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Abstract—Dynamic binary taint analysis has wide applica-
tions in the security analysis of commercial-off-the-shelf (COTS)
binaries. One of the key challenges in dynamic binary analysis
is to specify the taint rules that capture how taint information
propagates for each instruction on an architecture. Most of the
existing solutions specify taint rules using a deductive approach by
summarizing the rules manually after analyzing the instruction
semantics. Intuitively, taint propagation reflects on how an
instruction input affects its output, and thus can be observed
from instruction executions. In this work, we propose an inductive
method for taint propagation and develop a universal taint
tracking engine that is architecture-agnostic. Our taint engine,
TAINTINDUCE, can learn taint rules with minimal architectural
knowledge by observing the execution behavior of instructions.
To measure its correctness and guide taint rule generation, we
define the precise notion of soundness for bit-level taint tracking
in this novel setup. In our evaluation, we show that TAINTINDUCE
automatically learns rules for 4 widely used architectures: x86,
x64, AArch64, and MIPS-I. It can detect vulnerabilities for 24
CVEs in 15 applications on both Linux and Windows over mil-
lions of instructions and is comparable with other mature existing
tools (TEMU [51]], libdft [32], Triton [42]). TAINTINDUCE can be
used as a stand-alone taint engine or be used to complement
existing taint engines for unhandled instructions. Further, it can
be used as a cross-referencing tool to uncover bugs in taint
engines, emulation implementations and ISA documentations.

I. INTRODUCTION

Dynamic taint analysis is a form of information flow
analysis, which tracks how certain initial “tainted” inputs exert
influence on states during a program execution and detects if
such tainted states are used in critical operations of a program.
It has wide applications in security. For example, it is used for
vulnerability detection or diagnosis [[15]], [22]], [31]], [38]], [44],
[48], [49], [52], [54], [55], [60], privacy analysis [14]f], [46],
[61]], and protocol recovery [17].

Dynamic tainting has been particularly useful for analyzing
commercial-off-the-shelf (COTS) software in binary form.
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Since its introduction over a decade ago, numerous taint anal-
ysis engines have been developed. Most of these taint analysis
engines have been based on a deductive approach [[11f], [[15],
[200, [28], [32], [42], [S1]]. A taint engine has a set of static
rules called taint propagation rules capturing how the inputs of
a program statement influence (or taint) its outputs. These rules
are typically specified once for a target processor architecture.
When used for analyzing a program under concrete inputs,
the taint engine evaluates these rules on the given inputs,
instruction by instruction, until the taint information propagates
to the point of interest. This approach, however, requires
manual modeling of the target instruction set semantics. For an
architecture like x86, instruction set descriptions span multiple
volumes of text totaling thousands of pages [30]], and each op-
eration code has subtle variation in taint rules based on values
of its operands. Developers typically choose to implement a
subset of instructions commonly used and omit uncommon
instructions, like floating-point or vector instructions. Recent
articles show that optimized software detects CPU capabilities
at runtime selecting uncommon instructions if possible [2].
Attackers can also take advantage of this weakness to evade
detection using uncommon instructions [40].

Even for supported instructions, existing tools have human-
engineered taint rules. Writing rules can take a massive
effort in dealing with the intricate semantics and corner
cases inherent in complex instruction sets. To illustrate the
challenge, consider two x86 instructions: and eax, 0x0 and
and eax, Oxffffffff on. Both instructions have the same
operation code; however, their taint propagation semantics
differ substantially — the first one always sets taint for eax
to zero whereas the latter preserves its output value. In the
first instruction, the input has no influence on the output and
the latter has complete influence. Due to this complexity, most
taint engine implementations are far from being comprehensive
and accurate. Several examples presented in Section [[[-Bf and
our experiments confirm this. For instructions that are sup-
ported, in practice, a large number of declassification rules and
exceptional (or idiomatic) rules have to be added incrementally.
As software, compilers, instruction set specifications, and
processor implementations evolve, creating and maintaining
robust taint engines becomes burdensome.

For the above reasons, existing binary taint analysis tools
are often developed individually for every target architecture.
It is natural to ask: does there exist a “universal” algorithm that



can learn to perform taint analysis with little knowledge about
the underlying architecture? Such a solution naturally enables
taint analysis of an executable for any target architecture. As
taint analysis is based on information flow, it suggests the
possibility of a simpler, and hitherto unexplored, approach
based on inductive inference. Instead of starting from a set
of static rules for a target architecture, we mutate concrete
values of inputs to an instruction and observe the changes to
the output state: if changes in tainted inputs of an instruction
change its outputs, then by definition this influence suggests
that taint propagates. This approach has a significant advantage
that it is mostly agnostic to the target architecture since the
perturbation strategy does not need to understand the semantics
of the operations being analyzed; it suffices to treat a program
instruction as a black-box. Second, it only computes taint
rules for instructions present in the program of interest, under
the values provided. This eliminates pre-specification of rules
for thousands of instructions under billions of program states
possible, but not necessarily arising in the analyzed program.

Challenges. The inductive inference approach directly sug-
gests a method: given an instruction, exhaustively enumerate
values of tainted inputs and observe if output change. Consider
the x86-64 instruction and rax, rbx wherein rax is the
only tainted input and rbx is zero; the taint engine should not
propagate taint for rax to its output. To discover this rule, a
naive approach may try all 64-bit values possible for its tainted
input rax. This method is sound, i.e., when the output is
tainted, there is a pair of values that produce differing outputs,
acting as a witness to exhibit the influence. The method is
complete, i.e., it misses no such witnesses as it exhaustively
searches all values for tainted inputs. However, it is intractably
slow to enumerate a 64-bit space.

Approach. In this paper, we propose a novel approach to
making such taint rule inference tractable and practical for
binary code. Our approach makes almost no assumptions about
the semantics of the underlying instruction set, beyond the
ability to observe and mutate concrete inputs and outputs of
instruction executions. The key idea is to sample and test
an instruction behavior from a tractable number of input-
output samples. Our approach infers a set of succinct rules
for taint propagation on the fly, given a program and its
inputs for analysis. Certain empirical characteristics of modern
architectures make this approach feasible. First, most (but not
all) instructions are either highly sensitive to changes in certain
inputs or not at all. Both such instruction classes need a very
small number of samples to determine if their tainted inputs
impact outputs. Second, succinct taint rules learned from a
small number of tested samples generalize well to capture
the behavior of instructions on unseen samples. Finally, the
number of unique instructions in a program is far smaller than
the full set in an ISA or in its real execution traces, by orders of
magnitude. Hence, learned rules can be memoized and applied
without being re-calculated, providing efficiency.

To better understand this approach (and taint analysis
techniques in general), we provide a formal definition of
soundness and completeness that captures a precise notion
of influence between program states during a concrete run
of the program. This definition provides a novel perspective
on the notion of under-tainting or over-tainting observed in
many prior works [47]]; further, it allows one to empirically

test the correctness of a taint engine implementation by
concretely executing it. Second, we build a prototype tool
called TAINTINDUCE that can operate in two modes: exact
and generalization. In exact mode, TAINTINDUCE learns rules
that never over-estimate the influence of program states at a
point of the execution on another state. In generalization mode,
TAINTINDUCE carefully trades off soundness for efficiency, by
extending the applicability of its rules learned for an instruction
on unseen program states optimistically.

Our TAINTINDUCE prototype is implemented on the
unicorn [18] CPU emulator, which is built on Qemu and
has support for 4 widely used architectures. TAINTINDUCE can
serve as a stand-alone taint analysis engine, requiring minimal
configuration per architecture or to complement existing taint
engines for unhandled instructions. Further, it is useful as a
cross-referencing tool to compare the correctness of other taint
engines, emulator implementations, or even CPU implementa-
tions, evaluated from the abstraction of taint computation.

Evaluation Results. First, TAINTINDUCE is a feasible
architecture-agnostic approach with considerable simplicity. It
automatically learns taint rules for thousands of instructions
correctly across 4 widely-used architectures with no special-
ized knowledge: x86, x64, AArch64, and MIPS-I. We automat-
ically check the rules for 1,530 instructions, finding more than
1,064 cases are sound even in TAINTINDUCE’s generalization
mode (in which soundness is not theoretically guaranteed).
Second, TAINTINDUCE successfully detects vulnerabilities for
24 CVEs and tests 15 applications on both Windows and
Linux, propagating taint over 7 million instructions in these
benchmarks. Third, we find that TAINTINDUCE is comparable
to the 3 popular dynamic taint analysis engines: Triton [42],
libdft [32], and TEMU [51]. It propagates taint the same
way as these tools in 93.27% of over millions of instructions
in which its taint rules were applied.

In addition, TAINTINDUCE is useful as a cross-reference
tool. TAINTINDUCE finds that existing tools propagate taint
unsoundly (or over-taints) in roughly 6.64% of the millions
of instructions handling taint data. It uncovers 17 missing
instructions or wrongly emulated instructions in unicorn,
one error in the Intel developer manual, one case of ambiguous
documentation of the ISA specification, and one instruction
that has differing CPU implementations. Despite rule general-
ization, TAINTINDUCE produces unsound rules for only 0.09%
of the millions of instructions tested in concrete runs, an order
of magnitude lower than other tested tools.

Contributions. We claim the following contributions:

e We propose a novel method, TAINTINDUCE, to perform
dynamic taint analysis. To the best of our knowledge,
TAINTINDUCE is the first to perform dynamic taint
analysis for binary code requiring minimal architectural
semantics, which is through on-the-fly taint rule inference.

e We precisely define influence, soundness, and complete-
ness for dynamic taint analysis of program executions.
We provide a sound algorithm to infer taint rules in a
novel setup and show how to generalize systematically.

e We implemented TAINTINDUCE and evaluated with mil-
lions of instructions. We empirically show that our ap-
proach is useful as a stand-alone taint engine and a cross-
referencing debugging aid. It is applicable to 4 processor



architectures with minimal specialized knowledge, finding
many errors in existing state-of-the-art tools, emulators
and ISA software developer manuals.

