
CRCount: Pointer Invalidation with Reference
Counting to Mitigate Use-after-free in Legacy C/C++

Jangseop Shin∗, Donghyun Kwon∗, Jiwon Seo∗, Yeongpil Cho†‡ and Yunheung Paek∗
∗ECE and ISRC, Seoul National University

{jsshin, dhkwon, jwseo}@sor.snu.ac.kr, ypaek@snu.ac.kr
†School of Software, Soongsil University

ypcho@ssu.ac.kr

Abstract—Pointer invalidation has been a popular approach
adopted in many recent studies to mitigate use-after-free errors.
The approach can be divided largely into two different schemes:
explicit invalidation and implicit invalidation. The former aims
to eradicate the root cause of use-after-free errors by explicitly
invalidating every dangling pointer. In contrast, the latter aims
to prevent dangling pointers by freeing an object only if there is
no pointer referring to it. A downside of the explicit scheme is
that it is expensive, as it demands high-cost algorithms or a large
amount of space to maintain up-to-date lists of pointer locations
linking to each object. Implicit invalidation is more efficient in
that even without any explicit effort, it can eliminate dangling
pointers by leaving objects undeleted until all the links between
the objects and their referring pointers vanish by themselves
during program execution. However, such an argument only
holds if the scheme knows exactly when each link is created and
deleted. Reference counting is a traditional method to determine
the existence of reference links between objects and pointers.
Unfortunately, impeccable reference counting for legacy C/C++
code is very difficult and expensive to achieve in practice, mainly
because of the type unsafe operations in the code. In this paper, we
present a solution, called CRCount, to the use-after-free problem
in legacy C/C++. For effective and efficient problem solving,
CRCount is armed with the pointer footprinting technique that
enables us to compute, with high accuracy, the reference count
of every object referred to by the pointers in the legacy code.
Our experiments demonstrate that CRCount mitigates the use-
after-free errors with a lower performance-wise and space-wise
overhead than the existing pointer invalidation solutions.

I. INTRODUCTION

Use-after-free (UAF) errors refer to unlawful dereferences
of dangling pointers, which are the pointers that still point
to a freed and thus stale object. UAF errors constitute a
serious threat to software security because they are considered
significantly difficult to identify by compilers and manual anal-
yses. This difficulty is attributed to the fact that the temporal
distances between arbitrary pointer operations, such as setting
a pointer to the address of the object, freeing the object, and
dereferencing the pointer, can be very long and hence very
difficult to analyze accurately in reality. This difficulty has

‡Corresponding author.

led attackers to leverage UAF errors as a primary source for
exploitation in their attempts [40], [20], [38] to access or
corrupt arbitrary memory locations in a victim process.

In the past decade, mitigation against UAF errors has been
approached by many researchers from various directions. In
one group of studies [33], [24], [21], [22], [31], researchers
attempted to detect the UAF error when a pointer is derefer-
enced to access its referred object (or referent). Their goal is
to validate the access to the object by carrying out a sequence
of operations to check whether the referent is stale. To support
this access validation mechanism, each time an object is
allocated, they label the object with a unique attribute that
identifies the allocation. Later, when a pointer is dereferenced,
they examine the attribute of its referent to check whether or
not the access is made by a dangling pointer whose referent
no longer holds the original valid allocation in memory.

Although mitigation techniques based on access validation
are claimed to be extensive and complete, they tend to incur an
excessively high performance overhead. This high overhead is
attributed to the fact that the attribute checks must be executed
exhaustively for every memory access, thereby considerably
increasing the total execution time. More recently in a different
group of studies, as a new direction of UAF defense research
to reduce this performance overhead, some researchers have
proposed an approach based on pointer invalidation [17], [40],
[36]. Their mitigation approach against UAF errors is to deter
the violations preemptively by getting rid of the dangling
pointers at the outset. As a pointer becomes dangling when
its referents get freed, this approach in principle can succeed
by invalidating all the related pointers when an object is freed
such that an exception is triggered when one of the invalidated
pointers is dereferenced afterwards. However in practice, for
this approach to be successful, we need to address the problem
of accurately tracking down every change, such as the creation,
copy, or destruction of pointers, and hence, of identifying
pointers and their referents located anywhere on the execution
path. Unfortunately, this pointer tracking problem in general
is prohibitively difficult and expensive to solve with high
accuracy because the pointers may be copied into a number of
different data structures during program execution.

For precise pointer tracking, DANGNULL [17] uses dy-
namic range analysis to monitor the pointer arithmetic opera-
tions that alter the reference relationships between the pointers
and the memory objects. Unfortunately, DANGNULL suffers
from a high performance overhead. A majority of this overhead
is attributed to the design element that requires the system

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA
ISBN 1-891562-55-X
https://dx.doi.org/10.14722/ndss.2019.23541
www.ndss-symposium.org

to immediately update the metadata for the objects when
there is a change in the reference relationships. To alleviate
this performance overhead, DangSan [36] takes a different
approach wherein the total cost for updating the reference
relationships is reduced by discarding the transitional changes
intermittently produced in a sequence of pointer arithmetic
operations. More specifically, in this approach, when any
of the existing reference relationships is changed by pointer
arithmetic, this change is not reflected immediately in the
relationships (thus saving CPU cycles); instead, the change is
merely stored in a history table as a record for future reference.
The actual reference relationships are checked later when the
object is freed. Experiments on DangSan have proven the
effectiveness of this approach by showing that it achieved a
considerably lower performance overhead than DANGNULL.
However, the experiments also show that the history table
can become unbearably large when benchmark programs use
pointers intensively. For example, the memory overhead of
omnetpp benchmark was more than a hundred times the
original memory consumption. As UAF errors are more likely
to be prevalent in programs with a heavy use of pointers, such
an immense memory overhead might be a significant obstacle
for a broad application of this approach.

From the observations on previous work, we found that
such a high overhead, either performance-wise or space-wise,
of the existing pointer invalidation techniques is basically
caused by the approach that when an object is freed, these
techniques promptly locate and explicitly invalidate all the
pointers referring to the object. This explicit pointer inval-
idation approach seems to be intuitive as it mitigates UAF
errors by eradicating the root cause (i.e. dangling pointers),
but it is usually very costly as it demands expensive algorithms
or a large amount of space to maintain the up-to-date list of
pointer locations linking to each object at all times during
program execution. DANGNULL spends many CPU cycles
to manage binary trees as the data structures to store pointer
locations. Every time there is a change in one of the locations,
the trees are traversed and modified accordingly, consuming
a considerable amount of the execution time. Even worse,
the total performance overhead increases in proportion to
the numbers of pointers and referents, which can increase
considerably for programs, such as omnetpp, that perform
frequent arithmetic operations on a myriad of pointers.

Our findings motivated us to take an alternative approach,
which we have named implicit pointer invalidation to contrast
with the existing explicit approach. The goal of our approach
is to prevent dangling pointers by enforcing a basic principle
that permits an object to be freed only if there is no pointer
currently referring to it. Of course in C/C++, users may
deallocate an object at their disposal by invoking the free
(or delete) function irrespective of the existence of pointers
linking with the object. Therefore, to enforce the principle
in the legacy C/C++ code, we augment each memory object
with a single integer, known as the reference counter, that
records the number of pointers referring to the designated
object. When the user intends to free an object in the original
code, we ignore the function by doing nothing explicit if the
corresponding reference counter has a non-zero value. The
object is disposed of without explicit effort for invalidation
once the counter comes to zero. Indeed, in most real code,
reference counters eventually decrease to zero in a sequence of

repeated pointer operations, such as assignment, nullification,
and deallocation of pointer variables. This implies that even
without explicit invalidation time and effort, the proposed
scheme can prevent dangling pointers by holding an object
remain undeleted until all the links between the object and its
referring pointers vanish by themselves, which is tantamount
to the implicit invalidation of the referring pointers.

This implicit invalidation scheme sounds plain and naive
at the first glance, but its practical application to the existing
C/C++ code is very challenging from several aspects. The first
aspect of concern is the increase in the memory overhead. In
C/C++, free/delete is purposed to instantly release the
memory space occupied by objects and reclaim the space
for reuse. However, such reclamation of memory will be
hindered by our implicit scheme that delays the release of
a to-be-free object, which thus remains undeleted until its
reference count reduces to zero. Consequently, our scheme
could suffer from a memory overhead due to undeleted (and
thus unreclaimed) objects, particularly if their number be-
comes large. Luckily, as will be empirically demonstrated,
the overhead was manageably small for most real cases as
far as we could accurately compute the reference counts and
timely delete the undeleted objects. In fact, this very problem
of reference count computing is another important aspect to
be considered for the practical application of our scheme
to legacy code because the notorious C/C++ programming
practices heedlessly violating type safety tend to extremely
complicate this problem. For example, common practices, such
as unrestricted pointer arithmetic and abusive uses of type casts
or unions in C/C++, make it difficult to pinpoint exactly when
pointers are generated and deleted at runtime, which in turn
results in imprecise and incorrect reference counting.

Because the legacy C/C++ code is such full of type unsafe
operations, previous attempts based on reference counting
could not effectively tackle the UAF problem in the legacy
code [9], [2]. In this paper, we propose CRCount, an effective
and efficient solution developed to mitigate UAF errors on
the basis of implicit invalidation. As reasoned above, the key
to the success of our solution depends on the accuracy of
reference counting. To compute reference counts with high
precision, CRCount adopts a technique called pointer foot-
printing, which tracks down the memory locations of live heap
pointers along the execution flow. Our pointer footprinting
technique is centered around a special data structure, called
the pointer bitmap, that represents the up-to-date memory
locations where the heap pointers are stored. The bitmap is
updated by means of program instrumentation coupled with the
runtime library. The empirical results show that, assisted by the
footprinting technique, CRCount could track C/C++ pointers
with a relatively low overhead and compute the reference
counts with high accuracy. CRCount is implemented as a
compiler pass in LLVM. Therefore, any C/C++ program can
be fortified against attacks exploiting UAF errors merely by
compiling its source code with CRCount enabled.

II. RELATED WORK

In this section, we will continue the discussion on CRCount
by relating it to previous solutions that also aimed to thwart
UAF errors in C/C++ code.

