
Automating Patching of Vulnerable Open-Source
Software Versions in Application Binaries

Ruian Duan:, Ashish Bijlani:, Yang Ji:, Omar Alrawi:, Yiyuan Xiong˚, Moses Ike:,
Brendan Saltaformaggio,: and Wenke Lee:

{ruian, ashish.bijlani, yang.ji, alrawi, mosesjike}@gatech.edu, yiyxio@gmail.com
brendan@ece.gatech.edu, wenke@cc.gatech.edu

: Georgia Institute of Technology, ˚ Peking University

Abstract—Mobile application developers rely heavily on open-
source software (OSS) to offload common functionalities such
as the implementation of protocols and media format playback.
Over the past years, several vulnerabilities have been found in
popular open-source libraries like OpenSSL and FFmpeg. Mobile
applications that include such libraries inherit these flaws, which
make them vulnerable. Fortunately, the open-source community is
responsive and patches are made available within days. However,
mobile application developers are often left unaware of these
flaws. The App Security Improvement Program (ASIP) is a
commendable effort by Google to notify application developers
of these flaws, but recent work has shown that many developers
do not act on this information.

Our work addresses vulnerable mobile applications through
automatic binary patching from source patches provided by the
OSS maintainers and without involving the developers. We pro-
pose novel techniques to overcome difficult challenges like patch-
ing feasibility analysis, source-code-to-binary-code matching, and
in-memory patching. Our technique uses a novel variability-
aware approach, which we implement as OSSPATCHER. We eval-
uated OSSPATCHER with 39 OSS and a collection of 1,000 An-
droid applications using their vulnerable versions. OSSPATCHER
generated 675 function-level patches that fixed the affected mobile
applications without breaking their binary code. Further, we
evaluated 10 vulnerabilities in popular apps such as Chrome
with public exploits, which OSSPATCHER was able to mitigate
and thwart their exploitation.

I. INTRODUCTION

It is a common practice for software developers to use
well-adapted third-party libraries to accelerate the application
development process. These third-party libraries, like any
traditional software, contain implementation bugs that are found
by security researchers. Large open-source libraries have active
developers who support, maintain, and occasionally fix software
bugs. Unfortunately, mobile application developers who rely on
these libraries must remain vigilant of bug disclosures affecting
their application.

Mobile application developers must track third-party li-
braries, maintain awareness of disclosed bugs, apply patches

while ensuring backward compatibility, and test for unin-
tended side-effects. For the Android platform, Google has
initiated the App Security Improvement Program (ASIP) [21]
to notify developers of vulnerable third-party libraries in
use. Unfortunately, many developers, as OSSPolice [15] and
LibScout [4] show, do not update or patch their application,
which leaves end-users exposed. Android developers mainly
use Java and C/C++ [1] libraries. While Derr et al. [14]
show that vulnerable Java libraries can be fixed by library-
level update, their C/C++ counterparts, which contain many
more documented security bugs in the National Vulnerability
Database (NVD), are still not addressed. There are ample
efforts to secure mobile platforms and applications through
automated patching, but they are limited by the type of bugs and
availability of compiled patches. For example, PatchDroid [42]
relies on the availability of a compiled patch, which is applied
in-memory dynamically. Similarly, techniques for platforms like
Docker [46] and Android OS [7] also rely on compiled patches.
Other approaches [48, 76] are limited to a specific type of
bugs, such as buffer overflow. Some approaches [3, 8, 73, 79]
assume that debugging symbols and build configuration options
for compiled applications are readily available, where in reality
they are not.

A more effective approach would automatically patch from
source code, where patches to OSS are readily available. There
are several challenges to patching from source code, such
as identifying build configuration for the target applications,
matching source code to binary code for missing debug symbols,
and addressing statically linked libraries. In addition to these
challenges, automatic patching might introduce unintended side-
effects that hinder the target mobile application. Based on a
recent OSS study by Li et al. [34], the security patches that
are applied to a vulnerable code base are localized and are
limited in their side-effect, unlike non-security patches. This
insight implies that automatic mobile application patching for
security-related bugs may be an attainable effort.

To this end, we propose a novel technique to automatically
patch vulnerable mobile applications from the source code
provided by the effected OSS libraries. Our approach is a
layered pipeline that builds function-level binary patches from
source code and performs in-memory patching on vulnerable
mobile applications. To address source code patch generation
challenges, we perform a feasibility analysis to identify function-
level patches, then build a variability-aware abstract syntax tree
(VAST) to enable further analysis. Using the VAST, we map
function addresses and identify build configurations for the

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA
ISBN 1-891562-55-X
https://dx.doi.org/10.14722/ndss.2019.23126
www.ndss-symposium.org

1 @@ static int ssl_scan_serverhello_tlsext(SSL *s, ...
2 #ifndef OPENSSL_NO_EC
3 ...
4 *al = TLS1_AD_DECODE_ERROR;
5 return 0;
6 }
7 - s->session->tlsext_ecpointformatlist_length = 0;
8 - if (s->session->tlsext_ecpointformatlist != NULL)
9 - OPENSSL_free(s->session->tlsext_ecpointformatlist);

10 + if (!s->hit)
11 {
12 ...
13 + s->session->tlsext_ecpointformatlist_length
14 + = ecpointformatlist_length;
15 + memcpy(s->session->tlsext_ecpointformatlist,
16 + sdata, ecpointformatlist_length);
17 }
18 - s->session->tlsext_ecpointformatlist_length
19 - = ecpointformatlist_length;
20 - memcpy(s->session->tlsext_ecpointformatlist,
21 - sdata, ecpointformatlist_length);
22 ...
23 #endif

Fig. 1: Source patch for CVE-2014-3509 of OpenSSL.

target library in the mobile application. We then compile only
the patched vulnerable functions from the source code using
the derived build configurations. Additionally, we overcome
in-memory patching challenges with statically linked libraries
using a rerouting approach to ensure the mobile application
remains functional. We implement these innovative techniques
in a system we call OSSPATCHER.

To evaluate our source-code-to-binary-code matching al-
gorithms, we prepare a labeled dataset and show that
OSSPATCHER can identify function addresses and build con-
figuration with 82% recall and 95% precision. We apply
OSSPATCHER on 39 OSS and identify 675 feasible patches.
We use these patches to fix 1,000 affected Android applica-
tions. OSSPATCHER performs in-memory patching and incurs
negligible memory and performance overhead, demonstrating
the practicality of our system. Further, we test OSSPATCHER
capabilities on 10 vulnerabilities with public exploits and show
that exploitation of the affected mobile applications is no longer
possible.

II. CHALLENGES

OSSPATCHER faces several challenges when automating
patching of vulnerable OSS versions in application binaries
without developers’ involvement. We present them along with
a real-world patch for CVE-2014-3509 of OpenSSL shown in
Figure 1.

A. Configurable OSS Variants

For the purpose of portability in different deployment
platforms and configurations, software product line engineering
provides efficient means to implement variable software. By
selecting from a set of features, a developer can generate
different software variants from a common product-line im-
plementation. C/C++ OSS employs this technique to allow
developers to configure OSS for their own use. We refer
to such configurations as variability. Variability in C/C++
OSS is achieved using conditional directives (e.g., #ifdef,

#ifndef, #if) to selectively compile certain parts of source
code, or through a build system (e.g., kconfig [56] for building
the Linux kernel) to selectively compile certain source files.
The number of variants could be exponential to the number
of features. For instance, the recent OpenSSL stable release
(version 1.1.0h), contains more than 160 preprocessor-based
configuration options for enabling/disabling various ciphers,
algorithms and protocol extensions, from which countless
variants could exist.

However, this variability causes challenges for automatic
binary patching because the patching needs to identify the
variant and follow the same variant as before in building
the patch otherwise it can break the functionality of the
application. Although we have access to the source of the
to-be-patched function, the patch target is closed-source binary
software, so before OSSPATCHER builds the patched function
from the open-source code, we need to first figure out the
configuration options that were used in the original building
of the software and enforce the same in building the patch.
For example, the vulnerable code in Figure 1 is enabled only
if the macro OPENSSL NO EC is not defined, which requires
OSSPATCHER to infer value of OPENSSL NO EC. Moreover,
the function ssl scan serverhello tlsext contains 5
conditional macros (i.e., 32 function variants), which if ignored
may lead to vulnerability identification failures and disruption
to the patches.

To reverse-engineer OSS feature configs previously used by
app developers, one can either compile all variants of the OSS
and perform binary-to-binary analysis, or perform variability-
aware source-to-binary analysis. Since the former does not scale
due to the exponential number of OSS variants with regard to
features, OSSPATCHER adopts the latter solution, i.e., builds
VAST for OSS and performs source-to-binary analysis (§III-C).

B. Statically Linked Binaries

The build dependencies between the app and OSS sources
blur their boundaries, which increases the difficulty of patching
the desired library. For example, several C/C++ native libraries
can be statically linked to a single library first, then finally
linked to the application. Due to the blurred boundary of
libraries in such cases, it is hard to pinpoint the original
vulnerable library if we would perform library-level patching.
In addition, proprietary code can also be statically linked
into these libraries, which further adds to the complexity of
reverse engineering library boundaries. In such multi-binary
files, features across multiple library components are effectively
fused into a superset and boundaries among them are hard to
be identified.

In the case of statically linked binaries, individual vulner-
able libraries cannot be upgraded without replacing all their
embracing libraries, which requires more fine-grained patching
schemes. Based on the observation that security fixes are
localized and small [3, 34], OSSPATCHER performs function-
level patching, instead of library-level. Our key idea is to
identify the function boundary, rather than library boundary,
and replace vulnerable functions with patched ones.

C. Stripped Binaries

Stripped builds raise significant challenges in designing
a patching system for application binaries. Currently, both

2

major kernel [3, 8, 73] and userspace [42] patching solutions
use symbols to locate vulnerable functions. However, a recent
study [15] shows that 98.9% of native libraries in Android apps
are stripped and only exported symbols (non-static) remain
to allow other programs to link to them dynamically. Other
symbols, such as static functions and variables, are not visible
and thus require extra efforts to locate them. Moreover, even
non-static symbols can be hidden when app developers statically
link multiple libraries together. This happens when the option
-fvisibility=hidden is used during compilation. To work
with stripped binaries, OSSPATCHER performs a series of
matching analyses to identify the location of the vulnerable
function in the application binary (§III-B), so it can perform
in-memory patching against it. In fact, we can choose either in-
memory patching or binary rewriting for our purpose. We apply
in-memory patching in our current implementation because it
allows safe reversion of the patch on exception and helps in
debugging.

