chose a significance
threshold of α = 0.01, and applied a conservative Bonferroni
correction to α = 0.01

10 = 0.001 to account for all of our
planned hypothesis tests.

We found no meaningful differences on the variables in
the repo metadata that leak secrets compared to a randomly
selected control dataset. All tests were statistically significant
(p < 10−5). We examined the effect size using the rank-
biserial correlation method. We found that all effects are quite
small (r < 0.21), indicating that there is likely not a large
difference between the leakage sets and control sets based on
these criteria. With the contributor metadata, we again found
no meaningful differences on the variables. All tests were
statistically significant (p < 10−5) with a small effect size
(r < 0.27), indicating no large difference between the two sets.
These results show that neither repo activity nor developer
experience are strongly correlated with leakage.

We also examined the distribution of forked repos in our
data. We found that repos that leak secrets are far less likely
to be forked, with only 0.11% of leaking repos being forked
compared to 47.5% of the control. We used a χ2 test and found
that this difference is statistically significant with a strong effect
(p < 10−9, r > 0.64). This implies that secrets rarely propagate
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Fig. 5: Most detected secrets were found in cryptographic or
source code files

by forks, and that most leaks are in an original repo.

B. Top File Types

Since certain usage patterns may be more prone to secret
leakage, a method of approximating this is to evaluate the
most common types of files containing secrets. As there are
many different file extensions, we grouped each extension
into one of several defined categories. The “crypto” category
contained files commonly used for storing keys and certificates
(e.g., .key), “code” contained source code files (e.g., .py),
“data” contained files used to serialize data (e.g., .csv), and
“config” contained files used primarily for configuration (e.g.,
.conf). All other files with extensions were grouped into
“other”, while files without extensions were grouped into “none”.
For a detailed breakdown of the extensions included in each
group, see Appendix Section A.

Figure 5 shows the relative share of files for each category
in the combined dataset. Unsurprisingly, “crypto” files make
up the largest percent of the dataset because private keys are
the largest group of compromised secrets. “Code” groups also
make up a very large percentage; this indicates that many
secrets, mainly API secrets, are being embedded directly within
source code. While we cannot say from this analysis alone why
cryptographic keys are leaked, it is clear that the poor practice
of embedding secrets in code is a major root cause.

C. Personal RSA Key Leakage

Many developers store personal files in GitHub repositories,
so another research question is whether overall leakage could
largely be attributed to this. Common examples of this are
dotfiles repos, which people use to backup configuration
files and folders [19]. One common “dotfolder” is .ssh, a
directory which often contains SSH keys, commonly in a
file named id_rsa. To approximate the prevalence of secret
leakage through this source, we gathered metrics on how many
RSA keys appeared within a repo containing dotfiles in
the name, within a .ssh folder, or within an id_rsa file.

In the Search dataset, we found 1676 (6.61%) of all RSA
keys appeared within an id_rsa file, 653 (2.57%) within
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a .ssh folder, and 353 (1.39%) within a dotfiles repo.
In the BigQuery dataset, we found 651 (4.26%) of all RSA
keys appeared within a id_rsa file, 110 (.007%) within a
.ssh folder, and 39 (.002%) within a dotfiles repo. The
lower prevalence of this leakage in BigQuery is likely due to a
developer being unlikely to license their personal files. These
keys are also more likely to be personal keys, especially SSH
keys, which could allow an attacker to compromise a user. In
total, the low representation of dotfiles indicates this is not
the main cause of secret leakage, but it is a non-trivial factor.

D. TruffleHog Analysis

Secret management is a difficult task and tools exist to
assist developers. One such tool is TruffleHog [59], which
is used in a local Git repository to check every commit for
secrets. TruffleHog detects secrets by finding strings with an
entropy above a pre-defined threshold or by matching one of a
set of regular expressions. While this is similar to our work,
TruffleHog has a more limited set of regular expressions and
does no validation on their results to avoid false positives.
Since users may rely on tools like TruffleHog, we analyze its
performance by running every secret we detected through its
algorithm.

Our results show that TruffleHog is largely ineffective at
detecting secrets, as its algorithm only detected 25.236% of
the secrets in our Search dataset and 29.39% in the BigQuery
dataset. Every one of these secrets were detected by entropy,
while only a fraction of them were double detected by regular
expressions. This discrepancy is worrying as the TruffleHog
developers are deprecating entropy detection in favor of regular
expressions detection [59]. If this change had been in place,
only 19.263% of secrets from Search and 22.29% of secrets
from BigQuery would have been detected. Because this problem
is caused by a set of weak regular expressions, this tool could
be improved by the use of our techniques. While TruffleHog
does detect some secrets, we do not believe it provides strong
enough protection. Developers using tools such as this may
believe they are safe, but may unwittingly be pushing secrets.
Unfortunately, because TruffleHog runs locally, we were unable
to measure the rate of usage.