2

Explicit Pointer Invalidation. We divide the explicit pointer
invalidation techniques into two folds depending on the manner
in which updates on the reference relationships between point-
ers and objects are reflected. We deem that DANGNULL [17]
and FreeSentry [40] update the reference relationships in an
eager manner because they always update their metadata
for pointers and objects right after the pointer arithmetic
operations affecting the relationships. In contrast, we deem
that DangSan [36] opt for the lazy manner in updating these
relationships. This enables DangSan to achieve much better
performance, but DangSan’s memory overhead is often too
large, as the size of the history table grows extremely large for
programs with heavy uses of pointers. In principle, CRCount
embraces the same eager update strategy as DANGNULL
in such a way that when an object is linked/delinked with
a pointer by pointer arithmetic, the reference relationships
are updated instantly by modifying the object’s reference
count accordingly. However, CRCount does not suffer from
the performance issue as it manages much lighter metadata.
Moreover, our implicit pointer invalidation scheme does not
suffer from the performance overhead that was mandated by
DANGNULL to explicitly invalidate all the pointers referring
to an object when the object is freed.

Implicit Pointer Invalidation. Thus far, several studies
have come close to CRCount in the sense that they benefit
from the implicit pointer invalidation even if this fact is not
expressed clearly in the literature [3], [28], [39], [32]. To be
more specific, their solutions are exempt from additional force
required to explicitly invalidate dangling pointers by delaying
the reuse of the recently freed objects in the hope that the
number of pointers referring to freed objects would gradually
decrease to zero during program execution. However, these
approaches differ from CRCount in one important aspect. They
do not have notions, such as reference counting, to measure
the number of pointer references at runtime. Therefore, they
cannot determine exactly how long they should hold the freed
objects back from being reused by the memory allocator,
and their common schemes are to release the objects simply
when specific conditions are met, such as after a random
amount of time or when the total size of objects being held
reaches a certain limit. Unfortunately, such naive schemes can
be easily circumvented by calculated attacks such as heap
spraying [17], [8] or heap fengshui [35]. In contrast, CRCount,
by maintaining precise reference counters for every object, can
guarantee the safe release of freed objects for reuse with no
presence of dangling pointers.

Object Access Validation. Many security solutions [24],
[33] have attempted to prevent UAF errors by exhaustively
validating every object access via pointers. To this end, they
use a lock-and-key mechanism that can check the validity by
(1) assigning a unique lock to each object at the creation time,
and (2) monitoring whether the object accesses are made by
the pointers having the correct key matching the target object’s
lock. This mechanism realizes a thorough defense against UAF
errors. However, they are at a disadvantage as compared to
CRCount it terms of accuracy and performance: they generate
a number of false positive alarms because of their strictness
that goes beyond the common programming practices, and
incur a huge performance overhead necessary to intervene in
every object access.

Secure Layout of Object. Some systems prevent the ex-
ploitation of UAF errors by using prudent layouts of objects.
Cling [1] forces new objects to be created only in a memory
block that has either never been allocated or has been allocated
to objects of the same type. In brief, Cling mitigates UAF
errors by ensuring the type safety of the allocated objects.
Although efficient, it still allows UAF errors between objects
of the same type. Oscar [7] defeats UAF errors through a
careful arrangement of objects. For this, Oscar never reuses
the (virtual) memory, such that all the objects are created
in a unique memory space, thereby completely blocking the
UAF bugs. Oscar facilitates an effective measure against UAF
errors. The downside, however, is that it suffers from a higher
performance and memory overhead than CRCount because it
abandons the efficiency that could otherwise be gained through
the maximal reuse of the memory space.

Garbage Collection. Garbage collection makes a program
robust against UAF errors through an automatic mechanism
that frees an object after confirming that there is no reference
to the object. Unlike the case of JAVA and C# in which garbage
collection is built into, no hint to distinguish pointers from
ordinary objects is provided by compilers in C/C++. Therefore,
Boehm-Demers-Weiser garbage collector (BDW GC) [5], a
representative garbage collector for C/C++, uses a conservative
approach that regards any pointer-size word as a potential
pointer value. Such a conservative approach may result in
memory leaks in the case of an erroneous recognition of
pointer values, although it has been reported that the problem
rarely occurs in 64-bit architectures [14]. Garbage collection
is also known to cause a non-negligible memory overhead as
it trades space for performance [13]. BDW GC works based
on dedicated APIs. Although it provides a way to automati-
cally redirect traditional C memory allocation routines to the
corresponding APIs, some porting efforts may be required for
large real-world programs, especially for C++ programs.

Smart Pointer. To enforce safe and automatic memory
management in C++, an extended data type is provided, called
the smart pointer [2], which encapsulates a raw pointer with a
reference counter. Conceptually, a smart pointer owns one raw
pointer, meaning that it is responsible for deleting the object
referred to by its raw pointer. During program execution, it
keeps track of the reference counter through the language’s
scoping rules and deletes the referred object from the heap
when the reference counter becomes zero. The smart pointer is
similar to CRCount in that it is based on the reference counting
mechanism. However, there is a critical downside of using
smart pointers to enhance memory safety: programmers must
take full responsibility of smart pointers. In order for a legacy
C++ program to be free from UAF issues, all the raw pointers
in the program must be converted manually to smart pointers.
Unfortunately, such a complete conversion of every raw pointer
is a very time-consuming task to achieve. In fact, this is almost
impossible for legacy code unless the entire code is completely
re-written by hand from scratch. Furthermore, a smart pointer
is basically an extended data type consisting of a raw pointer
and the inline metadata, i.e., a reference counter. Unlike other
work using extended data types with disjoint metadata [23], a
UAF defense solution based on smart pointers cannot maintain
the data structure layout compatibility with the existing legacy
code.

3

Taint Tracking. Undangle [6] utilizes taint tracking [26] to
detect dangling pointers. It assigns labels to the heap pointers
created from memory allocation routines and keeps track of
how the pointer is copied through the registers and memory by
taint tracking. Later, at memory deallocation time, it checks the
labels for the pointers in the program and determine whether
the pointer is unsafe based on how much time has passed
since the pointer is created. Since it is based on dynamic
taint tracking, it can be more precise in determining pointer
locations, compared to CRCount, which relies on static type
information. However, dynamic taint tracking causes signifi-
cant performance overhead. It also determines unsafe dangling
pointers based on the ad-hoc definition of a lifetime, which can
result in an undetected UAF vulnerability.

Hardware-based Approaches. There have been several at-
tempts to extend hardware architectures to handle UAFs effi-
ciently. Watchdog [21] keeps disjoint metadata associated with
every pointer, propagates them through the pointer operations,
and checks the validity of the pointer upon every access.
WatchdogLite [22] provides a fixed set of additional instruc-
tions coupled with compiler support to catch UAFs without
significant hardware modifications. CHERI architecture [19]
models pointers as capabilities that include information such
as base and bound of the accessible memory region and
distinguishes them at the hardware level so that there is no
need to separately track pointers in memory as CRCount does
by the means of pointer footprinting. CHERI itself does not
have native support for preventing UAFs, but it does provide
a foundation for accurate garbage collection.

III. THREAT MODEL

We assume that the target C/C++ programs have UAF
errors. The attacker can trigger a UAF exploit by letting a
dangling pointer read/write a value from/to an object that is
allocated into the same region that the previous object referred
to by the dangling pointer was once allocated to. We do not
consider other types of memory errors such as buffer overflow
and type confusion. We assume that the integrity of the data
structure and algorithm of CRCount is enforced through the
security techniques that are orthogonal to CRCount [16], [15].
This assumption is consistent with previous UAF defenses
relying on additional metadata [36], [17], [40], [24].

IV. IMPLICIT POINTER INVALIDATION

As stated in §I, the implicit pointer invalidation scheme
enables a safe, efficient defense against UAF errors, but the
complications involved in reference counting hinder a wide
adoption of this scheme in legacy C/C++. In this section,
first, we will provide an overview of how the implicit scheme
works with reference counting and then present the challenging
problems to be addressed for a successful application of the
scheme to real C/C++ code.

A. Invalidation with Reference Counting

In Listing 1, we present an example code to explain how
UAF errors are tackled by the implicit pointer invalidation
scheme coupled with the reference counters. Here, RCobj
denotes the reference count of a memory object obj. In lines
4 and 5, two heap objects, objA and objB, are created

1 struct node { struct node *next; int data; };
2 struct node *ptrA, *ptrB;
3

4 ptrA = malloc(sizeof(struct node)); // objA
5 ptrB = malloc(sizeof(struct node)); // objB
6

7 ptrB->next = ptrA;
8

9 /* code execution */
10

11 free(ptrA);
12

13 /* code execution */
14

15 ptrA = malloc(sizeof(struct node));
16 free(ptrB);

Listing 1: Code example showing the defense against UAF errors via
reference counting

and pointed to by two pointer variables, ptrA and ptrB,
respectively. At this moment, the reference count of each heap
object is set to one. Next, ptrA is assigned to ptrB->next,
and RCobjA is increased from one to two. Then, in line
11, the free function is invoked to deallocate objA. Now,
note that RCobjA > 0 as it is still referred to by ptrA and
ptrB->next. In the explicit invalidation scheme [17], [40],
[36], both the pointers are delinked with objA by explicitly
invalidating them right after the object is deleted. However,
in the implicit invalidation scheme, the further actions inside
the free function are interrupted to leave objA undeleted,
and the pointers remain intact, linking with the object. In line
15, ptrA is reassigned to point to a newly allocated object.
In this case, without any explicit effort, ptrA is in effect
invalidated with respect to objA because of the delinking of
their reference relationship. To reflect this change, RCobjA is
decreased from two to one. Finally, in line 16 where objB is
freed, ptrB->next can also be considered to be implicitly
invalidated because it is no longer legitimately accessible,1 thus
being effectively delinked with objA. Now, RCobjA = 0, and
thus, the object is released and can be reused safely by the
memory allocator.

