
DNS Cache-Based User Tracking
Amit Klein

Bar-Ilan University
aksecurity@gmail.com

Benny Pinkas
Bar-Ilan University
benny@pinkas.com

Abstract—We describe a novel user tracking technique that
is based on assigning statistically unique DNS records per user.
This new tracking technique is unique in being able to distinguish
between machines that have identical hardware and software,
and track users even if they use “privacy mode” browsing, or
use multiple browsers (on the same machine).

The technique overcomes issues related to the caching of
DNS answers in resolvers, and utilizes per-device caching of
DNS answers at the client. We experimentally demonstrate that
it covers the technologies used by a very large fraction of
Internet users (in terms of browsers, operating systems, and DNS
resolution platforms).

Our technique can track users for up to a day (typically),
and therefore works best when combined with other, narrower
yet longer-lived techniques such as regular cookies - we briefly
explain how to combine such techniques.

We suggest mitigations to this tracking technique but note that
it is not easily mitigated. There are possible workarounds, yet
these are not without setup overhead, performance overhead or
convenience overhead. A complete mitigation requires software
modifications in both browsers and resolver software.

I. INTRODUCTION

Online browser-based user tracking is prevalent. Tracking is
used to identify users and track them across many sessions and
websites on the Internet. Tracking is often performed in order
to personalize advertisements or for surveillance purposes. It
can either be done by sites that are visited by users, or by
third-party companies which track users across multiple web
sites and applications.

Existing tracking mechanisms are usually based on either
tagging or fingerprinting. With tagging, the tracking party
stores at the user’s device some information, such as a cookie,
which can later be tracked. Modern web standards and norms,
however, enable users to opt-out from tagging. Furthermore,
tagging is often specific for one application or browser, and
therefore a tag that was stored in one browser cannot be
identified when the user is using a different browser on the
same machine, or when the user uses the private browsing
feature of the browser (usage estimates varies: 20.1% [14]
and 46% [12]). Fingerprinting is implemented by having the
tracking party measure features of the user’s machine (for
example the set of installed fonts). Corporates, however, often

install a single “golden image” (standard package of software
installations) on many identical (hardware-wise) employee
machines, and therefore it is hard to obtain fingerprints that
can separate these machines from one another. For example,
according to [25], for Windows 10 migration, 73% of organi-
zations use imaging software or MDT tools - this, combined
with identical hardware, forms a “golden image” scenario.

In this work we present a new tracking mechanism which
is based on caching DNS answers. It is the first tracking
technique that is able to cross the private browsing bound-
ary (i.e. compute the same tracking ID for a private mode
tab/window of a browser as for a regular tab/window of the
browser), and in many cases - also the inter-browser gap,
and simultaneously address the “golden image” problem, all
this while maintaining a very good coverage of the platforms
involved. To our knowledge, no other tracking method (or
combination thereof) achieves all these goals simultaneously,
i.e. can detect different users using the same “golden image”,
while detecting the same user using private browsing mode
and across different browsers.

The new tracking mechanism stops working when the
user machine is restarted, moves to a different network, or
when reaching the TTL limit (which oftentimes is one day).
Therefore, following the concept of Evercookie [18], tracking
might work best in combination with other tracking techniques
which are more persistent but have less coverage. Assume for
example that tracking with the new technique is done using
a “DNS ID” (explained later in the text) that has coverage
over different browsers and privacy modes, but a relatively
short TTL, and using cookies that have low coverage but long
persistence. In this setting, a browser B1 might visit site X and
receive both a long-term tracking cookie C1, and a DNS ID
i1. After an hour, B1 visits site Y in privacy mode. The cookie
C1 is not sent, but our method still tags the visit with the same
DNS ID i1, and thus associates the session with the same user.
Later the user uses a different browser B2 to visit site Z. The
system sends B2 a new tracking cookie, C2, and associates it
with the same user due to the identical DNS ID i1. Afterwards,
all activities by either B1 or B2 are associated with the same
user. At a later time the DNS ID might change (due to TTL
issues). However, visits by either B1 or B2 are still associated
with the user, and the user is given a new DNS ID which is
associated with the same identity, and enables to track the user
in private browsing or when using other browsers. To sum up,
the DNS ID enables tracking to cross over private-browsing
or multiple-browser gaps, while cookies and similar tagging

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA
ISBN 1-891562-55-X
https://dx.doi.org/10.14722/ndss.2019.23186
www.ndss-symposium.org



cross the TTL gap. Together they enable comprehensive and
long term tracking of users.

The tracking mechanism we devised is not easily mitigated,
especially not systematically. To fully address it, changes must
be introduced to the way browsers, stub resolvers and DNS
resolution platforms work. See full discussion in Section VI.

We exploit the DNS caching mechanism employed by the
stub resolver (part of the operating system) on the user’s
device. Caching at large is a well known technique to expedite
access to remote resources (e.g. DNS records stored on a
DNS server) when these are used repetitively. The essence
of caching is having the resource fetched once, then stored
locally, in a dedicated cache storage, so that whenever this
resource is needed later it can be fetched from the local cache
storage, rather than from the remote storage.

A. Tracking and why it is important

Browser-based tracking of users or devices is a topic of
much research over the last decade or two. This topic is
important since the vast majority of online user activity is
conducted via web browsing (at least in desktops/laptops), and
websites have vast economic incentives to track users as they
navigate from site to site. [6] specifically lists motivations
for web-based fingerprinting as “fraud detection, protection
against account hijacking, anti-bot and anti-scraping services,
enterprise security management, protection against DDOS
attacks, real-time targeted marketing, campaign measurement,
reaching customers across devices, and limiting number of
access to services”. Tracking might be even more lucrative
when private browsing is involved – since users that engage
in private browsing clearly intend to protect their privacy, and
thus compromising their privacy is probably more valuable.
(For example, an insurance company might wish to identify
potential customers whose browsing history associates them
with a greater risk.)

We stress that we do not argue in this paper about the
morality or legality of tracking. We present the new tracking
technique in order to make users and manufacturers aware of
it, and deploy mitigations against it.

Tracking can be used for more consensual purposes. For
example, an anti-fraud functionality at a financial web site
would benefit from user tracking as this can be used to
better assess the risk of identity theft for a given session,
and reduce the amount of extended authentication procedures
needed (which can annoy innocent users). In such a scheme,
the financial web site uses extended authentication for the user
upon the first access to the website, and sets a tracking ID for
the user. Upon a subsequent access to the website, even from
a different browser or via privacy mode, the user is identified
via the tracking ID, and only an abbreviated version of the
authentication procedure is employed, as the risk for identity
theft is much lower.

There are some obvious general requirements from a device
tracking mechanism, such as the need to be browser-borne
with the ability to be embedded in pages of arbitrary web-
sites, to require zero interaction with the user, and to offer

maximal longevity (ideally working across browser restarts).
These are achieved by many known techniques. However, the
ideal user/device tracking mechanism should also exhibit the
following properties:

• Support a considerable (but not necessarily full) market
share of the underlying (non-obsolete) technology. For
example, the tracking method can assume browser sup-
port for HTML5 and Javascript, but cannot assume the
availability of Java, Flash, Silverlight or other extensions.
Particularly, it must not be limited to a particular operat-
ing system or a particular browser.

• Work across the “regular browser” / “privacy mode”
boundary (the “privacy mode boundary”), and ideally
across browsers.

• Uniquely identify devices even if they have the same
hardware and software image (the “golden image” chal-
lenge).

B. The basic idea

The main concept of DNS cache-based user tracking is to
place a statistically unique combination of DNS data in the
user’s stub resolver DNS cache. This data can then be used to
tag the user (device) as long as the data remains in the DNS
cache of the device. For practicality, this procedure should be
carried out from the browser, by a 3rd-party HTML+Javascript
code (the tracking snippet). Specifically, the tracking data is a
set of DNS A/AAAA records which are the DNS resolutions
for a set of host names in the domain (or domains) controlled
by the tracker.

To make the example concrete, the tracking snippet can
be implemented as a series of HTTP requests from hosts in
the tracker’s domain, say xi.anonymity.fail. During the
DNS resolution which precedes the HTTP access, the stub
resolver sends DNS queries for those hosts, and receives for
each host a set of tracker-owned IP addresses, in random order.
The stub resolver caches the sets, retaining the order of each
set. The browser then uses the first IP address in each set to
send the HTTP request to. Each web server operated by the
tracker returns a different answer (marking the individual web
server accessed), and thus the tracking snippet can collect these
values and form a tracking ID which can be communicated to
the web site whose page is rendered by the browser. Note
that since the order of the IP address list returned with each
DNS answer is randomized, each stub resolver gets a different
series of lists, thereby achieving statistical uniqueness of the
tracking ID. On the other hand, all browsers on the user’s
device that use the stub resolver will report the same tracking
ID. A more detailed explanation of the technique, as well as
details regarding how to force the stub resolver to receive
sufficiently random lists, are provided in section III.

C. Our contributions

A new tracking method: Our main contribution is a
new user tracking method, which exhibits sufficient coverage,
crosses the privacy mode boundary, and distinguishes among
devices that were generated from the same “golden image”.

2



The detailed technical analysis of the new tracking method,
provided two additional contributions, listed below.

The first detailed analysis of DNS cache behavior in
different platforms (stub resolver × browser combinations).
We studied the specific behavior of browsers, operating sys-
tems and resolvers, in order to evaluate the effectiveness of our
technique. To the best of our knowledge this is the first study
that details some specific (and sometimes peculiar) DNS cache
behaviors of browsers, stub resolvers and caching resolvers.