II. PROBLEM

In dynamic taint analysis of binary code, taint information
is tracked for each bit (or some specified granularity) of
program state (e.g. register or program memory) during a
concrete execution of the program. The taint information
can be used in different applications. For instance, to reason
about confidentiality properties, a taint-analysis application
may mark confidential inputs as tainted and enforce a security
check not permitting tainted values to be used in public out-
puts. Alternatively, to reason about program integrity, a taint-
analysis application may configure the taint analysis to treat
inputs controlled by remote adversaries tainted and not permit
tainted values to be used in critical control-flow transfers. We
work in this standard setup of taint analysis, wherein the source
and sink operations — locations where taint bits originate and
are checked respectively — are an external specification [58].

A. The Taint Inference Problem

We wish to design a universal taint tracking mechanism for
an architecture with minimal knowledge of the architecture’s
instruction semantics. The new taint tracking mechanism takes
as input an executable program binary and a concrete set of
inputs under which the binary is analyzed. For each bit in
the program state, the tainting mechanism maintains a corre-
sponding taint metadata bit in a data structure that we call faint
map. It computes taint bits by single-stepping each instruction
in the concrete execution of the program under the provided
inputs. We assume that the program (or the execution platform)
has been instrumented in advance to initialize taint bits at
the analyst-specified source locations (e.g. at points where
network input is read), and to check them at sinks (e.g., at
indirect control flow transfers). This taint tracking mechanism
differs from existing taint analysis mechanisms [38]] in that it
automatically infers taint rules instead of requiring taint rules
to be specified based on architectural knowledge.

Taint rules decide how input states of an instruction affect
its output states. Intuitively, we wish to interpret taint tracking
as capturing the notion of influence: if an independent change
to the input value of a bit x causes a change in the output bit y,
as a result of executing an instruction, we say that  influences
y via that instruction. This interpretation enables a new way to
perform taint tracking, based on observations of system states
rather than pre-specification of instruction behavior.

Execution Model & Assumptions. We assume that our taint
engine can mutate program state and observe the effect of this
mutation for a given instruction, at a point in the program
execution. Based on such input-output observations, it infers
which program state bits should have their corresponding taint
bits set or cleared. We learn one taint rule per instruction,
making only the following set of assumptions:

e We assume a standard von Neumann architecture for
which the taint engine can recognize instructions, and
distinguish its register and memory accesses.

e We assume that the number of registers and maximum
memory slots are known.
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Fig. 1. Overview of program state observation structure and architecture
assumptions. Shaded portions are assumed to be a black-box. Each memory
observation is represented as a memory slot which is a tuple made up of
address and value. The subscript Ré represents the 4" read memory slot and
Wi represents the i*" write memory slot.

e We assume that the taint engine has a concrete evaluator
that reads / writes registers and memory, as is possible
with standard debuggers. [1_]

Figure [I| captures our assumptions about the class of
architectures it is applicable to, and the level of access our
approach needs precisely. In particular, our problem definition
does not require the following assumptions:

e We do not need to know specialized semantics of registers
and in fact, we treat the entire register set as a vector of
bits. For generality, we assume that each value of interest
is of a known bit-width k, say k = 32 (for x86) or k = 64
(for x64). If analysts do not wish to specify it, a large
enough bit-width can be assumed, and the inferred taint
rules will implicitly operate on the right bit-width.

e We do not need to be able to disassemble the instruction,
two instructions with the same operation code but dif-
ferent operands (say mov eax, 0x0 and mov eax,
0x1) are treated as two different instructions.

o We make no assumptions about the program compilation,
optimization, OS-specific ABIs and software interfaces.

Soundness & Completeness. Having discussed the semantics
of taint tracking syntactically, we aim to show a new approach
to binary taint analysis and compare to existing works; thus,
it is important to define the soundness or correctness criterion
precisely. We would like to define soundness as a property
of a taint tracking system, which ensures that it never over-
approximates to include influences which do not exist, i.e., it
does not over-taint. A taint rule system that never sets taint is
trivially sound. Therefore, defining completeness is important
in measuring the correctness of a solution.

In this work, we define soundness (and completeness)
under a general instruction definition: an instruction is an
unknown function operating on the entire program state at

ISpecifically, during a concrete program execution, the evaluator can
intercept the read and written values of the next instruction. The evaluator runs
its mutation or probing as a shadow computation, without affecting the original
execution of the program under provided inputs. Our strategy to implement
such in-vitro shadow computation is presented in Section



any point in the program execution. The program state is a bit
vector of finite size. A program execution is simply a sequence
of instructions evaluated, changing the program state from one
value to another; our definitions of influence and soundness
extend naturally to a sequence of instructions executed.

Let I : {0,1}" — {0,1}" be the instruction, modeled
as an unknown function mapping one program state value to
another. Let S : {0,1}"™ be a specific value of the program
state before instruction I; S[a] be the value of the bit location
a in S; and let £1ip(S,a) return the value S with the value
of bit a flipped (or inverted). We say that (I, S, x,y) are in
the influence relation Inf, if and only if I(£1ip(S,z))[y] #
I(S)[y]. Let T : {0,1}™ be a taint map. The taint rule of T
is a function mapping the taint map before I’s execution to
the taint map after I’s execution, based on I’s semantics and
values in S, Ry : {0,1}™ x {0,1}"™ — {0,1}". We say that a
taint engine is sound if:

Ri(S,T)j] = 3, S|TYi]
We say the engine is complete if:
i, S|TE) A ({I,S,4,5) € Inf) = R1(S,T)[j]

AT, S,4,5) € Inf)

Note that our soundness/completeness definitions are new
and non-classical; they are defined only with respect to a set
of input states. They do not assume access to the ground truth
about the behavior of an instruction on all possible inputs. We
present a system that learns sound and complete taint rules
with respect to a set of observed states (in its exact mode). Our
notions further allow us to precisely compare soundness of any
two taint systems on a given program execution. Testing of any
taint system for soundness, as we define, can be automated by
checking if bit-flips in an input changes instruction outputs.

Our eventual goal is not to have a perfectly sound and
complete taint rule system, but rather a practical system that
works well empirically. One could define the ground truth
semantics of an instruction set for all possible states, and
prove the above properties. In fact, recent work on the DECAF
engine has manually specified instruction semantics for the
integer arithmetic subset of instructions in SMT theories and
has proved comparable properties of manually engineered
taint rules [28]. While it is a laudable goal, scaling this
approach to entire complex instruction sets (e.g. SIMD and
FPU instructions) is infeasible as it requires human expertise
and it relies on SMT solvers which have limited reasoning
power for complex theories.

B. Challenges in Taint Inference

The central challenge is striking the right balance between
soundness and completeness. To illustrate, let us revisit the
example of a commonly used operation in x86, namely and
opl, op2 where the operands opl and op2 can be 32-bit,
16-bit or 8-bit. The sound and complete rule for byte-level
tracking is shown in Code

2 All examples throughout the paper are shown with register and flag names
with suitable C-style operators for readability. Our approach does not know
individual register names or widths, but rather learns over the range of bits in
the register program state; further our analysis learns an internal, but equivalent
representation, not in a C-style syntax. We use the [¢ : j] notation to denote
bit ranges corresponding to the interval [z, j), e.g. [0:8] are bits O to 7. The
[¢ — 7] notation stands for OR-ing the bits in [¢, 7).

Input Context Matters. Code [6] shows the complexity of
handling the and instruction correctly on x86. As observed
in Section [I} a sound taint engine should examine the rule to
apply in the context of a specific input value. The rules for
this instruction are unsound (or incorrect) in 2 state-of-the-
art taint analysis engines written by human developers. For
example, 1ibdft [32] implements byte-level tainting with
the rule shown in Code [T] This states that if register eax is
tainted and register ebx is not tainted then the taint of register
eax is left unchanged. However, if the value of register ebx
is 0 and ebx is untainted, then the taint of register eax should
be cleared and it is not. This rule is unsound as it leads to over-
tainting. Triton [42] implements a similar rule (Code [2) for
register-level tracking which over-taints because it does not
clear the taint when ebx is 0. Often, hand-engineered rules
do not specialize the propagation rule based on input value
contexts. However, our tool can automatically learn a rule that
does not over-taint (Code [3).

if (True) {
T[eax] [0:8] = T[eax] [0:8] | Tlebx][0:8];
T[eax] [8:16] = T[eax][8:16] | Tlebx][8:16];
Tleax] [16:24] = Tleax][16:24] | Tlebx][16:24];
Tleax] [24:32] = Tleax][24:32] | Tlebx][24:32];}
Code 1. 1libdft : and eax, ebx
if (True) { T[eax] = Tleax] | Tl[ebx];
T[eflags] [pf] = Tleax] | Tlebx];
T[eflags] [zf] = Tleax] | T[ebx];
Tleflags] [sf] = Tleax] | Tl[ebx];
T[eflags] [cf] = 0; T[eflags][of] = 0;}
Code 2. Triton : and eax, ebx
for (int x = 0; x < 32; x++)
if (!ebx[x]) Tleax][x] = 0;
T[eflags] [cf] = O; Tleflags] [pf] = 0;
T[eflags][zf] = 0; T[eflags] [sf] = 0;
T[eflags] [tf] = 0; T[eflags] [df] = 0;
Code 3. TAINTINDUCE (x86) : and eax, ebx, T[ebx]=0 (Sound)

Incompleteness. In addition, existing tools are not only un-
sound but they are also incomplete. Flags are entirely missing
in 1ibdft which means the tool under-taints. If the second
operand is an immediate value, 1ibdft implements the rule
in Code 4l When the immediate value is Oxff and the first
byte of eax is tainted, PF’s taint value should be set but libdft
will never report it as tainted. Notice that the same rule is
also over-tainting because it is tainting the upper 3 bytes in
eax. We automatically learn a rule capable of handling taint
propagation for flags and immediate values that is sound and
complete (Code [3).

if (True) { T[eax][0:8] = Tleax][0:8];
[eax][8 16] = Tleax][8:16];
Tleax][16:24] = Tl[eax][16:24];
Tl[eax] [24:32] = Tleax][24:32];}
Code 4. 1ibdft : and eax, Oxff
if (True) { T[eax][0:8] = Tleax][0:8];
T[eax] [8:32] = 0 ; Tleflags][pf] = Tl[eax][0-8];
T[eflags] [cf] = 0; T[eflags][zf] = T[eax] [0-8];
T[eflags] [af] = 0; Tl[eflags] [tf] = 0;
T[eflags] [sf] = 0; T[eflags] [df] = 0;}

Code 5. TAINTINDUCE (x86) : and eax, Oxff (Sound)



These examples show that practical errors in hand-
engineered taint rules are commonplace. Our experiments
quantify the rate of these errors in Section

Architectural Quirks. Further, architectural quirks make
hand-engineering rules extremely challenging. Code [6] shows
that the semantics for the and instruction differs substantially,
and perhaps non-intuitively on x64. Specifically, the 32-bit
operand version (and eax, ebx) on x64 architecture will
zero-extend the destination register. However, for the 16-bit
and 8-bit operand version (and ax, bx), it will leave the
48 or 56 most significant bits untouched in the destination
register [} None of the 3 taint analysis tools considered in our
evaluation (TEMU [51]], 1ibdft, Triton) supports x64.