E. Google Client Secret Files

As a convenience and in an attempt to aid security, Google
provides developers with a client_secret_*.json file,
where the asterisk would be replaced with a unique identifier.
Google recommends that you download this file for using your
OAuth credentials instead of embedding the values in code
directly, stressing clearly that the file should be stored out of the
source tree [30]. To evaluate whether developers took heed of
this warning, we analyzed every file containing Google OAuth
IDs that matched the client_secret_*.json pattern.
Ideally, these files should not exist on GitHub; however, we
identified 2,155 of these files in the Search dataset and 388 in
the BigQuery dataset. Further, this accounted for 5.027% of
all files containing Google OAuth IDs in the search dataset,
and 2.246% in the BigQuery dataset. The leakage of this file
is particularly worrying as it contains other secret information,
such as the OAuth Secret, in an easily parseable format. While
this file mismanagement is not the primary source of leakage,
it is certainly a substantial factor.

VIII. CASE STUDIES

In this section, we discuss several interesting case studies
discovered in the course of our research.

Secrets in .gitignore Files The .gitignore file is
intended to allow developers to specify certain files that should
not be committed, and it can be used (among other things) to
prevent files containing secrets from being leaked. While this
is a good strategy, many developers do not use this option and
some do not fully understand it. To better investigate its usage,
we used the Search API to collect .gitignore files over a
3 week period in the same manner as our normal collection
process. Our assumption had been that these files would not
contain secrets as they should only contain path references to
files. Yet, we identified 58 additional secrets from this process.
While this is a small number compared to the full dataset, this
finding indicates that some developers commit secrets out of
fundamental misunderstandings of features like .gitignore.

YouTube Copyright Infringement Our data collection
methodology uncovered an interesting case study in which a
GitHub user appeared to be conducting copyright infringement.
A single user was hosting repositories containing source code
for different websites that pull videos from YouTube and rehost
them. We found a total of 564 Google API keys in these
repositories, along with indications that they were being used
to bypass rate limits. Because the number of keys is so high,
we suspect (but cannot confirm) that these keys may have been
obtained fraudulently. We could not locate the keys elsewhere
in our limited view of GitHub, but it is possible that the keys
came from elsewhere on GitHub, other public leaks, or accounts
sold on the black market. Further, this example demonstrates
the potential misuse of leaked secrets by a malicious actor.

High-Value Targets Our data shows that even high-value
targets run by experienced developers can leak secrets. In one
case, we found what we believe to be AWS credentials for a
major website relied upon by millions of college applicants
in the United States, possibly leaked by a contractor. We also
found AWS credentials for the website of a major government
agency in a Western European country. In that case, we were
able to verify the validity of the account, and even the specific
developer who committed the secrets. This developer claims in
their online presence to have nearly 10 years of development
experience. These examples anecdotally support our findings
in Section VII-A that developer inexperience is not a strong
predictor of leaks.

Rewriting History Does Not Protect Secrets It is obvious
that adversaries who monitor commits in real time can discover
leaked secrets, even if they are naively removed. However, we
discovered that even if commit histories are rewritten, secrets
can still be recovered. In investigating the previous European
case study, we discovered that we could recover the full contents
of deleted commits from GitHub with only the commit’s SHA-1
ID. Using our own repos, we experimentally confirmed that
this held true for both of GitHub’s recommended methods
for removing sensitive information: git filter-branch
or the bfg tool [50]. The difficulty in this approach is in
acquiring the commit hash, as it is hidden from GitHub’s
UI and Commits API. However, we found that these hidden
commit hashes could be recovered with trivial effort via the
Events API [20]. Moreover, historical data from this API is

12



available through the GHTorrent Project [31]. Taken together,
this indicates that the consequences of even rapidly detected
secret disclosure is severe and difficult to mitigate short of
deleting a repository or reissuing credentials.