B. Reference Counting in C/C++

In the above example, we demonstrated how the implicit
invalidation scheme with reference counting can preemptively
prevent UAF errors by delaying object deletions until the
reference counts are decreased to zero. Clearly, the prerequisite
for this scheme is flawless reference counting, for which we
developed a special mechanism to keep an accurate track of
the reference relationships between the pointers and the objects
along the execution flow. The reference relationship relevant
to an object is expressed by the object’s reference count which
is dynamically increased or decreased as a pointer is linked or
delinked with the object, respectively. Therefore, to accurately
monitor such incessant changes in the reference count of an
object, we need to pinpoint the moments at runtime when the
object is linked or delinked with the pointers. We say that the
referring pointers are generated or killed if the pointers are
linked or delinked with their referred objects, respectively. In

1The pointers enclosed inside a freed object can still be accessed through a
UAF vulnerability. For full security protection, these pointers must be nullified
upon freeing their enclosing object.

4

the code, a referring pointer is generated when its value is
stored in the memory, and the pointer is killed when another
value overwrites the pointer (see line 15 of Listing 1) or
the pointer goes out of scope (see line 16 of Listing 1).
In reality, however, perfect reference counting in C/C++ is
quite problematic mainly because these languages have weak
typing that places no restrictions on the type conversion of
objects. For instance, with weak typing, a subfield of an
object can be interpreted as either a pointer or a non-pointer
alternatively at the time of execution, which makes it extremely
challenging to accurately capture all the generations and kills
of the pointers, and accordingly update the reference counter
of every corresponding referred object.

1 struct node { struct node *next; int data; };
2 union unode { struct node *next; int data; };
3

4 char *chunk = malloc(CHUNK_SIZE);
5 struct node *ptrA=malloc(sizeof(struct node)); //objA
6 struct node *ptrB=
7 (struct node *)&chunk[n*sizeof(struct node)]; //objB
8 union unode *ptrC=malloc(sizeof(union unode)); //objC
9

10 ptrB->next = ptrC->next = ptrA;
11

12 /* code execution */
13

14 free(ptrA);
15 ptrA = NULL;
16

17 /* code execution */
18

19 free(chunk);
20 ptrC->data = 1;

Listing 2: Code example showing the challenges in reference count-
ing in a legacy C/C++ program

Listing 2 shows the practical hurdles in precise reference
counting. For simplicity, we only consider RCobjA in the code.
There are several heap objects created in the code: objA
and objC are newly allocated by malloc while objB is
created by a type conversion of a subregion in the existing
array chunk. In line 5, by linking the pointer ptrA with
objA, RCobjA is set to one. The pointers ptrB and ptrC
are initialized to refer to objB and objC, respectively. In line
10, ptrA is assigned to ptrB->next and ptrC->next,
which results in RCobjA = 3. In line 14, the programmer wants
to delete objA when RCobjA > 0, but as mentioned earlier,
this deletion will be denied. In the next line, where ptrA
is assigned NULL, RCobjA is decremented by one. The last
two lines of the code exhibit two challenging problems per-
taining to reference counting. Firstly, when the array chunk
is deleted, RCobjA has to be decreased as objA is referred
to by a pointer, ptrB->next, which is inside the deleted
object. Unfortunately, as chunk is declared as an ordinary
array, the compiler cannot provide any information with regard
to the existence of a pointer inside at runtime. Therefore,
for correct reference counting, we need some mechanism to
separately track the location of the pointers inside chunk.
The code in line 20 presents another practical problem. Here,
when ptrC->data is set to 1, the previously stored pointer,
ptrC->next, is simultaneously overwritten by the same
value. Therefore, according to the implicit invalidation scheme,
RCobjA should be reduced as the pointer referring to the
object has been technically killed. Here, for correct reference

Instrumented
binary

Runtime library

Reference counter
management

Pointer bitmap
managementPointer bitmap

Pointer-to-object
metadata map

Pointer
footprinting

Static analysis &
instrumentation

LLVM

Object metadata

Reference Counter

Source
code

Fig. 1: Overview of CRCount

counting, we need to analyze the code and mark the point so
that we can decrease the reference count at runtime, and we
also need to track whether the pointer is currently stored at
the location of ptrC->data at that moment.

From all these examples, we can conclude that without
a detailed tracking down of all the operations affecting the
generations and the kills of the referring pointers, the accuracy
of reference counting would be severely limited. This would in
turn damage the overall feasibility of the implicit invalidation
scheme for mitigation against UAF errors. To summarize, as
hinted by the examples, the identification of all the pointer
generations and kills in the legacy code is prohibitively com-
plex. The failure to find some pointer generations will result
in underestimated reference counts, inducing loopholes in the
mitigation of UAF errors. The opposite (i.e., failure to find the
kills) will lead to overestimated counts, which, in turn, will
result in memory leaks. In the subsequent sections, we will
show how CRCount addresses this challenge.

V. DESIGN

In this section, we elaborate on the design of CRCount,
our UAF error prevention system based on implicit pointer
invalidation. First, we present a brief overview of the entire
system, and then we provide a more detailed explanation of
each component.

A. Overview

Figure 1 shows an overview of CRCount. At the core,
CRCount uses a technique called pointer footprinting (§V-B)
to overcome the challenge described in §IV. The pointer
footprinting technique tracks exactly when and where in mem-
ory the pointers to heap objects are generated and killed.
This technique is centered around a special data structure,
the pointer bitmap, that represents the exact locations of the
heap pointers scattered throughout the program memory. The
bitmap is managed by the runtime library, which keeps track
of the generations and the kills of the pointers at runtime,
and reflects the changes into the bitmap by setting or clearing
the corresponding bits, respectively. Invocations to the runtime
library are instrumented into the target program by CRCount’s
LLVM plugin, which utilizes a static analysis to minimize
the number of instrumentation points while preserving the
precision in tracking pointers. The idea of using the bitmap to
indicate pointer locations has been proposed in previous work
on garbage collection [27], [34]. However, unlike previous
work, with the help of the compiler instrumentation and

5

the runtime library, we automatically and accurately track
down the heap pointers in the entire memory space to enable
successful mitigation of UAF errors.

CRCount depends heavily on the pointer footprinting
technique for precise reference counting. It associates each
heap object with per-object metadata (§V-C1) that include
the reference counter for the object. Every generation or
kill of a pointer is detected and handled by the runtime
library. CRCount takes the stored/killed pointer value and
consults with the pointer-to-object metadata map to find and
increase/decrease the reference count of the object referred to
by the pointers (§V-C2). When the free function is called
to deallocate an object, CRCount first checks the object’s
reference counter. If the count is zero, then CRCount lets
the function deallocate the object. Otherwise, it halts the
function and leaves the object intact. Later, when there is
a change (either increment or decrement) in the reference
count, CRCount kicks in and checks whether the count is
zero. Finally, when the count decreases to zero, implying that
the pointers having referred to the object are all implicitly
invalidated, CRCount hands the object over to the memory
allocator, which will free and reuse the object.

B. Pointer Footprinting

To enable the precise tracking of heap pointers, CRCount
uses the pointer footprinting technique, which is centered
around the pointer bitmap data structure that enables us to
efficiently locate all the pointers in the memory that refers to
the heap objects. The pointer bitmap is basically a shadow
memory for the entire virtual memory space, which marks
the locations where the heap pointers are stored. We assume
that pointers are aligned to an 8-byte boundary, which would
be true in most cases as pointer-type variables are typically
arranged in an 8-byte alignment by the compiler in a 64-bit
system.2 Note here that the current prototype of CRCount only
supports a 64-bit system. Based on this assumption, each bit
of the pointer bitmap corresponds one-to-one to all the 8-byte-
aligned addresses in the virtual memory space; thus, we can
identify the exact pointer locations through the pointer bitmap.
Owing to the structural simplicity and compactness of our
bitmap, the runtime library can efficiently manipulate it with
a combination of simple bit operations such as shifting and
masking. The bitmap occupies 1/64-th of the virtual memory
space and is reserved at the start of the process through
the mmap system call. This might seem like a large amount
of memory, but fortunately, because of the demand paging
mechanism of OSs that delays the allocation of a physical
memory block (i.e., frame) until there is an actual access, the
bitmap does not occupy much physical memory at runtime.
Furthermore, as the access to the pointer bitmap follows the
original locality of the memory accesses, in practice, the
physical memory overhead for the bitmap is negligible.

The pointer bitmap is managed by the runtime library.
Table I shows a list of the runtime library functions, along with
the program points where they are invoked and their tasks at
these points. The function crc_alloc does not update the
pointer bitmap, but when a new heap object is allocated, it

2We have encountered a few cases where this assumption does not hold
true. We will explain these cases in §IX.

Runtime library
function Invoked at Description

crc_alloc Heap allocation Add a mapping for the new heap object
to the pointer-to-object metadata map

crc_store
Candidate store
Instruction

Handle a pointer generation and/or kill
due to memory store

crc_memset Memset Handle pointer kills due to memset’ing
a region with identical bytes

crc_memcpy Memcpy Handle pointer generations and/or kills
due to copying of a memory region

crc_free Heap deallocation Handle pointer kills by heap object
deallocation

crc_return Function return Handle pointer kills by stack frame
deallocation

TABLE I: The list of runtime library functions of CRCount

Freeable flag(1bit)

Base address Reference counterrsv.

Fig. 2: Layout of per-object metadata. rsv. field is reserved for C++
support (§VI) and garbage collection (§VII).

adds a new mapping for the object to the pointer-to-object
metadata map to be used in the reference count management
(refer to §V-C1 for details). Moreover, as we are only interested
in the pointers to the heap objects, the runtime library functions
look up the pointer-to-object metadata map before setting the
bits in the pointer bitmap. The function crc_store sets or
clears, respectively, the corresponding bit in the bitmap when
a new heap pointer is stored (generated) or the previously
stored pointer is overwritten (killed) by a store instruction.
The functions crc_memset and crc_memcpy set and clear
the bits in the pointer bitmap corresponding to the pointers
that are killed and/or duplicated by memset or memcpy. The
functions crc_free and crc_return clear the bits in the
pointer bitmap corresponding to the pointers invalidated by
the heap object deallocation and the stack frame deallocation,
respectively.