// t1 is the taint of opl; t2 is the taint of op2
// size is the size of the operands
// mode64bit is true if it operates in 64-bit mode

if (size == 64 || size == 32 || size == 16) {
for (x = 0; x < size / 8; =x++) {
if (tl[x] & t2[x]) tl[x] = 1;
else if (tl([x] and !'t2([x]
tl[x] = tl[x] & op2[x];
else if ('tl[x] & t2[x])
tl[x] = t2[x] & opl[x];
else tl[x] = 0;
} else if (size == 8) {

// 0 if it’s lower 8 bits, 1 if it’s upper 8 bits
posl = isUpper (opl); pos2 = isUpper (op2);
if (tl[posl] & t2[pos2]) tl[posl] = 1;
else if (tl[posl] & !t2[pos2])
tl[posl] = tl[posl] & op2[pos2];
else if (!tl[posl] & t2[pos2])
tl[posl] = t2[pos2] & opl[posl];
else tl[posl] = 0;1}}
if (mode64bit == 1)

for (x = 32; x < size; x++) tl[x] = 0;

Code 6. and opl, op2 for all bit widths (Complete and Sound)

III. DESIGN

Our soundness / completeness definitions are agnostic to
the taint propagation policy adopted by the taint engine. We
first clarify the taint policy considered in this work. It is a
standard policy used by most taint tracking systems, and our
techniques can be tailored to suit other policies. We then
present our design, which is simple and universal across all
instructions and architectures reported in this work.

A. Taint Propagation Policy

A taint analysis client may decide different propagation
policies based on its goals and demands on precision [35], [47].
We adopt a standard taint propagation policy used in most prior
works. A common dynamic taint propagation policy is to track
direct dependencies. Our policy further includes conditional
dependencies between inputs and outputs of an instruction and
a standard form of memory indirect dependencies. Specifically,
our policy propagates taint from tainted memory values to
assigned registers; however, a tainted memory address does
not taint its values/content by default. That is, a read from
a tainted address returns a tainted value only if the memory
content is tainted, irrespective of the taint status of the pointer.

3These semantics are due to the backward compatibility differences between
32-bit ISA versions and its predecessors, which differs from the 64-bit version
of the ISA.

mov ebx, eax —— (a)
mov ecx, [0x1200]——— (b)
mov edx, [ebx + ecx]—— (c)
test edx, edx Propagated Taint
jz False a |T[ebx] [0:32] = T[eax][0:32]
True : mov esi, 0x1 b | T[ecx] [0:32] = T[0x1200][0:32]
mov edi, [0x1300] c | Tledx][0:32] = T[Valg,][0:32]
© Tql/7 25 is 0
mov eax, MYSECRET zt 1s
T[edi] [0:32] = T[eax][0:32]
jmp End
e |// not executed
False: mov esi, 0x0
End test esi, esi
cmove edi, eax — (d)

Fig. 2. Assembly snippet showing instructions of different influence types.
Grey’ed instructions are not executed. (a)-(d) are explicit dependencies while
(e) are implicit dependencies. (a) is a direct dependency, (b) is a direct
dependency on the memory value. (c) is an indirect memory dependency on
the address(ebx, ecx). (d) is a conditional indirect dependency on eflags.
Our taint policy implies the shown rules.

For conditional dependencies, our policy states that taint is not
propagated from the values that are conditioned on, but only
from other inputs. This is a standard policy adopted in prior
works to avoid over-tainting due to known challenges [13],
[47], [50]. Like most taint systems, implicit flows are left
untracked, as they reason about program logic on unexecuted
control paths. We explain these notions with examples.

Following pioneering work by Denning [[19]], prior works
define dependencies often in terms of program representation
(assignments, if-else, loops). Since we do not have access to
the program and consider each instruction as a black-box, we
explain notions of direct and indirect dependencies based on
influence observations. Direct dependencies are those influence
relations that are same across all input-output observed states;
see (a)-(b) in Figure 2] Simple register arithmetic and as-
signment instructions, for instance, create direct dependencies.
Indirect dependencies are influence relations that change across
different observations depending on some value of the input
state; see (c)-(d) in Figure 2| All memory de-references and
conditional statements are examples of indirect dependencies.
In example (c), the taint status of register pointer does not
affect the output taint. In example (d), eflags is conditioned
on, and as per our standard policy, its taint status does not
affect the outputs. All direct and indirect dependencies are
explicit, i.e., they are observed along the analyzed path. Any
dependencies that are not observed along the execution path
are considered implicit; see (e) in Figure [2]

B. Overview

The design of TAINTINDUCE is outlined in Algorithm
Shown in the function TaintProp, TAINTINDUCE takes as
input the execution trace of a program run with some concrete
input values and a taint map, initialized with taint sources. It
iterates through the instructions in the program’s execution. At
any given point in the concrete execution of a program, our
goal is to learn a rule (function ruleInfer) that propagates
taint from the inputs to the outputs of the next instruction,
under the specific program state at that execution point (Lines
3-16, Alg.[I). The taint map stores taint values for each register
and memory accesses throughout the execution of the trace. It
is updated after the execution of each instruction according
to the inferred taint rule for the concrete input value (Line



14, Alg. [T). The applyRule function can be modified to
propagate taint according to a different taint policy.

Program State. TAINTINDUCE learns taint propagation rules
from observations on program states (Line 7 in TaintProp).
The concrete program state consists of the processor register
set and simulated memory accesses (Figure [I). A simulated
memory access contains the memory address and its corre-
sponding memory value. In TAINTINDUCE, we abstract the
program state as a fixed-size bit-vector. The size is determined
by the number of registers and a preset number of simulated
memory access slots. Note that the number of simulated
memory slots corresponds to the maximum possible number
of memory operands that can be accessed in one instruction.
When memory is read/written, the address and value of the
simulated memory access are updated (see Section [[V).

To analyze an instruction, TAINTINDUCE observes its
behavior on a set of seed states. Generation of these seed
states is described in Section[[V] TAINTINDUCE systematically
mutates the seed state via single bit flips, generating different
input values to observe the behavior of the instruction (Lines 6-
8, Alg. E]) From these observations, it learns a set of taint rules
for computing R;(S,T)[j]. The taint rules have the template:

if (¢](S)) then .R[(S7 T)[j] = \/ie]yjl’s,jT[i]
else R;(S,T)[j] =0

where S is the program state bitvector and M7 g ; is a subset
of the input bits that influence the j-th bit in the output state,
M;s; = {z|(I,S,z,j) € Inf}, learned by the engine and
compactly represented as the rule set in the ruleInfer
function. Effectively, the taint status of bit j is either the
bitwise OR of taint status of a subset of input bits, or it is
cleared. The task of our algorithm reduces to learning M7 g ;
and the pre-condition ¢; to propagate the taint.

Notice that this approach learns rules only for those in-
structions that are concretely executed for the given program
and its inputs. The learned rules are memoized in the ruleDB
table and are directly applied (Lines 13-14, Alg. [[) when
an instruction occurs again, provided a learned pre-condition
¢; is satisfied. TAINTINDUCE can export these rules for an
architecture, and use them to analyze other programs on that
architecture. Therefore, it is feasible to learn a working set of
rules over time, sufficient for many practical applications.

Key Ideas. Our approach is novel in that it is designed to
adhere to soundness as a yardstick and only deviates from
it in a controlled way. One key idea in our approach is
learning a rule that is specialized to the input context (or state
value) observed. In its simplest form, the condition ¢; can
capture a rule that is only valid to use in the specific program
state that the execution is in. As TAINTINDUCE observes
more program states on which an instruction is evaluated, it
can expand the condition ¢;. We outline a way to do this
without losing soundness — the applied rule would capture
the notion of influence defined without over-approximating
the influence relation. When operating in this way, we say
that TAINTINDUCE is operating in exact mode. Learning the
condition ¢; correctly is critical since it dictates when to clear
the taint for an output bit. Setting taint to 0 is always sound
since it can only lead to under-tainting (under-approximating
the actual influence relation); however, ¢; must not miss cases

Algorithm 1 TAINTINDUCE taint propagation.