III. DESIGN

A. Goals and Assumptions

We envision OSSPATCHER as an automated system that
fixes n-day OSS vulnerabilities in app binaries using publicly
available source patches. As mentioned in §II, OSSPATCHER
must consider OSS variants and perform function-level match-
ing with no access to debugging symbols in app binaries.
While prototyping OSSPATCHER, we focused on fixing uses
of vulnerable OSS written in C/C++ for Android apps, but
the design is generic and also applies to other Linux-based
apps and programming languages, such as Java. OSSPATCHER
consists of two modules that are deployed separately: server
that automatically adapts and compiles source patches for app
binaries containing vulnerable OSS versions, and client that
downloads and applies binary patches to installed applications.

OSSPATCHER assumes that sources of apps are not publicly
available, and that developers compile OSS directly from their
release versions without tampering with OSS source code.
OSSPATCHER also assumes that information from NVD, such
as the specified vulnerable versions and the corresponding
patching commits are accurate1. To this end, we set the
following goals:

‚ OSSPATCHER can accurately identify vulnerable functions
and its patch-related config options for patching.

‚ OSSPATCHER can automatically generate binary patches
and perform non-disruptive patch injection.

The workflow of OSSPATCHER is depicted in Figure 2.
To meet the aforementioned goals, we have designed three
major components in OSSPATCHER: Analyzer, Matcher and
Patcher. Analyzer analyzes source patches for their feasibility
and converts vulnerable functions that can be patched into
VAST. Matcher performs variability-aware source-to-binary
comparison to identify function addresses, config options, and
variable addresses. Patcher generates patched libraries from
source patches and performs in-memory patch injection. The
rest of this section elaborates these components.

1 Patch analysis tools such as UCKLEE [50] or regression tests can be
used to further validate correctness of patches. We consider testing of publicly
known patches orthogonal to OSSPATCHER.

B. Feasibility Analysis

In this work, we focus only on automatically applying
patches where source code changes are contained entirely
within functions. We believe this choice does not affect the
effectiveness of OSSPATCHER as many security patches are
small and localized according to a recent study [34], and thus
can be handled by OSSPATCHER. Furthermore, this is similar in
scope to previous major patching systems, including Ksplice [3],
Karma [8] and PatchDroid [42]. Therefore, the first step in
our feasibility analysis is to determine whether the OSS patch
can be successfully applied by OSSPATCHER. This process
filters out the non-localized patches with large range of code
changes (e.g., change to a struct definition). As reported in
§V, OSSPATCHER can handle over 60% of all OSS patches
we crawled from public OSS repos.

A naive approach to check if modifications are solely inside
a function would be to use regular expressions to identify
functions in source files and compare their source ranges against
code changes in patches. But this can be error-prone because of
comments and preprocessor directives [41]. Thus, we designed
a systematic feasibility analyzer to perform multi-pass source
range analysis. Given an OSS patch commit, we parse the
affected files using the default config. Since the source code
is conditionally compiled, some parts may be skipped due
to compile-time options (e.g., define), we therefore collect
semantic information as well as skipped source ranges. If code
changes in patches do not overlap with skipped source ranges,
we then check if they are inside functions to report feasibility.
If code changes are inside skipped source ranges, we use our
SMT-based expression analyzer to find a config combination
that enables the skipped ranges and re-parse source files. Finally,
we apply the qualified patches to old versions and ensure that
they are compatible by performing several checks, such as
patch context matching and function signature verification. We
break feasibility analysis into three relatively independent tasks,
namely, source range analysis, expression analysis and version
analysis, and describe them in the following.

Source Range Analysis. The source range analysis finds
the semantic context for code changes in a patch, based on
which we determine whether the patch is feasible or not.
Specifically, we consider the following change types and their
combinations as feasible: 1) add, remove, or modify functions,
2) add, remove, or modify comments and empty lines, 3) add or
remove extern entries, macro definitions, structs, and inclusion
directives. However, this list is preliminary, and other types can
be incrementally added as needed. For example, LibPNG patch
188eb6b for CVE-2010-1205 adds several typedef entries to
update versions in addition to function-level changes. Since
typedef statements do not change program semantics and can
be ignored, 188eb6b should be considered as a feasible patch,
though currently classified as infeasible.

To perform source range analysis, OSSPATCHER first clones
the OSS and checks out a patch commit. Since the exponential
amount of OSS variants inhibit brute-force approaches §II-A,
OSSPATCHER starts from any one of the many OSS variants,
collects skipped source ranges, and builds the corresponding
AST. OSSPATCHER then checks semantic context for code
changes in patches to decide feasibility. If changes are inside
skipped source ranges, OSSPATCHER performs expression

3

AnalyzerCollector

Feasibility
Analyzer

National Vuln.
Database

Other Vuln.
Database

Vuln. Android
Applications
Vuln. Docker

Images

OSS Patch

Commits

Vuln. OSS

Versions

Variability
Analyzer

Feasible

Commits

Feasible

Versions

Matcher

Config
Solver

Function
Matcher

Variable
Matcher

Patcher

Patch
Generator

Patch
Injector

Function

Addrs

Config

Options

Variable

Addrs

Patch

Libraries

Binaries w/

Vuln. OSS

Versions

Vuln.

Binaries

AST w/

Variability
Fixed Android
Applications
Fixed Docker

Images

Fig. 2: OSSPATCHER architecture and workflow.

1 defined(PNG_FLOATING_POINT_SUPPORTED) &&
2 !defined(PNG_FIXED_POINT_MACRO_SUPPORTED) &&
3 (defined(PNG_gAMA_SUPPORTED) ||
4 defined(PNG_cHRM_SUPPORTED) ||
5 defined(PNG_sCAL_SUPPORTED) ||
6 defined(PNG_READ_BACKGROUND_SUPPORTED) ||
7 defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)) ||
8 (defined(PNG_sCAL_SUPPORTED) &&
9 defined(PNG_FLOATING_ARITHMETIC_SUPPORTED))

Fig. 3: An expression used in LibPNG.

analysis to enable such ranges and invokes source range analysis
again to decide their feasibility.

Expression Analysis. Conditional preprocessor directives are
used in OSS to enable/disable certain parts of source code. We
refer to conditions in these directives as expressions. If code
changes in patches overlap with skipped source ranges, we need
to find out a configuration to enable skipped parts for further
source range analysis. Nevertheless, expressions in conditional
directives such as #if and #elif can be very complex. For
example, Figure 3 shows an expression in LibPNG which uses 9
macros. According to the C Preprocessor standard [19], expres-
sion is a C expression of integer type, and may contain integer
constants, character constants, arithmetic operators, identifiers
and macro calls. Intuitively, existing compiler frameworks
such as LLVM [31] and GCC [61] should be able to analyze
expressions. However, we found that they are designed to
speed up the build process; the expressions evaluated as false
are simply skipped and not analyzed further. For example,
if PNG FLOATING POINT SUPPORTED in Figure 3 is not
defined, compilers consider the expression as false and skip
the rest. Consequently, a LLVM plugin will not emit details
needed by OSSPATCHER.

We, therefore, design an analyzer to analyze expressions
and solve them using a satisfiability modulo theories (SMT)
solver. The analyzer performs lexing and parsing to generate
AST from expressions, which is similar to simple calculators,
except for support of macro calls and undefined variables. It
then converts AST into intermediate code, resolves macro calls
using collected macro definitions and symbolizes variables
using CVC4 SMT solver [5]. During symbolization, defined is
a reserved function that checks if a variable (macro) is defined
or not, and imposes an implicit constraint that a variable can
not have a value unless defined. To interpret this constraint,
we create a boolean symbol to represent whether a variable
is defined or not and add a constraint that if a variable is

1 #undef PNG_FIXED_POINT_MACRO_SUPPORTED
2 #undef PNG_FLOATING_ARITHMETIC_SUPPORTED
3 #undef PNG_READ_BACKGROUND_SUPPORTED
4 #undef PNG_cHRM_SUPPORTED
5 #undef PNG_gAMA_SUPPORTED
6 #undef PNG_sCAL_SUPPORTED
7 #define PNG_FLOATING_POINT_SUPPORTED
8 #define PNG_READ_RGB_TO_GRAY_SUPPORTED

Fig. 4: A solution to the expression in Figure 3.

not defined, then its value is invalid (NaN). For example,
expression defined(FOO) && FOO > 5 is interpreted as:

FOOdefined^FOO ą 5^␣FOOdefined ùñ FOO “ NaN
In addition, since conditional directives can be nested, our
expression analyzer also supports constraint concatenation. We
run the analyzer on Figure 3 and present one solution in
Figure 4. The solution is represented as #define and #undef
directives and can be used to enable skipped source ranges.
OSSPATCHER then invokes source range analysis to parse
source files and check whether code changes are feasible.

Version Analysis. OSSPATCHER also needs to check whether
the source patch changes are compatible with old vulnerable
OSS versions. Patches generated by git [67] use the unified diff
format [68], which provides metadata, such as changed lines,
files, and context lines around these changes. While applying
patches, context lines are used to identify locations of changes.
If context does not match, patches are rejected. For example,
the 4-6 lines in Figure 1 are context lines. The default number
of context lines is 3. However, context matching may not be
sufficient for function-level patching, since patches may use
modified or even new structures and functions.

Therefore, our version analyzer checks for the following
properties: 1) context lines match, 2) argument types and
return types of functions are the same, 3) The referenced
data structures and function signatures are the same. To
perform version analysis, we first run git apply to apply
patches to vulnerable versions. We then parse patched files
into an AST and check for these properties. If code changes
in vulnerable functions overlap with skipped source ranges,
expression analysis is performed to ensure that skipped parts
do not violate these properties.

If a patch passes feasibility analysis for a version, we
consider it as feasible for this version. For example, the
OpenSSL patch in Figure 1 is feasible for 29 out of 31
vulnerable versions.

4

#ifdef A

#define X 4

#else

#define X 5

#endif

2*3+X

TypeChef

Lexer
2 · ∗ · 3 · + · 4A · 5¬A

TypeChef

Parser

+

*

5432

!A

Fig. 5: Variability lexing and parsing using TypeChef.

C. Variability Analysis

Since app developers may use different OSS variants,
OSSPATCHER must correctly infer config options that are
related to vulnerable functions — to generate correct binary
patch using the same config. Although our feasibility analysis
(§III-B) can track variability inside vulnerable functions, it
cannot reason about variability outside. For example, a function
may reference a data structure which contains a field with
variable type (i.e., type int if macro INT32 is defined, o.w. type
char). In this case, the value of INT32 is important since it
results in different binary layout and offsets.