At the time of compilation, the calls that invoke the runtime
library functions are instrumented into the program so that
the runtime library can reflect the generations and the kills
of the pointers into the pointer bitmap. The instrumenta-
tion is done by the CRCount’s LLVM plugin that provides
an additional pass over the intermediate representation (IR)
during the compilation phase. All the runtime library calls
except crc_store are instrumented in a straightforward
manner at every corresponding program point. In the case
of crc_store, instrumenting all the store instructions will
cause the excessive performance overhead. It will be overkill
if we consider that only a part of these instructions are actually
related to pointer generations and kills. However, as the store
of a non-pointer-type value can kill a pointer, as discussed
in §IV-B, a simple examination of the type of stored value
in LLVM IR is not sufficient to identify all the instructions
that need to be instrumented. To solve this, our LLVM plugin
performs a static analysis of the program code to identify the
minimum set of instrumentation points required to enable an
efficient yet precise tracking of pointers.

Listing 3 shows the pseudo-code of CRCount’s LLVM plu-
gin for instrumenting memory store instructions. In the LLVM
IR, store instructions assign a source value val to a destination

6

1 for storeInst in program:
2 dest = storeInst.dest
3 val = storeInst.val
4

5 if !isPointerType(val) && !isCastFromPtr(val):
6 if !shouldInstrument(storeInst.dest):
7 continue
8

9 if isLoadStoreSame(dest, val):
10 continue
11

12 callInst = createCallInst(crc_store, dest, val)
13 storeInst.insertBefore(callInst)

Listing 3: Pseudo code for instrumenting the store instructions.

address dest. We should definitely insert a crc_store call
when a pointer value is written; therefore, the plugin first
examines val to check whether it is a pointer. It is obviously
a pointer if it has a pointer type (isPointerType), but
sometimes, it can be a pointer even if it does not have a pointer
type. For example, the programmer could have cast a pointer
into an integer type. In this case, in the IR code, there will be
a bitcast instruction that casts the type of val somewhere
before the store instruction. In this context, our LLVM plugin
conducts a backward data flow analysis to check whether val
has been cast from a pointer type prior to the store instruction
(isCastFromPtr). If it has, then the store instruction is
instrumented.

Even if val is not a pointer type value, store instructions
might implicitly invalidate an existing pointer by overwrit-
ing it with a non-pointer value. Thus, the LLVM plugin
performs a backward data flow analysis on dest to check
whether the store instruction can potentially kill a pointer
and thus should be instrumented with a call to crc_store
(shouldInstrument). There are two main cases where the
instrumentation is necessary. First, the plugin instruments the
store instruction if dest has been cast from a double pointer
type, because in this case, the memory pointed to by dest
can hold a pointer value. Another case that the plugin mainly
looks for in the data flow analysis is a case wherein dest is
a field of the union type that can hold both a pointer value
and a non-pointer value (as shown in Listing 2). However, the
determination of whether or not a specific field of the union
can be a pointer type in LLVM IR is non-trivial because the
IR code generation phase collapses the type information for
the union type, and thus, union types in LLVM only has the
type information for a single member field whose in-memory
representation is the largest in size among all the fields in
the union. For example, if a union type has a pointer type
member and a struct type member with the size bigger than
that of a pointer, only the struct type is shown as the member
of the union type in IR. Nevertheless, with the backward data
flow analysis, we can at least determine whether the field
pointed to by dest is a part of a union type. Consequently, we
conservatively instrument the store instruction if the underlying
type of the memory object is a union type even if it does not
have a pointer type member field at the specific offset.

The LLVM plugin also performs a similar optimization
done in DangSan that skips the instrumentation if it can be
statically determined that val points to the same object that
the pointer stored in dest points to (isLoadStoreSame).
In this case, crc_store will increment and decrement the

same reference counter, so there is no need for the runtime
library call to be instrumented. This mainly deals with the
case where a pointer is simply incremented or decremented
and thus the reference counter of the target object does not
change.

C. Delayed Object Free

To achieve its objective, CRCount enforces the delayed
object free policy that delays the freeing action as briefed
in §V-A. CRCount manages the reference counters of objects
by using the pointer footprinting technique. When a program-
mer invokes the function free/delete to free an object,
CRCount checks the object’s reference count and stops the
function from freeing the object if this count is non-zero.
To implement this, we modified the free function so that
the function cannot automatically free objects. In CRCount,
the decision on when to free an object is exclusively made
by our runtime library. Therefore, any manual attempt of a
programmer to delete an object is intercepted by the library
which will eventually permit the memory allocator to free the
object for reuse when the object’s count becomes zero.

1) Per-object Metadata: To realize the delayed object free
policy, we must maintain a reference counter for each heap ob-
ject. To do this, CRCount uses METAlloc [11] to augment the
heap objects with the per-object metadata. METAlloc internally
maintains a trie-based pointer-to-object metadata map [25].
Given a pointer value, METAlloc retrieves the map and returns
a pointer to the object metadata allocated separately when the
heap object is allocated. The per-object metadata (Figure 2)
include not only the reference counter but also two additional
pieces of information: the base address and a 1-bit freeable
flag. The base address is required for the memory allocator to
free the object when the reference count becomes zero. Note
that the free function needs the base address of the target
object as its unique argument. However, when the last pointer
that points to the object is killed, and the reference count is set
to zero, there is no guarantee that this pointer will hold the base
address of the object. Therefore, CRCount separately keeps
the base address of each object to invoke the free function
correctly. The freeable flag is required for CRCount to mark
some objects as freeable. When the free function is called
for an object and its reference count is non-zero, CRCount
just halts the function and sets the freeable flag of the object.
Thereafter, when the reference counts of objects become zero,
CRCount allows only the freeable objects for which the free
function has been called, to be actually freed by the memory
allocator. This is important for CRCount because there are
some exceptional cases (discussed in detail in §IX) that may
hinder the correct maintenance of the reference counter. These
exceptional cases would decrease even the reference counters
of non-freeable objects to zero, and if CRCount mistakenly
decides to free these non-freeable objects, the program may
crash. Even though such cases are known to be unusual in the
normal programming practices of C/C++ [30], we adopt this
freeable flag-based approach for maximum compatibility with
the legacy C/C++ applications.

2) Reference Counter Management: The runtime library
includes the code for reference counter management that
can update the reference counter according to the pointer
generations and kills. When a heap object is allocated, the

7

associated per-object metadata are also allocated. Here, the
reference count is initialized to zero, and the base pointer is
set to the base address of the allocated memory region. Every
time a pointer is stored by a store instruction, CRCount reads
the corresponding per-object metadata by using the pointer-
to-object metadata map and increases the reference count. For
memcpy, CRCount first examines the pointer bitmap mapped
to the source memory region to find the pointers that are to be
duplicated and increases the reference counts corresponding
to the objects referred to by these pointers. Every time a
pointer is invalidated, either by a store instruction or by any
of the memset/memcpy/free/return function/instruction,
CRCount checks the pointer bitmap to identify the pointers
from the destination memory region and decreases the refer-
ence counts of the objects referred to by these pointers. For
free and return, CRCount also nullifies all the pointers
inside an object or a stack frame to completely block wrongful
uses of them. Finally, when CRCount finds that the reference
count for an object has become zero and the object’s freeable
flag is set, it gives the object to the memory allocator that will
free the object.

It is noteworthy that CRCount handles memset/memcpy
as well. Not only are they very commonly used in C/C++
programs, but they are also often introduced by compiler
optimizations when a contiguous range of memory is set or
copied. The previous work on pointer invalidation, such as
FreeSentry or DangSan, does not handle these functions for
performance reasons, leaving the system exposed to UAF
errors. Note that CRCount is immune to the so-called reference
cycle problem [37]. Automatic memory management systems
(i.e., garbage collector) relying on reference counting suffer
from the problem wherein the reference counters of a group of
objects are never decreased to zero when the objects are cross-
referenced. Since the purpose of automatic memory manage-
ment systems is to deallocate memory objects automatically
without relying on explicit free requests, the reference counts
of objects pointing each other will never decrease to zero. To
avoid this problem, many systems introduce the notion of weak
references, which the programmers must wisely use to prevent
reference cycles [18], [29]. CRCount does not suffer from
reference cycles as it operates based on the free functions
that already exist in the legacy code. When the free function
is called for one of the objects involved in the reference
cycle, CRCount forcibly kills the pointers enclosed in the freed
object and decrements the reference counter of the other object,
thereby breaking any reference cycles.

VI. IMPLEMENTATION

We have implemented the CRCount LLVM plugin as an
LTO (Link Time Optimization) module based on LLVM 3.8.
The runtime library is written in C and is statically linked into
the program binary. The LLVM plugin and the runtime library
each consists of approximately 1k lines of code.

Allocation of the per-object metadata. METAlloc provides
an efficient mapping between a given pointer and the asso-
ciated per-object metadata, but it does not provide any way
to allocate the metadata itself. We sought for a way to avoid
the additional overhead that comes from metadata allocations,
since whenever heap object is allocated, the corresponding per-
object metadata also needs to be allocated. If we use malloc

for this purpose, an overhead incurred by malloc would
be doubled, which could be non-negligible as more memory
objects are allocated [10]. Fortunately, each of our per-object
metadata mapped to the objects has a fixed size. Thus we
can mitigate the metadata allocation overhead by using the
concept of an object pool. We first reserve an object pool
using mmap and provided a custom allocator for the per-object
metadata, eliminating the costs involved with malloc. The
current implementation of CRCount performs a linear search
over this memory pool to find an empty slot for the allocation
of the metadata.

Handling realloc. realloc can migrate an object from
its original memory region to another memory region. Such
behavior of realloc necessitates an exceptional handling by
CRCount. First, when the contents of the target object are
copied to another region, the pointers belonging to the object
are copied as well. Therefore, to keep track of the copied
pointers correctly, the corresponding bits of the pointer bitmap
also have to be copied. Next, after the migration, realloc
frees the original memory region. In CRCount, however, the
free action only has to be allowed when the reference count
becomes zero. To enforce this rule, we modified realloc
to let the runtime library decide when to free the original
region, as was done in the free function. The runtime library
(1) allows the memory allocator to perform the free action if
the reference counter is zero or (2) just sets the freeable flag
otherwise.

