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Abstract—Synthetic biology is developing into a promising
science and engineering field. One of the enabling technologies
for this field is the DNA synthesizer. It allows researchers to
custom-build sequences of oligonucleotides (short DNA strands)
using the nucleobases: Adenine (A), Guanine (G), Cytosine (C),
and Thymine (T). Incorporating these sequences into organisms
can result in improved disease resistance and lifespan for plants,
animals, and humans. Hence, many laboratories spend large
amounts of capital researching and developing unique sequences
of oligonucleotides. However, these DNA synthesizers are fully
automated systems with cyber-domain processes and physical
domain components. Hence, they may be prone to security
breaches like any other computing system. In our work, we
present a novel acoustic side-channel attack methodology which
can be used on DNA synthesizers to breach their confidential-
ity and steal valuable oligonucleotide sequences. Our proposed
attack methodology achieves an average accuracy of 88.07% in
predicting each base and is able to reconstruct short sequences
with 100% accuracy by making less than 21 guesses out of
415 possibilities. We evaluate our attack against the effects of
the microphone’s distance from the DNA synthesizer and show
that our attack methodology can achieve over 80% accuracy
when the microphone is placed as far as 0.7 meters from the
DNA synthesizer despite the presence of common room noise. In
addition, we reconstruct DNA sequences to show how effectively
an attacker with biomedical-domain knowledge would be able
to derive the intended functionality of the sequence using the
proposed attack methodology. To the best of our knowledge, this
is the first methodology that highlights the possibility of such an
attack on systems used to synthesize DNA molecules.

I. INTRODUCTION

The ability to rapidly sequence and synthesize DNA has
profound implications for society. Large libraries of different
DNA sequences play an essential role in genomics research,
especially for genetic analysis. Synthetic DNA is poised for
widespread consumption if its costs can be lowered dramati-
cally. Based on current trends, the global market for synthetic
biology is projected to reach $38.7 billion by 2020 [59].
Beyond biological applications, researchers are beginning to
construct DNA-based archival storage systems, which can
store up to 215 petabytes of data per gram, with centuries
to millennia of endurance if properly stored in a cool and dry
environment [53].

Unfortunately, technological advancement often creates

new security concerns as technologies mature. To date, the
foremost security threat in this field involves the physical
safety of synthesized DNA. Present efforts to reduce or elimi-
nate misuse of synthetic DNA include biosecurity regulations,
training and licensing programs for authorized agents, and the
embedding of screening chips into DNA synthesizers (modeled
on parental control of television access) [48], [12], [55].
However, these threat models implicitly assume that the value
is inherent in the DNA itself, as opposed to the information
that is encoded in the DNA.

Somewhat more generally, the cyber-physical nature of
biotechnology workflows creates new security risks, which
the corresponding research community has mostly neglected
[49]. One recent example is the now-demonstrated ability to
encode information into a DNA sequence that can trigger a
buffer overflow error in DNA sequencing software; this exploit
can be used to inject malware into the computer running
the sequencing algorithm [47]. A subsequent concern is the
confidentiality of DNA sequences stored in human biobanks.
If the genetic information of the earth’s population is exposed,
then an attacker may be able to create a contagious virus that
is fatal to individuals or a small group, but is otherwise benign
to the general population [46].

Confidentiality concerns also extend to synthetic DNA se-
quences. In synthetic biology, the objective is often to engineer
an organism with desired traits or functions. Investors only reap
the rewards of their investments after the engineered organism
passes all regulatory requirements and the investor obtains
intellectual property ownership in the form of a patent or
copyright. However, while the organism is still under develop-
ment, the research remains vulnerable to industrial espionage
or academic intellectual property theft [60]. In this case, the
actual secret to be protected may be an amino acid sequence
within a protein (which is derived from DNA) as opposed
to the DNA itself. Within this larger context, knowledge of
the DNA can still help an attacker determine the amino acid
sequence, and the attacker can further benefit if he or she has
knowledge of the desired traits or functions of the organism
under development.