1: function TAINTPROP(trace, T, gen)
/] trace - Execution trace of the program
/I'T - Taint map 1" (with possible taint)
/I gen - Generalization mode

2 ruleDB <« []

3: foreach instr&trace do

4: seeds <— conclnput U GENRANDINPUTS()

5: obs < []; rule < []; ¢ <[]

6 foreach Seseeds do

7 obs <= obs U {o | 0 = (S,3,E,E¢1ip), Spiip < FLIP(S,D),

E<« EXECUTE(instr,S), Ef;p, < EXECUTE(instr,Sr;p,) for 0<i<n}
8: end for
9: change, noChange <— gatherObs(obs)
10: for j € 0 to n do
11: rule[j],¢[j]<—RULEINFER(j,change,noChange,gen)
12: end for

13: ruleDB[instr]<—(¢, rule)
14: APPLYRULE(¢,rule,conclnput,T)
15: end for

16: end function

17: function GATHEROBS(0bs)
18: change,noChange<—[]

19: foreach o < (seed,i,seedOut,mutOut) € obs do

20: for j <~ 0 to n do

21: if seedOut[j] # mutOut[j] then change[¢][j] < o
22: else noChange[j][j] < o

23: end if

24: end for

25: end for

26: return change, noChange

27: end function

28: function RULEINFER(j, change, noChange, gen)
29: rule < []; ¢ <[]

30: for i < 0 to n do

31: rule < rule U ¢

32: truthTable[T'rue] <— change[¢][j]

33: truthTable[ F'alse] <— noChange[i][7]

34: C<+—COMPLEMENT(changel[7][j]UnoChange[Z][7])
35: if gen then truthTable[ DontCare] < C

36: else truthTable[ F'alse] < truthTable[ Flalse] U C
37: end if

38: end for

39: ¢ < BOOLMIN(truthTable)

40: return rule, ¢

41: end function

when taint should be cleared, otherwise we risk over-tainting.
We provide a procedure that achieves this goal in Section [[II-D|

Our second key insight is that TAINTINDUCE can gen-
eralize beyond the behaviors observed. In this generalization
mode, TAINTINDUCE does not guarantee soundness; however,
it learns rules that are more complete, which can be memoized
and applied in larger program states. This yields better perfor-
mance since memoized rules are applied more often. A key
empirical discovery is that even when TAINTINDUCE operates
in generalization mode (which is the default), it does not lead
to excessive unsoundness and the rules learned work soundly
in our experiments. Also, the learned rules do not under-
taint excessively, and successfully work in detecting taint-style
vulnerabilities in a number of real-world experiments.

Our approach is able to recover precise conditions ¢; which
capture both direct dependencies as well as indirect dependen-
cies, such as memory indirect and control dependencies. The
specific propagation rules learned are for a policy we fix, as
outlined in Section The key idea to recover such depen-



dencies is to determine whether a bit ¢ propagates taint to bit
7 unconditionally, i.e. independent of the values of other bits,
as is the case with direct dependencies. When an instruction
exhibits one kind of influence from bit ¢ to bit j under certain
conditions, and another kind of influence otherwise, this is a
form of conditional dependence. We automatically learn these
dependencies using an approach that works well in practice.

C. Modeling Direct Dependencies

Taint rule inference is achieved by observing the influence
of the input bits on an output state. To do that, we generate a set
of seed states as described in Section [Vl For each seed state
S of n bits, TAINTINDUCE generates n new mutated states by
flipping each bit sequentially in S. Then, it concretely executes
the instruction under these n mutated states and records the
input-output states in an observations table, obs.

For a pair of bits (i,7), if a flip in the input ¢ causes a
change in output j (recorded in change), we propagate taint
of input bit ¢ to output bit j. Therefore, the output R;(S,T)[4]
is the bitwise-OR of the taint of all bits which unconditionally
influence j. Conversely, if changes in all input bits exhibit no
change in the output bit j (recorded in noChange), we clear
the taint for output j. For direct dependencies, when change
contains observations, then noChange will be empty, and vice
versa. Notice that we examine the change of values of each
input bit ¢ on itself during this process. Specifically, if bit
value j is only influenced by itself, and no other bits, we
would update R;(S,T)[j] := T[j]. Since such a taint update
is redundant, we eliminate it as an optimization. This case
happens very often since for values that the instruction does
not read or write, a change in its input value will reflect to its
output value after the instruction is executed.

We point out that this taint rule inference is extremely
simple, but powerful, since a large number of instructions ex-
hibit their influence characteristics in single-bit-flip mutations.
Further, the rule described above preserves soundness. When it
sets the taint status of a bit to 1, we have a clear witness that a
particular input bit has influenced it (as defined in Section [II).
When there is an invariance in the value of a bit with respect
to changes in all input bits, we conservatively set it to zero —
this is sound since it conservatively eliminates possible over-
tainting in an output bit. Lastly, observe that the inferred taint
rule to propagate taint from bit ¢ to j is only valid under the
concrete input state values for those tested for; nothing can be
deduced about the instruction behavior on unobserved states.

TAINTINDUCE learns a succinct pre-condition (¢;) for
applying the inferred taint propagation rules. In our work, ¢;
is a boolean formula in disjunctive normal form (DNF) over
n variables denoting the bits of the input program state. For
soundness, it suffices that ¢; be satisfied only by concretely
observed states. To synthesize ¢;, TAINTINDUCE employs a
procedure (outlined in Section [[ll-D) that takes the observation
set, the index of the output bit j, and returns ¢; which is
satisfied by elements of the observed set.

Example: Direct Dependency (Sound). Consider the x86 in-
struction and eax, Oxff that we discussed in Section
The ruleInfer algorithm collects observations where flip-
ping a bit in register eax results in a change in the output
register eax. In this example, TAINTINDUCE used 100 random

seeds and observed 251 distinct input values out of the possible
256. ruleInfer produces the result that there is an influence
from bit ¢ in the input to bit ¢ in the output across all the
observed samples. Instead of the disjunction of all observed
inputs, ¢ is of the more concise form seen in Code

if ((!eax[0]&!eax[6]) || (eax[l]&eax[5]) ||
(leax[0]&'eax[3]) || (eax[3]&eax[4]) |
(leax[3]&!eax[6]) || (eax[2]&!eax[5]) ||
(leax[4]&'leax[5]&eax[7]) || (eax[2]&eax[3]) ||
(eax[0]&!eax[2]&eax[5]) |l (eax[6]&leax([7]) ||
(eax[0]&!leax[1l]&!eax[4]))
Tl[eax][0:8] = T[eax][0:8];

Code 7. Exact mode - TAINTINDUCE (x86) : and eax, O0xff (Sound)

D. Learning Succinct Conditions

We now explain how TAINTINDUCE learns ¢; given an
output bit j, and a set of program states observed (say ).
The goal is to learn a succinct DNF-formula over n boolean
variables signifying the program state bits, which is satisfied
by values in 3. TAINTINDUCE takes a function minimization
approach to learning such a DNF formula. Specifically, we
construct a function over the n bits of the program state, that
returns True for all state values in X, and returns False
otherwise. Conceptually, we can construct the truth table for
such a function by setting the rows corresponding to values in
> as True and remaining all rows to False. Then, we can
invoke a boolean function minimization procedure over this
truth table to obtain the equivalent DNF formula.

Boolean function minimization is a well-studied problem
of finding the smallest boolean formula that is equivalent to a
given function. That truth table does not need to be specified in
enumerative form; it suffices to provide the entries evaluating
to true and stating that all other entries should be treated
as False. The problem is known to be NP-complete [53]]
for two-level boolean circuits. A classical procedure known
as the Quine-McCluskey (QM) algorithm [36] produces the
minimal possible representation. However, it has running time
exponential in the number of input bits and as such, does
not scale to hundreds of bits as in register state of modern
architectures. Instead, we use the ESPRESSO [9]] algorithm
which is a greedy, heuristic-based algorithm that runs fast
and produces solutions that are equivalent to the given input
function. ESPRESSO does not guarantee a minimal form;
however, it eliminates redundant clauses in the DNF form and
in practice, the formulae it produces are fairly concise.

Note that ESPRESSO introduces no unsoundness. It returns
a smaller representation of the function we construct, which
exactly captures (by returning True) only for the elements of
3 — it does not learn any approximation or non-equivalent
DNF form of the requested function. It only trades off suc-
cinctness for better efficiency compared to the QM algorithm.

E. Modeling Indirect Dependencies

The most common case of indirect dependencies is con-
ditional dependencies — where the instruction exhibits multi-
modal behavior conditioned on the values of some inputs.

Conditional Dependencies. An ambiguity, or multi-modal
behavior, happens if flipping bit ¢ cause a change in bit j only



for a subset of program state values. To handle conditional
dependencies, TAINTINDUCE has to identify what are the con-
ditions which resolve the ambiguity. An example of this is the
x64 conditional assignment instruction cmovg rax, rbx.It
only assigns the value of rbx to rax if the rflags register
signifies a prior greater than comparison, i.e., when zero, sign
and overflow flag registers have specific values satisfied by
the condition (ZF=0 A SF=0OF). When the condition is not
satisfied, the instruction does not perform the assignment.

When the taint rule to compute R;(S,T)[j] from T[] is
ambiguousﬂ TAINTINDUCE groups observations based on if a
change is observed or not (function gatherObs). For pairs
of bits (4, j), TAINTINDUCE learns a succinct condition ¢; for
which R;(S,T)[j] := T[i] and R;(S,T)[j] := 0 otherwise.
The approach to learn ¢; relies on function minimization and
is similar to the case for direct dependencies. The difference
is that we learn ¢; for the subset of observed states where we
observe an influence from ¢ to j. Specifically, we construct a
function over all n bits of the program state that returns True
for all state values where we observed a change in j due to a
change in 7 and False otherwise. A minimized boolean DNF
formula can be obtained by invoking the procedure defined in
Section[[II-D} Note that this procedure outlined is sound. When
a taint rule that could propagate taint bits is applied, the learned
pre-conditions ¢; capture exactly the set of state mutations
which are observed in our test. Since boolean minimization
ensures equivalence with the original function, ¢; covers all
unobserved inputs and clears T'[j], avoiding over-tainting.