Load balancing strategies: To the best of our knowledge
this is the first research of DNS load balancing strategies.
In addition to the importance of this analysis to DNS based
tracking, this analysis can help an attacker optimize a DNS
cache poisoning attack against the DNS resolution platform,
e.g. by forcing DNS queries to be routed to a specific resolver,
thus attacking one DNS resolver at a time.

II. RELATED WORK

Many tracking techniques were suggested in prior research.
At large, proposals can be categorized by their passive/active
nature. We use the terminology defined in [31]:

• A fingerprinting technique measures properties already
existing in the browser (or operating system), ideally col-
lecting a combination of data that uniquely identifies the
browser/device without altering the state of the browser.

• A tagging technique, in contrast, stores data in the
browser/device that identifies the browser/device. Further
access to the browser can “read” the data and identify the
device.

Of course, fingerprinting techniques have advantages over
tagging techniques, since storing data on the device is more
easily monitored and evaded.

A comprehensive collection of tracking methods and
how they work can be found in Google Chromium’s web
page “Technical analysis of client identification mechanisms”
([17]).

A. Fingerprinting

There is a major drawback to fingerprinting techniques,
which is that they cannot guarantee the uniqueness of the
device ID. This problem becomes acute when considering
organizations wherein desktops and laptops are cloned from
“golden images”, thus making those devices practically in-
distinguishable for passive techniques. (Furthermore, since
fingerprinting techniques are known and understood nowadays,
countermeasures are already deployed against some of these
techniques.) For example, font-based fingerprinting, User-
Agent header fingerprinting, WebGL (canvas) fingerprinting,
browser plugin/extension fingerprinting, CPU/GPU perfor-
mance fingerprinting are all methods that cannot distinguish
between systems that are based on the exact same hardware
and software.

There are some proposals for DNS-based fingerprinting
methods. It was suggested in [8] to use the DNS resolver IP
address. However, in an enterprise (or an ISP, or a campus),
multitude of clients use the same resolver, and as such, this

DNS-based fingerprinting method does not contribute toward
distinguishing among these clients.

Internal IP address disclosure methods: The WebRTC
(STUN) -based technique [28] has limited coverage (doesn’t
work with IE/Edge on Windows, doesn’t work on mac OS
Safari and on iOS), and can be turned off in Windows browsers
[26]. Forcing FTP PORT command ([20]) works only with IE
(and maybe Edge) browsers, so has very limited coverage.
Using the TCP timestamp to detect clock skew: [24]
describes how to remotely measure an endpoint’s clock skew.
However, nowadays the risk of enabling TCP timestamps is
well understood, and in Windows 10, this feature is disabled
by default.
Sequential (per-host) IP ID: Using IP ID is proposed in [10]
to detect multiple devices behind a NAT. However, nowadays
macOS and iOS randomize their IP ID field, and Android
(and Linux) increments the IP ID per host in a non sequential
manner. Thus this technique has low coverage.
Using the Javascript Math.random() seed: This attack ([19])
was addressed by browser vendors in 2008-2010 and is no
longer effective.
Ephemeral source ports in outgoing requests: This tech-
nique does not work behind a firewall/NAT, as the firewall/-
NAT typically replaces the original client source port with a
port from its own pool.
Accelerometer (in mobile devices): According to [11], it is
possible to tag mobile devices in the browser by measuring
the deviations in their accelerometer readouts. But his method
does not cover non-mobile devices (i.e. desktops, laptops) at
all, and as such its coverage is insufficient. Furthermore, it
requires the mobile device not to move while the measurement
takes place.
User action history: Except for DNS (see below), privacy
mode renders this technique ineffective.

B. Tagging

In general, tagging methods are a well understood privacy
threat. Therefore, one of the goals of the privacy modes that are
implemented in major browsers is to make the tagging methods
identify a private browsing session as a distinct instance, which
has a different tag than that of the “regular” browser. Private
browsing sessions also typically clear their residual data upon
termination and start with an empty set of data when launched.

A summary of the privacy mode boundary-crossing status
of many tagging techniques appears in [13, Table IV]. As is
depicted in that table, almost all tagging techniques do not
cross the private browsing boundary for most browsers. In
general, nowadays tagging attempts are blocked by the relevant
software vendors. For example, Flash cookies do not cross the
privacy mode boundary ([5]), and anyway, Flash nowadays
requires user interaction in order to run.

There are some advanced tagging techniques that are not
covered in [13], and yet do not cross the privacy mode
boundary: The TLS token binding protocol specifically re-
quires browsers to separate privacy mode tokens from the
regular browser tokens ([27, Section 7.3]). Firefox provides

3



a separation between the regular browser and privacy mode
with respect to TLS session identifiers and session tickets
([2]), and likewise Chrome ([3]). HSTS data does not cross
the privacy mode boundary in Chrome[17], Firefox[30] and
Safari[30]. As for tagging techniques that do cross the privacy
mode boundary:
DNS cache fingerprinting/tagging (timing based): A DNS-
based fingerprinting method is proposed in [16], which can
reveal elements of the user’s browsing history. This finger-
printing method could in theory be converted to a tagging
method. However the “read tag” operation is destructive as it
changes the data (the tag).
HTTPS Public Key Pinning (HPKP): [32] describes a
tagging technique based on HPKP. However, HPKP is being
deprecated - it is only supported nowadays by Firefox.

C. The DNSCookie Method

Our technique is based on the same foundations as
Daniel Dent’s DNSCookie [15], but is superior to it. In the
DNSCookie technique, the authoritative name server serves a
single IP address (drawn at random from two IP addresses
owned by the tracker). Thus, in an enterprise (or a campus,
or ISP) whose resolution platform comprises a single DNS
resolver, all clients (stub resolvers on different devices) will get
the same tracking ID, due to caching of the single IP address
in the single resolver. In contrast, our method handles well
a resolution platform comprising a single DNS resolver (for
BIND 9.x, Microsoft DNS Server and MaraDNS Deadwood
3.2.x DNS resolvers). This is an important distinction, as
single resolvers are involved in roughly 40% of the resolution
platforms, thus the DNSCookie technique covers no more
than 60% of the population. (We explain in Appendix A how
we came up with this estimation of the prevalence of single
resolution platforms.) Our technique covers both multiple
resolvers and single resolvers, and thus covers over 93% of
the population (as fixed-order single resolver is <7% [21]).

The analysis in [17] mentions a technique which is de-
facto identical to DNScookie (and predates it), based on the
browser’s DNS cache (but using the stub cache if it exists).
They write that a serious limitation of their proposal is that
“the value of this approach is limited by [...] the potential
conflicts with resolver caching on ISP level” (which is also
the major shortcoming of DNScookie). Our tracking technique
addresses exactly this issue.

D. Misc. Tracking Methods Related to DNS

A DNS based “tracking method” was suggested in [29],
which amounts to the server redirecting the browser to a
uniquely-named subdomain. This technique resembles HTTP
session cookies, rather than HTTP permanent cookies. As
such, this technique does not constitute “user tracking” in the
sense used in this paper.

E. DNS research and measurement

The recent analysis in [22] and [23] measures various DNS
caching resolver platform attributes, such as the number of

caching resolvers and their software. It does not cover DNS
stub resolver caches, browser DNS caches, and DNS load
balancing strategies.

III. THE BASIC METHOD

A. The Setting

To describe the technique, we first enumerate the parties
involved (please refer to Fig. 1, where the tracker components
are colored in red):

The browser – renders HTML pages and Javascript dy-
namic code from websites, received over HTTP/HTTPS. In-
vokes the stub resolver whenever DNS resolution is needed.

The operating system DNS stub resolver (with a DNS
cache) is a component within the operating system that handles
DNS resolution via API calls (e.g. getaddrinfo()). It
sends recursive DNS queries over the network to the system-
configured DNS resolver, receives answers from the resolver,
optionally stores the answer in its cache, and finally returns
the answer to the API call.

DNS resolution platform – this is a server (or servers)
typically operated by a corporate, university or ISP. It handles
DNS queries received over the network from clients, perform-
ing the actual DNS resolution by querying authoritative DNS
servers down the DNS hierarchy until reaching an answer,
which is optionally cached, and finally returned to the client.

Authoritative DNS server (tracker owned/controlled) –
in general this server answers queries about a set of DNS
domains that it is responsible for. Specifically, in our setting
the tracker has an authoritative DNS server responsible for the
anonymity.fail domain (and all its subdomains), which
returns a randomly ordered RRset1 comprising the set of
IP addresses e.g. {10.1.2.3, 10.4.5.6, 10.7.8.9} in answer to
queries for xi.anonymity.fail.

Note that the use of a single domain (anonymity.fail)
throughout the paper is for simplicity and clarity. The tech-
nique can be implemented with multiple domains. Likewise,
the repetition of IP addresses in each subdomain is for clarity’s
sake, and different IP address sets per different subdomains
are possible. Also note that the authoritative name server is
“dumb” - it does not collect/store any information (hence it is
not a scalability bottleneck), and it does not care about the IP
origin of the queries it serves.

Web (HTTP/HTTPS) servers (tracker owned/controlled)
– in general such web servers listen on an IP address for
incoming HTTP/HTTPS connections (on TCP port 80/443,
respectively), and return data over HTTP, for example an
HTML page or Javascript code. Specifically the tracker owns
several IP addresses (e.g. 10.1.2.3, 10.4.5.6, 10.7.8.9), with
a web server listening on each IP address, with each web
server (bound to a different IP address) set to return a different
value. Thus even when the servers are accessed by the same
hostname, the answers from each web server will be different.

1the term “set” in “RRset” is a misnomer – the order of individual records
is significant.

4



Figure 1: The basic method.

Note that for simplicity we assume a host per IP address, but
it is possible to listen on several IP addresses on a single host.