Multithreading support. Multithreading support can be
enabled in CRCount by defining ENABLE_MULTITHREAD
macro variable when building the runtime library. Two ma-
jor data structures—the reference counters and the pointer
bitmap—have to be updated atomically to support multithread-
ing. The reference counters need atomic operations because
multiple threads can store or kill the pointers to the same
heap object at the same time. As a reference counter is just
a single word, we simply used the atomic operations defined
in the c11 standard library. We assume that the threads in the
target program do not write to the same pointer concurrently
without a proper synchronization. We believe that this is a
reasonable assumption as it indicates a race condition in the
original program. The pointer bitmap also must be maintained
in an atomic fashion. Even if we have the above assumption,
multiple threads could write pointers to the nearby memory
locations which could end up in the same word in the pointer
bitmap. Thus, we also use the atomic operations whenever
the bitmap is updated. Besides the reference counters and
the pointer bitmap, we made a small change in the per-
object metadata allocation/deallocation routine to ensure thread
safety.

Note that all of the data structure updates in CRCount only
require touching just one word which makes multithreading
support very simple and also very efficient in most cases.
However, we have encountered a worst case in one of the
benchmarks that we tested, where only a small number of
objects are allocated and their reference counters are frequently
updated by multiple threads. In this case, there will be many
lock contentions for the reference counters, which results in a
considerable performance overhead. We will give more detail
in §VII.

8

Double free and invalid free. We can simply implement
the prevention capability for double frees on CRCount. As a
freeable flag of per-object metadata indicates that free has
been called for an object, we can easily detect if free is called
multiple times for the object. CRCount can also be extended to
prevent invalid frees. If free is called for an invalid pointer,
CRCount can easily detect it because there either will be no
valid mapping for the pointer in the pointer-to-object map, or
the base address of the object metadata will not match the
pointer value.

C++ support. For the most part, CRCount can naturally
support C++ because CRCount instrumentation operates on
LLVM IR, which is language independent and thus does not
distinguish between C and C++. C++ concepts like templates,
dynamic binding, etc. are lowered to basic functions and
LLVM instructions and do not require separate handling by our
LLVM plugin. However, C++ new and delete require some
special care. Recall that CRCount delays freeing of the object
until its reference count becomes zero. For C++, CRCount
must invoke the correct deallocation function according to the
function that was used to allocate the object. malloc, new,
and new [] are three possible choices for the allocation of
the object, and the corresponding deallocation function must
be used to deallocate the object. To achieve this, CRCount
uses the additional bits next to the freeable flag in the per-
object metadata to record and call the right function for the
deallocation of the object.

VII. EVALUATION

In this section, we evaluate CRCount by measuring the
performance overhead and the memory overhead imposed by
CRCount in well-known benchmarks and web server appli-
cations. All the experiments have been conducted on Intel
Xeon(R) CPU E5-2630 v4 platform with 10 cores at 2.20 GHz
and 64 GB of memory, running Ubuntu 64-bit 16.04 version.
We applied minor patches to a few of the benchmarks to assist
our reference counter management. In §IX, we will explain
these cases in detail.

A. Statistics

The performance and memory overhead of CRCount can
vary depending on the characteristics of the target program.
In particular, the number of pointer store operations and the
memory usage of CRCount can be a crucial indicator for
analyzing the experimental results. Thus, we gathered some of
the statistics for the SPEC benchmarks [12] which we will refer
to when analyzing the performance and memory overheads in
this section. Table II shows the results for the SPEC CPU2006
benchmarks.

Here, we first compare the number of pointer stores tracked
down by CRCount with that by DangSan. We will explain
other metrics later in this section. As shown in the # ptr
stores by inst. column and the # ptrs column, in
many benchmarks, we can see that the number of pointer
stores by the store instruction measured in CRCount is larger
than the one in DangSan. The differences are mainly due
to a small patch we applied to LLVM in order to ease our
static analysis. Specifically, we disabled a part of the bitcast
folding optimization, which complicates our backward data

flow analysis in tracing the casting operations. We expect the
numbers to be decreased if we elaborate on our static analysis
to support the optimization, which would also give a small
performance improvement for CRCount.

In the case of dealII and xalancbmk, CRCount kept
track of a fewer number of pointer stores than that of DangSan.
This is due to a minor hack in our LLVM plugin that is applied
to avoid the problem of incorrect reference counter manage-
ment in the programs that use the C++ templates from the C++
standard library. Specifically, the problem occurred because
only the part of the library code for the template functions
defined in the header file was instrumented by our plugin while
the rest was not instrumented. In order to solve this problem,
we compiled the program with the -g option to include the
debug symbols and excluded the instructions originating from
the library during the instrumentation. Another way to solve
this problem would be to compile and instrument the entire
standard library with CRCount.

B. Performance Overhead

To measure the performance overhead of CRCount, we ran
and recorded the execution times for several benchmarks and
server programs. We compare the performance overhead of
CRCount with DangSan and Oscar, which are the latest work
in this field. We used the open-sourced version of DangSan
for our evaluation while using the numbers reported in the
paper for Oscar. We also report the performance overheads for
BDW GC. To use BDW GC, programs must use special APIs
for memory allocation routines (e.g., GC malloc instead of
malloc) to let the GC track and automatically release the object
when there are no references to it. BDW GC provides an option
to automatically redirect all of the C memory management
functions to use the APIs. We used this option and another
option that makes GC to ignore the free function. As we later
specify, we were not able to compile or correctly run some
C application, which indicates that some porting efforts are
required to use BDW GC for UAF mitigation. Also, simple
API redirection does not work for C++ applications. Instead,
all the class needs to inherit from special gc class which
provides a new definition of operator new. Classes that
already have a custom operator new function will have
to be changed. Because of these reasons, we only show the
results for the subset of the C benchmarks which we were
able to compile and run correctly.

First, to measure the performance impact on the single-
threaded applications, we ran the SPEC CPU2006 bench-
mark suite 3. Figure 3 shows the results. For CRCount,
the geometric mean of all benchmarks is 22.0%, which is
approximately the half that for DangSan and Oscar, which
respectively are 44.4% and 41%. The performance efficiency
of CRCount is even more evident in the pointer intensive
benchmarks (omnetpp, perlbench, and xalancbmk). For
these benchmarks, CRCount only incurs an average overhead
of 92.0%, while both DangSan and Oscar show over 300%.
For povray, CRCount incurs a higher performance overhead
than Oscar and DangSan. For the case of Oscar, note that
Oscar does not instrument any memory access. This gives
Oscar performance advantages for some benchmarks like

3linked with the single-threaded version of CRCount runtime library

9

benchmark
CRCount DangSan

tot alloc. # ptr stores
by inst.

ptr stores
by memcpy

max mem. max
undeleted

max undel.
/ max mem. leaks # ptrs

400.perlbench 350m 44507m 242m 1103 MB 5838 KB 0.005 1680 B 40490m
401.bzip2 264 2200k 0 3362 MB 0 0 0 2200k
403.gcc 28m 9328m 13m 4075 MB 7491 MB 1.838 288 KB 7170m
429.mcf 21 10086m 574k 1676 MB 0 0 0 7658m
433.milc 6531 2663m 0 679 MB 21 MB 0.032 0 2585m
444.namd 1340 2998k 1198 46 MB 0 0 0 2970k
445.gobmk 622k 609m 10 117 MB 34 KB 0 0 607m
447.dealII 151m 30m 13m 791 MB 2048 KB 0.003 0 117m
450.soplex 236k 876m 1731k 877 MB 27 MB 0.032 0 836m
453.povray 2427k 5784m 2409m 2 MB 18 KB 0.007 0 4679m
456.hmmer 2394k 4458k 0 41 MB 12 MB 0.291 0 3829k
458.sjeng 21 4 0 172 MB 0 0 0 4
462.libquantum 165 130 72 96 MB 32 B 0 0 130
464.h264ref 178k 11m 845m 111 MB 1609 KB 0.014 0 11m
470.lbm 20 6004 0 409 MB 0 0 0 6004
471.omnetpp 267m 13099m 14m 154 MB 1301 KB 0.008 481 KB 13099m
473.astar 4800k 1235m 7667k 471 MB 91 MB 0.195 0 1235m
482.sphinx3 14m 326m 0 44 MB 11 KB 0 0 302m
483.xalancbmk 135m 1711m 1633 385 MB 1018 KB 0.003 576 B 2387m

TABLE II: Statistics for the SPEC CPU2006 benchmarks. # tot alloc. denotes the total number of object allocations. # ptr stores
by inst. denotes the number of tracked pointer stores by the store instructions, while # ptr stores by memcpy denotes the number
of pointer stores by memcpy. max mem. shows the maximum amount of memory occupied by the objects that are allocated but not freed.
max undeleted shows the maximum amount of memory occupied by the undeleted objects. max undel. / max mem. shows the ratio
between max mem and max undeleted. leaks shows the memory leak caused by an error in the pointer footprinting. The last column
shows the number of pointers tracked down by DangSan.

povray which have relatively a large number of pointer stores
(see Table II). For the case of DangSan, let us note that
DangSan does not track down any pointers copied through
memcpy. In contrast, CRCount does track down such pointers
for higher accuracy (thus also security), which explains the
larger performance overhead of CRCount. For dealII and
xalancbmk, we should consider the advantage that CRCount
might obtain by not instrumenting the template-based standard
library functions. However, considering the difference between
the number of tracked pointers described in Table II, we still
expect that the performance overhead of CRCount would be
lower than those of DangSan and Oscar. For BDW GC, we
could not run gcc benchmark. The geometric mean of the
performance overhead for the rest of the C benchmark is 0.7%
for BDW GC and 13.9% for CRCount, which shows that the
current highly optimized and multi-threaded BDW GC can
be very efficient for single-threaded workloads compared to
CRCount which suffers from instrumentation overheads.