Example: Conditional Dependence. Consider the x86 bitwise
shift instruction shl eax, cl which shifts eax with a
number of bits specified by the value of c1 masked to 5 bits.
As such, shl exhibits multiple behaviors depending on the
value of cl. For example, if the masked value of cl is O
then the taint status of eax remains unchanged. The taint
rule for this behavior corresponds to the first branch of the
if statement in Code [§] TAINTINDUCE soundly infers the
conditions under which this behavior applies as the subset of
the observed samples where the lower 5 bits of ecx are set to
0. If the masked value of c1 is 1, the taint value of each bit at
index ¢ of eax depends on the input taint value of the bit at
position ¢ + 1 of eax. The conditions represent the subset of
observed samples where the masked value is 1. This preserves
soundness as taint propagates only on observed behaviors.

if (ecx == 0b01110101110011100010001111100000
|| ecx == 0011101100110001010111111100000000) {
T[eax] [0:32] = Tl[eax][0:32];}
else if (ecx == 0b01010011110100100110010001000001
|| ecx == 0b00010110001011011011100111100001) {
Tleax] [1:32] = T[eax][0:31];}
else T[eax][0:32] = 0;
Code 8. Exact mode - TAINTINDUCE (x86) : shl eax, cl (Sound)

Memory Indirect Dependencies. Memory indirect accesses
are straightforward to handle since there is a direct depen-
dence between index / base registers and the memory ad-
dress accessed. Consider how TAINTINDUCE recovers memory
indirect flows, such as for the cmovg rax, [bx] where

4Flips in 7 change output bit j only in a strict subset of observed states.

say the register rbx is tainted. Here, our engine generates
multiple values of rbx and discovers that different memory
locations are accessible, i.e., the lower 16 bits of rbx has a
direct influence on the address. Our algorithm then fixes the
concrete value of rbx to that found in the trace (0x1£00) and
fetches the memory content from the simulated memory slot.
Further probes to the memory slot reveal the direct influence
of the memory value to rax. The resulting rule is shown in
Code [0 As per our chosen taint propagation policy, we do
not propagate taint across memory indirect flows (from bx
to rax) — however, this is merely a policy choice and an
analysis could propagate taint for such cases if desired.

if ((!ZF&SF&OF) || (!ZF&!SF&!OF)) |
T[Addr_R1][0:16] = T[ebx][0:16];
Tleax][0:32] = T[0x1£f00][0:32];
} else {
Tleax] [32:64] = 0;}

Code 9. Exact mode - TAINTINDUCE (x86) : cmovg rax, [bx] (Sound)

F. Generalization Mode & Completeness

Thus far, we have learned taint rules that observe the behav-
ior of an instruction under certain inputs (or program states),
and learn rules that are sound to apply when the instruction
evaluates on those inputs. TAINTINDUCE can memoize these
rules and apply them each time an instruction evaluates a previ-
ously analyzed state. However, in analyzing long sequences of
instructions in executions resulting from real-world programs,
it is often desirable to generalize beyond the previously seen
inputs. In the generalization mode, TAINTINDUCE carefully
trades off soundness for better efficiency. TAINTINDUCE op-
erates in this mode by default.

The key idea is to tune the admissibility of ¢; conditions
learned for applying an inferred taint rule for output bit j.
Specifically, if we relax ¢; to include states beyond those
observed, then a memoized rule for an instruction can be
applied in program states not previously seen. The change
to incorporate this generalization is very small. In both
modes, observed states are given either True or False
based on their observed behavior. The difference lies in that
for exact mode, unseen values are treated as False while
for generalization mode, we treat them as Don’t-Cares.
Treating unseen values as False forces the minimization
algorithm to minimize a completely specified boolean function
and consider only what has been observed as True. On the
other hand, Don’ t—Cares allow the minimization algorithm
to treat the unseen states as possibly satisfied by the learned
¢;. Our generalization strategy is carefully localized to this
one change, and it never applies the rules learned for one
instruction to be used in another. Of course, future work can
explore generalization across classes of instructions.

Example: Generalization Helps. We revisit the shl eax,
cl example to show the generalized version (Code of the
sound rule (Code [8). We show an excerpt of the generalized
taint rule for 3 values of c1. It is easy to see that generalization
helps cover more cases than exact mode. In this case, the rule
is also sound.

Another example where the generalized rule is sound and
helps cover more cases is the and example introduced in
Section As we have previously seen, the condition guards



for this instruction only summarizes the observed samples to
preserve soundness. As there is no ambiguity in the observed
states, the generalized version of this rule encodes the fact that
taint is propagated regardless of the program state (Code [3).

// flags and taint zeroing are not included for
// clarity; (ecx & 31) is the 5 LSB
val = ecx & 31;
if (val==0) {Tleax] [0:32] = T[eax][0:32];}
if (val==1) {T[eax] [1:32] = T[eax][0:31];}
if (val==31) {T[eax][31l] = T[eax][0];}
Code 10.  Generalization mode - TAINTINDUCE (x86) : shl eax, cl

(Complete and Sound)

Completeness & Soundness Tradeoff. Code[I0]is an example
where generalization does not come at the expense of being
unsound. In fact, the learned rules in generalization mode
happen to be sound and complete for that example. One
cannot hope that TAINTINDUCE achieves completeness prov-
ably, since fuzzing all possible input values of instructions is
intractable. This is neither the goal of our system nor is claimed
here. One might, however, hope that for instruction sets, the
inferred rules get close to the complete semantics through the
right generalization strategy. Our empirical evaluation shows
how often this happens.

IV. IMPLEMENTATION

TAINTINDUCE takes a program, a concrete input, and
set of taint source/sinks. Our prototype implementation of
TAINTINDUCE, like many other taint engines [32], [42], has
two phases. In the first phase, it records the dynamic execution
trace of the program under the given inputs. The addresses of
values of memory locations accessed in the instruction as well
as the complete register state are recorded before and after each
instruction in the trace. A number of off-the-shelf tools can be
used for this purpose [[10], [33], [59]. Our trace collection is
implemented using the Intel Pin tool [33]], which supports both
Windows and Linux user-level applications. This trace is then
subject to offline taint analysis in the second phase.

The second phase learns a set of taint rules and applies
them to the trace. Both the exact and generalization mode learn
rules over the same instructions that they are applied on. The
only difference is on the boolean minimization strategy and
memoized application of rules in the latter outside of states
being trained on. For each instruction in the execution trace,
the learning phase starts with the concrete program input states
observed augmented with randomly generated seed values.
For generating seeds, starting with initial states, we generate
more states to observe using simple strategies include bitwalks,
bitfills, and setting to min/max values of integer and floating
point representation

TAINTINDUCE has a concrete evaluator component to
implement this mutate-and-observe functionality. The imple-
mentation of the mutation for each observed value in each
instruction depends on the choice of the target platform. If the
taint analysis is being implemented in an emulator, the values
of registers / memory can be observed and mutated directly
in the emulator. On real hardware, one could use standard

5More advanced strategies, which include observation feedback loops, can
be implemented as an extension in the future.

hardware-assisted debugging interfaces such as JTAG [57] or a
software debugger. Debuggers commonly provide the facility
of reading and writing register / memory and manipulating
the program counter. One caveat is dealing with unobservable
changes that are outside the view of the chosen target platform.
For instance, a system call may modify state that is not visible
to a user-level debugger; similarly, an architecture emulator
may not expose modification of persistent disk storage. Such
instructions can lead TAINTINDUCE to learn “inaccurate” rules
primarily because the chosen implementation strategy does not
faithfully satisfy the assumptions — it is incomplete in mak-
ing observations. The best alternative, thus, is to implement
TAINTINDUCE as close to real hardware as possible.

For our current prototype, we choose the widely used
unicorn [18] engine using the Qemu [7] emulator as our
target platform for concrete evaluation. We choose Qemu
primarily because of convenience in validating our ideas
across multiple architectures. It supports emulations for several
widely used architectures that we experimentally report on.
The concrete evaluator implementation is straight-forward and
closely mirrors the interface outlined in Figure [I] (Section [I).
Our implementation of the inference engine of TAINTINDUCE
consists of 10K lines of Python code. The ESPRESSO algo-
rithm is used to perform boolean minimization as described
in Section [lI-D] We use an off-the-shelf C implementation
of ESPRESSO [37] and exported an interface to Python. The
learnt rules are applied on the execution trace using a taint
propagation component of TAINTINDUCE, which consists of
1.2K lines of Python code.

V. EVALUATION

We evaluate TAINTINDUCE on the following aspects:

1) Utility in exploit diagnosis: Can TAINTINDUCE de-
tect taint-style vulnerabilities in real programs? Does
TAINTINDUCE excessively over- or under-taints?

2) Coverage and correctness: In generalization mode,
how many instructions across multiple architectures can
TAINTINDUCE automatically propagate taint? How does
this compare to existing tools?

3) Cross-referencing utility: Is TAINTINDUCE effective as
a cross-referencing tool, for finding errors in taint engines,
emulators, and ISA developer manuals?

4) Performance: What is the average cost of learning an
instruction on an unknown architecture, and how much
efficiency is gained by memoization?

To evaluate these, we use several benchmarks. We mea-
sure coverage of TAINTINDUCE stand-alone by testing it
with randomly generated values on 1,530 instruction types
across 8 categories across 4 architectures. Further, we evaluate
TAINTINDUCE on 15 real-world programs and 26 known
CVEs, both on Windows and Linux, with execution traces
with millions of tainted (and untainted) instructions. We di-
rectly compare TAINTINDUCE to 3 popular implementations
of dynamic taint tracking: TEMU, Triton, and libdft
which support the x86 architecture which support the same
propagation policy as TAINTINDUCE.

Note that all comparisons for correctness (or soundness) for
TAINTINDUCE and other tools are automated; our definition
allows testing for concrete witnesses that exhibit an output



TABLE 1. SUMMARY OF CVES. NUM IS NUMBER OF INSTRUCTIONS.
RCE 1s REMOTE CODE EXECUTION, S-OF 1S STACK OVERFLOW, I-DIV
1S INTEGER DIVISION-BY-ZERO, I-UF IS INTEGER UNDERFLOW. FP-DIV
IS FLOATING-POINT DIVISION-BY-ZERO, HC 1S HEAP CORRUPTION. *
REPRESENTS CVES WHICH HAVE INDIRECT DATA PROPAGATION.