The tracking snippet (tracker controlled) – an
HTML+Javascript snippet that sets/gets the tracking ID. This
snippet can be embedded in a bigger HTML page, and can
be served from any URL (i.e. any domain) and from any IP
address. The snippet’s main functionality is running Javascript
code loaded from the tracker’s xi.anonymity.fail hosts.
The Javascript code provides a different answer per different
IP address that is accessed. The snippet collects these answers
from the multiple host names (for i from 1 to N ), assembling
these values to a single tracking ID number. The snippet can
report the ID to other part of the HTML page in which it is
embedded, or to communicate it to any HTTP/HTTPS server
via Javascript code.

Note that the tracker only controls the authoritative DNS
server, the web servers, and the tracking snippet. The browser,
the operating system DNS stub resolver and the DNS resolu-
tion platform are out of the tracker’s control.

B. The Basic Method

The basic operation combines the ID setting and ID query-
ing into a single flow (referring to Fig. 1):

(a) The browser renders the tracking snippet.
(b) In Step 1, the browser requests resolution from

the operating system’s DNS stub resolver for
xi.anonymity.fail.

(c) The operating system DNS stub resolver resolves the
hostnames into IP addresses, typically by (Step 2) for-
warding the query to the resolution platform configured
for the operating system.

The resolution platform (or an upstream resolver it uses)
resolves the hostname (Step 3) concluding with the recep-
tion of an answer (Step 3f) from the tracker’s authoritative
name server. The answer is a randomly ordered RRset of
A records containing tracker-owned IP addresses.
The resolution platform then caches (Step 4a) the result
and answers the stub resolver (Step 4b) with a randomly
ordered RRset (it shuffles the RRset received in Step 3f).

(d) The DNS stub resolver caches this data (RRset per query)
in Step 5a, and returns it as-is in Step 5b to the browser
(one RRset per query).

(e) The browser sends HTTP requests (Step 6) to the tracker’s
web servers designated by the IP addresses returned by
the operating system (typically the browser sends the
HTTP request to the first IP address in the RRset).

(f) The servers respond differently (Step 7) depending on the
IP address they listen on (for example, serving Javascript
code that sets a Javascript variable to a different value
for different IP address). So for example, if the set of
IP addresses used in the RRsets are 10.1.2.3, 10.4.5.6
and 10.7.8.9, then the web server listening at 10.1.2.3
may respond with the Javascript code v[0]=1, the web
server listening at 10.4.5.6 may respond with v[0]=2,
and the web server listening at 10.7.8.9 may respond with
v[0]=3.

(g) The Javascript code running in the browser collects the
data values returned from the servers and assembles them
into an ID. In our example, this amounts to enumerating
over the N array cells, and encoding them into an ID
using base 3 encoding.

Suppose that there are K IP addresses for each web server
used by the tracker (in our example K = 3). Assuming a

5



uniformly random order for the RRset, the values for the IP
addresses of the servers are uniformly distributed. When using
N host names there are KN possible ID values, uniformly
distributed. So even with a minimal K (K = 2), a large
enough N enables the tracker to assign statistically unique IDs
on an Internet-wide basis. (The choice of values for K and N
is discussed in Sec. IV-H.) Note the importance of Step 5a
– this is the step that provides persistence of the tracking
ID. Without a caching stub resolver, there is no tracking ID
persistence. As it happens, all common platforms (Windows,
macOS, Android, iOS) do have a caching stub resolver.

Our technique relies on obtaining RRset in a random order,
to ensure statistical uniqueness among clients of the same
resolver platform. We show in Section IV that we can typically
ensure that the stub resolver receives the RRset in random
order. This happens in two possible (not necessarily mutually
exclusive) scenarios: either (a) the queried resolver server (in
the resolution platform) returns the RRset in random order;
or (b) the resolution platform is load-balanced randomly per-
query (see Sec. IV-C). It is also possible that the resolution
platform comprises a single server which provides the RRset in
a round-robin order. In that case it is still possible to randomize
the order of the RRset using an auxiliary technique (see
Sec. IV-G), so that the first IP address is uniformly random
and the tracking method is still effective.

C. Benefits of the Technique

The tracking technique that we described demonstrates
multiple advantages over existing tracking methods (the details
are explained in Section IV):

• The tracking technique is orthogonal to other tracking
techniques, and thus can be combined with them to attain
synthesis in which overall coverage is increased as each
technique bridges over the gaps of the other technique
(à-la evercookie [18]).

• The tracking code can be embedded in HTML pages
of arbitrary websites, and is supported by any vanilla
browser (since it only relies on standard HTML and
Javascript).

• The tracking method survives browser restart (except on
Google Chrome on macOS), and also survives browser
“history cleanup” procedures (except on Google Chrome
on macOS). It also does not rely on “traditional” storage
(and is thus less susceptible to vendor/user interfer-
ence/restrictions).

• Tracking does not rely on having the tracking website
being continuously rendered.

• Tracking works against browser privacy mode [7].
• The tracking method can uniquely identify machines even

if they have the same hardware and software image.
• Tracking works across browsers (with some exceptions).
• Working through a VPN does not affect tracking, because

the stub resolver of the operating system is the entity that
emits and caches DNS queries (although it uses the DNS
resolver configured for the VPN network).

• Using a SOCKS4 proxy does not affect the technique,
since the client still performs the DNS queries. Ditto for
SOCKS4a and SOCKS5 if the client elects to perform
DNS queries (this was the case with some browsers).

• The technique can be used with IPv6, and/or DNSSEC.
• The technique can be used with HTTPS.
• When used with HTTPS, the technique can overcome

HTTP transparent proxies, since these typically only
intercept HTTP requests and resolve the hostname in their
HTTP Host header [9].

• The technique can be used in a Javascript-less browser
(except for Algorithm 1).2

IV. TECHNICAL DETAILS

We encountered several technical challenges applying the
technique to various browser×OS×resolver combinations. Be-
low is a discussion of the various technical issues, and how
we addressed them. We managed to develop our basic method
into a comprehensive technique that covers the vast majority
of browser×OS×resolver combinations in most cases.

The technical issues we discuss include the various con-
ditions wherein cached DNS records can be evicted/flushed
(this is not a common condition); we discuss how DNS TTL
affects our technique (it may limit the life span of the ID to
anywhere between weeks to hours); we describe the various
load balancing techniques we uncovered (most of them provide
sufficient randomness for our technique); we analyze common
resolver chaining scenarios, and determine that the vast ma-
jority of the combinations support our technique; we explain
why Tor and shared forward HTTP proxies are incompatible
with our technique; we discuss the types of stub resolvers
we encountered (this affects the RRset order randomization
algorithm); we explain the limits of UDP packet size and
how it affects the prime-size RRset technique; we elaborate
on RRset ordering policies and how they affect our technique
(with some additional improvements, it covers most popular
resolver software); and finally discuss the subjects of future
proofing and sensitivity to changes in the DNS landscape.

The conclusion is that our tracking technique works for the
vast majority of users, and is in effect until the user machine is
restarted or switches a network connection, or until our DNS
records reach the TTL limit. The tracking method is therefore
robust for at least a few hours. Consequently, it works best
when combined with other known tracking techniques which
might be more persistent but are not able to identify multiple
browsers or private browsing sessions of the same user, or
identify different users who use different machines with the
same image. It should be noted that our analysis covers the
most common DNS scenarios, which we believe are relevant
for the vast majority of Internet users. Analysis of complex

2This can be done as follows: the snippet needs to be dynamically generated
at the server side, where for each invocation the server generates a unique
provisional session token token, and returns a snippet comprising a list of
IMG tags pointing at URLs (e.g., xi.anonymity.fail/?t=token). The
tracking web servers then collect hits and associate them with the client via
the provisional session token in the URL. The device ID is calculated at the
server side according to which web server (IP address) was hit per URL.

6



and uncommon DNS scenarios requires extensive additional
research assets. It should also be noted that most applications
of tracking, for example for targeted advertising or as an anti-
fraud measure, do not depend on perfect tracking of all users
all of the time. Namely, utility from tracking is not an all-
or-nothing game. Rather, there is some utility from each user
who is being tracked, and the overall utility is linear in the
fraction of users who are successfully tracked.

A. DNS cache flush/eviction

Clearly, flushing the DNS cache of the stub resolver
deletes the DNS tracking ID (with subsequent rendering of
the tracking snippet generating a new tracking ID for the
device). Such flushing occurs in either operating system restart,
network switching (e.g. moving from one WiFi network to
another), or manual cache flush (e.g. in Windows, via the
command line ipconfig /dnsflush). Additionally, the
tracker DNS entries may get evicted from the cache if the
cache volume is limited, to make room for more used records.
However, under normal browsing conditions cache eviction of
our tracking DNS records should be rare as typically most
other DNS records consumed by the browser have TTL of
several minutes (only), and thus the resolver cache is unlikely
to become full.

Overall, eviction/flushing of DNS records is an unlikely
scenario as long as the user is connected to the same network
and keeps the machine running. This holds even if the user
generates heavy and diverse network activity. To verify this
claim, we conducted an experiment wherein 13 individuals
with varied hardware, software and networks (ISPs), were
asked to navigate on their machines to a page containing
a tracking snippet, then continue working on their machine
for 3-5 hours (with normal to heavy workload), and finally
browse the snippet page again. We chose the test duration
to be 3-5 hours to demonstrate several hours longevity while
avoiding potential interference from the TTL cap imposed
by Google Public DNS. The experiment tested whether the
snippet generated the same tracking ID, demonstrating that
the ID is long lasting and its DNS records are not evicted
from the stub resolver cache. In all 13 test cases, the DNS ID
generated by the tracking snippet survived the test duration.