IX. MITIGATIONS

We have shown that an attacker with minimal resources
could compromise many GitHub users by stealing leaked
keys. In this section, we discuss how current mitigations fall
short and what new mitigations might be successful. Through
our results, we addressed three potential mitigations to our
collection methodology and demonstrated their ineffectiveness.
First, secret leakage could be stopped prior to commit using
tools like TruffleHog [59]. However, in Section VII-D, we
found that TruffleHog is only approximately 25% effective.
Second, many API platforms require multiple secret values to
be used, possibly inhibiting a potential attacker. We showed in
Section V-D that complementary secrets are committed in the
same file with high probability, nullifying the advantages of
this technique in practice. Finally, GitHub imposes strict rate
limits for Search API requests to inhibit large-scale mining.
Unfortunately, Section VI-A demonstrated this rate limiting
can be easily bypassed with a single key.

Fortunately, there is room to improve these mitigations.
For example, TruffleHog could detect all of the secrets that
we detect if it implements our detection techniques. Second,
the fact that many secrets have distinct patterns that simplify
accurate detection means that our techniques could be used
by services to monitor and instantly alert developers and
services of compromise. In fact, there is evidence that AWS
may already do this [3], [9]. Finally, while GitHub might
consider trying to increase their rate limiting, we argue that
this would still be trivial to bypass with multiple keys and would
disproportionately affect legitimate users. Instead, GitHub could
extend their security alerts program [34] to scan for secrets and
notify developers at commit time. GitHub recently introduced
a beta version of Token Scanning [16], [58], which scans
repos for tokens and contacts the provider with the token and
metadata. The provider can then revoke the token mitigating
the impact of it’s disclosure. This feature can be improved with
the findings from this paper, increasing the providers included.

All of these, however, are mitigations, taking action late
in the secret’s lifetime after it has already been exposed.
Ultimately, we believe that more research is needed on the
question of secret and key management for software. Extensive
work has been done in this area for users (e.g. passwords
and alternative authentication). Two possible approaches to
address this earlier in the process are extending Git to handle
secrets natively, or changing the architecture of libraries to
automatically and securely manage secrets for developers.

X. LIMITATIONS

In this section we briefly detail limitations of our experi-
ments. First, we do not have ground truth knowledge that the
secrets we discover are exploitable. Though we make every
effort to exclude them, some secrets may be non-sensitive,
revoked, stale, or simply invalid. Without actually testing such
secrets (which we do not do for reasons discussed in Section IV),
it is not possible to have certainty that a secret is exploitable.

Second, we focus only on secrets that we felt could be
discovered with high probability of validity and sensitivity.
There are certainly many important services that we do not
detect secrets for. Similarly, while GitHub is the largest public
code hosting service, there are many other services where
secrets may be leaked, including services like BitBucket or
Pastebin. This means that our findings are a lower bound on
the risks of secret leakage through public repositories.

Finally, for some of the APIs we study we find few leaked
keys, as shown in Table II. While we surveyed many public
APIs, the relative usage of each API in a project that would
be hosted on GitHub will naturally differ. We nevertheless
discover a large number of keys overall, including keys for
every service we chose to investigate.

XI. CONCLUSION

GitHub has become the most popular platform for collabora-
tively editing software, yet this collaboration often conflicts with
the need for software to use secret information. This conflict
creates the potential for public secret leakage. In this paper, we
characterize the prevalence of such leakage. By leveraging two
complementary detection approaches, we discover hundreds
of thousands of API and cryptographic keys leaked at a rate
of thousands per day. This work not only demonstrates the
scale of this problem, but also highlights the potential causes of
leakage and discusses the effectiveness of existing mitigations.
In so doing, we show that secret leakage via public repositories
places developers at risk.
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TABLE III: Robust regular expressions can be written to target API credentials for platforms with distinct key structures

Domain Platform/API Key Type Target Regular Expression

Social Media

Twitter Access Token [1-9][0-9]+-[0-9a-zA-Z]{40}
Facebook Access Token EAACEdEose0cBA[0-9A-Za-z]+

Google YouTube API Key AIza[0-9A-Za-z\-_]{35}
OAuth ID [0-9]+-[0-9A-Za-z_]{32}\.apps\.googleusercontent\.com

Picatic API Key sk_live_[0-9a-z]{32}

Finance

Stripe Standard API Key sk_live_[0-9a-zA-Z]{24}
Restricted API Key rk_live_[0-9a-zA-Z]{24}

Square Access Token sq0atp-[0-9A-Za-z\-_]{22}
OAuth Secret sq0csp-[0-9A-Za-z\-_]{43}

PayPal Braintree Access Token access_token\$production\$[0-9a-z]{16}\$[0-9a-f]{32}
Amazon MWS Auth Token amzn\.mws\.[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}