We also conducted a set of experiments with the PAR-
SEC [4] benchmarks to evaluate the scalability of CRCount
in multithreaded programs. Figure 5 shows the results in
comparison to the baseline and DangSan. The geometric mean
of the overheads (excluding freqmine) ranges from 6.1% to
22.4% in CRCount and from 6.3% to 17.0% in DangSan, as
more threads run concurrently. Overall, CRCount and Dan-
gSan show comparable performance overhead in most of the
benchmarks. Even though CRCount uses atomic operations
to maintain its data structures, it does not introduce critical
sections because only a single word needs to be updated at
a time. Also, simultaneous accesses to the same reference
counter or the same word in the pointer bitmap are rare. Thus,

6.52

0

0.5

1

1.5

2

2.5

3

3.5

4

4
0

0
.p

er
lb

en
ch

*

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
2

9
.m

cf

4
3

3
.m

ilc

4
4

4
.n

am
d

4
4

5
.g

o
b

m
k

4
4

7
.d

ea
lII

4
5

0
.s

o
p

le
x

4
5

3
.p

o
vr

ay

4
5

6
.h

m
m

er

4
5

8
.s

je
n

g

4
6

2
.li

b
q

u
an

tu
m

4
6

4
.h

26
4

re
f

4
7

0
.lb

m

4
7

1
.o

m
n

et
p

p

4
7

3
.a

st
ar

4
8

2
.s

p
h

in
x3

4
8

3
.x

al
an

cb
m

k
CRCount DangSan Oscar Boehm

Fig. 3: Performance overhead on SPEC CPU2006. We use the
reported numbers in the original papers for perlbench of DangSan,
which fails to run, and all the benchmarks of Oscar. For Boehm GC,
we were able to run only C benchmarks excluding gcc.

CRCount can be scaled to multiple threads in most cases.
barnes shows an interesting behavior as it is run with more
threads. In barnes, only a few large objects are allocated with
around 6 billion pointer stores. As the total number of objects
is so small, we expect that frequent lock contentions occur
when updating the reference counts, which explains such an
irregular result. For the subset of the benchmarks we could
test with BDW GC, the geometric mean of the overheads

10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

4
0

0
.p

er
lb

en
ch

*

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
2

9
.m

cf

4
3

3
.m

ilc

4
4

4
.n

am
d

4
4

5
.g

o
b

m
k

4
4

7
.d

ea
lII

4
5

0
.s

o
p

le
x

4
5

3
.p

o
vr

ay

4
5

6
.h

m
m

er

4
5

8
.s

je
n

g

4
6

2
.li

b
q

u
an

tu
m

4
6

4
.h

2
6

4
re

f

4
7

0
.lb

m

4
7

1
.o

m
n

et
p

p

4
7

3
.a

st
ar

4
8

2
.s

p
h

in
x3

4
8

3
.x

al
an

cb
m

k

CRCount DangSan Oscar Boehm

5.53131.626.236.82

Fig. 4: Memory overhead on SPEC CPU2006. Some numbers are
those that have been reported in the original paper as in Figure 3.

ranges from 5.3% to 28.9% in BDW GC and 4.9% to 28.6%
in CRCount. CRCount performs comparable to BDW GC for
multithreaded workloads.

We conducted additional experiments for evaluating the
performance of CRCount on web server applications, in-
cluding Apache 2.4.33 (with worker MPM), Nginx 1.14.0,
and Cherokee. We tested each web server with the default
configuration files through Apachebench (with 128 concur-
rent connections and 1,000,000 requests), and measured the
throughput in terms of requests per second (RPS). For Apache,
the throughput of the baseline is 24024 RPS, while it is
decreased to 23051 RPS (slowdown of 4.1%) in CRCount and
22774 RPS (slowdown of 5.2%) in DangSan. The results for
other web servers are similar. For Nginx, the throughput of the
baseline was 29514 RPS, but it is 20553 RPS (slowdown of
30.4%) in CRCount and 20144 RPS (slowdown of 31.7%)
in DangSan. Lastly, for Cherokee, the baseline throughput
of 25993 RPS is decreased to 25615 RPS (slowdown of
1.5%) and 24756 RPS (slowdown of 4.8%) in CRCount and
DangSan, respectively.

C. Memory Overhead

In CRCount, let alone its data structures, undeleted objects
may be one major factor that potentially consumes substantial
memory. To evaluate the overall memory overhead of CR-
Count, we have recorded the maximum resident set size (RSS)
while running the same benchmarks as in §VII-B.

Figure 4 shows the memory overhead of our CRCount,
DangSan, Oscar, and BDW GC for SPEC CPU 2006 bench-
marks. Our geometric mean of all benchmarks is 18.0%, which
is significantly lower than 126.4% of DangSan and 61.5% of
Oscar. BDW GC shows a memory overhead of 125.7% for the
tested benchmarks while that of CRCount is 9.7%. Figure 6
shows the maximum RSS values for PARSEC benchmarks for
baseline, CRCount, DangSan, and BDW GC. The geometric
mean (without freqmine) of the overhead is from 9.2% to
11.6% in CRCount and from 45.0% to 52.7% in DangSan as
the number of threads increases from 1 to 64. The geometric

mean of the memory overhead for the benchmarks tested with
BDW GC ranges from 56.6% to 70.9% for BDW GC and 5.4%
to 6.0% for CRCount.

Finally, we measured the memory overhead for three web
server applications used in §VII-B. The maximum RSS of
Apache is 7.8MB in the baseline, 9.9MB in CRCount (26%
overhead), and 106.8MB in DangSan (1263% overhead). For
Nginx, the maximum RSS is 6.0MB in the baseline, 6.5MB in
CRCount (8.2% overhead) and 10.4MB in DangSan (73.3%
overhead). For Cherokee, the recorded maximum RSS is
32.1MB, 41.2MB (28.5% overhead) and 62.9MB (95.9% over-
head), in the baseline, CRCount and DangSan, respectively.

All those experimental results, we believe, consistently
testify the efficiency of CRCount in terms of memory usage.
Such memory efficiency of CRCount would be attributed to its
compact data structures, but more importantly, to the relatively
low memory usage by undeleted objects that remains persis-
tently small in practice. To investigate the relative overhead
of undeleted objects further, see Table II where the max
mem. and max undeleted columns respectively show the
maximum total memory for the heap-allocated objects and the
undeleted objects. In the max undel./max mem. column,
we compute the relative overhead of undeleted objects in
memory, which is clearly shown to be very small for most
benchmarks. On top of that, we have discovered that the
majority of these undeleted objects tend to be eventually
deleted and handed over by CRCount to the allocator for
safe reuse during program execution. We credit such favorable
outcomes mainly to the capability of CRCount that is able
to correctly decrease the reference counts whenever generated
pointers are killed.

There are still the cases where CRCount fails to accurately
keep up the reference counts, thereby being unable to delete
undeleted objects even when no more pointers refer to them
(see §IX). The leaks column in Table II denotes the total
amount of memory occupied by such undeleted objects. To
calculate the numbers in the column, right after program
termination, we scanned the entire pointer bitmap to decrease
the reference counters corresponding to the pointers still re-
siding in the global variables or the heap objects for which
the free function has not been called during the execution.
The existence of the undeleted objects that still have a non-
zero reference count after this process signifies that some
pointer kills were not tracked properly, failing to decrease
the reference count of these objects. Note that once CRCount
fails to track a pointer kill, it is no longer able to delete the
corresponding object as the reference count of the object will
never decrease to zero. Obviously, these objects are the source
of the memory leak induced by CRCount. Luckily, we can
see that the numbers on the leaks column are negligibly
small (or even zero) for almost all benchmarks, indicating that
CRCount in fact quite accurately perform reference counting
in legacy C/C++ code.

The numbers in Table II only inform us of the maximum
memory space that has once been occupied by heap and
undeleted objects during program execution, but it does not
give us any clue how much space has been dynamically
consumed by these objects at runtime. To obtain this, we
have regularly measured the changes in the amount of the
memory taken up by undeleted objects and memory leaks

11

0

200

400

600

1 2 4 8 16 32 64

blacksholes

0

100

200

300

1 2 4 8 16 32 64

canneal

0

100

200

300

400

1 2 4 8 16 32 64

ferret

0

100

200

300

400

1 2 4 8 16 32 64

fluidanimate

0

500

1000

1 2 4 8 16 32 64

freqmine

0

200

400

600

1 2 4 8 16 32 64

streamcluster

0

50

100

1 2 4 8 16 32 64

vips

0

100

200

300

1 2 4 8 16 32 64

x264

0

50

100

150

200

1 2 4 8 16 32 64

barnes

0

50

100

150

1 2 4 8 16 32 64

fft

0

50

100

150

1 2 4 8 16 32 64

fmm

0

50

100

1 2 4 8 16 32 64

ocean_cp

0

50

100

150

1 2 4 8 16 32 64

ocean_ncp

0

100

200

300

1 2 4 8 16 32 64

radiosity

0

20

40

60

1 2 4 8 16 32 64

radix

0

50

100

150

1 2 4 8 16 32 64

raytrace

0

100

200

300

400

1 2 4 8 16 32 64

water_nsquared

0

100

200

300

1 2 4 8 16 32 64

water_spatial

DangSanCRCountBaseline Boehm

Fig. 5: Comparison of the execution time on PARSEC. We could not get the correct result for freqmine for DangSan because we could not
enable OpenMP with DangSan, which is required to run freqmine in the multithreaded mode. The results for Boehm GC is only included
for the subset of the C benchmarks that we could run.

0

500

1000

1500

1 2 4 8 16 32 64

x
1

0
0

0
0

barnes

0

20

40

60

80

1 2 4 8 16 32 64

x
1

0
0

0
0

blacksholes

0

100

200

300

400

1 2 4 8 16 32 64

x
1

0
0

0
0

canneal

0

20

40

60

1 2 4 8 16 32 64

x
1

0
0

0
0

ferret

0

500

1000

1500

1 2 4 8 16 32 64

x
1

0
0

0
0

fft

0

50

100

150

1 2 4 8 16 32 64

x
1

0
0

0
0

fluidanimate

0

200

400

600

1 2 4 8 16 32 64

x
1

0
0

0
0

freqmine

0

5

10

15

1 2 4 8 16 32 64

x
1

0
0

0
0

streamcluster

0

500

1000

1500

1 2 4 8 16 32 64

x
1

0
0

0
0

fmm

0

100

200

300

400

1 2 4 8 16 32 64

x
1

0
0

0
0

ocean_cp

0

1000

2000

3000

1 2 4 8 16 32 64

x
1

0
0

0
0

ocean_ncp

0

200

400

600

1 2 4 8 16 32 64

x
1

0
0

0
0

radiosity

0

200

400

600

1 2 4 8 16 32 64

x
1

0
0

0
0

radix

0

2

4

6

8

1 2 4 8 16 32 64

x
1

0
0

0
0

raytrace

0

10

20

30

1 2 4 8 16 32 64

x
1

0
0

0
0

vips

0

100

200

300

1 2 4 8 16 32 64

x
1

0
0

0
0

water_nsquared

0

50

100

150

1 2 4 8 16 32 64

x
1

0
0

0
0

water_spatial

0

50

100

150

200

1 2 4 8 16 32 64

x
1

0
0

0
0

x264

DangSanCRCountBaseline Boehm

Fig. 6: Memory overhead on PARSEC.