B. Time To Live (TTL)

The Time To Live (TTL) value of the DNS records cached
by the operating system determines the life expectancy of the
DNS tracking ID, up to DNS flushing (see above). The impact
of time expiration (due to TTL) of the tracking records is
identical to DNS cache flushing (see above). Thus the tracker’s
authoritative DNS servers should emit maximal TTL records,
so that DNS tracking IDs would have maximal life expectancy.

Typically, operating system stub resolvers cap the TTL of
incoming DNS records, so that even if the original record
has its TTL field set to the maximum possible value (231-1
seconds), the stub resolver cap will reduce it. We detail the
TTL cap values of various operating system stub resolvers
in Table III. Moreover, resolution platforms on the path may

impose their own cap, further reducing the that TTL the stub
resolver receives. For TTL cap values of various resolvers,
see Table I. Even worse – resolution platforms may have the
resource cached from a previous query, and when queried
again at a later time, the TTL they provide with the RRset will
be less than their TTL cap (or the record’s original TTL – the
smaller of the two) since some time has already passed.3 The
expected order of magnitude for cached DNS records at the
stub resolver is therefore somewhere between a week (BIND
resolver with macOS/iOS stub resolver) and several hours
(Google Public DNS), which can suffice for many tracking
goals (especially if combined with other tracking schemes that
have less coverage but more persistence).

C. DNS load balancing

Oftentimes, the resolution platform comprises multiple re-
solvers. Even if the stub resolver uses a single IP address as
its DNS resolver server, this address may merely be an entry
IP address of a load-balancer, which actually “hides” multiple
DNS resolvers. Also, at least one DNS resolver software -
PowerDNS - fires up two resolution processes acting de-facto
as two separate DNS resolvers behind a single IP address.

There are many ways to implement load balancing. We refer
to the balancing strategy as random load balancing when the
clients are referred to each resolver with uniform probability
(i.e., given N resolvers, each query has a probability of 1

N to
access a specific resolver), regardless of the query and of the
client identity.

The DNS tracking technique takes advantage of random
load balancing by offering a differently ordered RRset every
time the authoritative server is queried. Thus, if there are (say)
two resolvers in the resolution platform, it is likely that each
of them will get a differently ordered RRset. In that case,
the technique works in an ideal manner. Each client will be
assigned a random resolver for each query, and thus will
get a random tracking ID (statistically unique, given enough
queries).

We tested several popular DNS resolution platforms (we
reviewed the PowerDNS source code as well as tested it in the
lab, and tested Google Public DNS Service and OpenDNS in
various client configurations). We have observed the following
load balancing strategies of popular DNS servers, which are
based on specific combinations of query data fields (namely,
the combination determines which DNS resolver the query is
routed to):

• (source IP, source port) (used by OpenDNS). This is
random load balancing as the source port value (which
changes between queries) is enough to randomize the
selection of resolver.

3 For example, if a resolution platform cached a record at t = 1AM ,
with cap of (say) 24 hours, then when queried again for the same resource
at t = 11PM on the same day (22 hours after the record was retrieved and
cached), it will report a TTL of only 2 hours (much less than its TTL cap of
24 hours).

7



• (qname) (used by PowerDNS Recursor 3.6 and above).
This is not random load balancing, as each query for the
same qname will be routed to the same resolver.

• (source IP, source port, qname) (used by Google Public
DNS Service). This is random load balancing as the
source port value (which changes between queries) is
enough to randomize the selection of resolver.

We also observed process-based load balancing (provided
natively by the operating system) in PowerDNS Recursor 3.0-
3.5.x, which is quite likely a random load balancing.

Other than sticky by qname (which is only employed by
PowerDNS 3.6 and above), the load balancing techniques we
encountered are random and as such support our technique.

D. DNS resolver chaining

In reality, there may be “chains” of DNS resolvers. A typical
such chain is an internal DNS resolver (actually, “forwarder”),
which forwards all queries for non-enterprise names to an
external resolution platform (e.g. the ISP resolver, or Google
public DNS service), and caches the answers. For simplicity,
we focus on chains of length 2 (intuitively these are the
majority of the chains) - a forwarder and an upstream resolver.
In such case, it can be easily shown that the technique will
fail only if there is a single Unbound 1.6.x or PowerDNS
3.6+ forwarder, or multiple (load balanced) Unbound 1.6.x or
PowerDNS 3.6 forwarders with the upstream resolver being
a single Unbound 1.6.x or PowerDNS 3.6+. Clearly these are
uncommon combinations.

E. HTTP forward proxy and Tor

The tracking technique does not work when the browser is
configured to use a shared HTTP forward proxy, because DNS
resolution in such case is performed on the HTTP forward
proxy device, and as such the same ID is assigned to all the
proxy clients. This is also the case with Tor.

F. Stub resolver cache types

We noticed two types of stub resolver DNS caches:
• A record-based cache – this cache behaves much like a

resolver (server) cache. It caches the individual records
received from the resolver, keyed by their resource name.

• A query-based cache – this cache stores the resolution
data keyed by the original query.

The major difference between the cache types is their
treatment of CNAME records. Consider a DNS query for
foo.example.com sent by the client, which results in the
following answer:
foo.example.com CNAME bar.example.com
bar.example.com A 10.2.3.4
A record-based cache will cache the two records separately,
each under its own resource name. Thus if a subsequent
query for bar.example.com is be needed, it will be
answered from the local cache. A query-based cache, on
the other hand, will cache the data under the original query
(foo.example.com), either in its entirety or only the final

result (i.e. foo.example.com → 10.2.3.4). A subse-
quent query for bar.example.com will need to be resolved
externally since bar.example.com does not exist in the
global scope of cached query answers.

A query-based cache natively support Algorithm 1 of Sec-
tion IV-G. A record-based cache needs to be explicitly tested
to determine whether it supports the said algorithm.

G. RRset order

In case there is a single cache (resolver) in the resolution
platform, load balancing is meaningless, and the tracking
technique cannot rely on having multiple resolvers returning
different results for the same query. However, DNS tracking
can still be achieved, based on the RRset reordering behavior
exhibited by some popular resolvers. When multiple records
(an RRset) are returned by the authoritative server (or the
upstream resolver), a resolver can employ several strategies
to set the internal order of RRset records returned to clients:

• Fixed order - the records are returned in the same order
for every subsequent query. Note that there may be an
initial re-ordering (e.g. in PowerDNS), or the original
order may be reserved (Unbound 1.6.x, Google DNS).

• Round-robin order – the records are returned in a cyclic
round-robin fashion (Microsoft DNS Server, MaraDNS
Deadwood 3.2.x).

• Random order – the records are returned in a random
order per query (BIND 9.x).

• Time-based round-robin order – the records are returned
in a round-robin fashion, but the order is not changed
with every access (as in regular round-robin), but rather
every second. This strategy is employed by OpenDNS.

The case of random order is easiest for tracking. The
authoritative server merely needs to return (per query) an
RRset which includes multiple addresses. The resolver will
provide a randomly ordered RRset to every client query.
Therefore, even though the answers of the authoritative server
are cached, each subsequent client which sends a set of queries
effectively receives a statistically unique ID.

The case of round-robin order is more difficult, as using
RRsets with K values yields only K possible IDs (as all
RRsets are advanced together, and thus have a combined cycle
length equal to K). One solution is to have the the lengths of
RRsets that are returned as query answers be different prime
numbers, to ensure that the combined cycle length is maximal.
(For example, with RRsets of size 2,3,5,7,11,13,17,19 we get
9699690 possible IDs, and adding 23 and 29 yields over 6
billion different IDs.) If the host name queried is no longer
than 31 bytes (including dots), then a single DNS answer
can accommodate 29 A records for it. All resolver platforms
tested and all stub resolvers (namely, operating systems) tested
support such answers (we tested with 28 records due to
technical constraints).

An alternative solution, which requires less IP addresses
but is less generic, is to forcibly randomize the current
position in the RRset that the resolver keeps, after each
query. Such technique exists for Microsoft DNS Server, but

8



not for MaraDNS Deadwood 3.2.x. The idea is to force the
resolver to conduct a random number of round-robin steps,
thus making the first record (IP address) returned in the RRset
of the next query random, which is enough for the tracking
technique to be effective. So instead of simply querying for
xi.anonymity.fail, the tracking snippet would run the
code of Algorithm 1.

// the query() function forces a DNS query
// (e.g. by inserting a SCRIPT tag
// to the DOM).
// The unique_random() function generates
// a DNS label which is statistically
// globally unique - e.g. using
// crypto.getRandomValues()

query("xi.anonymity.fail");
// n is a random integer 0...(K-1)
var n=Math.floor(Math.random()*K);
for (var j=0;j<n;j++)
{
query("bari."+unique_random()+

".anonymity.fail");
}

Algorithm 1: Randomize a round-robin RRset

The tracker’s authoritative DNS server should an-
swer queries starting with "bari." with CNAME to
xi.anonymity.fail. The resolver then forwards the
original CNAME record obtained from the tracker’s au-
thoritative DNS server, but also adds the RRset for
xi.anonymity.fail from its cache, advancing its order in
round-robin fashion. Therefore, there are n (randomly chosen)
round-robin steps of rotating RRset after the actual sampling
(of xi.anonymity. fail) takes place. Which means the
first IP address in the RRset obtained by the next stub resolver
for xi.anonymity.fail will be random.