CVE Prog Type Num OS
CA-1999-14 bind RCE 857915 Linux
CA-1999-14 bind I-UF 866934 Linux

CVE-1999-0009 bind RCE 239825 Linux
CVE-2001-0013 bind RCE 216774 Linux
CA-2003-07 sendmail RCE 82999 Linux
CVE-1999-0131 sendmail S-OF 920086 Linux
CVE-1999-0206 sendmail RCE 90918 Linux
CVE-1999-0047* sendmail RCE 192953 Linux
CA-2003-12%* sendmail RCE 200018 Linux
CVE-2001-0653 sendmail I-UF 76049 Linux
CVE-2002-0906 sendmail RCE 106421 Linux
CVE-1999-0878 wu-ftpd RCE 168604 Linux
CAN-2003-0466 wu-ftpd RCE 98976 Linux
CVE-1999-0368 wu-ftpd RCE 185949 Linux
CVE-2003-0352 rpess RCE 45328 WinXP
CVE-2002-0649 mssql RCE 213584 WinXP
CVE-2002-0649 mssql RCE 551212 Win2k
CVE-2002-1816 atphttpd RCE 168119 Linux
CVE-2001-0414 ntpd RCE 26100 Linux
CVE-2003-0201 smbd RCE 623815 Linux
CVE-2002-1816 ghttpd RCE 48398 Linux
CVE-2015-6031 miniupnp S-OF 358896 Linux
CVE-2016-9112 openjpeg2 I-DIV 614908 Linux
CVE-2013-4788 glibc S-OF 9725 Linux
CVE-2017-14245 libsndfile FP-DIV 121700 Linux
CVE-2017-7476 gnulib HC 367930 Linux

change. Wherever TAINTINDUCE runs in generalization mode,
for all our experiments, it has been trained on 100 random
seed values, different from concrete trace inputs, before run-
ning the propagation tests — the test and training datasets are
completely different. The training in exact mode is, by design,
on the specific input values being tested on.

Environment Setup. Our experiments are performed on
machines with the following specifications: 64-bit Ubuntu
Server 16.04.3 system, with four 8-core Intel Xeon E5-2630
v3@2.48GHz CPUs and 64G RAM. We used Unicorn Engine
(version dated Oct 27, 2017) to build TAINTINDUCE. We
compared TAINTINDUCE with Triton (version dated Nov
10, 2017), 1ibdft-3.1415alpha and TEMU (Version 1.0).

A. Utility in Exploit Diagnosis

We aim to measure the practical utility of TAINTINDUCE
in the offline analysis of memory corruption exploits. We
select 26 vulnerabilities of real-world programs with known
CVEs used by prior user-level taint engines [12], [43[] and
whole-system taint analyzers (c.f. TEMU) developed in the
BitBlaze project [51]. In addition, we include several more
recent CVEs across a variety of vulnerabilities like stack buffer
overflows, heap corruption, floating-point division errors, and
integer divide-by-zero. A summary of the programs, vulnera-
bility types and the number of instructions in their execution
traces are reported in Table m In total, we have a total of 26
execution traces totalling 7,454,136 instructions.

For each of the vulnerable program and given CVE exploit,
the taint source are buffers in which the external input is read.
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TAINTINDUCE propagates taint using the learnt rules and we
aim to check if taint reaches the known vulnerability taint sinks
(e.g. corrupting the EIP or stack canary). The key result is that
the tool successfully propagates taint to all vulnerable sinks,
both in exact and generalization modes, for all sinks that satisfy
its taint policy.

For 24 of the 26 traces, TAINTINDUCE detects that the
taint propagates from the taint source to only the respective
taint sinks. For the remaining 2 traces, the final value written
to the sink is derived indirectly from an attacker-controlled
value. Our standard taint propagation policy (Section [[II-Al
detects but intentionally does not propagate taint for indirect
dependenciesﬂ; therefore, any standard tainting engines that
follow this policy would not detect these CVEs. For the
24 cases that fall within our taint policy, the key result is
that even in generalization mode: (a) TAINTINDUCE does not
excessively under-taint as taint reaches the known sinks; and
(b) TAINTINDUCE does not excessively over-taint, otherwise
it could result in attack detection at the wrong control-transfer
locations/sinks. Thus, TAINTINDUCE has practical efficacy in
the analysis of real-world vulnerabilities. In the remaining
2 cases of indirect flows, TAINTINDUCE propagates taint
correctly to attacker-controlled values that indirectly influences
the sink.

Result 1I: TAINTINDUCE does not under-taint or
over-taint in traces over 7 million instructions on 26
known CVE traces, to propagate taint to (and only to)
sinks admissible by its propagation policy.

B. Coverage on Multiple Architectures

We evaluate TAINTINDUCE on 4 widely-used CPU ar-
chitectures supported by unicorn: x86, x64, AArch64 and
MIPS-1. We obtain a list of instructions from the official
developer manuals [1], [3], [4], [6], [30], [S56]]. For each
operation code, we generate instructions with different operand
type combinations. For the generalization mode, we measure
the accuracy of each learnt rule on 1000 random test values.
To test the correctness of each test, we automatically check
if there exists a witness pair of input values which differ in
a single bit causing a change in an output bit. This follows
directly from our definition of soundness.

In exact mode, TAINTINDUCE learns the sound and com-
plete rule for the values it is tested on by design. Therefore, our
remaining results focus on the efficacy of generalization mode
on a set of 1000 new random inputs that are used as the test set
for the rules. Table [lI|details the number of instruction opcodes
for which the learnt rules worked perfectly on all 1000 tests
on all operand combinations. It further reports on the number
of instruction opcodes supported on unicorn and the total
number of instructions as per the manual description.

TAINTINDUCE generated sound taint rules for 74.9%,
75.9%, 50.4%, 84.6% of the instructions on x86, x64, ARM

60ne case is an indirect dependency of a tainted pointer, the taint of which
is not propagated to the destination register. Another case is where the taint
of the value being conditioned on (eflags register) does not propagate to
the destination register. Section @ explains how these cases are handled via
conditions.



AArch64, and MIPS-I. For instance, on x86, out of 550 instruc-
tions emulated correctly on unicorn, TAINTINDUCE learns
a sound taint rule for the tested inputs of 412 instructions.
For jump, conditional, and data movement, TAINTINDUCE
extracted the dependency observations accurately for all of
the executable instructions (floating point instructions were
recovered accurately). We notice that instructions with an
arithmetic component are generally harder to learn for all
architectures due to the larger number of states required to
observe all possible behaviors. This explains the sharp drop in
soundness between ARM64 and x64, i.e., a larger proportion of
SIMD instructions for ARM64 have an arithmetic component.

Result 2: TAINTINDUCE propagates taint informa-
tion without architecture semantics with 100% in exact
mode. In generalization mode, TAINTINDUCE learns
sound rules tested over 1000 random samples for 70%
of over a thousand of instructions tested across 8
categories in 4 mainstream architectures.

Examples: Complex Indirect Dependencies. A number of
instruction classes have complex conditional dependencies.
For instance, conditional instructions like cmova on x86
and x64, TAINTINDUCE learns the necessary ¢ conditions to
propagate taint soundly. As another example, TAINTINDUCE
accurately learns the conditional dependencies in the floating
point (FPU) instructions on the x86 family. The FPU, better
known as the x87 coprocessor, has 8 registers, st0 to
st 7, which forms a register stack. These registers alias with
another set of registers named fpO-fp7, and the mapping
between the two is controlled by a 3-bit field in the Floating-
Point Status Word (FPSW) register called TOP. Therefore,
the behavior of instructions accessing values via st 0-st7 is
conditioned on the TOP field values. TAINTINDUCE captures
such dependencies automatically and correctly. As an example,
Code [I1] shows the rule for the instruction fcmovb stO,
st 3 which is generated by TAINTINDUCE. The rule highlights
the dependence on the floating point register defined in the TOP
field in the FPSW register and CF in EFLAGS.

if (CF) {
if (TOP == 0) T[fpO0] = T[fp3];
if (TOP == 7) T[fp7] = T[fp2];}
Code 11. TAINTINDUCE (x86) : fcmovb st (0), st (3)

Similarly, TAINTINDUCE correctly captures the conditional

dependence between the instruction pointer (eip) and control-
flow instructions in the CALL instruction. TAINTINDUCE cap-
tures indirect dependencies between register operands that con-
trol memory accesses as well. For instance, on x86, the call
[eax] instruction contains implicit operands (esp and eip)
and several direct data dependencies, which TAINTINDUCE
accurately learns. TAINTINDUCE learns that the return address
which is stored on stack is dependent on eip, and eip is
dependent on the memory content stored at [eax].

Soundness Tradeoff in Generalization Mode. In 30% in-
structions, TAINTINDUCE is incorrect on one or more of the
1000 input contexts we tested (but only in generalization
mode). One example is the x86 instruction maxpd xmml,
xmm2 which performs a SIMD compare of the packed double-
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precision floating-point values in the destination operand (first
operand) and the source operand (second operand), and returns
the maximum value for each pair of values to the destination
operand. The value of the destination operand is determined
by an internal computation result ((xmml > xmm2) == True),
rather than a condition from the input. TAINTINDUCE misses
the specific condition, and learns an approximate relation-
ship ((xmml, xmm2)—xmm1) only. Another example where
TAINTINDUCE generalizes unsoundly is the add eax, ebx
instruction (Code[I2). The unsoundness stems from the limited
sampled states which are used to infer ¢. Recall that although
the rule is unsound in the general sense, it is correct for the
set of 100 states it is trained on.

if (ebx[6] & !ebx[11l] & ebx[17] & !ebx[21])
T[eax] [2] = Tleax][1];
Code 12. Incorrect generalization for add eax, ebx

C. Correctness Comparison To Tools

We also compare TAINTINDUCE directly to 3 popular
and mature binary-level tainting tools: TEMU, Triton, and
libdft for traces over a million instructions. For comparison
with TEMU, we use the benchmark programs rpcss, mssql,
atphttpd, ntpd, smbd, ghttpd presented in Section [V-A|
on the architectures supported (i.e., x86). Since these bench-
marks do not directly work with Triton and libdft,
we use a second benchmark for testing these two tools. It
consists of 10 programs from the LAVA-M [21]] benchmarks,
libtiff and binutils packages used in fuzz testing
evaluations [J8]], [39]. These programs do not necessarily have
taint-style memory errors in our benchmarks, but we select
these because they take tainted file inputs that are extensively
processed by the application.