A. Motivation and Overview

This paper presents Oligo-Snoop: a novel, acoustic, side-
channel, analysis-based attack model that can breach the confi-
dentiality of DNA synthesizers. The attack model leverages the
physical implementation of the synthesizer to infer the DNA
sequence being synthesized. By publishing this attack, we hope
to encourage commercial DNA synthesizer manufacturers to

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA
ISBN 1-891562-55-X
https://dx.doi.org/10.14722/ndss.2019.23544
www.ndss-symposium.org



strengthen their confidentiality, especially to protect against
attack vectors that may be discovered in the future.

As a motivating example, Gibson et al. synthesized the
genome of a living bacterium out of one million bases of
synthetic DNA [30]; eavesdropping on that DNA synthesis
run would provide the attacker with the blueprints of a
complete organism. More often, instead of synthesizing an
entire genome from scratch, researchers add synthetic DNA
to an existing organism’s genome, thereby imparting desired
traits to that organism. For example, for many years the
anti-malaria drug artemisinin was available only from a rare
plant; however, in 2006 Ro et al. added DNA to yeast cells,
inducing the modified yeast to produce artemisinin [52], which
dramatically reduced the cost of producing a lifesaving drug. In
a more recent (and rather controversial) example, Galanie et al.
added DNA to yeast cells to force them to create prescription
opioid drugs [29]. Synthetic DNA plays a key role in each
of these examples, and for these and similar efforts to remain
secure, it is necessary to develop further protection against
eavesdropping.

From a different perspective, the ability to eavesdrop
on a DNA synthesizer could be useful in the fight against
bioterrorism. Although DNA synthesis has several beneficial
applications, there are many ways that it can be used ma-
liciously. Since pathogens are composed of DNA, synthesis
methods can be used for artificial pathogen creation. For years,
researchers and government agencies have warned that an
aspiring terrorist could use synthetic DNA and the techniques
of synthetic biology to create deadly pathogens [12] . For
example, the deadly Ebola virus has a genome of only about
18,960 bases [13] and could be built from scratch using
synthetic DNA, as could genes from the eradicated disease
smallpox, which was responsible for 300-500 million deaths in
the 20th century alone [64] . The risk of synthetic, pathogenic
DNA is significant enough that in 2010 the US Department of
Health and Human Services issued a statement to commercial
DNA synthesis companies, warning them to be on the lookout
for customers ordering “sequences of concern,” or snippets
of DNA from the genomes of anthrax, Ebola, smallpox, and
several other deadly pathogens [1]. With second-hand DNA
synthesizers available on the online auction site eBay for less
than $1000, it is feasible that an aspiring bioterrorist could try
to use synthetic DNA to create their own tools of biological
warfare. The ability to eavesdrop on a suspected terrorist’s
DNA synthesizer could potentially allow an intelligence or law
enforcement officer to ascertain whether or not the suspect is
trying to manufacture a deadly biological weapon.

B. Research Challenges

Technical challenges associated with DNA synthesizer con-
fidentiality are as follows:

• Understanding the DNA synthesis process and its physical
implementation.

• Identifying vulnerable components of a DNA synthesizer
which can be leveraged under a practical threat model.

• Analyzing attack methodologies which an attacker may
utilize.

• Understanding the ways in which an attacker may post-
process side channel data to accurately reconstruct the DNA
sequences that were synthesized.

C. Technical Contributions

This paper makes the following technical contributions,
which directly address the challenges listed above:

• We provide a feasibility analysis (Section IV) to identify
potential sources of side-channel information leakage in the
system which have never been considered before.
• We present an attack model and propose a practical design

approach (Section III and V) that an attacker may use
to breach the confidentiality of the DNA synthesizer and
reconstruct the DNA sequences using information leaked
by the acoustic side-channel.
• We propose an algorithm (Section VI) that allows an

attacker to obtain the other most likely reconstructions of the
synthesized DNA sequence if the originally reconstructed
DNA sequence is faulty.
• Due to the uniqueness of the proposed attack, in Section

VII, we propose new methods to evaluate our work in terms
of performance. For instance, in Section VII-E we show
how to model the distance between the DNA synthesizer
and microphone without exhaustive experimentation.
• We propose using a free tool designed for a different

purpose to map imperfect attack model predictions onto
more meaningful DNA sequences.