The case of a (single resolver) fixed RRset order is not
addressed by our techniques. However, this is only problematic
if the resolver does not use load balancing, since unique ID
randomization is essentially implemented by load balancing
(as described in Section IV-C). Of the resolvers which use
a fixed RRset order, Google Public DNS uses random load
balancing, and only Unbound and PowerDNS (which have a
very small market share) do not use random load balancing.
(See also Section V-A for the experimental evaluation of
different resolvers.)

Finally, the case of time-based round robin is easily solved
(though this issue is of theoretic interest only – since this
case is only found in OpenDNS, and the OpenDNS resolution
platform comprises multiple resolvers so it is covered by
load-balanced randomization) by the client randomly choosing
some queries to run at time t (now), and the remaining queries
to run at time t+1. In this manner, it is easy to see that there
are 2N possible different results for N queries, thus enough
to make the ID statistically unique given large enough N .

To sum up, With the support for round-robin RRsets, our
technique covers a very large percentage of the resolution
platform landscape (with only single-resolver Unbound and
PowerDNS 3.6 and up as exceptions), see Table II.

NOTE: Stub resolvers (at least the ones we surveyed: in
Windows, iOS and Android, and macOS in most of the time)
always return the RRset in the original order it was received.
Browsers (at least the ones we surveyed) always use the first
IP address they receive from the stub resolver (as long as
it is responsive). This is crucial for the effectiveness of the
tracking technique – if the stub resolver would have returned
a differently ordered RRset each time it was queried, or if
the browser would have used different IP addresses from the
RRset each time it needed a resolution, the tracking ID would
have been unstable.

H. Multiple tracking systems

A single tracking system consumes multiple entries in the
stub resolver cache - at least N DNS names and N · K
A records, possibly more (see Sec. IV-G). Theoretically, if
multiple such systems are employed simultaneously, the stub
resolver’s cache may get saturated, and start evicting DNS
records that belong to those tracking systems, thus rendering
them less reliable. However, the economy of Internet user
tracking prefers centralized tracking services, and thus we
expect that there will be few (and likley only one) such
tracking system in wide deployment.

I. DNS ID uniqueness

A careful choice of K (the number of IP addresses per
host) and N (the number of DNS hosts/queries) can reduce
the likelihood of DNS ID collisions. The expected number
of collisions for M IDs is (M2 )/KN , therefore increasing K
and/or N can keep this quantity arbitrarily small. Increasing
K requires more IP addresses, while increasing N increases
traffic and error potential (dropped packets). Throughout this
paper, we use small K to simplify the discussion and due to
logistic constraints (shortage of IP addresses).

J. Future proofing

The technique relies on several properties of many present-
day resolvers, stub resolvers and browsers, namely:

• Resolvers: re-ordering the RRsets.
• Resolver platforms: non-sticky (by client) load balancing.
• Stub resolvers: maintaining a fixed-order RRsets.
• Browsers: using the first IP address in an RRset.

Our research into specific platforms and software provides
a snapshot of their current behavior. Future versions can
violate the requirements listed above, and thus reduce the
coverage of the technique. This can happen overnight (e.g.
in public DNS services), in a short period of time (e.g. with
regards to stub resolvers and browsers, which get automatic,
frequent updates), or over years (with regards to resolver
software, especially when bundled with a server operating
system distro). For example, during our research we noticed
that Google Public DNS Service reduced its TTL cap from
86400 seconds (in June 2017) to 21600 seconds (as of October
2017).

V. PLATFORMS AND EXPERIMENTS

Our lab setup is described in detail in Appendix B.

9



A. Resolution platforms

We conducted extensive studies of the behavior of popular
resolution platforms, in order to evaluate the following issues
which are relevant to effectiveness of tracking:

How many caches are there in the resolution platform?
As we will see below, the tracking technique generally prefers
multiple caches, and may have problems with some single
cache resolution platforms. We used the technique described in
[23] to detect the number of caches in the resolution platforms
that we studied. We also verified this data with the software
configuration and documentation whenever this was possible.

What is the TTL cap imposed by the resolution plat-
form? The TTL cap directly affects the longevity of the
tracking ID as the stub resolver respects the TTL it receives
from the DNS resolution platform (and may apply its own
cap on top of it). Obtaining the TTL cap was a simple matter
of serving a record with maximal TTL from an authoritative
DNS server through the platform, and observing the TTL field
returned by the resolution platform.

What is the order of the records in the RRset returned?
This is important for single cache platforms. The more random
the order is, the better. For this test, we created an RRset
in an authoritative name server, comprising 10 A records for
different IP addresses. We then observed the order in which
this RRset was returned.

If the RRset order is round-robin, can randomization
be forced? If we can randomize the order to some degree, we
can still use the tracking technique, even with a single cache
in round-robin RRset order. For this test we ran Algorithm 1.

When multiple caches are present, how random is the
load balancer? If the load balancing is random “enough”,
then the tracking technique is guaranteed to be effective. The
test applied here calculates the likelihood of two consecutive
queries to arrive at the same resolver (cache). This is done
by repeatedly querying a random resource via a client, while
the authoritative name server answers this query (from the
resolution platform) with a CNAME to a fixed resource name,
which in turn resolves into a unique RRset each time it is
queried from the authoritative server. Eventually all resolvers
in the resolution platform get the fixed resource cached, but
each resolver gets a different (unique) RRset. By observing
the RRsets received by the client we can tell whether two
consecutive answers are from the same resolver or not.

If load balancing is used, is it sticky per query? Sticky
(per query) load balancing among multiple caches effectively
reduces the situation into (the more problematic) single cache
scenario. We test this by sending repeated queries to the
resolution platform for a fixed resource name. The first time
this query arrives at the authoritative name server, the answer
is a special RRset, and each subsequent query is answered
with another (possibly random) RRset. At the client, we count
the number of special RRsets received from the resolver.
The quotient of the number of special RRset answers to the
number of queries is an indication of how sticky the resolution
platform is.

The raw results of these tests are summarized in Table I.
Note that all BIND versions (9.9.0 to 9.11.2-P1) behaved
identically in our tests, all PowerDNS 4.x installations be-
haved identically in our tests, all Unbound 1.6.x behaved
identically, all MaraDNS Deadwood versions (3.2.0-3.2.11)
behaved identically, and all Microsoft DNS Servers (6.1-10.0)
behaved identically. Therefore we designate them BIND 9.x,
PowerDNS 4.x Unbound 1.6.x, MaraDNS Deadwood 3.2.x
and Microsoft DNS, respectively.

Note the following properties in the table:

• While MaraDNS Deadwood 3.2.x technically reorders
RRset in a round-robin fashion, Algorithm 1 does
not work for that system. The reason is that query-
ing for bari.anonymity. fail does not re-
order the RRset for xi.anonymity.fail when
xi.anonymity.fail is queried directly (which is the
ultimate goal of the algorithm).

• PowerDNS Recursor 4.x is sticky per query, which means
that practically, the tracking technique does not benefit
from having two processes and caches in each installa-
tion (by default). That is, a single PowerDNS Recursor
(actually starting from version 3.6) will behave from all
practical aspects of the technique as a single cache.

• PowerDNS Recursor 3.5.3 (actually all 3.x versions until
3.6) is not sticky by query, but rather has a load balancer
in front of two processes, with the load balancer based
on process load (i.e. practically random, or at worst case
flipping between the processes).

• In Google Public DNS and OpenDNS public DNS, the
load balancing appears to be random (the probability of
identical pairs and the probability of accessing the same
server twice for the same query are both around 1/L
where L is the number of caches, as expected from a
random load balancer).

Summary: The applicability of the DNS tracking technique is
derived from the raw results, and is summarized in Table II. In
short, the DNS tracking technique is applicable to all resolvers
that we tested, except for single-server Unbound 1.6.x and
single-server PowerDNS 3.6+. It is important to note that in
enterprise use, Unbound and PowerDNS represent a very small
portion of the resolution platform software [21].

B. Stub resolvers

The study of stub resolvers should answer the following
questions:

Cache type (query-based or record-based) – a query-based
cache supports Algorithm 1. A record-based cache may
or may not (an explicit test is needed). This is easily
tested by querying a resolver for foo.example.com and
getting a resolver response such as: foo.example.com
CNAME bar.example.com; bar.example.com A
10.2.3.4.

Querying now for bar.example.com in a query-based
cache yields another query from the stub resolver for
bar.example.com, whereas in a record-based cache, the

10



Table I: Resolver behavior

BIND
9.x

Unbound
1.6.x

PowerDNS
Recursor
4.x

PowerDNS
3.3.2
Recursor
3.5.3

MaraDNS
Deadwood
3.2.x

Microsoft
DNS server

Google
Public
DNS

OpenDNS
public
DNS

Cache count 1 1 2 2 1 1 64 144

TTL cap [sec.] 604800 none 86400 86400 86400 86400 21600 604800
RRset order
(single server) random fixed fixed fixed round-robin round-robin fixed cyclic

(time based)
RRset
order rand. N/A N/A N/A N/A No Yes N/A N/A

Identical
pairs [prob.] N/A N/A 0.487 0.026 N/A N/A 0.178 0.080

Stickyness [prob.] N/A N/A 1 0.45 N/A N/A 0.1525 0.075

4 The actual number of resolvers may vary according to the region, the ISP and the time of day.

Table II: Applicability of the DNS tracking techniques to resolution platforms

Resolver Platform Applicable? TTL Cap Resolver Platform Applicable? TTL Cap
BIND 9.x, single server Yes 604800 PowerDNS <3.6, multiple servers Yes 86400
BIND 9.x, multiple servers Yes 604800 MaraDNS Deadwood 3.2.x, single server Yes5 86400
Unbound 1.6.x, single server No N/A MaraDNS Deadwood 3.2.x, multiple servers Yes 86400
Unbound 1.6.x, multiple servers Yes none Microsoft DNS, single server Yes6 86400
PowerDNS 3.6+, single server No N/A Microsoft DNS, multiple servers Yes 86400
PowerDNS 3.6+, multiple servers Yes 86400 Google Public DNS service Yes 21600
PowerDNS <3.6, single server Yes 86400 OpenDNS Public DNS Yes 604800

5 Requires the tracker to control 20-40 different IP addresses.
6 Requires the tracker to control 20-40 different IP addresses; alternatively use Algorithm 1.

answer will be served from the cache (without an additional
query).