For comparison with a tool, we analyze the taint propagated
for each instruction in the designated program execution. To
minimize cascading effect due to errors, if TAINTINDUCE and
the compared tool differ in output, we record this discrepancy
and set the latter’s taint output as the taint status for the next
instruction — this localizes the checking of taint rules for each
instruction, ensuring that discrepancy does not propagate to
the next instruction’s checking. The comparison procedure is
automated. In the event of a discrepancy, we resort to manual
analysis against the instruction set manual and CPU behavior.

In comparing with existing tools, we use only the gen-
eralization mode in TAINTINDUCE, since exact mode pro-
duces strictly superior results to TAINTINDUCE’s generaliza-
tion mode. As in previous setups, TAINTINDUCE is trained
on 100 random seed inputs for each instruction occurring in
the tested traces. Table [III| summarizes the coverage of each
tool with TAINTINDUCE in generalization mode. TAINTIN-
DUCE has less than 7% discrepancies from these mature tools
with hand-crafted rules, and only in 0.28% of these cases is
TAINTINDUCE incorrect. The test is done automatically using
witness values with bit-flips on the real CPU.

Result 3: TAINTINDUCE learns rules that propagate
identically to existing tools between 93.27% and 99.5%,
without requiring any architectural semantics. Only
0.28% of the discrepancies are errors in TAINTINDUCE,
the rest are errors in state-of-the-art implementations.




TABLE II

ARCHITECTURE SUPPORT OF TAINTINDUCE. TOTAL (T) IS THE TOTAL NUMBER OF EXECUTABLE INSTRUCTIONS ON UNICORN, SUPPORT

(P) IS THE TOTAL NUMBER OF INSTRUCTIONS FOR WHICH TAINTINDUCE GENERATES RULES WITHOUT INPUT SENSITIVITY, SOUND (S) IS THE TOTAL
NUMBER OF INSTRUCTION FOR WHICH TAINTINDUCE GENERATES SOUND RULES IN GENERALIZED MODE.

Type of Instructions Instruction set
Architecture Arith Comp Jump Mov Cond FPU SIMD MISC Sound S ¢ Total
S TP [T |[S[P[T|[S|P[T]|S|[P[T|[S[P[T|S|[P[T]|S P T [ S P [ T | >0 | Suppor ota
x86 28 | 43 | 43 | 0 | 9 | 9 | 33 | 33 | 33 | 33 | 33 | 33 | 60 | 60 | 60 | 59 | 85 | 85 | 176 | 259 | 259 | 23 | 28 | 28 412 550 550
x64 28 [ 37 | 37 | 0 | 9 | 9 | 33 | 33 | 33 | 39 | 39 | 39 | 60 | 60 | 60 | 59 | 85 | 85 | 176 | 259 | 259 | 23 | 29 | 29 418 551 551
Aarch64 38 | 64 | 64 | 0 | 3| 3 | 3 | 3 | 3 | 46 | 46 | 46 | 11 | 11 | 11 | 18 | 41 | 41 | 61 | 196 | 196 | 13 | 13 | 13 190 377 377
MIPS-T 18 |26 | 26 | 4 | 4| 4| 7 | 7 | 7 | 14] 14 14 B B B 1 1 1 44 52 52
TABLE III. COVERAGE OF TAINTINDUCE, LIBDFT,TRITON AND TEMU ON x86. X MEANS UNSUPPORTED. \/ MEANS SUPPORTED.
Tool Type of Instructions(Support) Taint Register Support
Arith | Comp | Jump | Mov | Cond | FPU [ SIMD | MISC | Total | level Purpose | EFLAGS | FPU | XMM
TAINTINDUCE 43 9 33 33 60 85 259 28 550 BIT v V4 v NV
libdft 15 5 1 30 32 X X 8 91 BYTE 8 Basic X X X
Triton 38 9 19 33 32 X 144 13 288 REG v v v VA
TEMU 7 1 2 3 X X X X 13 BYTE v/ v X X
TABLE IV. COMPARISON OF TAINTINDUCE WITH LIBDFT AND TRITON. WE COUNT THE TOTAL NUMBER OF INSTRUCTIONS (TRACE TOTAL), THE

NUMBER OF UNIQUE INSTRUCTIONS (UNTIQUE) AND THE NUMBER OF INSTRUCTIONS THAT HAVE AT LEAST ONE TAINTED OPERAND (TAINTED) FOR EACH
BINARY. WE MEASURE THE MISMATCH WITH LIBDFT AND TRITON WITH THE TOTAL NUMBER OF INSTRUCTIONS (T) AND THE NUMBER OF UNIQUE
INSTRUCTIONS (U). FOR THESE MISMATCHES, WE SHOW HOW MANY ARE DUE TO WRONGLY IMPLEMENTED RULES (IMPL RULES), INSUFFICIENT
SUPPORT FOR INSTRUCTIONS (INS SuPP) FOR LIBDFT, INSUFFICIENT GRANULARITY FOR TRTITON (INS GR), INPUT CONTEXT INSENSITIVITY FOR
LIBDFT, TRITON (GEN RULES) AND INSUFFICIENT OBSERVATIONS IN TAINTINDUCE (TI INS SAMPLES).

Tibdft Triton
. Trace . . Reason for Trace . . Reason for
Binary Total Unique Tainted Impl . Gen Total Unique Tainted Impl TI Gen
Rules Ins Supp Rules Rules Ins Gr Ins Rules
Samples

T U T U T U T U T U T U T U T T U
base64 283132 6244 42071 10660 33 6110 16 4482 9 68 8 281159 6182 42194 11267 | 150 149 5 10688 37 281 93 149 | 15
who 2031615 19175 549350 201757 94 114592 79 85842 12 1323 3 320765 6699 45284 13908 158 212 8 13380 82 213 61 103 7
uniq 2097151 6242 932802 69476 56 63889 36 4270 17 1317 3 326395 5527 9655 388 6 0 0 388 6 0 0 0 0
md5sum 2670592 7712 11886 482 69 295 40 135 17 52 12 310780 6042 375 94 7 45 2 25 3 24 2 0 0
tiffsplit 655359 6434 339112 749 51 710 35 18 8 21 8 515325 5888 110503 859 125 416 15 280 70 147 35 16 5
tiff2pdf 1048575 8854 648397 2771 65 2632 46 106 12 33 7 550396 5377 120306 867 87 545 9 182 42 139 35 1 1
tiff2rgba 2684353 6697 2329387 96191 88 80687 67 15300 13 204 8 523517 6223 78515 1688 147 300 16 767 86 593 38 28 7
bmp2tiff 2162687 6061 1774856 103814 29 103762 15 17 7 35 7 527613 5259 79874 4790 50 52 11 4709 26 15 6 14 7
objdump 2682463 10568 677219 12255 116 8593 79 3325 25 337 12 | 433370 5539 18614 426 40 120 8 222 23 84 9 0 0
readelf 1106687 8413 233400 9060 60 6480 38 2506 15 74 7 324622 6249 1257 2 1 0 0 2 1 0 0 0 0
Total 17422614 31050 7538480 | 507215 | 661 [ 387750 | 451 [ 116001 | 135 | 3464 | 75 [ 4113942 12987 506577 | 34289 [ 771 [ 1839 | 74 [ 30643 | 376 | 1496 [ 279 [ 311 | 42

Comparison with TEMU. TEMU keeps a taint record for inputs
of each instruction. Of the total 1,676,556 instructions in
the benchmark traces, TAINTINDUCE produces the same taint
output in 99.5% of the times. In the cases where TAINTIN-
DUCE and TEMU disagree, we find that the taint semantics
TAINTINDUCE generated are correct. Our manual analysis on
the unique instructions confirms that these errors in TEMU both
over- and under-taints due to implementation bugs.

Comparison to 1libdft and Triton. We compare these
tools against TAINTINDUCE for each instruction in the second
benchmark. There is a total of 21,536,556 instructions in
all traces generated by both tools, out of which 31,050 are
unique. Of the 21,536, 556 instructions, a total of 8, 045,057
instructions are tainted instructions that have taint propagated
or cleared by Triton or libdft. First, for 93.27% of
these tainted instructions, TAINTINDUCE output agrees with
the compared tool, showing that our approach performs well
without knowledge of specialized rules. Since we are doing
bit-level tracking, for comparison, we consider the byte/register
tainted if all bits are reported as tainted by TAINTINDUCE.