TypeChef [28] tackles this problem by proposing a
variability-aware lexer and parser to build variability-aware
AST (VAST). Figure 5 shows the workflow of TypeChef.
Nodes in VAST, such as functions, strings, or expressions,
are correlated with conditions that enable them. TypeChef
has been successfully applied to OpenSSL and Linux to
find type errors in untested config combinations [27, 35].
OSSPATCHER leverages TypeChef to parse OSS into VAST
to allow config inference based on app binaries. Nevertheless,
TypeChef is not automated and requires manual inputs for its
analysis of software, namely separate lists containing platform-
dependent headers, open features, and partial configurations,
respectively. Platform headers refer to architecture or operating
system related macros, such as x86 64 and linux.
These headers are easy to derive since they are uniquely
defined for each platform. Open features include configurable
features that developers can choose to enable or disable using
configure script (e.g., condition A in Figure 5) Whereas,
partial configuration list contains non-configurable macros with
their predefined (fixed) values. Partial configuration must also
contain rules to avoid conflicts (e.g., two mutually exclusive
macros that cannot be enabled together).

To automatically generate such input lists, we implement
pre-analysis steps: open feature analysis and partial config
analysis.

Open Feature Analysis. TypeChef has a different goal; it has
been designed to check for incompatible types and developer
errors in untested config combinations [27, 35]. To do that
TypeChef builds VAST from all source files and enumerates
combinations of macro values to check for type errors. In
contrast, OSSPATCHER cares only about changed files and
included headers and uses VAST for config inference. Since
conditional directives are evaluated by the preprocessor to
selectively enable code blocks, we therefore design a Clang-
based analyzer that only performs preprocessing and collects
expressions used by conditional directives in source files and
include headers. We also recursively collect expressions from
skipped code blocks. Collected expressions are then parsed by
our expression analyzer (§III-B) to extract conditional macros.
These macros form the open feature input required by TypeChef.

Partial Config Analysis. Apart from conditional directives,
macros are used to set certain OSS attributes, such as timeout or
version string. In addition, certain combinations of features are
not allowed and may result in a failure of VAST generation since
they are syntactically or semantically incorrect. For example,
no-ssl3 is forced if no-sha is specified in OpenSSL, because
SSLv3 uses hashing algorithms internally. TypeChef requires
this information to generate VAST. KConfigReader [26] is
proposed to extract such information from the Linux kcon-
fig [56] build system. However, this method is not applicable
to the GNU build system [74], which is adopted by many
OSS projects. Therefore, we build a tool that collects macro
definitions and taps into configure scripts to extract constraints
among features. Although our partial config analysis is not
complete and may still miss constraints embedded in Makefile
or other parts of source code, we find the two analyzers greatly
reduce the preparation time of TypeChef inputs.

D. Source vs Binary Matching

Patching app binaries at the function level requires locating
vulnerable functions, inferring config options, and fixing
external references. To achieve these tasks, we design three
independent modules: function matching, config inference, and
variable matching. Function matching identifies addresses of
vulnerable functions and their external function references. Con-
fig inference finds out how vulnerable functions are compiled
from the source code and generates a config combination for
accurate reproduction. Variable matching identifies external
variable references in vulnerable functions. Since app binaries
are stripped (§II-C), OSSPATCHER should leverage features
available in both source code and binaries for source-to-binary
comparison. We start with describing the feature extraction
process.

Feature Extraction. For source files, we parse their VAST
to extract syntactic and semantic features, such as string
literals, constants, function calls, and global variable uses along
with variability information. We choose simple syntactic and
semantic features because, besides being available in compiled
binaries, these features are resilient against common compiler
optimizations and easy to extract. In contrast, control-flow
based features are much harder to define and extract, due to the
presence of optional nodes in VAST (i.e. node ♢A in Figure 5).

For binary files, we perform a symbolic summarization of
each function present in the binary using an integration of
static analysis and symbolic execution based on Angr [70].
Specifically, we conduct a multi-path exploration of each
function with the goal of discovering references to a set of
predetermined features, including strings, constants, functions,
and external variables. Our approach of using per-function
symbolic summarization to extract features is quite scalable
(more so than whole binary exploration) because our multi-path
exploration technique is limited to each function. We do not
execute function calls within the function being explored, nor
do we execute system or API calls. We just focus on extracting
all relevant feature references within one function at a time.

Function Matching. To locate vulnerable functions in libraries,
we leverages features from VAST and check if they are present
in binaries. When searching for vulnerable functions, we mark
them as optional since the corresponding file may not be

5

compiled, and different parts in these functions can also be
optional due to conditional directives. We start matching by first
searching for function names in the dynamic symbol table. If
names are present, we report matched addresses. Otherwise, we
describe candidate functions by reference/call relationship but
include optional VAST nodes. We then use Angr to summarize
the binary functions and compare with source functions to
identify the closest matches. The above algorithm works well if
there are abundant syntactic and semantic features in vulnerable
functions. To backup this assumption, we show in §V-A that
vulnerable functions of most OSS have on average more than
100 lines of code. In addition to vulnerable functions, we also
match large functions in binaries to facilitate config inference.

Config Inference. To allow reproduction of vulnerable func-
tions with the same configuration, we check for the presence of
variability-related features in binaries and solve their conditions
to infer values of config options. The key idea is to identify
features that are correlated with config options. As shown in
Figure 6, we start by collecting config options to be inferred
in the VAST of vulnerable functions. Followed by checking
if each of these config options are correlated with syntactic
and semantic features in the vulnerable functions. For example,
option OPENSSL NO EC is correlated with function reference
OPENSSL malloc in Figure 1. Since some options may not
enclose syntactic and semantic features in vulnerable functions,
we also check other matched large functions during function
matching. We then check for the presence of these features in
binary functions and generate constraints based on the mapping
from features to expressions of config options. These constraints
are solved using a SMT solver to find the corresponding
configuration.

#ifdef A

#define X “hello”

#else

#define X “world”

#endif

void vuln_func {

#ifdef B

 foo(X);

#endif

}

vuln_func:

foo(B)

“hello”(B&A)

“world”(B&¬A)

vuln_func:

foo, “world”

B = 1

B&¬A = 1

A = 0

B = 1

App Binaries

Fig. 6: Explanation of the config inference algorithm.

Variable Matching. Similar to function matching, exported
variables can be matched by looking up the dynamic symbol
table. The case of one hidden variable can also be exclusively
matched. However, matching multiple hidden variables becomes
challenging due to a lack of enclosed features, which is quite
different from matching hidden functions which contain rich fea-
tures. We solve this challenge by correlating variable references
with syntactic and semantic features in the program dependency
graph of vulnerable functions. We first compile vulnerable
functions into binaries using config options inferred in config
inference. We then perform foward and backward slicing for
external variable references in the program dependency graph to
identify features related to each reference in compiled binaries.
We consider these features as a description of the variables and
use them to match external variable references.

1 FITS_FILE *fits_open (const char *filename, ...) {
2 ...
3 if (sizeof (float) == 4)
4 {
5 fits_ieee32_intel = (op32[3] == 0x3f);
6 fits_ieee32_motorola = (op32[0] == 0x3f);
7 }
8 if (sizeof (double) == 8)
9 {

10 fits_ieee64_intel = (op64[7] == 0x3f);
11 fits_ieee64_motorola = (op64[0] == 0x3f);
12 }

Fig. 7: An example of static variable usage in GIMP.

For example, Figure 7 shows a function fits open
from GIMP, which uses four static variables, including
fits ieee64 intel and fits ieee64 motorola. Af-
ter program slicing and feature extraction, we can identify
that each of these variables are associated with different
constants. For example, fits ieee64 intel is tied with
constant 7 in data flow and 8 in control flow. In contrast,
fits ieee64 motorola is tied to 0 and 8. These features
can be used to differentiate these four variables in stripped
binaries.

E. Patch Generation and Injection

Once feasible source patches are matched to the app binaries,
OSSPATCHER compiles the patched functions and injects them
into the vulnerable apps. To make OSSPATCHER practical and
portable for various Android systems, we try to minimize
runtime overhead and avoid changing the Android system.
Inspired by PatchDroid [42], we design OSSPATCHER to
perform in-memory patching at the start of app launching.
However, we argue that binary rewriting [71, 76] and hot-
patching at runtime [3, 8, 73] are also good patching techniques
and leave their implementation as future work. To minimize
changes to vulnerable apps during patching, OSSPATCHER
slices out vulnerable functions into separate files and compiles
them into shared libraries. OSSPATCHER then injects the
libraries into vulnerable processes and reroutes vulnerable
functions to call patched ones in the injected libraries.

Since vulnerable functions can refer to other functions or
variables, OSSPATCHER needs to fill in the references to point
to the correct memory locations in app binaries. PatchDroid
modifies GOT entries to reroute vulnerable functions to patched
functions and doesn’t address the cases where these functions
reference the original app binaries, which is not suitable in
OSSPATCHER. Normally, external references of libraries are
listed as undefined symbols and resolved by the dynamic
loader via checking dependent libraries at runtime. However,
since vulnerable functions can refer to hidden functions or
variables, naive reliance on library dependency does not work.
We, therefore, investigate three approaches for fixing external
references. The first approach is to modify the dynamic loader
to fix external references while loading patch libraries. This
design introduces changes to the system, which we try to
avoid and incurs overhead during the loading of all libraries.
The second approach is to hard-code reference addresses into
libraries during compilation. But this requires per-run adaption
of libraries due to address space layout randomization (ASLR)
[63]. The third approach is to refactor source code to create

6

example.c

static int svar=0;

int gvar=0;

static void sfunc() { … };

void gfunc() { … };

int vuln_func() {
 svar++; gvar++; …
 sfunc(); gfunc(); }

example_patch.c
extern int svar_stub;

extern int gvar;

extern void sfunc_stub();

extern void gfunc();

int patch_func() {
 svar_stub++; gvar++; …
 sfunc_stub(); gfunc(); }

example_stub.c
int svar_stub=-1;

void sfunc_stub () {}

example_patch.so

example_stub.so

Running Process

main-binary

example.so
vuln_func

Hidden
svar

sfunc

Exported
gvar

gfunc

2 3

4 5

1

Running Process

main-binary

example.so
vuln_func

Hidden
svar

sfunc

Exported
gvar

gfunc

1

example_patch.so

patch_func

example_stub.so

svar_stub sfunc_stub

2

3

4

5

6

7 8

Fig. 8: Workflow of patch generator and patch injector.

stub functions and variables, compile them as dependent stub
libraries of patch libraries, and modify stub references to correct
locations. OSSPATCHER adopts the stub-based approach, since
it avoids changes to the Android system and per-run patch
adaption. The workflow of patch generation and injection is
explained in Figure 8.