Cache size limit – in order for the technique to work, the
cache should be able to contain at least several dozen entries,
ideally much more.

TTL cap imposed – this limit directly affects the
longevity of the tracking ID. Obtaining the TTL cap is not
straight-forward as the stub resolver does not return it in
getaddrinfo(). In some cases it may be possible to view
the cache (e.g. in Windows and in macOS) and observe the
TTL value directly. In other cases (iOS, Android), the value
needs to be discovered by looking at the source code.

When does cache flushing occur? – particularly, does a
network change flushes the cache? testing this is as simple as
switching networks and observing the cache.

Is the order of IP addresses returned from
getaddrinfo() preserved? – obviously if it is not
preserved, then the technique fails completely for the
stub resolver. Testing this is a simple matter of invoking
getaddrinfo() multiple times for a resource whose RRset
comprises multiple A records, and observing the order in
which they are returned by getaddrinfo().

A summary of the results can be found in Table III. As can
be seen, all stub resolvers support the DNS tracking technique.

C. Browsers

The study of browsers should answer these questions:
Does the browser have an internal cache, and what

is its expiration policy? An internal cache with generous
expiration policy can extend the life of the tracking ID, and
can also bridge the network-change gap. Obtaining this data

can be via source code inspection (if the browser source code
is available), documentation, or empiric experimentation.

Does the browser go through the operating system’s stub
resolver cache? Surprisingly, some browsers have a built-in
stub resolver (in which case their internal cache is the “main”
cache for the browser). Testing this can be done by introducing
a record to the operating system’s stub resolver cache (e.g. by
pinging this host), and observing whether browsing to this host
generates a DNS query.

Does the technique work across browser windows?
browser tabs? privacy mode? Testing this is straightforward.

Does the technique survive clearing the browsing his-
tory? For browsers that use the stub resolver cache, this should
be answered in the affirmative. Browsers which implement
their own stub resolver may very well yield a negative result.
Testing this is straight forward.

We ran these tests over the major browsers, and report the
results in the following sub-sections.

D. Windows stub resolver and browsers

The Windows stub resolver (and cache) is implemented as
the “DNS Client” service. We tested Windows 10, but the
results should be applicable to Windows 8.x and Windows
7, and perhaps even for earlier versions. The Windows stub
resolver is oblivious to network issues at the carrier protocols
(e.g. TCP). It provides the same answer to getaddrinfo()
regardless of whether the IPs in it are responsive or not.
The Windows DNS cache exhibits a most peculiar property:
there are actually two side-by-side DNS caches. One cache
(which we will designate as W0) is used for DNS resolution
queries made with getaddrinfo() parameter “address

11



Table III: Stub resolvers

Stub resolver
component/SW

Cache
type

Cache
size limit

TTL cap
[seconds]

Cache flush
trigger

RRset
order

Windows 10 ver. 1709
(build 16299.192)

DNS Client
Service

query
-based

4096
answers (est.) 86400 network change,

OS restart preserved

macOS High Sierra
version 10.13.2

Bonjour
mDNSResponder

record
-based (none) 16106127 network change,

OS restart preserved

Google Chrome
63.0.3239.108
on macOS

Google Chrome query
-based

1000
answers (none)

browser restart, clearing
browsing history, network
change(!), OS restart

preserved

iOS 11.2.5 Bonjour
mDNSResponder

record
-based

1MB (4310
“entries” 8) 1610612 network change,

OS restart
preserved for RRset
size <8, otherwise reversed

Android 8.1.0 Bionic
libc

query
-based

640
answers (none) network change,

OS restart preserved

7 Equals to 60000000(16) milliseconds.
8 In an RRset, each record value consumes one “entry” (CacheEntry object - 232 bytes in 64bit distribution).

Table IV: Browser properties

OS Cache Internal TTL
(cumulative)

Works across
privacy boundary

Works across
browser restart

Works across
history deletion

Microsoft Edge 41.16299.15.0
(EdgeHTML 16.16299) Win 10 W0 1800 Yes Yes Yes

Microsoft IE 11.192.16299.0 Win 10 W0 1800 Yes Yes Yes
Google Chrome 64.0.3282.119 Win 10 W2 60 Yes Yes Yes

Mozilla Firefox Quantum 58.0.1 Win 10 W0
TTL from
stub resolver Yes Yes Yes

Opera 50.0.2762.67 Win 10 W2 60 Yes Yes Yes
Safari 11.0.2 (13604.4.71.3) macOS N/A 0 Yes Yes Yes
Chrome 63.0.3239.108 macOS N/A N/A Yes No No
Mozilla Firefox 57.0.1 macOS N/A 60+60(grace) Yes Yes Yes
Mobile Safari version 11.0 iOS N/A 0 Yes Yes Yes
Chrome version 64.0.3282.112 iOS N/A 0 Yes Yes Yes
Mozilla Firefox version 10.5b8741 iOS N/A 0 Yes Yes Yes
Samsung Internet 6.2.01.12 Android N/A 60 Yes Yes Yes
Google Chrome 64.0.3282.137 Android N/A 60 Yes Yes Yes
Mozilla Firefox 58.0.1 Android N/A 60+60(grace) Yes Yes Yes

family” set to AF_UNSPEC, meaning that the address family
is unspecified and it accepts both IPv4 and IPv6 addresses.
Another cache (which we will designate as W2) is used for
DNS resolution queries that set the “address family” parameter
of getaddrinfo() to AF_INET, meaning that only IPv4
addresses are required.

Browsers and other network tools may be using one of
those caches or both of them, depending on how they invoke
getaddrinfo(), or other DNS APIs. Browser behavior for
Windows is summarized in the first part of Table IV. The
operation of the Firefox browser is rather unique. We therefore
highlight some observations about its behavior:

• Firefox uses W0 cache for its DNS queries. However,
Firefox retrieves the TTL for the DNS records (which
is not available via getaddrinfo()) using Windows’
DNSQuery_A() API which goes through the W2 cache.
Firefox emits two DNSQuery_A() calls: the first for A
records, and the second for AAAA records. The TTL is
the minimum of the TTLs in the A and AAAA records
received via the DNSQuery_A() calls.

• Firefox has its own internal cache (on top of the stub
resolver cache), in which it caches DNS records received
from the stub resolver, with the TTL it retrieves per the

above. This cache is shared among all tabs and windows.
• Firefox also keeps expired RRsets in its cache. When

a new RRset is retrieved for a hostname, if an expired
RRset for the same hostname exists in the Firefox cache
with the exact same records as the new RRset, the old
RRset will be retained (with its TTL updated from the
new RRset). Thus Firefox may retain the order of the
records within the RRset after it is expired and re-queried.
This can extend the life span of the tracking technique
beyond the nominal TTL.

Conclusion: The net result is that all four browsers tested on
Windows support the tracking technique, with maximum TTL
imposed by the Windows stub resolver (one day). Tracking
is also effective across different browsers: Google Chrome
and Opera comprise one set of cross-browser ID compatible
browsers, and Microsoft Internet Explorer, Microsoft Edge and
Mozilla Firefox comprise another such set.

E. macOS stub resolver and browsers
The macOS stub resolver is based on Apple’s Bonjour

mDNSResponder. The cache is record-based. The results for
macOS browsers are summarized in Table IV.

Overcoming the stub resolver’s IP order preference:
The macOS stub resolver and getaddrinfo() apparently

12



access some per-host network connectivity/RTT, so while the
stub resolver cache maintains the original RRset order, the
order may change in the result of getaddrinfo(), such
that less responsive (or higher RTT) IP addresses are pushed
to the end of the list. Ultimately this may lead in some cases
to situations where the first IP address (among the K cached)
is identical across the N names. This is detrimental for the
tracking technique since all devices that behave this way end
up being assigned a tracking ID out of only K possible values.
A revised technique can address this issue as following: choose
K so that the entropy of random order over K, log2(K!)
is sufficient for a DNS ID, then have N =

(
K
2

)
and for

i = 1...
(
K
2

)
, resolve xi.anonymity.fail into the ith

pair of different IP addresses from the pool of K addresses,
served in random order. Assuming the macOS stub resolver
imposes its preference order among the K addresses in a
random fashion (since they all potentially go through the same
routing and arrive at the same server), this order can be easily
calculated from the destination IP addresses of the subsequent
HTTP requests, and thus this order can serve as an alternative
DNS ID, with sufficient entropy. The analysis of a “mixed”
case in which the order induces equivalnce classes is omitted
due to space considerations, but results in having at least
log2(K!) entropy.

Google Chrome: Surprisingly, Google Chrome on macOS
does not use the macOS stub resolver at all. Instead, Google
Chrome implements its own, internal, standalone DNS stub
resolver (and cache). The cache is per-query, it respects the
original TTL (does not cap it), and is shared among regular
browsing and privacy mode browsing. It does get wiped when
browsing history is cleared (and when the browser is restarted).
Therefore, while Chrome on macOS does not share DNS ID
with other browsers, it does share the DNS ID between regular
mode and privacy mode (“incognito”), and thus the tracking
technique is still effective in this use case.