Communications

Google Gmail (see YouTube) (see YouTube)
Twilio API Key SK[0-9a-fA-F]{32}

MailGun API Key key-[0-9a-zA-Z]{32}
MailChimp API Key [0-9a-f]{32}-us[0-9]{1,2}

Storage Google Drive (see YouTube) (see YouTube)

IaaS Amazon AWS Access Key ID AKIA[0-9A-Z]{16}
Google Cloud Platform (see YouTube) (see YouTube)

TABLE IV: Asymmetric private keys have a distinct structure
mainly due to their PEM header

Asymmetric Key Type Target Regular Expression

RSA Private Key

-----BEGIN RSA PRIVATE KEY-----
[\r\n]+(?:\w+:.+)*[\s]*

(?:[0-9a-zA-Z+\/=]{64,76}[\r\n]+)+
[0-9a-zA-Z+\/=]+[\r\n]+

-----END RSA PRIVATE KEY----

EC Private Key

-----BEGIN EC PRIVATE KEY-----
[\r\n]+(?:\w+:.+)*[\s]*

(?:[0-9a-zA-Z+\/=]{64,76}[\r\n]+)+
[0-9a-zA-Z+\/=]+[\r\n]+

-----END EC PRIVATE KEY-----

PGP Private Key

-----BEGIN PGP PRIVATE KEY BLOCK-----
[\r\n]+(?:\w+:.+)*[\s]*

(?:[0-9a-zA-Z+\/=]{64,76}[\r\n]+)+
[0-9a-zA-Z+\/=]+[\r\n]+=
[0-9a-zA-Z+\/=]{4}[\r\n]+

-----END PGP PRIVATE KEY BLOCK-----

General Private Key

-----BEGIN PRIVATE KEY-----
[\r\n]+(?:\w+:.+)*[\s]*

(?:[0-9a-zA-Z+\/=]{64,76}[\r\n]+)+
[0-9a-zA-Z+\/=]+[\r\n]+

-----END PRIVATE KEY-----

APPENDIX

A. File Extension Categories

The experiment in Section VII-B grouped file extensions
into various categories. Those categories and the extensions
they contained were: crypto (crt, gpg, key, p12, pem, pkey,
ppk, priv, rsa), code (aspx, c, cpp, cs, cshtml, ejs, erb, go, h,
html, ipynb, js, jsp, jsx, php, phtml, py, rb, sh, swift, ts, twig,
vue, xhtml), data (csv, dat, json, log, md, txt, xml, yaml), and
config (cfg, conf, config, ini, ovpn, plist, properties).

TABLE V: As GitHub does not allow regular expression
searches, these targeted queries identify candidate files which

are then scanned offline for secrets

Type Search Query Targeted Secret

General

access_token

API Secret

access_secret
api_key

client_secret
consumer_secret
customer_secret
user_secret
secret_key

Specific

-----BEGIN RSA PRIVATE KEY-----

Private Key-----BEGIN EC PRIVATE KEY-----
-----BEGIN PRIVATE KEY-----

-----BEGIN PGP PRIVATE KEY BLOCK-----

AKIA
AWS Access

Key ID

EAA, EAACEd, EAACEdEose0cBA
Facebook

Access Token

AIza
Google

API Key

.apps.googleusercontent.com
Google

OAuth ID

sq0atp
Square

Access Token

sq0csp
Square

OAuth Secret

key-
MailGun
API Key

sk_live_
Picatic/Stripe

API Key

rk_live_
Stripe Restricited

API Key

TABLE VI: Some of our distinct secrets may be leaked with
additional information

Distinct Secret Parallel Target(s) Parallel Target
Regular Expression

Amazon AWS Client Secret [0-9a-zA-Z/+=]{40}Access Key ID
Amazon MWS AWS Client ID AKIA[0-9A-Z]{16}

Auth Token AWS Secret Key [0-9a-zA-Z/+=]{40}
OAuth Secret [0-9a-zA-Z\-_]{24}

OAuth Auth Code 4/[0-9A-Za-z\-_]+
Google OAuth Refresh Token 1/[0-9A-Za-z\-_]{43}|

OAuth ID 1/[0-9A-Za-z\-_]{64}
OAuth Access Token ya29\.[0-9A-Za-z\-_]+

API Key AIza[0-9A-Za-z\-_]{35}
Twilio API Secret [0-9a-zA-Z]{32}API Key
Twitter Access Token Secret [0-9a-zA-Z]{45}Access Token
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