D. Paper Organization
The paper is organized as follows: Section II presents the

background necessary to understand the system and process
and summarizes related work on confidentiality in cyber-
physical systems; Section III presents the threat model used to
breach DNA synthesizer confidentiality; Section IV analyzes
potential sources of acoustic emissions from the synthesizer;
Section V presents the proposed attack methodology; Section
VI explains how an attacker can reconstruct synthesized DNA
sequences from acoustic measurements with a small number of
guesses; Section VII reports experimental results; Section IX
discusses potential countermeasures to the attack; and Section
X concludes the paper.

II. BACKGROUND & RELATED WORK

A. Oligonucleotide Synthesis
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Fig. 1: Nucleotide bases and oligonucleotide sequence.

Oligonucleotides are the building blocks of DNA and RNA
molecules. As shown in Figure 1, an oligonucleotide is a
sequence of nucleotides. Each nucleotide comprises one of
four nitrogen-containing nucleobases (Adenine (A), Cytosine
(C), Guanine (G), and Thymine (T)) attached to a sugar
(deoxyribose) and a phosphate group. The oligonucleotide is
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Fig. 2: Oligonucleotide synthesis cycle.

formed by constructing an alternating sugar-phosphate back-
bone, which joins the nucleotides to one another in a chain of
covalent bonds. DNA, which is double-stranded, is formed by
joining two complementary oligonucleotides according to base
pairing rules (A with T and C with G) where complementary
base pairs are joined by hydrogen bonds.

The term “DNA synthesis” is somewhat of a misnomer: so-
called DNA synthesizers typically produce oligonucleotides,
not double-stranded DNA. If DNA is desired, the user
must synthesize two complementary oligonucleotides (typi-
cally multiple copies of each) and induce bonding via chemical
or enzymatic means. Oligonucleotide synthesis produces short
chains of nucleic acids with a defined sequence of bases.
The most common form of oligonucleotide synthesis uses
the phosphoramidite method [45], which produces multiple
chains simultaneously by anchoring bases to a solid support
and building upwards. DNA or RNA molecules have groups
of 5 carbon atoms in the deoxyribose backbone. These carbon
atoms are numbered 1’ to 5’. While building the chains, a
protective dimethoxytrityl (DMT) group is attached to the
open 5’ end of each chain. This prevents them from reacting
or bonding with undesired materials before a new base is
attached.

Figure 2 illustrates the process of adding a new base to an
oligonucleotide:

• Detritylation: The protective DMT groups of the current
chains are stripped away so the 5’-terminal can bond to the
next base.

• Delivery: The next nucleoside phosphoramidite base to be
attached is delivered to the solution.

• Coupling: A coupling agent, which contains a catalyst that
causes the nucleoside to bond with the existing oligonu-
cleotide, is delivered to the solution.

• Capping: A small percentage of the chains do not react
in the coupling stage and thus do not receive a new base.
The base support holding the oligonucleotide is treated with
a capping solution that suppresses the addition of further
nucleosides.

• Oxidation: The attachment point between the current
oligonucleotides and the newly added base takes the form
of a tricoordinated phosphate triester linkage. This structure
is not natural and has limited stability. To improve the
stability of this attachment point, the oligonucleotides are
treated with iodine and water in the presence of a weak
base to oxidize the phosphate triester, transforming it into a
tetracoordinated phosphate triester. This form of linkage is
natural, stable, and protected.

The oligonucleotides are now ready to receive their next base.
The process repeats for every new base addition. Once all
the bases have been attached, the oligonucleotides are cleaved
from their solid support structures and collected for use.

B. DNA Synthesizer

DNA synthesizers use a pressure-driven system, shown in
Figure 3, to deliver chemicals to the output columns where
synthesis takes place. A pressurized inert gas pushes chemicals
through common pathways and delivers them to the synthesis
columns. Blocks containing solenoid valves open and close
certain pathways to route chemicals to the synthesis columns.
During each iteration of the synthesis procedure, the common
pathways are flushed to remove any leftover residue from the
previous iteration.