Firefox: The observations about Firefox’s cache RRset
expiration in Microsoft Windows (Section V-D) holds for
macOS as well.

Conclusion: The net result is that all three browsers tested
on macOS support the tracking technique, with the maximum
TTL imposed by the macOS stub resolver (18.6 days) for
Safari and Firefox (and no TTL capping for Chrome), and
with cross browser tracking ID between Safari and Firefox.

F. iOS stub resolver and browsers

The iOS stub resolver implements a record-based cache.
It supports Algorithm 1 as long as the RRsets for
xi.anonymity.fail do not differ (up to record or-
der) in the various answers. The original RRset for
xi.anonymity.fail is retained by the stub resolver,
and thus the tracking ID is kept intact in the stub re-
solver, while the algorithm randomizes the RRset order of
xi.anonymity.fail in the resolution platform’s cache.

The iOS stub resolver takes notice of host outages and RTT
issues and imposes its order preference on getaddrinfo(),
just like macOS. See the treatment in Section V-E.

Conclusion: The results for iOS browsers, summarized in
Table IV, are that all three browsers tested on iOS support the
tracking technique, with maximum TTL imposed by the iOS
stub resolver (18.6 days), and with cross browser tracking ID.

G. Android stub resolver and browsers

The Android stub resolver is oblivious to network issues at
the carrier protocols (e.g. TCP). It provides the same answer
to getaddrinfo() regardless of whether the IPs in it are
responsive or not.

The observation on Firefox’s cache RRset expiration from
Section V-D holds for Android as well.

Conclusion: The results for Android browsers, summarized
in Table IV, are that all browsers we tested on Android support
the tracking technique, with cross browser tracking ID.

H. Linux

The market share of desktop Linux is very low. As of Feb.
2018, [1] reports “Other [operating systems]” (which include
desktop Linux) as 0.6% of all operating systems, and [4]
reports “Linux” at 2.32% of the desktop operating systems.
Thus, and due to time constraints, we decided not to analyze
tracking of Linux users.

I. Connectivity issues at the TCP/HTTP level

The browsers we tested skip an IP address if it is not
responsive, and move to the next address (in the IP address list
returned by getaddrinfo()). Thus a temporary network
loss/outage/slowness in one or several of the IP addresses
may temporarily change a few bits in the tracking ID, but as
soon as all IP addresses are responsive, the tracking ID will
resume its original, correct value. The tracking technique can
be made resilient against such temporary TCP/HTTP issues,
for example by issuing each request for individual script
(hostname) three times, and taking the majority answer.

It is also possible that network conditions prevent the
browser from accessing the IP address of one tracking server
during the ID generation process (including macOS/iOS stub
resolver reordering of the returned IP address list from
getaddrinfo()). This case can be detected by going over
all N values obtained from the K tracking web servers, and
observing whether each of the K web servers returned at least
one value. If this is not the case then the ID is deemed invalid.
By Boole’s inequality, the probability of a false positive (i.e.,
choosing not to connect to a tracking server although all
servers are alive) has an upper bound of K(1− 1

K )N , which
can be made as low as needed by increasing N .

J. DNS tracking ID Experiment

We ran an experiment to validate some properties of the
tracking technique in the wild. Specifically, we simulated
multiple (100) different clients of the same network (caching
resolver) obtaining tracking IDs, and checking whether their
IDs are unique, as well as the TTL assigned to the DNS
records by the caching resolver. This was implemented as a
standalone C program which emits DNS queries directly to the

13



Table V: DNS Tracking ID Experiment

Network Type DNS resolver IP DNS resolver owner TTL cap [s] Num. IDs Unique IDs [%]
Cellular network 1 Cellular ISP 8.8.8.8 Google 21600 100 100
Celluler network 2 Cellular ISP 194.90.0.11 Cellular provider DNS 604800 100 100
Cafè Café hotspot 192.115.106.35 local ISP 604800 100 100
Conference wifi Conference hotspot 8.8.8.8 Google 21600 100 100
Home office 1 xDSL ISP 8.8.4.4 Google 21600 100 100

Home office 2 Fiber ISP non-routable
(modem/router) (forwarding to Google) 21600 100 100

Home office 3 Cable ISP non-routable
(modem/router) (forwarding to ISP) none 100 100

University University network 132.71.147.34 University DNS 604800 100 100

nameserver (bypassing the stub resolver cache), and repeatedly
generating the DNS tracking ID (employing Algorithm 1).
We tested this for 8 networks that represent a wide variety
of network scenarios. The results were positive - in 8 out of
8 networks, the technique provided 100 unique IDs to 100
simulated clients (i.e. no ID collisions). Also in the these 8
networks, the TTL did not exhibit unusually low values - in
fact the minimum value (21600 seconds) is a result of some
networks using the Google public DNS service (which caps
TTL to this value). The results are summarized in Table V.

VI. REMEDIATION AND COUNTERMEASURES

It is difficult to prevent our DNS-based tracking technique
since DNS caching is crucial for performance. For example,
implementing a straightforward solution of disabling the DNS
cache and always sending fresh DNS lookup queries will
result in a noticeable hit to performance. Detecting DNS-based
tracking is not straightforward. For example, while the tracking
uses longer than average TTL there are still many sites that
use TTL as long as 1 day, thus long TTL cannot be used to
distinguish tracking from legitimate DNS records.

Systematic solutions: We suggest two systematic solutions
that limit the effectiveness of tracking:

Adding randomization to the client side: Clients (browsers)
should randomize the choice of IP addresses within the RRset,
prior to every new connection to the resolved hostname. This
takes care of the randomized RRset tagging scenario.

Using a client-sticky load balancing: That is, when load
balancing is used, the same client always arrives at the same
resolver. This takes care of the scenario wherein load balancing
is used by the tracking technique (with one IP address RRset).
It effectively reduces the number of IDs assigned to clients
to the number of actual resolvers (caches) in the resolution
platform. Client-stickiness can be achieved for example via
IP-address based load balancing.

Manual solutions: Other solutions require manual interven-
tion at the client:

Using a shared HTTP forward proxy (or Tor). In this case,
the DNS queries are emitted from the shared proxy server, thus
assigning the same tracking ID to all the clients behind it. This
solution may be non-trivial to implement, both for consumers
(finding a stable open proxy, etc.), and for enterprise users.

Flushing the operating system DNS cache very often. This
is both cumbersome, and detrimental to performance (as the

DNS cache’s raison d’être is improving performance). In the
extreme – disable DNS caching altogether.

Enterprise level solutions: Enterprises and ISPs can in-
struct their clients to use a forward HTTP proxy, or alterna-
tively set up a resolution platform with sticky-by-IP load bal-
ancing, and fixed RRset order (e.g. Unbound or PowerDNS).
In the latter workaround, however, all users may end up using
a single IP address per hostname, which is probably not a
desirable outcome.

Non-generic solution (domain blacklisting): A generic
domain-based detection approach is not applicable since
many legitimate hosts resolve into multiple IP addresses,
and the technique doesn’t rely on using hosts in the same
domain. It is possible to block the domain name(s) (e.g.
anonymity.fail) and/or the full hostnames used by the
tracking technique (e.g. xi.anonymity.fail) from cor-
rectly resolving. This can be done at the resolution platform
or at the stub resolver (and maybe the browser). For example at
the stub resolver, xi.anonymity.fail can be forced to re-
solve to 127.0.0.1 by adding an entry in the /etc/hosts
file. This approach requires prior knowledge of the domain
names used by the tracker, and as such it is always a step
behind the tracker (who has the timing advantage). Note that
the technique can be implemented using multiple domains and
non-intersecting sets of IP addresses, thus hindering automatic
detection of the tracking domains.

VII. SUMMARY

We developed a novel user tracking technique, based on
per-user caching of statistically unique DNS records. This
technique covers the technologies used by a very large fraction
of Internet users (in terms of browsers, operating systems,
and DNS resolution platforms). It can distinguish between
machines that were cloned from a “golden image” (i.e., have
identical hardware and software), can overcome the “privacy
mode” boundary, and in most cases can track users across
different browsers (on the same machine).

This tracking technique is not easily mitigated. There
are possible workarounds, but these are not without setup
overhead, performance overhead or convenience overhead.
A complete mitigation of this tracking technique requires
software modifications in both operating systems and resolver
software. This tracking technique is orthogonal to existing
tracking techniques, and as such can be combined with them

14



to provide enhanced stickiness and additional confidence in
user identification.

ACKNOWLEDGEMENTS

We thank Yotam Harchol for his helpful comments.

REFERENCES

[1] analytics.usa.gov. https://analytics.usa.gov/.
[2] Bug 1101528 - Firefox uses the same TLS session ticket and/or ID

between normal and private browsing. https://bugzilla.mozilla.org/show_
bug.cgi?id=1101528.

[3] Maintain separate tls session caches per-profile. https://bugs.chromium.
org/p/chromium/issues/detail?id=30877.

[4] Operating system market share. https://netmarketshare.com/
operating-system-market-share.

[5] Private browsing in flash player 10.1. https://www.adobe.com/devnet/
flashplayer/articles/privacy_mode_fp10_1.html.

[6] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gürses, F. Piessens, and
B. Preneel. FPDetective: dusting the web for fingerprinters. In ACM
CCS ’13, pages 1129–1140, 2013.

[7] G. Aggarwal, E. Bursztein, C. Jackson, and D. Boneh. An analysis of
private browsing modes in modern browsers. In USENIX Security’10,
pages 6–6, 2010.

[8] F. Alaca and P. C. van Oorschot. Device fingerprinting for augmenting
web authentication: Classification and analysis of methods. In ACSAC
’16, pages 289–301, 2016.