Application CVE Vulnerability Original CRCount CRCount-det

openlitespeed-1.3.7 2015-3890 UAF No effect No effect Detected UAF
wireshark-2.0.1 2016-4077 UAF No effect No effect Detected UAF
PHP-5.5.9 2016-3141 UAF Crash (double free) Detected double free Detected UAF
PHP-5.5.9 2016-6290 UAF No effect Detected double free Detected UAF
PHP-5.5.9 2016-5772 Double free Crash (double free) Detected double free Detected double free
ed-1.14.1 2017-5357 Invalid free Crash (invalid free) Detected invalid free Detected invalid free

TABLE III: Real world vulnerabilities tested with CRCount. The Original column shows the behavior of the original program when run
with the exploit input. We disabled the Zend allocator in PHP to test the exploits.

12

288

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

500,000

4 12 20 28 36 44 52 60 68 76 84 92 100 108 116

M
em

o
ry

(K
B

)

Time(sec)

all objects undeleted objects memory leaks

Fig. 7: Changes in memory usage during the execution of gcc
with 200.i input file. all objects denotes the total amount
of memory allocated for heap-allocated objects and the undeleted
objects. undeleted objects and memory leaks indicate the
amount of the memory occupied by undeleted objects and memory
leaks, respectively.

over the entire period of each benchmark executions. As can
be expected from II, in most benchmarks, the total memory
overhead due to the undeleted objects steadily remains low
throughout the execution. However in some benchmarks like
gcc with 200.i input file (see Figure 7), the overhead
can sometimes become noticeably high at some point during
program execution although it remains low for most of the
execution times. Figure 7 displays two peaks in the memory
consumption when a large amount of memory is consumed by
undeleted objects, but most of it is soon freed as the result
of program’s normal execution. Figure 7 also displays the
amount of leaked memory. Note that once a memory leak
occurs at some point in the execution, it will never disappear
afterward. For instance in Figure 7, we have a memory leak
of 288 KB in the middle of execution which exists until the
end of execution. Fortunately, the amount of wasted memory
due to memory leaks is negligible in comparison with the total
program memory space, for all the benchmarks we tested.

Although memory leaks are not the major cause of memory
overhead in our experiments, they may be a serious problem
with long-running programs like server applications where
leaks can stack up indefinitely over a long period of program
execution. One promising way to cope with the problem
is to integrate to CRCount a garbage collection mechanism
for reclaiming the leaked memory. Whenever the amount of
memory occupied by the undeleted objects exceeds certain
limit, we can scan the entire memory of a program and mark all
the objects that are referred to by pointers. At this time, all the
undeleted objects that have not been marked while scanning the
memory obviously correspond to the memory leaks. Now we
can reclaim the memory occupied by the identified memory
leaks by releasing forcibly. Since CRCount already has a
bitmap that pinpoints the pointers from the vast program
memory, the garbage collection can be performed more effi-
ciently and accurately than conservative garbage collectors. We
have implemented a simple garbage collector to measure how
much performance overhead it incurs. The garbage collection
starts from the pointers in the stack, the global variables,

and the registers, and follows the pointers recursively to scan
the pointers in the heap region. All the objects referred to
by the pointers are marked (using the reserved field in the
per-object metadata) and all the memory leaks are released
at the end. We ran gcc with the garbage collector enabled
because it shows the largest amount of memory occupied by
the undeleted objects and thus is expected to give us the worst
case performance overhead among the benchmarks. We used
three different threshold values (64MB, 128MB, and 256MB)
and let the garbage collector run whenever the amount of
memory occupied by the undeleted objects exceeded these
values. Compared to the version without the garbage collector,
it showed an overhead of 2.3%, 1.1%, 0.4%, respectively. We
believe that this overhead is acceptable to be integrated into
CRCount.

VIII. SECURITY ANALYSIS

In this section, we perform the security evaluation by
running CRCount-enabled programs with real vulnerability
exploits. We also discuss some of the security considerations
for CRCount.

A. Attack Prevention

To evaluate the effectiveness of CRCount in mitigating
UAF errors, we ran several applications with publicly available
vulnerability exploits. Table III shows the list of vulnerabili-
ties tested with CRCount. CRCount successfully detected the
double free and invalid free vulnerabilities. We explain the test
results with the UAF exploits below.

All the UAF exploits we used accessed the freed region
only before it is reallocated. Thus, the UAF accesses in the
exploits did not affect the original build of the target program.
Note that CRCount is purposed to prevent the attackers from
reallocating an object in the memory region still pointed to
by the dangling pointers; thus, it did not affect the tested
exploits. However, in order for these exploits to eventually
be developed into serious attacks, the freed region should be
reallocated so that the UAF access can read from/write to the
allocated victim object. If CRCount correctly keeps track of
the reference counts in the tested programs, it will properly
mitigate these advanced exploits. We will show that it is indeed
the case in a moment.

For CVE 2016-6290, CRCount detected a double free
vulnerability while the original build of the program did not.
We found that the double free was triggered by a pointer
that still referred to a freed object. The original build of the
program did not detect it because another object was allocated
at the same address before the free function is called with
the dangling pointer. This shows that CRCount successfully
delayed the freeing of the object with pointers still referring
to it.

To verify that CRCount properly delays the reuse of
problematic memory region in the exploits, we have also
implemented an extended version of CRCount with a UAF de-
tection capability, called CRCount-det. CRCount-det performs
checks on every memory access to see if the accessed heap
object is marked as freeable. While extra checks on memory
accesses cause non-trivial performance overhead, we would
immediately know if a pointer is used to access an undeleted

13

object. In our experiments, CRCount-det could detect all the
UAF attempts we tested, which also implies that CRCount
would properly delay freeing of the object to prevent malicious
attempts utilizing the tested vulnerabilities.

B. Security considerations

One of the concerns about the security guarantee of CR-
Count is how effective a delayed-memory-reuse based mitiga-
tion is against UAF exploits. Recall that one key condition in
exploiting an UAF exploit is to locate an attacker-controlled
object into the freed memory region pointed to by dangling
pointers in order to arbitrarily control the results caused by
dangling pointer dereferences. However, in a victim process
that CRCount is applied, when an object is freed, no objects
are allocated until the reference count becomes zero. At this
point, the objects can be accessed only through the existing
links (pointers), maintaining their original semantics. Namely,
the attacker can no more implant any controllable object into
the freed memory region where dangling pointers still point to.
As a result, the attackers’ capabilities are limited to performing
the actions that are originally allowed for the object in the
program, unless the attackers use another kind of vulnerability.
This makes it impossible, or makes it significantly complicated
at least, for the attackers to achieve their goal. It is noteworthy
that CRCount nullifies any heap pointers inside the object
when the object is freed, so the attackers are further restricted
from reusing the heap pointer inside the object.

IX. LIMITATIONS

Custom Memory Allocator. While applying CRCount to
the benchmark programs, we encountered some cases (i.e.,
gcc in SPEC CPU2006 and freqmine in PARSEC) where
the program had to be patched in order for our technique
to work correctly. Specifically, the problem occurred mainly
due to the use of a custom memory allocator that internally
allocates objects from a reserved chunk of memory without
going through the expensive heap management functions. If
different types of objects are allocated to the same memory
region, the pointers that were stored in the previous object
can be overwritten by a non-pointer-type value in the newly
allocated object. Had CRCount been able to identify the
custom deallocator paired with the custom allocator, it would
insert a runtime library call to handle the pointers enclosed in a
freed region. Since it was not, we needed to manually identify
these custom memory deallocators and explicitly insert the
CRCount’s runtime library calls to update the pointer bitmap
and the reference counts. Specifically, we added 2 lines to
gcc and 1 line to freqmine to call crc_free upon custom
memory deallocation.

Unaligned Pointer. Another problem we met in the experi-
ments is that some of the programs stored pointers in 4-byte
aligned addresses, which is finer than the assumed alignment
(i.e. 8-byte) in the pointer bitmap. Specifically, PARSEC’s
freqmine benchmark used a custom allocator that aligns
objects at a 4-byte boundary. We addressed this by modifying
the custom memory allocator to align objects at a 8-byte
boundary. Also, Apache web server used epoll_event
struct defined with __attribute__((packed)), which
made the pointer inside the struct to be located at a 4-byte

boundary. We addressed this by wrapping the struct so that the
pointer is located with an 8-byte alignment. Note that CRCount
could just ignore the unaligned pointer store by not increasing
the reference count for the stored pointer. We chose to patch
the code for more complete protection. 12 lines were modified
in freqmine and 10 lines in apache to ensure pointers are
stored at aligned addresses.

Vectorization Support. Our prototype CRCount implemen-
tation currently does not support vectorization in LLVM IR.
DangSan also does not support vectorization—it simply ig-
nores the stores of vector types. Even though vector operations
rarely have to do with pointer values, as ignoring the vector
types could adversely affect reference counter management,
we instead turned off vectorization in all the experiments. It is
our future work to correctly deal with the vector types in our
analysis and instrumentations.

Limitations of Pointer Footprinting. There are cases where
our static analysis fails to determine whether a particular store
instruction should be instrumented or not. We perform only
intra-procedural backward data flow analysis. Thus, if a pointer
is cast before being passed to a function, we cannot analyze
how the pointer is cast, and thus we may fail to correctly
decide whether to instrument the store instruction or not.
However, since we used LLVM link-time optimization (LTO),
many functions are inlined to their caller, which enabled us to
get much information from the backward data flow analysis.
Another problem regarding static analysis is that we cannot
track type unsafe pointer propagation through memory. For
example, a pointer could be cast to an integer, stored in some
integer field of a struct type variable, and passed around
the program through memory as an integer. The pointers
stored as an integer data in this process will not increase
the reference counts of their corresponding objects. This is a
common limitation faced by every approach based on pointer
tracking [36], [17], [40], [23], [24]. Like all the approaches
based on source code, we cannot instrument the libraries
distributed as a binary file. This can cause errors in reference
counter management if a pointer stored in the instrumented
program is killed in such uninstrumented binary libraries.