Patch Generation. As shown in Figure 8, OSSPATCHER
generates two types of source files which are further compiled
into different shared libraries. This design allows OSSPATCHER
to fix references in patched functions and point them to correct
locations. Given addresses of vulnerable functions and their
references identified by Matcher (§III-D), we first check the
visibility of references by inspecting the dynamic symbol
table section (.dynsym) in app binaries. For hidden function
or variable references, which can be static or non-static, we
generate stubs for them and then invoke ClangMove [75], a
tool which is capable of moving various definitions, including
functions, variables, and classes, from one file into another,
to move patched functions into patch files, and stub functions
and variables into stub files. We then compile a stub library
out of stub files and a patch library out of patch files, with
dependencies to the stub library and original vulnerable libraries.
Since Android requires a special tool-chain to build binaries
for ARM architecture, we perform cross-compilation by setting
CC or CXX to corresponding compilers from the Android
NDK [20] (e.g. arm-linux-androideabi-gcc). The two
libraries comprise our generated patch binaries.

Patch Injection. With generated stub libraries and patch
libraries, OSSPATCHER performs in-memory patching at the
start of app. When an app is launched in Android, the app
forks the Zygote process, then loads native libraries through
dlopen (which internally maps a library into memory using
the open and mmap system calls), and invokes its constructors.
OSSPATCHER identifies a time window where patching is
most feasible using ptrace, which is after the library loads
and before library code executes, OSSPATCHER uses ptrace
to trace the Zygote process for its forking of new processes and
keeps tracking open and mmap calls in child processes. Once
vulnerable libraries are mapped in memory, OSSPATCHER
checkpoints processes using Criu [69] and injects patch
libraries with optional stub libraries into them. After injection,
external references in patch libraries point to stub libraries
or original app binaries. OSSPATCHER then performs detour-

based patching to reroute vulnerable functions in app binaries to
patched ones in patch libraries and modifies external references
of patch libraries to correct locations by overwriting GOT entries.
Once an app is patched, OSSPATCHER detaches from the target
app and the process runs natively with no overhead.

IV. IMPLEMENTATION

OSSPATCHER is written mostly in C++ and Python, with
a total of 12K C++ and 15K Python lines of code (LOC).
OSSPATCHER builds on several preexisting tools. For example,
our data collector is built on cve-search [39] for vulnerabilities
and OSSPolice [15] for vulnerable apps. All source analysis and
refactoring tools are implemented as independent Clang tools
using LibTooling [66]. Variability analysis is build on top of
TypeChef [28] and binary analysis is based on Angr [70]. Patch
injection uses Criu [69] internally. Here we briefly describe
the implementation of each component depicted in Figure 2.

A. Collector

We start by describing our data collection and preparation,
including vulnerable OSS and apps that use them.

Vulnerability Database. Numerous efforts have been con-
ducted to discover vulnerabilities and corresponding patches [30,
44, 55]. Out of them, NVD is an accurate collaborative platform
for reporting and verifying vulnerabilities manually, and has
been used to demonstrate characteristics of security patches [34].
Therefore, OSSPATCHER currently collects vulnerabilities and
patches from NVD. However, other vulnerability databases
such as Vuddy [30] and OSSFuzz [55] can be incrementally
added.

Similar to Li et al. [34], we use cve-search [39] to retrieve
CVE information from NVD and look for 40-digit commit hash
values in reference links of CVEs. We scanned all 95K CVEs
at the time of crawling (Jan, 2018) and identified 5,793 CVEs
with at least one commit hash related link. Since OSSPATCHER
focuses on patching applications in userspace, we ignore system
OSS such as the Linux kernel and uboot. We then clone
the remaining 619 OSS and try to checkout corresponding
commits, which results in 3,047 valid commits tied to 2,723
CVEs. Out of 3,047 commits, 2,045 are from 307 C/C++
OSS such as OpenSSL and 42 are from 22 Java OSS such
as Apache Struts, implying that the number of documented
C/C++ OSS vulnerabilities with patches are much more than
Java in NVD. We denote these 307 C/C++ OSS as OSSnvd.

Compile Commands. Clang tools based on LibTooling require
compile commands to work, which specifies options such
as include directories. These commands can be extracted by
adding option -DCMAKE EXPORT COMPILE COMMANDS=ON
to CMake [40] or monitoring the compilation process with
Bear [43]. Since building each OSS and resolving their OSS
dependencies is time-consuming, we leverage OSSFuzz which
contains build scripts for a large number of OSS and hook into
its build process to get compile commands. OSSFuzz contains
125 OSS at the time of checking (Apr, 2018), denoted as
OSSfuzz . We take the intersection of OSSnvd and OSSfuzz

and get 39 OSS2 with 1,111 CVEs and 1,140 patches, denoted
as OSSeval. We use OSSeval as our target OSS in evaluation.

2 Tcpdump is not listed in OSSFuzz but is still included since it is used
indirectly by Wireshark which is listed.

7

Vulnerable Applications. Several studies have been proposed
to identify vulnerable Java and C/C++ libraries in apps [4, 15].
Since OSS reuse detection is not the focus of OSSPATCHER,
we directly contacted the authors of OSSPolice [15] for a list
of flagged vulnerable apps. The obtained list contains 100K
unique Android apps tagged with vulnerable OSS versions,
denoted as App. Since not all OSS in OSSeval is popularly
used by Android apps (e.g. wireshark), we selected 1,000 unique
Android apps in total, spanning 10 vulnerable OSS, with 100
apps from each OSS. The 100 apps are randomly selected from
apps that use vulnerable versions with feasible patches. We
denote the 1,000 apps as Appeval and use them as target apps
for evaluation.

B. Analyzer

As mentioned in §III-B, our feasibility analyzer contains
three independent tools: range analyzer, expression analyzer,
and version analyzer. Range analyzer and version analyzer
are implemented as Clang tools and uses ASTMatcher [65]
internally to match and manipulate source code. Expression
analyzer includes both frontend AST generation and backend
symbolic modeling. We implement the frontend lexer and
parser in expression analyzer based on Boost Spirit [11] and
symbolically represent and solve them using CVC4 [5].

We implement variability analyzer based on TypeChef [28].
Since the current TypeChef requires manual setup, we imple-
ment open feature analyzer and partial config analyzer as Clang
tools to allow semi-automatic setup of TypeChef on new OSS.

C. Matcher

To extract features from binaries, we first identify function
addresses using IDA Pro [24]. We start with exported functions,
comparing function names preserved in the binary with ones
in source files. If vulnerable functions are non-exported, then
we go inside every function and extract corresponding features.
Specifically, we extract string literals, constants, function calls
and number of global variable uses within each function and
compare with sources to assist in the identification of non-
exported functions. If a vulnerable function is inlined, we
currently reject the corresponding patch. However, this can be
improved by detecting and patching all functions containing
the inlined function. We leave this as future work.

In terms of source-to-binary matching algorithms, we
implement function matching ourselves and use the Z3 solver
to solve configurations [12] due to its convenient Python
interface. To facilitate variable matching, we compile vulnerable
functions based on inferred configurations, extract variables
using Angr [70], and implement forward and backward slicing
for Vex IR [57].

D. Patcher

We implement patch generator as a Clang tool, which first
generates stubs for hidden references and then invokes Clang-
Move [75] to create patch and stub files. We also reuse compile
commands from original vulnerable files to compile patch and
stub files. Since OSSFuzz has prepared building dependencies,
generating shared libraries for different architectures is then
achieved by replacing CC or CXX with compilers of targeted
platforms. For example, arm-linux-androideabi-gcc from

Android NDK [20] is used to generate patches for Android
ARM system, and GCC is used for Ubuntu X64 system.

To accurately capture the time window of library loading
and perform in-memory patching, we implement patch injector
as a daemon that monitors forking of the Zygote process and
tracks when its forked application processes load vulnerable
libraries using ptrace. Once they are loaded, we use Criu [69]
to checkpoint corresponding processes and perform in-memory
patching. Once completed, we resume execution and detach
from these processes to avoid tracing overhead.

In addition, since address matching and patch generation
may suffer from false positives (i.e., a patch which does not per-
fectly replace the vulnerable code), inspired by PatchDroid [42],
we implement a rollback mechanism. When injecting patch
libraries, we also inject enter and exit counters at the start/end
of patched functions. If a patched app crashes, we catch the
crash and check whether the enter and exit counters are the
same. If not, we revert the patch and re-execute the function.

V. EVALUATION

In this section, we evaluate the prototype of OSSPATCHER.
We start by performing feasibility and variability analysis on
1,140 patches in OSSeval. We then evaluate function matching,
config inference, and variable matching algorithms on a labeled
dataset. We further apply these algorithms on 1,000 apps in
Appeval. With the identified configurations and addresses in
binaries, we run our patch generator and injector to fix these
applications once the vulnerable parts are loaded. We then
exercise patched apps using Monkey [2] and show that all
of them launch and run successfully with negligible memory
and performance overhead. To further verify correctness of
OSSPATCHER, we collect 10 vulnerabilities with feasible
patches and publicly available exploits, including the infamous
Heartbleed and Stagefright, and show that all exploits are
mitigated.

The evaluation is mainly conducted on a Nexus 5 phone
running Android 5.0 (LRX21O) and a Ubuntu 16.04 desktop
with 8-core Intel Xeon CPU W3565@3.20GHz and 24GB
memory.

A. Code Analysis Statistics

We perform feasibility and variability analysis on the 39
OSS in OSSeval. The analysis shows that 675 out of 1,140
patches are feasible. We selectively show the results for 10 OSS
in Table I, since they are used by apps in Appeval. Among the
columns displayed in Table I, #CVEs, #Patches, and #VVs
(vulnerable version) are information collected from NVD and
the table is sorted in descending order of #CVEs. At the top
of the table, FFmpeg and OpenSSL are reported to have a large
number of CVEs, patches, and vulnerable versions, showing
that they are the best targets to evaluate OSSPATCHER. In
contrast, Zlib has only one vulnerable version and may not
help in showing cross-version portability of OSSPATCHER.

Feasibility Analysis. In Table I, #FPs shows the number of
feasible patches which is defined as feasible to at least one
vulnerable version, #FVs shows the number of feasible versions
which is defined as being applicable by at least one patch. The
two columns show characteristics of patches and capabilities

8

OSS Name #CVEs #Patches #VVs #FPs #FVs #VFs #EVFs ĞLOCFP
ĞLOCV F

Ğ#FeatsV F #MIVFs #MRVFs

FFmpeg 224 251 156 193 152 197 35 8 102 25 25 30
OpenSSL 89 97 142 80 107 145 105 30 153 31 55 82
FreeType 48 53 49 47 39 64 22 14 105 25 7 15
Libxml2 26 28 79 23 14 117 114 31 219 37 8 22
LibTIFF 20 16 29 13 29 34 32 23 45 7 4 4
OpenJPEG 15 16 2 7 1 13 2 17 112 23 4 10
MuPDF 14 13 10 9 5 18 17 8 83 35 17 33
LibPNG 13 9 577 5 185 8 8 12 109 33 19 42
Curl 4 4 92 4 11 9 4 32 45 9 15 25
Zlib 4 4 1 4 1 4 2 27 143 26 2 4

VV: Vulnerable Version, FP: Feasible Patch, FV: Feasible Version, VF: Vulnerable Function, EVF: Exported Vulnerable Function;
ĞLOCFP : Average Line of Change in Feasible Patch, ĞLOCV F : Average Line of Code Vulnerable Function;

Ğ#FeatsV F : Average Number of Unique Features in Vulnerable Function;
MIVF: Conditional Macro Inside Vulnerable Function, MRVF: Conditional Macro Related to Vulnerable Function.