Our experiments use an Applied Biosystems (AB) 3400
DNA Synthesizer [4]. This specific machine performs 48 valve
operations during each synthesis cycle (Figure 2). Each step of
the synthesis cycle requires multiple valve actuations to clean
and prime the delivery lines before issuing step-specific valve
operations that deliver the requisite chemicals to the columns.

Some large-scale DNA synthesis machines deliver multiple
bases per delivery operation or deliver the same base to differ-
ent columns at the same time. These machines can complete
batch synthesis operations with higher throughput than single-
operation synthesis machines such as the AB 3400. However,
they still follow the same sequence of steps as shown in Figure
2 and produce similar results, albeit in larger quantities.

C. Side-channel and Information leakage

Side-channel analysis has been studied extensively in vari-
ous systems to determine their vulnerability. Analog emissions
(acoustics, power usage, electromagnetic emissions, vibrations,
etc.) are one of the primary side-channels known to leak
information. Acoustic emissions have been used to infer fill
patterns in additive manufacturing systems [2], [7], [25], [15],
[16] and carry out physical attacks on magnetic hard disks [10].
Authors in [62] provided extensive results on the usability of
light, seismic and acoustic side-channels by providing their
channel characteristics such as rate and path loss. A power
side-channel was used in [18] to detect malware in medical
embedded systems. Authors in [68] utilized a memory side-
channel to detect the activity of unwanted co-resident’s virtual
machine and the authors of [69] presented cache-based side-
channel attacks which can be mounted on existing commercial
clouds to steal cross-tenant information. Electroencephalogra-
phy (EEG) signals obtained from a brain-computer interface
were used in [43] to infer private user information. Authors in
[14] demonstrated how network traffic based side-channels can
be quantified for securing web applications. Timer interrupts
and cache based side-channels were used in [33] to achieve a
higher success rate than page-fault based side-channel attacks
on untrusted operating systems. Authors in [5] demonstrated
how accelerometer based side-channels can be used to infer
user login details on smartphones. Each of these works demon-
strates how various side-channels can be utilized to either infer
information or provide better defense mechanisms in various
systems.
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Fig. 3: (a) Experimental setup. (b) Simplified schematics of a DNA synthesizer. Refer to [4] for a detailed explanation of this
schematic. (c) The internal structure of the DNA synthesizer.

D. Acoustics

Vibration of a system in contact with air molecules gener-
ates a mechanical wave called an acoustic signal. Commonly,
the intensity of this acoustic signal is expressed in terms of
sound pressure level (SPL) using

Lp = 20log(
p

p0
), (1)

where p is root-mean-square (RMS) of acoustic pressure and
p0 is the minimum hearable acoustic level by human ears [26].
For a quiet office Lp = 50 dB; normal conversations Lp = 60
dB; vacuum cleaner Lp = 70 dB; and hair dryer Lp = 80 dB.
Human ears barely detect a 3 dB difference in SPL while a 5
dB change can be easily noticed under most conditions.

III. ATTACK MODEL

Figure 4 depicts an attack model that can breach the
confidentiality of a DNA synthesizer via information leaked
in the acoustic side-channel. The components of the attack
model are described as follows:

Adversary Intent: Industrial espionage for stealing intellec-
tual property (IP) and monitoring for bioterrorism activities
are covered by this attack model but speak to the intent rather
than the identity of the attacker.

Outcome of an Attack: The attacker recovers the sequence of
states of the target DNA synthesizer, Ŝtarget, which translates
to the order and types of the bases that are synthesized by the
machine.

Target System: DNA synthesizers can connect to computers,
external drives, and Ethernet cables. However, operators gener-
ally keep the machine disconnected from the Internet and local
networks or use secured protocols to eliminate the possibility
of cyber-attacks. In addition, we assume that tampering with
the machine or accessing the output DNA sequence is not
possible so the attack must be non-invasive. This is because
fluids in the machine are sealed and are driven by pressurized
argon. Any exposure to air would result in significant quality
degradation, raising an alert.