X. CONCLUSION

CRCount is our novel solution to cope with UAF errors in
legacy C/C++. For efficiency, CRCount employs the implicit
pointer invalidation scheme that avoids the runtime overhead
for explicit invalidation of dangling pointers by delaying the
freeing of an object until its reference count naturally reduces
to zero during program execution. The accuracy of reference
counting greatly influences the effectiveness of CRCount.
Therefore in our work, we have developed the pointer foot-
printing technique that helps CRCount to precisely track down
the location of every heap pointer along the execution paths
in the legacy C/C++ code with abusive uses of type unsafe
operations. CRCount is effective and efficient in handling
UAF errors in legacy C/C++. It incurs 22% performance
overhead and 18% memory overhead on SPEC CPU2006 while
attaining virtually the same security guarantee as other pointer
invalidation solutions. In particular, CRCount has been more
effective for programs heavily using pointers than other solu-
tions. We claim that this is an important merit because UAF
vulnerabilities are more likely prevalent in those programs.

14

ACKNOWLEDGMENT

The authors would like to thank Lucas Davi for
shepherding the paper. This work was partly supported
by MSIT(Ministry of Science and ICT), Korea, under the
ITRC(Information Technology Research Center) support
program(IITP-2018-2015-0-00403) supervised by the
IITP(Institute for Information & communications Technology
Promotion), the National Research Foundation of Korea(NRF)
grant funded by the Korea government(MSIT) (NRF-
2017R1A2A1A17069478, NRF-2018R1D1A1B07049870),
IITP grant funded by the Korea government(MSIT)
(No.2016-0-00078, Cloud based Security Intelligence
Technology Development for the Customized Security Service
Provisioning; No.2018-0-00230, Development on Autonomous
Trust Enhancement Technology of IoT Device and Study on
Adaptive IoT Security Open Architecture based on Global
Standardization [TrusThingz Project]). The ICT at Seoul
National University provides research facilities for this study.

REFERENCES

[1] P. Akritidis, “Cling: A memory allocator to mitigate dangling pointers.”
in USENIX Security Symposium, 2010, pp. 177–192.

[2] A. Alexandrescu, Modern C++ design: generic programming and
design patterns applied. Addison-Wesley, 2001.

[3] E. D. Berger and B. G. Zorn, “Diehard: probabilistic memory safety
for unsafe languages,” in Acm sigplan notices, vol. 41, no. 6. ACM,
2006, pp. 158–168.

[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: Characterization and architectural implications,” in Proceedings
of the 17th international conference on Parallel architectures and
compilation techniques. ACM, 2008, pp. 72–81.

[5] H. Boehm, A. Demers, and M. Weiser, “A garbage collector for c and
c++,” 2002.

[6] J. Caballero, G. Grieco, M. Marron, and A. Nappa, “Undangle: early
detection of dangling pointers in use-after-free and double-free vul-
nerabilities,” in Proceedings of the 2012 International Symposium on
Software Testing and Analysis. ACM, 2012, pp. 133–143.

[7] T. H. Dang, P. Maniatis, and D. Wagner, “Oscar: A practical page-
permissions-based scheme for thwarting dangling pointers,” in 26th
{USENIX} Security Symposium ({USENIX} Security 17), 2017, pp.
815–832.

[8] M. Daniel, J. Honoroff, and C. Miller, “Engineering heap overflow
exploits with javascript.” WOOT, vol. 8, pp. 1–6, 2008.

[9] D. Gay, R. Ennals, and E. Brewer, “Safe manual memory manage-
ment,” in Proceedings of the 6th international symposium on Memory
management. ACM, 2007, pp. 2–14.

[10] S. Ghemawat and P. Menage, “Tcmalloc: Thread-caching malloc, 2007,”
URL {http://goog-perftools. sourceforge. net/doc/tcmalloc. html}, 2005.

[11] I. Haller, E. Van Der Kouwe, C. Giuffrida, and H. Bos, “Metalloc: Ef-
ficient and comprehensive metadata management for software security
hardening,” in Proceedings of the 9th European Workshop on System
Security. ACM, 2016, p. 5.

[12] J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM
SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[13] M. Hertz and E. D. Berger, “Quantifying the performance of garbage
collection vs. explicit memory management,” in ACM SIGPLAN No-
tices, vol. 40, no. 10. ACM, 2005, pp. 313–326.

[14] M. Hirzel and A. Diwan, “On the type accuracy of garbage collection,”
ACM SIGPLAN Notices, vol. 36, no. 1, pp. 1–11, 2001.

[15] K. Koning, X. Chen, H. Bos, C. Giuffrida, and E. Athanasopoulos,
“No need to hide: Protecting safe regions on commodity hardware,” in
Proceedings of the Twelfth European Conference on Computer Systems.
ACM, 2017, pp. 437–452.

[16] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “Sok: Automated
software diversity,” in 2014 IEEE Symposium on Security and Privacy
(SP). IEEE, 2014, pp. 276–291.

[17] B. Lee, C. Song, Y. Jang, T. Wang, T. Kim, L. Lu, and W. Lee, “Pre-
venting use-after-free with dangling pointers nullification.” in NDSS,
2015.

[18] K. Lee, “Memory management,” in Pro Objective-C. Springer, 2013,
pp. 53–74.

[19] A. Mazzinghi, R. Sohan, and R. N. Watson, “Pointer provenance in a
capability architecture,” in 10th {USENIX} Workshop on the Theory
and Practice of Provenance (TaPP 2018), 2018.

[20] S. Nagaraju, C. Craioveanu, E. Florio, and M. Miller, “Software
vulnerability exploitation trends,” Microsoft Corporation, 2013.

[21] S. Nagarakatte, M. M. Martin, and S. Zdancewic, “Watchdog: Hardware
for safe and secure manual memory management and full memory
safety,” in ACM SIGARCH Computer Architecture News, vol. 40, no. 3.
IEEE Computer Society, 2012, pp. 189–200.

[22] ——, “Watchdoglite: Hardware-accelerated compiler-based pointer
checking,” in Proceedings of Annual IEEE/ACM International Sympo-
sium on Code Generation and Optimization. ACM, 2014, p. 175.

[23] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Softbound:
Highly compatible and complete spatial memory safety for c,” ACM
Sigplan Notices, vol. 44, no. 6, pp. 245–258, 2009.

[24] ——, “Cets: compiler enforced temporal safety for c,” in ACM Sigplan
Notices, vol. 45, no. 8. ACM, 2010, pp. 31–40.

[25] N. Nethercote and J. Seward, “How to shadow every byte of memory
used by a program,” in Proceedings of the 3rd international conference
on Virtual execution environments. ACM, 2007, pp. 65–74.

[26] J. Newsome and D. X. Song, “Dynamic taint analysis for automatic
detection, analysis, and signaturegeneration of exploits on commodity
software.” in NDSS, vol. 5. Citeseer, 2005, pp. 3–4.

[27] G. V. Nishanov and S. Schupp, “Garbage collection in generic libraries,”
ACM SIGPLAN Notices, vol. 34, no. 3, pp. 86–96, 1999.

[28] G. Novark and E. D. Berger, “Dieharder: securing the heap,” in Pro-
ceedings of the 17th ACM conference on Computer and communications
security. ACM, 2010, pp. 573–584.

[29] M. Olsson, “Smart pointers,” in C++ 17 Quick Syntax Reference.
Springer, 2018, pp. 157–160.

[30] J. Rafkind, A. Wick, J. Regehr, and M. Flatt, “Precise garbage collection
for c,” in Proceedings of the 2009 international symposium on Memory
management. ACM, 2009, pp. 39–48.

[31] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
sanitizer: A fast address sanity checker.” in USENIX Annual Technical
Conference, 2012, pp. 309–318.

[32] S. Silvestro, H. Liu, C. Crosser, Z. Lin, and T. Liu, “Freeguard: A
faster secure heap allocator,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2017,
pp. 2389–2403.

[33] M. S. Simpson and R. K. Barua, “Memsafe: ensuring the spatial and
temporal memory safety of c at runtime,” Software: Practice and
Experience, vol. 43, no. 1, pp. 93–128, 2013.

[34] P. Sobalvarro, “A lifetime-based garbage collector for lisp systems
on general-purpose computers.” MASSACHUSETTS INST OF TECH
CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB, Tech. Rep., 1988.

[35] A. Sotirov, “Heap feng shui in javascript,” Black Hat Europe, 2007.
[36] E. van der Kouwe, V. Nigade, and C. Giuffrida, “Dangsan: Scalable use-

after-free detection,” in Proceedings of the Twelfth European Conference
on Computer Systems. ACM, 2017, pp. 405–419.

[37] P. R. Wilson, “Uniprocessor garbage collection techniques,” in Memory
Management. Springer, 1992, pp. 1–42.

[38] W. Xu, J. Li, J. Shu, W. Yang, T. Xie, Y. Zhang, and D. Gu, “From
collision to exploitation: Unleashing use-after-free vulnerabilities in
linux kernel,” in Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2015, pp. 414–
425.

[39] T. Yamauchi and Y. Ikegami, “Heaprevolver: Delaying and randomizing
timing of release of freed memory area to prevent use-after-free attacks,”
in International Conference on Network and System Security. Springer,
2016, pp. 219–234.

[40] Y. Younan, “Freesentry: protecting against use-after-free vulnerabilities
due to dangling pointers.” in NDSS, 2015.

15

	Introduction
	Related Work
	Threat Model
	Implicit Pointer Invalidation
	Invalidation with Reference Counting
	Reference Counting in C/C++

	Design
	Overview
	Pointer Footprinting
	Delayed Object Free
	Per-object Metadata
	Reference Counter Management

	Implementation
	Evaluation
	Statistics
	Performance Overhead
	Memory Overhead

	Security Analysis
	Attack Prevention
	Security considerations

	Limitations
	Conclusion
	References