On the remaining 541, 504 instructions executed, TAINTIN-
DUCE disagrees with either 1ibdft or Triton. 21.42%
of the discrepancies are due to unsupported instructions
in 1libdft, namely shl, shr, movd, shld, fst and
pmovmskb. For these instructions, 1ibdft silently performs
a nop for the taint propagation. Another 78.3% of the discrep-
ancies are because the compared tools approximate by tracking
at the level of byte or register level, the implemented rules are
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incorrect or often ignore conditional behavior, applying the
same rule across all input contexts. All these missed nuances
are important in the concretely tested executions. An example
which highlights these issues is the movzx instruction which
zero extends the value to 16 or 32 bits. Specifically, for
movzx eax, bx where bx is tainted, the correct influence
will be that the lower 16 bits of ebx propagate into the
lower 16 bits of eax and the taint of the upper 16 bits of
eax are cleared. While in this case, byte-level granularity is
sufficient to accurately propagate the taint information, with
the lower two bytes tainted and top two bytes untainted,
libdft unsoundly sets the taint for the entire 32-bit register
because of an incorrectly implemented taint rule. Triton
works on a register-level granularity so we mark this mismatch
as under the category of “insufficient granularity” in Table

Finally, only 0.28% of the discrepancies are because
TAINTINDUCE infers the wrong rule. All of the cases missed
by TAINTINDUCE correspond to arithmetic and logical opera-
tions with immediate values where TAINTINDUCE missed the
condition where the ZF flag register bit is set on x86/x64. No
values in our tests exhibit this behavior during learning, and
TAINTINDUCE memoizes a rule that under-taints the ZF flag.

All Engines Differ. On the x86 architecture, logical in-
structions such as and perform bit-wise operations on the
destination and source operands, and store the results in the
destination operand locations. Consider the and instruction
with an immediate as the source operand, specifically and
eax, 0x16.Bothlibdft and Triton simply preserve the



taint of the destination operand. TEMU performs an additional
check if the immediate value is O, and if so, it clears the taint
of the destination operand instead. In this case, all three taint
engines wrongly propagate taint to the destination operand. On
the other hand, TAINTINDUCE identifies that only the taint of
the 4t" bit of eax should be preserved, while the rest should
be cleared. Also, the taint computation for flags is incorrect
for all 3 engines. 1ibdft does not perform taint tracking on
the flags, Triton simply clears the taint for OF and CF and
propagates taint to PF, SF, and ZF. Although TEMU checks for
a specific case (the immediate 0), it propagates the taint to
all 5 flags no matter the value of the immediate. PF and SF
are always set to zero and since the inputs have no influence
over PF and SF, the taint should be cleared instead — only
TAINTINDUCE learns the correct rule.

D. Utility as a Cross-Referencing Tool

During our correctness testing, we resolve discrepancies
between TAINTINDUCE and the other tools by consulting the
instruction set manuals and documentation [30]. We find a set
of cases where the instruction set specification documentation
is either wrong (inconsistent with the CPU implementation),
ambiguous or left to CPU implementation choices intention-
ally. These leads to taint propagation errors, highlighting the
subtleties in writing rules and that ISA manuals are not reliable
as the source of ground truth. Furthermore, several cases in
which TAINTINDUCE had propagation errors are due to its
concrete observation sub-tool, namely unicorn. In total, we
found 11 rule errors in 1ibdft, 7 rule errors in Triton, 2
rule errors in TEMU, 17 emulation errors in unicorn, and 3
descriptions in instruction manuals.

Result 4: When cross-referencing with TAINTIN-
DUCE, we find 20 bugs in existing taint tools, 17 errors
in unicorn, 3 description errors (or ambiguity) in
ISA instruction manuals.

ISA Manual Errors. The Intel’s Software Developers Manual
specifies the behavior of x86 instructions over 2000 pages. We
find that TAINTINDUCE reports a taint discrepancy that does
not match the description of bt r16/r32, rl6/r32 the
Intel manual [30]. Upon concrete testing on a real CPU, we
confirm that the documentation is incorrect.

The bt rl16/r32, rl6/r32 instruction returns a bit
located at bit offset specified by the second operand, in a bit
string specified by the first operand (called the bit base); the
result is in the CF flag register bit. TAINTINDUCE identified
that the lower order bits 4 or 5 of the bit offset operand will
affect the CF flag, while the manua][] states that it is the lower
order bits 3 or 5. The correct semantics for the instruction
should be 4 bits for 16-bit operand and 5 bits for 32-bit
operand. This highlights how TAINTINDUCE can be useful to
identify description errors in manuals.

Ambiguous Specifications in Manuals. There is intentional
ambiguity at times in the documentation of instructions. One
example we encountered is the bs £ instruction [30]. The Intel
manual left the behavior of the destination operand undefined.
This means that the behavior of the instruction is dependent

7Intel Software Developers Manual, Vol. 2A 3-113
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Fig. 3. Average time to train each instruction on one machine. Memoized
timings are obtained by training on all other programs before the target.

on the particular implementation of the CPU/emulator. On the
other hand, AMD’s manual [5] specifies that the destination
operand is unchanged when the source operand is zero.

CPU Implementation Differences. As a final example, we
present a case that highlights differences in two CPU imple-
mentations of an ISA. The tzcnt is an instruction which
counts the number of trailing zeros and is an extension of
the bsf instruction. The key difference between tzcnt
and bsf instruction is that tzcnt provides operand size
as output when source operand is zero while for the bsf
instruction, if source operand is zero, the content of destination
operand is undefined. On CPUs that do not support the tzcnt
instruction, the instruction bytecode will instead be interpreted
as a bst instruction and executed as such. Since our tool infers
the behavior through concrete execution, it correctly captures
the behavior of the emulator.

Missing Emulation in unicorn Engine. When cross-
referencing TAINTINDUCE with other engines, we find several
errors due to bugs and missing support in our concrete evalua-
tor sub-component which is off-the-shelf unicorn engine.
On x86 and x64 architecture, unicorn does not emulate
most of SSE4 instructions correctly; does not implement the
mask registers; and does not support system and memory cache
instruction without execution context. Similarly on AArch64,
instructions such as cbz, system instructions (yield, wfe,
wfi, sev, sevl), jump instructions and mrs are not sup-
ported because unicorn cannot provide the running context
they need and does not define the exception 1link register.
As such, for these instructions, we are unable to obtain the
observations needed for TAINTINDUCE to infer the rules.
For MIPS-I instructions, such as the arithmetic instructions
(mult, multu, div) and movement instructions (mfi,
mflo, mthi, mtlo), they use the hi or low as its
operands. Through our analysis, we find that hi and lo
registers are not implemented in unicorn.

E. Performance

The predominant use of taint tracking is in offline analyses.
TAINTINDUCE can be run once per architecture offline, and
the learned rules are memoized and used for a large number
of programs on that architecture. The approach taken in
TAINTINDUCE is embarrassingly parallel. In our experiments,



we find that the the average time to learn an instruction
without memoization is about 30 seconds on 1 machine.
TAINTINDUCE can memoize rules which reduces the average
time required to learn unique instructions in our benchmarks
to 1 — 7 seconds, which is a factor of 4x — 30x reduction,
as shown in Figure [3] Such memoization is effective because
the number of unique instructions in our benchmark execution
(44,171) is 3 orders of magnitude lesser than the total number
of instructions. 13,764 of the unique instructions are shared
by at least two programs. Recall that two instructions with
the same opcode but different immediate values are treated
as two separate instructions (as they have different encod-
ings); 24,738 out of 44,171 instructions are with immediates.
TAINTINDUCE does not generalize across instructions with the
same opcode though it is a promising direction for future work.
For all 27 traces using 20 machines, rule inference took 23
hours while taint propagation took 30 minutes.

Result 5: Average time to learn an instruction on
1 machine in our benchmarks is 30 seconds, and
improves by 4 — 30z due to memoization.

VI. RELATED WORK

There has been more than a decade of research into the
deductive approach to taint propagation [11], [20], [28], [32],
[42], [51]. The strengths and pitfalls of taint propagation
policies on benign-but-buggy software and malware are well-
known [13]], [47], [50]. TAINTINDUCE does not change the
status quo on the efficacy (FPs vs. FNs) of taint policies.
However, in all these works, taint rules are manually specified.
In contrast, we take an inductive approach of inferring taint
rules that adhere to a chosen policy.

Inferring Taint. Some works have explored the idea of
propagating taint information through inference rather than
manual specification of rules [34]], [48]. Both approaches
proposed the usage of observation between input and output
to infer taint, Sekar [48]] for web-based attacks and Matthias
et. al. for Android applications [34]. TAINTINDUCE is the
first work to target general-purpose computation, such as that
of complex instruction sets. The rules learnt are composable
across instructions, and we show how to handle complex bit-
level taint propagation policies comparable to those used in
complementary deductive approaches.

Instruction Semantics Inference. There have been various
efforts to automate the creation of semantic definitions of
instructions [24], [26], [27], [29]. These prior works make
heavy use of SMT solvers and templates derived from domain
knowledge like program sketches that encode simple seman-
tics [24]]. While these show that recovering the full semantics
of instructions is a hard problem requiring intimate knowledge
about the architecture, we present a technique for recovering
influence semantics that is feasible in a blackbox setting.

Soundness of Taint. While a large body of work has been
concerned with relating security properties to information-flow
control policies [16], [25]], [41], only recently a soundness
criterion has been proposed specifically for taint tracking [45].
This and other traditional soundness reasoning frameworks
on information flow are defined with respect to some oper-
ational semantics [47]]. DECAF [28] for example, defines taint

rules and encodes instruction semantics into SMT theories to
guarantee completeness and soundness of its taint rules for
integer arithmetic. However, in our problem setup we do not
have access to the operational semantics; hence we require a
different soundness definition closer to that used for symbolic
execution by Godefroid [23[]. McCamant et al. [[35]] propose a
soundness definition using entropy based on information flow.
TAINTINDUCE uses an existential influence observation rather
than a quantitative notion.

VII. CONCLUSION

In this paper, we present a novel approach that automati-
cally infers taint propagation rules in an architecture-agnostic
manner. Our evaluation shows how TAINTINDUCE learns rules
for x86, x64, ARM, and MIPS instruction sets. It performs
comparably to 3 popular taint tools and supports more instruc-
tions, making it useful as both a stand-alone taint tool or as a
complement to existing taint tools. TAINTINDUCE is also able
to detect a range of vulnerabilities for 24 CVEs across both
Linux and Windows applications. Furthermore, TAINTINDUCE
can also be used to identify implementation bugs in taint
engines, emulators or ISA documentations. More information
about TAINTINDUCE and the web-based service can be found
on the project page at https://taintinduce.github.io/.
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