Existing Vulnerabilities of the System: The DNA synthesizer
is vulnerable to physical emissions that can leak system data
during operation. Minimizing system observability can hide the
system states from the attacker; however, DNA synthesizers
are optimized for efficiency (throughput) and accuracy, not
security.

Attack Medium: The attacker acquires information about the
state of the DNA synthesizer via acoustic side-channel (A).

Attacker Capabilities: We assume that the attacker has the
capability to place at least one microphone within close
physical proximity to the DNA synthesizer. Such an attacker
could be a disgruntled employee or a visitor with low-level
access to the machine (meaning physical proximity, and no
access to cyber components). In this scenario, the attacker can
surreptitiously and non-intrusively place an audio recording
device (such as a phone) near (or on) the DNA synthesizer.
Placing the recorder requires one-time access if we assume that
it has wireless transmission capabilities; otherwise, a second
physical visit is required to recover the recorder and the data
it has collected. Since the authorized users of the target DNA
synthesizer are unaware of the attack model introduced in
this section, most probably, they would neglect the security
implications of any recording device around the machine.
Furthermore, if an attacker is able to breach the other systems
in the same laboratory (i.e. remote monitoring systems [57],
employee phone/laptop, etc.), he will be able to record the
information leaked in the acoustic side-channel of the DNA
synthesizer through existing microphone(s) of those systems.

Attacker Resources: We assume that the attacker not only
has domain knowledge about the synthesis process, but also
has access to the user manual of the machine explaining the
machine specific procedures for DNA synthesis. Furthermore,
we assume that the attacker has the opportunity to carry out
as many experiments as needed to profile the machine and
build an accurate model (Ŝ = f̂(A), see Figure 4) that can
infer the order of synthesized bases based on recorded acoustic
signals collected from the target machine. If the attacker is a
disgruntled employee who has unlimited access to the target
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system, the profiling DNA synthesizer can be same as the
target machine. However, if access is not provided, the attacker
could use a replica for profiling purposes (the same model with
a structure that is identical to the target machine). For the rest
of this paper, we consider the former scenario where the target
and profiling DNA synthesizers are the same machine.

Cost: For an attacker to profile the target machine, the cost of
an attack is just the value of the chemical materials used and
the time spent during the profiling process (estimating (f̂ )).

IV. FEASIBILITY ANALYSIS

While oligonucleotide synthesis is in progress, the physical
activity of different components of the system such as solenoid
valves, cooling system fans, pressure regulators, and fluids
flowing in pipes causes vibration which results in structural
acoustic noise emission from the system. We hypothesize that
various solenoid valves opening/closing and the flow of fluid
through various pipes emit information about the various states
of the oligonucleotide synthesis cycle, and that we may be
able to identify which nitrogenous bases (A, G, C or T) are
deposited during the delivery state of the oligonucleotide syn-
thesis cycle. An attacker may thus eavesdrop on the acoustic
emissions, that behave as side-channels, to infer the cycles and
the type of the base being delivered.

A. Structural Acoustics caused by the pipes

DNA synthesizers use plastic pipes (lines) to deliver the
nucleotide bases and other chemical materials from the source
reservoirs to the output columns and other containers attached
to the system. The internal turbulence of the fluid flow running
in the pipe causes the walls of the pipe to vibrate, resulting in
acoustic noise (i.e. vibro-acoustic) radiation from the pipes.
Over the last few decades, a substantial body of research
has been dedicated to modeling fluid-structure interactions
to simulate and predict vibro-acoustic signal emissions of
pipe structures [41], [65]. Work in this area has shown that
the magnitude and frequency of a generated vibro-acoustic
signal can be determined based on the spatial structure of
the pipes, pipe wall thickness, internal pipe pressure, internal
fluid speed, the mass density of the fluid and the pipe, and

several other features. Authors in [61] have demonstrated how
minute changes in the curvature of the elastic pipes can result
in different vibro-acoustic footprints. As shown in Figure 3c,
the delivery lines in the DNA synthesizer have different spatial
shapes and curvatures and also deliver fluids with different
mass densities. Based on the work in [61], we suspect that
these changes will result in close but unique wavenumbers.