TABLE I: Feasibility and variability analysis results of 10 selected OSS.

of OSSPATCHER. For example, 77% of FFmpeg and 83% of
OpenSSL patches are localized and can be automatically applied
by OSSPATCHER. Similarly, the fact that 97% of FFmpeg and
75% OpenSSL vulnerable versions can be patched shows that
their code bases are stable and vulnerable functions rarely
change across versions until they are fixed. In contrast, 12%
of Curl’s vulnerable versions can be patched, indicating that
Curl has made relevant changes to vulnerable functions across
versions, which prevents OSSPATCHER from adapting patches
across versions. #VFs shows the total number of vulnerable
functions across all CVEs/patches and #EVFs shows exported
(non-static) ones among them. ĞLOCFP shows average line
of change in feasible patches, ĞLOCV F shows average size of
vulnerable functions3, and Ğ#FeatsV F shows average number
of unique features in vulnerable functions. From the table,
we can see that 197 functions in FFmpeg are changed across
193 feasible patches. Similarly, 145 functions in OpenSSL
are changed among 80 feasible patches. This shows that
vulnerabilities can reside in different functions across open
source software. ĞLOCV F of these two OSS are 102 and
153 respectively, implying that security vulnerabilities are
located in medium to large functions. Ğ#FeatsV F shows that
such functions contains a considerable amount of features. In
addition, ĞLOCFP shows that patches are localized and change
only small parts of corresponding vulnerable functions.

(a) CDF of #FV and #VV. (b) CDF of #FV/#VV ratio.

Fig. 9: Cross version analysis for feasible patches.

Apart from overall description of patches, we also present
cross version analysis and code size analysis for OpenSSL and
FFmpeg in detail. Figure 9a shows the cumulative distribution
function (CDF) of feasible version count and vulnerable version
count. It reveals that 80% of patches are tagged with less

3The size of a vulnerable function is taken from the latest feasible patch
that fixes the particular function.

(a) CDF of line of change in
patches.

(b) CDF of line of code in vul-
nerable functions.

Fig. 10: Code size analysis for feasible patches.

than 40 vulnerable versions and can be applied to less than
15 feasible versions. To understand the capabilities of each
patch, we compute the ratio of feasible version count over
vulnerable version count (FV/VV) and present its CDF in
Figure 9b. The plot shows that 50% of patches have a higher
than 35% FV/VV ratio in both FFmpeg and OpenSSL, implying
that OSSPATCHER can be adapted to one third of vulnerable
versions for half of the patches. We further inspect release
dates of feasible versions versus infeasible versions for patches
and find that feasible versions are newer ones while infeasible
versions are released years before patch disclosure. This implies
that these patches are more likely to be feasible to newer
versions of OSS. In addition, to better understand changes in
patches and their enclosing functions, we show the CDF of
line of change for patches and line of code for vulnerable
functions in Figure 10. Figure 10a reveals that 80% of patches
changes less than 40 and 10 lines in OpenSSL and FFmpeg
respectively, validating the insight from Li et al. [34] that
security patches are localized small in size. Figure 10b shows
that 50% of vulnerable functions have more than 90 and 70
lines of code in OpenSSL and FFmpeg respectively. The decent
size of vulnerable functions allows OSSPATCHER to collect a
considerable amount of syntactical features for source-to-binary
matching. However, it also indicates that patching may incur
some memory overhead, since these functions are compiled
and injected into running apps.

For infeasible patches, we also investigate them to under-
stand potential improvements to OSSPATCHER. As depicted in
§III-B, feasibility analyzer analyzes change types, context lines,
and reference compatibilities to decide feasibility of a patch.
Hence, a patch may be infeasible due to three reasons, namely,

9

non-functional changes, context mismatches, and incompatible
references. Of the 465 infeasible patches, 27% fail due to non-
functional changes, 64% do not have matching context lines,
and 9% have incompatible references such as new classes or
functions with modified signatures. Therefore, we expect that a
more comprehensive list of feasible change types and a better
mechanism for formatting patches and locating their insertion
points (probably with help from OSS developers or security
researchers), similar to Coccinelle [47], can further improve
the percentage of feasible source patches.

Variability Analysis. In Table I, #MIVFs refers to the number
of conditional macros used inside vulnerable functions and is
collected by feasibility analyzer. #MRVFs refers to the number
of conditional macros related to vulnerable functions and is a
superset of #MIVFs. In addition to direct conditional macros,
#MRVFs also considers indirect conditional macros related to
data structures or types used by vulnerable functions and is
collected by variability analyzer. As shown in Table I, different
OSS have very different behaviors in terms of variability (i.e.
usage of conditional directives). OpenSSL uses 55 macros in
vulnerable functions, which further expands to 82 in VAST,
showing that OpenSSL relies heavily on conditional directives
and gives users great freedom in customization. In contrast,
FFmpeg uses fewer macros in vulnerable functions and relies
less on conditional directives. We inspected FFmpeg source
code, which is a large project with many subcomponents, to
understand how developers can customize the compilation
of the library. Our analysis shows that FFmpeg is a highly
customizable system but uses a configure script to allow
conditional compilation at the module or folder level.

B. Matching Algorithms

To evaluate matching algorithms in Matcher when match-
ing source code to binaries, we construct a synthetic dataset
for 6 OSS in OSSeval with different OSS variants, due to
lack of a labeled dataset. The selected 6 OSS include Curl,
FFmpeg, LibPNG, Libxml2, OpenSSL, and Wireshark. We
select configurable OSS with a diverse size of code base,
ranging from small Libxml2 to large Wireshark, to allow
comprehensive evaluation of our proposed algorithms. We
obtain the latest versions of them and use a configure script
to build their variants. OpenSSL contains 19 feature related
options such as no-zlib and Wireshark contains 68 such
options such as --enable-dumpcap. Since enumerating all
possible OSS variants is extremely expensive (e.g. 268 for
Wireshark), we therefore build a subset of their variants as
groundtruth. In particular, we start with the default configuration
and specify one feature option at a time to build these OSS
(i.e. 1 + 68 for Wireshark). As a result, we get a total of 174
different binaries for the 6 OSS with their debug information
such as symbol addresses and config options and use them as
groundtruth for evaluating proposed algorithms4.

Accuracy on Groundtruth. Vulnerable functions for the 6
OSS, as shown in Table I, are relatively large in size and contain
a considerable amount of syntactical features for matching.
For vulnerable functions which are still available in latest
versions, we apply our proposed algorithms to locate them in
174 different binaries of these OSS as well as infer their config

4OSSPATCHER did not need nor have access to this ground truth information.

#Apps RSA DSA ECDSA DH ECDH PSK

1942 ✓ ✓ ✓ ✓ ✓ ✗
315 ✓ ✓ ✓ ✗ ✗ ✗
83 ✓ ✗ ✗ ✓ ✓ ✗

TABLE II: Breakdown of configurations related to function
ssl3 get key exchange for 2,340 Apps using OpenSSL
1.0.1e.

options and identify addresses of their external references. By
tuning matching threshold numbers, such as ratio of matched
features for function equivalence testing (e.g. matching score
greater than 0.95 means equivalence), we are able to achieve
a precision of 95% at a recall of 82% in source-to-binary
matching. We believe the precision and recall are acceptable
and further apply these algorithms on real-world binaries.

To further understand how OSSPATCHER can be improved,
we inspect false negatives and false positives in the matched
results. As described in §III-D, Matcher locates vulnerable
functions and their function references, computes config options,
and matches variable references. The matching process can fail
in each of the three steps, which results in false negatives. For
example, function matching can fail because of function inlining
(no match) or ambiguous candidates (multiple match), config
inference may not be possible due to lack of config-related
features, and variable references can be non-distinguishable due
to lack of dependent features. Our inspection shows that the
three steps introduce 35%, 58%, and 7% of the false negatives
respectively, implying that a richer set of features such as
control-flow features [16, 17] can help reduce false negatives
in source-to-binary matching. We also check false positives and
find that they are mainly introduced by compiler optimization
such as constant folding or conditional compilation in the
presence of ambiguous candidates, which can be improved by
more descriptive features as well.

Matching Real-World Applications. Although variability in
source code is common as shown in Table I, it is still not clear
if app developers adopt non-default setup in practice or not.
To understand what real-world apps are doing, we pick all
2,340 apps in App that use version 1.0.1e of OpenSSL. We run
matching algorithms against these apps to infer config options
related to a vulnerable function ssl3 get key exchange
and present the breakdown in Table II. Each column in Table II
represents a feature that can be optionally excluded using
macros, such as OPENSSL NO RSA, and the first row which
excludes only PSK is the default. The results show that 17% of
them use non-default configurations, indicating that variability-
aware analysis is an essential component in OSSPATCHER.

To further evaluate runtime performance of OSSPATCHER
on different OSS, we run matching algorithms on 1,000 apps
in Appeval and save their identified addresses and configs for
further evaluation.

C. Runtime Testing

With the collected addresses and configs for Appeval, we
run patch generator and injector to fix vulnerabilities in these
apps right after the corresponding vulnerable libraries are
loaded. Additionally, we run monkey [2] to exercise patched
apps for 10 minutes to ensure the normal functioning of

10

OSS Name VV App Name CVE EDB Vulnerable Function LOC #GFR #SFR #GVR #SVR

FFmpeg 3.1.2 FFmpeg CLI [33] 2016-10191 [9] rtmp packet read... 117 4 0 0 0

OpenSSL 1.0.1f Httpd: 2014-0160 32745 dtls1 process heartbeat 67 5 0 0 0
tls1 process heartbeat 66 4 0 0 0

Libxml2 2.9.4 Chrome 2017-15412 [23] xmlXPathCompOpEval... 197 4 9 0 0

OpenJPEG 2.2.0 PdfViewer [51]; 2017-15408 [22]

sycc444 to rgb 39 3 0 0 0
sycc422 to rgb 54 4 0 0 0
sycc420 to rgb 139 5 0 0 0
opj copy image header 61 2 0 0 0
opj jp2 apply pclr 131 4 0 0 0

MuPDF 1.11 DocViewer [49] 2017-5991 42138 pdf run xobject 162 20 5 0 0
Stagefright 5.1 Hangouts 2015-1538 38124 SampleTable::set... 52 2 0 0 0
BZRTP 1.0.3 Linphone [36] 2016-6271 [64] bzrtp packetParser 490 5 0 0 0
OpenLDAP 2.4.42 OpenLDAP: 2015-6908 38145 ber get next 204 5 0 0 0
GIMP 2.8.0 GIMP: 2012-3236 19482 fits decode header 194 2 3 0 4
Wireshark 2.4.2 Wireshark: 2017-17085 43233 dissect cip safety data 476 16 16 0 30

VV: Vulnerable Version, EDB: Id in Exploit-DB [45] if available, LOC: Line Of Code, GFR: Global Function Reference, SFR: Static Function Reference,
GVR: Global Variable Reference, SVR: Static Variable Reference;
: tags Linux applications; ; OpenJPEG is used by PDFium, which is further used as PDF rendering library by Android PdfViewer;

TABLE III: Correctness evaluation results for vulnerabilities with public exploits and feasible patches.