[9] R. Auger. Socket capable browser plugins result in transparent
proxy abuse. http://www.thesecuritypractice.com/the_security_practice/
TransparentProxyAbuse.pdf, 2009.

[10] S. M. Bellovin. A technique for counting Natted hosts. In 2nd
SIGCOMM Workshop on Internet Measurement, pages 267–272, 2002.

[11] H. Bojinov, Y. Michalevsky, G. Nakibly, and D. Boneh. Mobile device
identification via sensor fingerprinting. CoRR, abs/1408.1416, 2014.

[12] C. Buckle. Almost 1 in 2 use private browsing win-
dows. https://blog.globalwebindex.com/chart-of-the-day/
almost-1-in-2-use-private-browsing-windows/, 2016.

[13] T. Bujlow, V. Carela-Español, J. Solé-Pareta, and P. Barlet-Ros.
Web tracking: Mechanisms, implications, and defenses. CoRR,
abs/1507.07872, 2015.

[14] E. Bursztein. Understanding how people use private browsing. https:
//elie.net/blog/privacy/understanding-how-people-use-private-browsing,
2017.

[15] D. Dent. DNS cookie demonstration. http://dnscookie.com/, October
2015.

[16] E. W. Felten and M. A. Schneider. Timing attacks on web privacy. In
ACM CCS ’00, pages 25–32, 2000.

[17] A. Janc and M. Zalewski. Technical analysis of client identifica-
tion mechanisms. https://www.chromium.org/Home/chromium-security/
client-identification-mechanisms.

[18] S. Kamkar. Evercookie. https://samy.pl/evercookie/, 2010.
[19] A. Klein. Predictable javascript math.random and http multipart

boundary string. http://www.securitygalore.com/site3/math_random_
and_multipart_boundary.

[20] A. Klein. The localhosed attack – stealing internet explorer 11-7
cookies for hosts on the local machine (and leaking the ip address as
a byproduct). http://www.securitygalore.com/files/localhosed.pdf, June
2015.

[21] A. Klein. Hijacking DNS like it’s 2016, October 2016.
[22] A. Klein, V. Kravtsov, A. Perlmuter, H. Shulman, and M. Waidner. X-

ray-DNS. https://github.com/alonperl/X-Ray-DNS/tree/master/Parent_
Attacker_Victim/X-Ray_tool, 2017.

[23] A. Klein, H. Shulman, and M. Waidner. Counting in the dark: Caches
discovery and enumeration in the internet. In IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), June 2017.

[24] T. Kohno, A. Broido, and k. Claffy. Remote physical device finger-
printing. IEEE Transactions on Dependable and Secure Computing,
2(2):93–108, May 2005.

[25] J. Moskowitz. New survey conveys the challenges of the
windows 10 migration. https://betanews.com/2018/07/18/
new-survey-conveys-the-challenges-of-the-windows-10-migration/,
2018.

[26] T. Nakamura. Google Chrome WebRTC IP address leakage (Comment
67).

[27] A. Popov, M. Nystrom, D. Balfanz, A. Langley, and J. Hodges. The
Token Binding Protocol Version 1.0. Internet-Draft draft-ietf-tokbind-
protocol-16, IETF, Oct. 2017. Work in Progress.

[28] D. Roesler. Demo. https://diafygi.github.io/webrtc-ips/, 2015.
[29] K. Seifried. User tracking methods. https://seifried.org/security/

www-auth/section-5.html, 2001.
[30] M. Stockley. Anatomy of a browser dilemma – how hsts ‘supercookies’

make you choose between privacy or security. https://nakedsecurity.
sophos.com/2015/02/02 /anatomy-of-a-browser-dilemma-how-hsts
-supercookies-make-you-choose-between-privacy n-or-security/.

[31] H. Wramner. Tracking users on the world wide web.
[32] Y. Zhu. Weird new tricks for browser fingerprinting. https://zyan.scripts.

mit.edu/presentations/toorcon2015.pdf.

APPENDIX

A. Prevalence of Single DNS Resolver

Our estimation of the portion of single resolvers in enter-
prise networks is explained as following: according to [23, Fig.
5], in 28% of the enterprise networks, a single resolver is used
as the upstream resolution platform. Additionally, according
to [21], in 35% of the enterprise networks, Google public
DNS is used as the upstream resolution platform, and single
Google Public DNS Service employs multiple caches, these
two populations are mutually exclusive. This means that of the
non- Google Public DNS Service upstream platforms, some
28
65 = 43% are single resolvers. If we assume that of the
enterprises that use the Google Public DNS server, the vast
majority (say, 80%) of enterprises use an internal resolver
forwarding to Google Public DNS Service (and not Google
Public DNS Service directly), and that the distribution of
single resolvers there remain the same as the non- Google
Public DNS service (namely, 43% are single resolver), we then
have that in 0.28+ 0.8 · 0.35 · 0.43% ≈ 40% of the enterprise
networks, a single resolver is involved in the DNS resolution.

This means that any method that aspires to achieve wide
coverage cannot ignore the single resolver scenario. However,
the DNSCookie proposal does not address this scenario, thus
fails to fulfill a crucial requirement for a tracking technique.

B. Lab Setup

We set up a lab in Microsoft Azure cloud with an authorita-
tive name server for the domain anonymity.fail, written
in Perl, based on the DNS X-Ray Tool [22]. and modified to
include the specific tests needed for this research. In addition,
the lab included four web servers, with dedicated IP addresses,
running Apache 2.4.18 and PHP 7.0.18, and serving a simple
Javascript code indicating which server served it.

The resolution platforms that were evaluated in the lab are
BIND 9.11.2-P1, 9.10.3-P4 (Ubuntu), and 9.9.5-3 (Ubuntu);
Unbound 1.6.8 and 1.6.0; PowerDNS Recursor 4.1.1, 4.0.4-1,
3.5.3; MaraDNS Deadwood 3.2.11 and 3.2.09; Microsoft DNS
Server 10.0.16299, 10.0.14393, 6.2.9200, and 6.1.7601; and a
DNS client using a Perl script running Dig for customized
DNS tests.

More details about the lab setup are described in the full
version of the paper.

15

https://analytics.usa.gov/
https://bugzilla.mozilla.org/show_bug.cgi?id=1101528
https://bugzilla.mozilla.org/show_bug.cgi?id=1101528
https://bugs.chromium.org/p/chromium/issues/detail?id=30877
https://bugs.chromium.org/p/chromium/issues/detail?id=30877
https://netmarketshare.com/operating-system-market-share
https://netmarketshare.com/operating-system-market-share
https://www.adobe.com/devnet/flashplayer/articles/privacy_mode_fp10_1.html
https://www.adobe.com/devnet/flashplayer/articles/privacy_mode_fp10_1.html
http://www.thesecuritypractice.com/the_security_practice/TransparentProxyAbuse.pdf
http://www.thesecuritypractice.com/the_security_practice/TransparentProxyAbuse.pdf
https://blog.globalwebindex.com/chart-of-the-day/almost-1-in-2-use-private-browsing-windows/
https://blog.globalwebindex.com/chart-of-the-day/almost-1-in-2-use-private-browsing-windows/
https://elie.net/blog/privacy/understanding-how-people-use-private-browsing
https://elie.net/blog/privacy/understanding-how-people-use-private-browsing
http://dnscookie.com/
https://www.chromium.org/Home/chromium-security/client-identification-mechanisms
https://www.chromium.org/Home/chromium-security/client-identification-mechanisms
https://samy.pl/evercookie/
http://www.securitygalore.com/site3/math_random_and_multipart_boundary
http://www.securitygalore.com/site3/math_random_and_multipart_boundary
http://www.securitygalore.com/files/localhosed.pdf
https://github.com/alonperl/X-Ray-DNS/tree/master/Parent_Attacker_Victim/X-Ray_tool
https://github.com/alonperl/X-Ray-DNS/tree/master/Parent_Attacker_Victim/X-Ray_tool
https://betanews.com/2018/07/18/new-survey-conveys-the-challenges-of-the-windows-10-migration/
https://betanews.com/2018/07/18/new-survey-conveys-the-challenges-of-the-windows-10-migration/
https://diafygi.github.io/webrtc-ips/
https://seifried.org/security/www-auth/section-5.html
https://seifried.org/security/www-auth/section-5.html
https://nakedsecurity.sophos.com/2015/02/02
https://nakedsecurity.sophos.com/2015/02/02
/anatomy-of-a-browser-dilemma-how-hsts
-supercookies-make-you-choose-between-privacy
n-or-security/
https://zyan.scripts.mit.edu/presentations/toorcon2015.pdf
https://zyan.scripts.mit.edu/presentations/toorcon2015.pdf

	Introduction
	Tracking and why it is important
	The basic idea
	Our contributions

	Related work
	Fingerprinting
	Tagging
	The DNSCookie Method
	Misc. Tracking Methods Related to DNS
	DNS research and measurement

	The basic method
	The Setting
	The Basic Method
	Benefits of the Technique

	Technical Details
	DNS cache flush/eviction
	Time To Live (TTL)
	DNS load balancing
	DNS resolver chaining
	HTTP forward proxy and Tor
	Stub resolver cache types
	RRset order
	Multiple tracking systems
	DNS ID uniqueness
	Future proofing

	Platforms and Experiments
	Resolution platforms
	Stub resolvers
	Browsers
	Windows stub resolver and browsers
	macOS stub resolver and browsers
	iOS stub resolver and browsers
	Android stub resolver and browsers
	Linux
	Connectivity issues at the TCP/HTTP level
	DNS tracking ID Experiment

	Remediation and Countermeasures
	Summary
	References
	Appendix
	Prevalence of Single DNS Resolver
	Lab Setup