B. Structural Acoustics caused by the solenoids

DNA synthesizers employ electric solenoids to open and
close the valves that control the flow of chemicals to each
column; each valve opening or closing operation emits an
audible click. Although each solenoid emits a near-identical
sound, the DNA synthesizer is an enclosed structure and each
valve is located at a different position within the machine.
As stated in [66], the enclosed space creates measurable
reverberations when a valve emits sound. The equation to
calculate reverberation time is given in [66] as:

T = 0.049
V

Sa
, (2)

where V is the volume of the enclosure, S is the surface area
which reflects sound, and a is the average Sabine coefficient of
the enclosure. As each valve occupies a distinct position within
the DNA synthesizer, the surface area that causes reflections,
which impacts the reverberation time, is unique for each
valve. Consequently, the collected acoustic signals are likewise
unique for each valve due to their unique channel distortions.
Similar to the sound generated from the fluids moving through
the machines piping, the distinctions between valve noises may
be near-inaudible for human listeners. However, a properly
trained algorithm should be able to identify key features that
distinguish different valve operations.

V. ATTACK MODEL DESIGN

Here we present the design of the attack model, which
we introduced earlier in Section III. In order to accurately
infer the physical and cyber-domain states of the system
(S) from the acoustic side-channel (A), an optimal attack
could first use principle-based equations to derive a function
(A = f(S)) to explain the sound produced by the individual
components of the system based on the DNA sequence. Then,
using techniques like finite element analysis, the attacker
may acquire an accurate acoustic emission profile of the
DNA synthesizer. Afterward, the attacker may use the inverse
function to estimate the sequence (Ŝ = f−1(A)). However,
this approach would require an attacker to have complete
design details of the individual components, their chemical
composition, etc., to accurately simulate the acoustics from
the system. To overcome this problem, we propose to use a
data-driven approach, by treating the DNA synthesizer as a
black-box, to estimate the function (Ŝ = f̂(A)). This approach
requires less domain knowledge and achieves faster attack
model implementation time for an attacker.

As shown in Figure 5, to estimate the function that
describes the relationship between the acoustic signal and
the oligonucleotide sequences, our proposed attack model
consists of two main phases: the training phase and the
attack phase. This function may be abstracted as S =
f̂(A, θ), where θ is the parameter that needs to be trained,
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S = [S1, S2, . . . , Sn], Si ∈ {A,G,C, T} is the sequence of
oligonucleotides with length n, and A represents the acoustic
signal gathered from the side-channel. In the training phase,
an attacker randomly selects an arbitrary number of training
oligonucleotide sequences (Strain). These sequences are then
passed to a profiling DNA synthesizer. Then for each of the
Si ∈ {A,G,C, T}, the attacker collects the corresponding
acoustic emission (Ai1 , Ai2 , . . . , Aik ), where k is the length
of the acoustic emission. The attacker must initially find
an optimal location to place the acoustic sensors, which, in
our work, are placed next to the DNA synthesizer in close
proximity to the solenoids and the pressure valves. We then
perform preprocessing and feature extraction on these acoustic
emissions and label them with their corresponding nucleotide
bases {A,G,C, T}. Using a supervised learning approach
[54], a classifier function is estimated to predict the particular
nucleotide base given the acoustic emission Ŝi = f̂(Ai, θ). In
the attack phase, the attacker surreptitiously places sensors on
the target DNA synthesizer and collects the acoustic emissions,
and infers the target oligonucleotide sequence (Starget). The
details of the each of the steps of the attack model design are
as follows:

Preprocessing. In this stage, the attacker uses a set of bandpass
filters combined with heuristic methods to reduce the effect of
background environmental noise, which is added to the acous-
tic signal generated by the DNA synthesizer. For instance, the
attacker may use

Anormalized = diag(
1√

diag(Rnn) + ε
×A) (3)

similar to what it has been used in [37] to model the back-
ground noise and normalize the signal in relation to it. In this
model, Rnn is the background noise covariance matrix based
on a portion of a recording when the machine is idle; A is the
recorded signal, and ε = 1× e−10 is used to avoid division by
zero. In our experience, the background environmental noise
is usually more prominent in lower frequency ranges. Hence,
if the attacker determines that the DNA synthesizer does not

leak information in lower frequencies, he/she can simply use
a high-pass filter to eliminate low-frequency components from
the signal.