Fig. 11: CDF of memory overhead (KB/Percentage).

these apps. This testing period is practically long enough
based on the findings from Choudhary et al [10] that most
Android automated testing tools, including monkey, approach
their maximum coverage as the testing progresses for 5 to 10
minutes. During our testing, 32% of apps invoked at least one
patched vulnerable function. In addition, we record memory and
performance overhead introduced by OSSPATCHER. During
runtime testing, all patched apps remain functional without
any crashes. The memory overhead mainly comes from patch
libraries and stub libraries generated by Patcher, and as shown
in Figure 11, OSSPATCHER incurs less than 80KB (0.1%)
memory overhead for 80% of apps. The memory overhead is
low because the Zygote process consumes roughly 50MB of
memory. Since all apps are forked from the Zygote, they will
consume more memory than it.

In terms of performance overhead, it can be divided
into two parts: before-patching (loading) and after-patching
(runtime). Our patcher daemon is attached to the Zygote
process and tracks its forks. Once the vulnerable libraries are
loaded, patcher checkpoints the application process, performs
in-memory patching, and detaches upon finishing. During our
testing, all the apps load vulnerable libraries upon start, and
patcher incurs a loading delay of less than 350 milliseconds for
80% of apps. As for runtime overhead, since apps are patched
natively using shared libraries, run with normal input (i.e. no
crafted files to crash enclosed FFmpeg libraries), and remain
functional during testing, we observe almost no delay in terms
of responsiveness. Since we use detour-based patching, the

runtime overhead is only the trampoline instructions. Therefore,
similar to other works (e.g. PatchDroid [42]), we empirically
conclude that the runtime overhead is negligible.

D. Exploitation and Correctness Verification

In order to verify the correctness of OSSPATCHER, it would
be ideal to attack a patched app with a previously working
exploit to check whether the exploit is stopped or not. Since
apps in Appeval are closed-source and automatically generating
exploits for them based on vulnerabilities is an orthogonal
direction, we verify correctness of OSSPATCHER using apps
with publicly available exploits, presented in Table III. We
include the infamous Heartbleed and Stagefright as well as
a recent exploit for Android Chrome (CVE-2017-15412). In
addition to vulnerability and exploit information, we also
present details of vulnerable functions in Table III, to show
the size of vulnerable functions and their function references
and variable references. We verify OSSPATCHER using 6
Android apps and 4 Linux apps, to show the capability of
OSSPATCHER in patching both Android apps and other Linux-
based apps. For collected exploits, we start by validating that
they work on vulnerable versions and are blocked in newer
(fixed) versions of OSS libraries. We then run OSSPATCHER
to compile source patches into shared libraries and patch them
into the vulnerable apps. Our evaluation shows that all of these
exploits are successfully stopped by OSSPATCHER. We discuss
three representative cases below.

Android Chrome. As a large open source project, Chrome
reuses many other OSS as well, such as FFmpeg, Libxml2
and WebRTC. On Android, Chrome compiles them into
a giant library, named crazy.libchrome.so, and uses a
wrapper to interact with these functionalities. To improve
the security of Chrome, Google launches bug bounty pro-
grams to encourage security researchers to test and submit
vulnerabilities with exploits, among which we identified
CVE-2017-15412 that exploits Libxml2 in Chrome using a
crafted xml file [23]. We then use OSSPATCHER to patch
function xmlXPathCompOpEvalPositionalPredicate by lo-
cating necessary addresses and inferring its compilation options.
After injecting this patch, we found the exploit to be effectively
thwarted.

11

Stagefright. Libstagefright is one of Android’s built-in system
libraries and is used by system services as well as first-party
apps, such as Hangouts, to process multimedia files. There
are several exploits available for the infamous stagefright bug,
and we demonstrate OSSPATCHER using exploit 38124 in
Exploit-DB [45] which crafts a malicious mp4 file. We use
a Nexus 5 phone running Android 5.0, which is subject to
this vulnerability to carry out the experiment. Before patching,
the exploit can start a reverse shell through Hangouts. After
patching SampleTable::setSampleToChunkParams using
OSSPATCHER, the exploit is stopped.

Heartbleed. Apache web server, Httpd, uses OpenSSL for
hosting websites over https. Heartbleed vulnerability allows
attackers to peek server’s memory. We setup Httpd with
1.0.1f version of OpenSSL in a docker container and turn
on https. With exploit 32745, we are able to dump mem-
ory of web server. After patching the server daemons at
runtime by fixing function dtls1 process heartbeat and
tls1 process heartbeat, an attacker cannot exploit the
server any longer.

VI. DISCUSSION

A. Patching Techniques

We demonstrate OSSPATCHER with live-patching at the
start of app launching. But OSSPATCHER can be adapted to
perform hot-patching at runtime which has benefits such as
continual service. The difference between these is timing of
injection and requirements on patches. Hot-patching needs
to ensure that vulnerable functions are not being executed
and patches are stateless. However, both approaches require
root privilege due to the use of ptrace and may increase
attack surface if adopted by users. On the contrary, binary
rewriting doesn’t require root privilege and minimizes attack
surface. While prototyping OSSPATCHER, we could have
chosen either, however, in-memory patching allows us to safely
revert the patch on exception and helps in debugging. We
leave implementation of other patching techniques and their
comparison as future work.

B. Alternative Deployments

While this paper focuses on patching Android apps, the
techniques used by OSSPATCHER can also be applied to
patch vulnerabilities in userspace programs of any Linux-
based system, particularly apps on Docker Hub, of which
more than 80% of official apps have been reported to have
at least one highly severe vulnerability [58, 62]. In fact, the
correctness verification of 4 Linux apps (e.g. Httpd) in Table III
is performed using Docker for better reproducibility.

OSSPATCHER is a system to help third-parties patch public
vulnerabilities in applications for the sake of users, which
assumes unavailability of source code. However, we argue that
OSSPATCHER can also be adapted to help app developers to
push their security patches quickly to users.

C. Limitations

Information Authenticity. OSSPATCHER assumes that the
information in NVD is accurate. But this assumption may
not be true. For example, CVE-2016-10156 is a vulnerability

correlated with systemd which allows privilege escalation. The
description mentions that version 228 is vulnerable and 229
fixes the problem. The CVE entry has two commit links in the
reference section. We tested the corresponding 41171 exploit
in Exploit-DB for this CVE. We found it working on version
228 through 236 and was stopped in 237, which shows that
the claim made in the description is not correct. Moreover,
one of the two commits is already included in version 228,
indicating that developers may have back-ported the commit,
or the commit is not a patch. However, we argue that checking
authenticity of information is orthogonal to OSSPATCHER and
can be addressed by other approaches such as manual reviews
and regression testing.

System Capability. OSSPATCHER currently classifies limited
types of changes as feasible and supports VAST building for
only C language due to limitation of TypeChef. However,
OSSPATCHER can be extended to support other types of
changes that result in localized binary changes. For ex-
ample, patch 188eb6b of LibPNG is considered infeasible
by OSSPATCHER due to its change of typedef statements.
However, it can be classified as feasible by a more com-
plex analysis which is capable of identifying and separating
functional changes versus non-functional changes, such as
version string update. Similarly, OSSPATCHER can support
C++, by rewriting TypeChef as a clang tool. In this paper, we
avoid this engineering overhead and prioritize demonstration
of practicality while prototyping OSSPATCHER. But we argue
that future research can be conducted to clearly define feasible
patches and identify challenges in VAST building for C++.

Dynamic Code Coverage. During our testing, we found that
many of the patches applied to deep vulnerabilities — often
beyond the reach of symbolic/dynamic analysis due to precise
environmental requirements. Our automated dynamic analysis
in §V was only able to exercise patched vulnerable functions
in 32% of the tested apps. This led us to manually verify the
patches in §V-D and motivated the design of our automated
rollback mechanism presented in §IV-D. As dynamic code
coverage techniques advance, we will continue to improve the
automated verification of our patches.

VII. RELATED WORK

Previous efforts related to OSSPATCHER can be categorized
into three lines of work.

A. Automatic Patching

Researchers have proposed approaches to automatically
generate patches by learning from previous patches. For exam-
ple, CodePhage [60] and CodeCarbonCopy [59] patches buggy
apps by borrowing code from fixed donor apps. Prophet [38]
automatically generates patches from successful OSS patches
and assigns candidate patches with probabilistic scores. Due
to the fact that security vulnerabilities are localized and have
fixed types, researchers also proposed systems to patch binaries
directly based on domain knowledge or machine learning
techniques. For example, ClearView [48] patches errors based
on execution failures. Axis [37] and AFix [25] focus on automat-
ically fixing atomicity violations. Schulte et al. [52–54] propose
evolutionary algorithms to repair programs. GenProg [32] and
Par [29] propose genetic-programming methods for patching.

12

BinSurgeon [18] and AutoFix-E [72] allow users to write
patches using templates or source annotations. These works
propose various ways to fix programs under the assumption
that patches are not available. We consider these works as
orthogonal to OSSPATCHER which works on existing patches.

Researchers have also proposed patching techniques un-
der the assumption that patches are available. For example,
Ksplice [3] and Kpatch [73] performs Linux kernel live
patching based on existing kernel patches. Karma [8] performs
Android kernel patching based on manually written lua patches.
InstaGuard [7] presents a new method for applying patches
leveraging ARM debugging primitives. BISTRO [13] proposes
techniques to extract binary component and embed them into
other binaries. There are also works that focuses on patching
native libraries (C/C++) or Dalvik binaries (Java) Android
apps [14, 42, 76]. However, these works either assume availabil-
ity of source code and config options of compilation [3, 7, 8, 73]
or assume impractical availability of binary patches [13, 42].
In contrast, OSSPATCHER assumes that apps are closed source
and source patches of OSS are available, which we believe is a
practical assumption for Android apps and OSS. Compared to
patching Java libraries [14, 76] in Android apps, OSSPATCHER
focuses on patching native libraries written in C/C++, which
are reported to be present in 40% of all apps [1], and have
more CVE entries as well as unique challenges.