Preliminary feature extraction. Once background noise is
removed from the recorded signal, the attacker needs to extract
the portions of the signal that correspond to base deliveries
{A,G,C, T}. As shown in Figure 2, the oligonucleotide
synthesis process goes through various stages, base delivery
being one of them. An attacker needs to know the time taken
by various stages in order to accurately segment the acoustics
for just the nucleotide base delivery stage. As shown in Figure
6, opening and closing the solenoid valves introduces peaks
in the acoustic signal. These peaks may help an attacker track
various stages.

However, difficulties may arise when multiple valves open
and close at the same time, which would result in peaks with
variable intensity. To mitigate this issue, an attacker could use
an approach proposed in [21] to detect the peaks by using
their shape with the help of wavelet transforms. Furthermore,
since the properties of the solenoid valves are assumed to
be known to the attacker, he/she can specify the minimum
distance between peaks to increase the accuracy of the peak
detection algorithm.

Signal segmentation. Since an attacker has access to the user
manual for the DNA synthesizer, he/she knows duration of
each stage. Then, using the peak detection algorithm and the
timing data from the user manual, the attacker can segment
the nucleotide delivery stage. Since all the other stages of
the synthesis remain the same for adding each new base, an
attacker only needs the base delivery stage to reconstruct the
sequence. Although this step can be done manually for shorter
sequences, an attacker who wishes to reconstruct long DNA
sequences may consider more sophisticated techniques, such
as Hidden Markov Models (HMMs) [22] or Long Short-Term
Memory (LSTM) neural networks [36], which have historically
been used in voice recognition, to track the different states of
the machine. Since the relative distance between the peaks
is a known constant (as is described in the user manual),
both of these models will achieve high accuracy; however, our
experience has shown that neither of these models is perfect,
and that a successful attacker will need to manually segment
the data to obtain 100% accuracy. 100% accuracy is needed,
since any error in this stage will jeopardize the attack model’s
subsequent steps.

Feature extraction. As shown in Figure 6, the base delivery
segment of the signal consists of three sections: the first peak,
which is the result of opening the valve that controls the flow
of a certain base to the output column; a longer section in
which the pipes deliver the base; and a final peak, which is
the result of closing the valve whose opening generated the
first peak. Since the duration of each solenoid valve operation
is known, the attacker can divide the delivery segment into
three sections and engineer a specific set of features for each.
Extractable features range from simple calculations such as the
standard deviation of the signal to complex calculations such as
coefficients of Fourier and wavelet transforms. Since the length
of the signal is short for a delivery segment (less than 5.5
seconds in our experiments), we can assume that the attacker
has enough computational power to calculate any of these
features for all three sections of the delivery segment. However,
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Fig. 6: Sample acoustic signal emission from DNA synthesizer.

extracting all possible features will significantly affect the
convergence rates of the classifiers that will use them. Hence,
in the training phase, the attacker creates models using a subset
of all available features, either by feature projection (e.g. PCA
[63], LDA[42]) or feature selection (e.g. [17], [6]). Based on
our experiments, the latter approach works much better for
acoustic side-channel attacks on the DNA synthesizer because
even small environmental background noises mask most of the
useful features when PCA or LDA projects them onto lower
dimensions. The outcome of this stage is the conversion of
an acoustic signal (Ai1 , Ai2 , . . . , Aik ) into a set of features
(fi1 , fi2 , . . . , fil ) with l� k.