B. N-day Vulnerability Detection

Various approaches have been proposed to identify known
(n-day) vulnerabilities in binaries at different granularities.
LibScout [4] and OSSPolice [15] detect libraries and correlate
them with existing vulnerability data to identify vulnerable ones.
OSSPATCHER reuses them to identify apps with vulnerable
OSS versions.

Discovre [16], Genius [17], and Gemini [77] compile
vulnerable functions into binaries and directly search for them
in firmware images. Fiber [78] proposes fine-grained patch
presence test to allow more accurate bug finding. However,
these approaches do not consider OSS variants and may need
to compile and search an exponential number of binaries. To
overcome this limitation, OSSPATCHER proposes variability-
aware matching algorithms to identify vulnerable functions as
well as config options and reference addresses.

C. Variability-aware Code Analysis

There has been work that carry out variability-aware static
analysis of large and complex software systems, such as the
Linux kernel, Busybox, etc. to detect compile time bugs, dead
code, inconsistent configuration, etc. Undertaker [6] is a suite
of tools to carry out variability-aware static analysis of Linux
kernel source code for dead code and related bugs introduced
by C preprocessor directives. Vampyr [80] is a part of the
Undertaker suite that performs variability-aware static coverage
analysis of kernel drivers. KConfigReader [26] uses Undertaker
to analyze a Linux kernel variability model (kconfig files)
and translate it into a propositional formula for automated
reasoning with SAT solvers. The TypeChef [28] tool also does
variability-aware static analysis of software systems to detect
compile and link time errors introduced by the C preprocessor.
They introduce an AST with choice nodes to encode variability

information. These works all focus on analyzing source code
for problems related to variability.

In contrast, OSSPATCHER focuses on bridging the gap
between OSS variants and their compiled counterparts in
binaries. OSSPATCHER reuses TypeChef to generate VAST and
performs source-to-binary matching for subsequent patching
operations.

VIII. CONCLUSION

In this paper, we presented OSSPATCHER, the first au-
tomated system that fixes n-day OSS vulnerabilities in app
binaries by automatically converting feasible source patches
into binaries and performing in-memory patching. We focus
on fixing uses of vulnerable OSS written in C/C++ for
Android apps while prototyping OSSPATCHER. We populated
OSSPATCHER with 39 OSS and 1,000 Android vulnerable
apps. Our evaluation shows that 675 source patches are
feasible and OSSPATCHER fixes vulnerabilities with negligible
memory and performance overhead. We, therefore, conclude
that OSSPATCHER is a practical system and can be deployed
by vendors or end users to fix n-day vulnerabilities without
involving app developers.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their constructive comments and feedback. We also thank
Professor Thorsten Holz for his guidance while shepherding
this paper. This research was supported by ONR under grants
N0001409-1-1042, N00014-15-1-2162, and N00014-17-1-2895,
and the DARPA Transparent Computing program under contract
DARPA-15-15-TCFP-006, and NSF under Award 1755721. Any
opinions, findings, conclusions, or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of our sponsors.

REFERENCES

[1] V. Afonso, A. Bianchi, Y. Fratantonio, A. Doupé, M. Polino, P. de Geus,
C. Kruegel, and G. Vigna, “Going native: Using a large-scale analysis
of android apps to create a practical native-code sandboxing policy,” in
Proceedings of the 2016 Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2016.

[2] Android Developers, “Monkey runner,” 2018. [Online]. Available:
https://developer.android.com/studio/test/monkeyrunner/

[3] J. Arnold and M. F. Kaashoek, “Ksplice: Automatic rebootless kernel
updates,” in Proceedings of the 4th European Conference on Computer
Systems (EuroSys), Nuremberg, Germany, Mar. 2009.

[4] M. Backes, S. Bugiel, and E. Derr, “Reliable Third-Party Library
Detection in Android and its Security Applications,” in Proceedings
of the 23rd ACM Conference on Computer and Communications Security
(CCS), Vienna, Austria, Oct. 2016.

[5] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović,
T. King, A. Reynolds, and C. Tinelli, “Cvc4,” in Proceedings of the
23rd International Conference on Computer Aided Verification (CAV),
Snowbird, UT, Jul. 2011.

[6] CADOS Developers, “The undertaker is an implementation of our
preprocessor and configuration analysis approaches,” 2018. [Online].
Available: https://undertaker.cs.fau.de

[7] Y. Chen, Y. Li, L. Lu, Y.-H. Lin, H. Vijayakumar, Z. Wnag, and
X. Ou, “Instaguard: Instantly deployable hot-patches for vulnerable system
programs on android,” in Proceedings of the 2018 Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA, Feb.
2018.

[8] Y. Chen, Y. Zhang, Z. Wang, L. Xia, C. Bao, and T. Wei, “Adaptive
android kernel live patching,” in Proceedings of the 26th USENIX Security
Symposium (Security), Vancouver, BC, CANADA, Aug. 2017.

13

https://developer.android.com/studio/test/monkeyrunner/
https://undertaker.cs.fau.de

[9] P. Cher, “ffmpeg remote exploitaion results code execution,” 2016.
[Online]. Available: http://www.openwall.com/lists/oss-security/2017/02/
02/1

[10] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input generation
for android: Are we there yet? (e),” in Proceedings of the 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
Lincoln, Nebraska, Sep. 2015.

[11] J. de Guzman and H. Kaiser, “The boost spirit library,” 2016. [Online].
Available: http://boost-spirit.com/home/

[12] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in
International conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2008, pp. 337–340.

[13] Z. Deng, X. Zhang, and D. Xu, “Bistro: Binary component extraction
and embedding for software security applications,” in Proceedings of the
18th European Symposium on Research in Computer Security (ESORICS),
Egham, United Kingdom, Sep. 2013.

[14] E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes, “Keep me
updated: An empirical study of third-party library updatability on
android,” in Proceedings of the 24th ACM Conference on Computer
and Communications Security (CCS), Dallas, Texas, Oct. 2017.

[15] R. Duan, A. Bijlani, M. Xu, T. Kim, and W. Lee, “Identifying open-source
license violation and 1-day security risk at large scale,” in Proceedings
of the 24th ACM Conference on Computer and Communications Security
(CCS), Dallas, Texas, Oct. 2017.

[16] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, “discovre: Efficient
cross-architecture identification of bugs in binary code,” in Proceedings
of the 2016 Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb. 2016.

[17] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, “Scalable
graph-based bug search for firmware images,” in Proceedings of the 23rd
ACM Conference on Computer and Communications Security (CCS),
Vienna, Austria, Oct. 2016.

[18] S. E. Friedman and D. J. Musliner, “Automatically repairing stripped
executables with cfg microsurgery,” in Proceedings of the 15th IEEE
International Conference on Self-Adaptive and Self-Organizing Systems
Workshops (SASO), Cambridge, MA, Sep. 2015.

[19] GCC Administrator, “The c preprocessor,” 2018. [Online]. Available:
https://gcc.gnu.org/onlinedocs/gcc-2.95.3/cpp 1.html

[20] Google Inc., “Android Studio, The Official IDE for Android,” 2016.
[Online]. Available: https://developer.android.com/studio/index.html

[21] ——, “App Security Improvement Program,” 2016. [Online]. Available:
https://developer.android.com/google/play/asi.html

[22] ——, “Pdfium heap buffer overflow vulnerability in openjpeg,” 2017.
[Online]. Available: https://bugs.chromium.org/p/chromium/issues/detail?
id=762374

[23] ——, “Uaf/double free with xslt xpath expressions containing
function calls in predicates,” 2017. [Online]. Available: https:
//bugs.chromium.org/p/chromium/issues/detail?id=727039

[24] Hex-Rays SA, “Ida is the interactive disassembler: the world’s
smartest and most feature-full disassembler,” 2018. [Online]. Available:
https://www.hex-rays.com/products/ida/

[25] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit, “Automated atomicity-
violation fixing,” in ACM Sigplan Notices, vol. 46, no. 6. ACM, 2011,
pp. 389–400.

[26] C. Kästner, “Differential testing for variational analyses: Experience from
developing kconfigreader,” arXiv preprint arXiv:1706.09357, 2017.

[27] C. Kästner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and
T. Berger, “Variability-aware parsing in the presence of lexical macros
and conditional compilation,” in Proceedings of the 22th Annual ACM
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), Portland, OR, Oct. 2011.

[28] A. Kenner, C. Kästner, S. Haase, and T. Leich, “Typechef: toward type
checking# ifdef variability in c,” in Proceedings of the 2nd International
Workshop on Feature-Oriented Software Development (FOSD), Eindhoven,
Netherlands, Oct. 2010.

[29] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation learned
from human-written patches,” in Proceedings of the 35th International
Conference on Software Engineering (ICSE), San Francisco, CA, May
2013.

[30] S. Kim, S. Woo, H. Lee, and H. Oh, “Vuddy: A scalable approach
for vulnerable code clone discovery,” in Proceedings of the 38th IEEE
Symposium on Security and Privacy (Oakland), San Jose, CA, May 2017.

[31] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the international
symposium on Code generation and optimization: feedback-directed and

runtime optimization. IEEE Computer Society, 2004, p. 75.
[32] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog-a generic

method for automatic software repair,” IEEE Transactions on Software
Engineering, vol. 38, no. 1, p. 54, 2012.

[33] M. Len, “Ffmpeg cli,” 2018. [Online]. Available: https://play.google.
com/store/apps/details?id=org.magiclen.ffmpeg.cli

[34] F. Li and V. Paxson, “A large-scale empirical study of security patches,”
in Proceedings of the 24th ACM Conference on Computer and Commu-
nications Security (CCS), Dallas, Texas, Oct. 2017.

[35] J. Liebig, A. von Rhein, C. Kästner, S. Apel, J. Dörre, and C. Lengauer,
“Scalable analysis of variable software,” in Proceedings of the 18th
European Software Engineering Conference (ESEC) / 21st ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE), Saint
Petersburg, Russia, Aug. 2013.

[36] Linphone Developers, “Linphone, for smartphones, tablets and mobile
devices,” 7 2018. [Online]. Available: http://www.linphone.org

[37] P. Liu and C. Zhang, “Axis: Automatically fixing atomicity violations
through solving control constraints,” in Proceedings of the 34th Interna-
tional Conference on Software Engineering (ICSE), Zurich, Switzerland,
Jun. 2012.

[38] F. Long and M. Rinard, “Automatic patch generation by learning correct
code,” in ACM SIGPLAN Notices, vol. 51, no. 1. ACM, 2016, pp.
298–312.

[39] J. Long, “cve-search - a tool to perform local searches for known
vulnerabilities,” 2018. [Online]. Available: http://cve-search.github.io/
cve-search/

[40] K. Martin and B. Hoffman, Mastering CMake: a cross-platform build
system. Kitware, 2010.

[41] F. Medeiros, M. Ribeiro, R. Gheyi, S. Apel, C. Kästner, B. Ferreira,
L. Carvalho, and B. Fonseca, “Discipline matters: Refactoring of
preprocessor directives in the# ifdef hell,” IEEE Transactions on Software
Engineering, vol. 44, no. 5, pp. 453–469, 2018.

[42] C. Mulliner, J. Oberheide, W. Robertson, and E. Kirda, “Patchdroid:
Scalable third-party security patches for android devices,” in Proceedings
of the Annual Computer Security Applications Conference (ACSAC),
2013.

[43] L. Nagy, “Bear is a tool that generates a compilation database for clang
tooling.” 2018. [Online]. Available: https://github.com/rizsotto/Bear

[44] National Institute of Standards and Technology, “National vulnerability
database,” 2013. [Online]. Available: http://nvd.nist.gov/

[45] Offensive Security, “Exploit database archive,” 2018. [Online]. Available:
https://www.exploit-db.com/

[46] openSUSE contributors, “zypper-docker: Easy patch and update
solution for docker images,” 2018. [Online]. Available: https:
//software.opensuse.org/package/zypper-docker

[47] Y. Padioleau, R. R. Hansen, J. L. Lawall, and G. Muller, “Semantic
patches for documenting and automating collateral evolutions in linux
device drivers,” in Proceedings of the 3rd workshop on Programming
languages and operating systems: linguistic support for modern operating
systems. ACM, 2006, p. 10.

[48] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach, M. Carbin,
C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan et al., “Automatically
patching errors in deployed software,” in Proceedings of the 22nd ACM
Symposium on Operating Systems Principles (SOSP), Big Sky, MT, Oct.
2009.

[49] Privacy Apps, “Document viewer,” 1 2018. [Online]. Available: https:
//play.google.com/store/apps/details?id=org.sufficientlysecure.viewer

[50] D. A. Ramos and D. R. Engler, “Under-constrained symbolic execution:
Correctness checking for real code.” in Proceedings of the 24th USENIX
Security Symposium (Security), Washington, DC, Aug. 2015.

[51] B. Schiller, “Android pdfviewer,” 2018. [Online]. Available: https:
//github.com/barteksc/AndroidPdfViewer

[52] E. Schulte, J. DiLorenzo, W. Weimer, and S. Forrest, “Automated repair
of binary and assembly programs for cooperating embedded devices,” in
Proceedings of the 18th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
Houston, TX, Mar. 2013.

[53] E. Schulte, S. Forrest, and W. Weimer, “Automated program repair through
the evolution of assembly code,” in Proceedings of the 25th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
Antwerp, Belgium, Sep. 2010.

[54] E. M. Schulte, W. Weimer, and S. Forrest, “Repairing cots router firmware
without access to source code or test suites: A case study in evolutionary
software repair,” in Proceedings of the 24th Annual Conference on Genetic
and Evolutionary Computation (GEC), Madrid, Spain, Jul. 2015.

14

http://www.openwall.com/lists/oss-security/2017/02/02/1
http://www.openwall.com/lists/oss-security/2017/02/02/1
http://boost-spirit.com/home/
https://gcc.gnu.org/onlinedocs/gcc-2.95.3/cpp_1.html
https://developer.android.com/studio/index.html
https://developer.android.com/google/play/asi.html
https://bugs.chromium.org/p/chromium/issues/detail?id=762374
https://bugs.chromium.org/p/chromium/issues/detail?id=762374
https://bugs.chromium.org/p/chromium/issues/detail?id=727039
https://bugs.chromium.org/p/chromium/issues/detail?id=727039
https://www.hex-rays.com/products/ida/
https://play.google.com/store/apps/details?id=org.magiclen.ffmpeg.cli
https://play.google.com/store/apps/details?id=org.magiclen.ffmpeg.cli
http://www.linphone.org
http://cve-search.github.io/cve-search/
http://cve-search.github.io/cve-search/
https://github.com/rizsotto/Bear
http://nvd.nist.gov/
https://www.exploit-db.com/
https://software.opensuse.org/package/zypper-docker
https://software.opensuse.org/package/zypper-docker
https://play.google.com/store/apps/details?id=org.sufficientlysecure.viewer
https://play.google.com/store/apps/details?id=org.sufficientlysecure.viewer
https://github.com/barteksc/AndroidPdfViewer
https://github.com/barteksc/AndroidPdfViewer

[55] K. Serebryany, “Oss-fuzz: Google continuous fuzzing service for open
source software,” USENIX Association, 2017.

[56] S. She and T. Berger, “Formal semantics of the kconfig language,”
Technical note, University of Waterloo, vol. 24, 2010.

[57] Y. Shoshitaishvili, “Python bindings for valgrinds vex ir,” 2014.
[58] R. Shu, X. Gu, and W. Enck, “A study of security vulnerabilities on

docker hub,” in Proceedings of the 7th Annual ACM Conference on Data
and Applications Security and Privacy (CODASPY), Scottsdale, AZ, Mar.
2017.

[59] S. Sidiroglou-Douskos, E. Lahtinen, A. Eden, F. Long, and M. Rinard,
“Codecarboncopy,” in Proceedings of the 25th ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE), Paderborn, Germany,
Sep. 2017.

[60] S. Sidiroglou-Douskos, E. Lahtinen, F. Long, and M. Rinard, “Automatic
error elimination by horizontal code transfer across multiple applications,”
in Proceedings of the 2015 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Portland, OR, Jun. 2015.

[61] R. Stallman, “Using the gnu compiler collection: a gnu manual for gcc
version 4.3. 3,” CreateSpace, Paramount, CA, 2009.

[62] B. Tak, C. Isci, S. Duri, N. Bila, S. Nadgowda, and J. Doran, “Un-
derstanding security implications of using containers in the cloud,” in
USENIX Annual Technical Conference (USENIX ATC’17), 2017.

[63] P. Team, “Pax address space layout randomization (aslr),” Phrack, March,
2003.

[64] G. Teissier, “Proof of concept for zrtp man-in-the-middle,” 7 2017.
[Online]. Available: https://github.com/gteissier/CVE-2016-6271

[65] The Clang Team, “Ast matcher reference,” 2018. [Online]. Available:
http://clang.llvm.org/docs/LibASTMatchersReference.html

[66] ——, “Libtooling is a library to support writing standalone tools
based on clang,” 2018. [Online]. Available: https://clang.llvm.org/docs/
LibTooling.html

[67] L. Torvalds and J. Hamano, “Git: Fast version control system,” 2010.
[Online]. Available: http://git-scm.com

[68] G. van Rossum, “Unified diff format,” 2018. [Online]. Available:
https://www.artima.com/weblogs/viewpost.jsp?thread=164293

[69] Virtuozzo, “Checkpoint/restore in userspace.” [Online]. Available:
https://www.criu.org

[70] F. Wang and Y. Shoshitaishvili, “Angr-the next generation of binary
analysis,” in Cybersecurity Development (SecDev), 2017 IEEE. IEEE,
2017, pp. 8–9.

[71] R. Wang, Y. Shoshitaishvili, A. Bianchi, A. Machiry, J. Grosen, P. Grosen,
C. Kruegel, and G. Vigna, “Ramblr: Making reassembly great again,” in
Proceedings of the 2017 Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2017.

[72] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer, and
A. Zeller, “Automated fixing of programs with contracts,” in Proceedings
of the International Symposium on Software Testing and Analysis (ISSTA),
Trento, Italy, Jul. 2010.

[73] Wikipedia contributors, “Kpatch — Wikipedia, the free encyclopedia,”
2017. [Online]. Available: https://en.wikipedia.org/w/index.php?title=
Kpatch&oldid=798558878

[74] ——, “Gnu build system — Wikipedia, the free encyclopedia,” 2018.
[Online]. Available: https://en.wikipedia.org/w/index.php?title=GNU
Build System&oldid=821748569

[75] H. Wu, “A prototype tool for moving class definition to new file,” 2018.
[Online]. Available: https://github.com/llvm-mirror/clang-tools-extra/tree/
master/clang-move

[76] J. Xie, X. Fu, X. Du, B. Luo, and M. Guizani, “Autopatchdroid: A
framework for patching inter-app vulnerabilities in android application,”
in Proceedings of the IEEE International Conference on Communications
(ICC), Paris, France, May 2017.

[77] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural
network-based graph embedding for cross-platform binary code similarity
detection,” in Proceedings of the 24th ACM Conference on Computer
and Communications Security (CCS), Dallas, Texas, Oct. 2017.

[78] H. Zhang and Z. Qian, “Precise and accurate patch presence test for
binaries,” in Proceedings of the 27th USENIX Security Symposium
(Security), Baltimore, MD, Aug. 2018.

[79] X. Zhang, Y. Zhang, J. Li, Y. Hu, H. Li, and D. Gu, “Embroidery:
Patching vulnerable binary code of fragmentized android devices,” in
Software Maintenance and Evolution (ICSME), 2017 IEEE International
Conference on. IEEE, 2017, pp. 47–57.

[80] A. Ziegler, V. Rothberg, and D. Lohmann, “Analyzing the impact of
feature changes in linux,” in Proceedings of the Tenth International
Workshop on Variability Modelling of Software-intensive Systems. ACM,

2016, pp. 25–32.

15

https://github.com/gteissier/CVE-2016-6271
http://clang.llvm.org/docs/LibASTMatchersReference.html
https://clang.llvm.org/docs/LibTooling.html
https://clang.llvm.org/docs/LibTooling.html
http://git-scm.com
https://www.artima.com/weblogs/viewpost.jsp?thread=164293
https://www.criu.org
https://en.wikipedia.org/w/index.php?title=Kpatch&oldid=798558878
https://en.wikipedia.org/w/index.php?title=Kpatch&oldid=798558878
https://en.wikipedia.org/w/index.php?title=GNU_Build_System&oldid=821748569
https://en.wikipedia.org/w/index.php?title=GNU_Build_System&oldid=821748569
https://github.com/llvm-mirror/clang-tools-extra/tree/master/clang-move
https://github.com/llvm-mirror/clang-tools-extra/tree/master/clang-move

	Introduction
	Challenges
	Configurable OSS Variants
	Statically Linked Binaries
	Stripped Binaries

	Design
	Goals and Assumptions
	Feasibility Analysis
	Variability Analysis
	Source vs Binary Matching
	Patch Generation and Injection

	Implementation
	Collector
	Analyzer
	Matcher
	Patcher

	Evaluation
	Code Analysis Statistics
	Matching Algorithms
	Runtime Testing
	Exploitation and Correctness Verification

	Discussion
	Patching Techniques
	Alternative Deployments
	Limitations

	Related Work
	Automatic Patching
	N-day Vulnerability Detection
	Variability-aware Code Analysis

	Conclusion