Nucleotide base classifier. In this stage, the attacker selects
and trains the best classification algorithm to estimate the
function (Si = f̂(fi1 , fi2 , . . . , fil , θ)) that correlates a given
set of features to one of the four nucleotide bases. To find
the best algorithm, he/she trains multiple classifiers such as
neural networks [35] and random forests [11] and calculates
the accuracy of each classifier. Each of these functions will
have a certain method of training θ = {θ1, θ2, . . . , θm}, where
m depends on the type and architecture of the classification
algorithm used. The accuracy of a classifier is defined as the
percentage of correct predictions divided by the total number
of predictions made over the test data-set. To ensure that
enough training samples have been provided to the models, the
attacker monitors the corresponding accuracy of predictions in
terms of the number of training points. If the accuracy stops
improving when new samples are added to the training dataset,
the attacker can assume that the classifiers have converged.
Once the attacker identifies the most accurate classification
algorithms, then he/she can use an ensemble of algorithms
to improve the accuracy even further. To do this, the attacker
computes the normalized probability distribution for each base
(A,G,C, T ) for each classification algorithm and selects the
most probable base as a result. The caveat of having a classifier
only predict a single nucleotide base is that an attacker still
needs to reconstruct the whole chain, which can introduce ad-
ditional complexities. In order to tackle this issue in our attack
methodology, we propose using an algorithm that produces the
k-best sequences of oligonucleotides based on the output of
the nucleotide classifier. The details of the k-best algorithm
are presented in Section VI. In the training phase, an attacker
constructs a nucleotide classifier; in the attack phase, the
attacker can use the k-best sequencing algorithm, along with

domain-specific post-processing, to reconstruct the sequence.
Finding the first best sequence is trivial since the attacker
only needs to choose the type with the highest probability for
each delivery to achieve the highest confidence in the whole
sequence prediction. However, finding the next best sequences
are not straightforward, and he/she can use the K-best DNA
sequences algorithm.

Post-processing. The classification algorithms described in the
previous stage provide results based on the features present in
the given segment of the signal; they ignore any relation of
the current base delivery to past or future base deliveries. In
practice, the order of the bases in an oligonucleotide sequence
follows certain rules based on the synthesis technology, ma-
chine capabilities, and the specific domain for which it is being
synthesized. For instance, authors of [47] identify three major
limitations for DNA synthesis. The first limitation involve ho-
mopolymers, which are repeated sequences of the same base;
this eliminates the chance of synthesizing an oligonucleotide
sequence more than ∼10 consecutive instances of the same
base as a substring. The second limitation is that a reasonable
ratio of G and C bases should always appear in the sequence.
The last limitation involves secondary structures, in which
an oligonucleotide sequence contains multiple complementary
subsequences that may bind to one another, creating a physical
loop. In addition, domain-specific knowledge can improve the
accuracy of predictions. For example, there are well-known
sequences in synthetic biology that are responsible for certain
functions. An attacker with this knowledge will be able to
correct errors in the algorithm if he/she notices similarities
in the extracted sequences to those mentioned. The same can
be found in most other applications of synthesized DNA. For
example, in the case of storing data in DNA molecule, if
the data is coupled with error detection/correction bits, then
identifying the errors will be possible for the attacker as well.

The classification and domain-specific post-processing
schemes report a reconstructed oligonucleotide sequence,
which the attacker has effectively stolen. Further laboratory ex-
periments can then confirm the correctness of the reconstructed
sequence. If the attacker concludes that the reconstructed se-
quence is incorrect, he/she will want to consider other probable
sequences, until he/she discovers a reconstructed sequence that
he/she believes to be correct.
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Algorithm 1 DAG generation algorithm.

1: Input: Probability distributions of base type prediction (P )
2: Output: Directed acyclic graph (G)
3: //node (<label>,<index>)
4: //edge (<from index>,<to index>,<weight>)
5: //Order of probability distribution rows in P : AGCT
6: procedure GENERATEDAG
7: n deliveries← length of P
8: n nodes← 4× n deliveries
9:

10: //Creating the nodes
11: G← node(start,-1), node(end,n nodes)
12: for i = 0; i < n deliveries; i = i+ 4 do
13: G← node(A,i),node(G,i+1),node(C,i+2),node(T,i+3)
14:
15: //Adding the first and last layer edges
16: for i = 0; i < 4; i++ do
17: G← edge(−1, i, P (0, i)) //from source
18: G← edge((n nodes−1)−i, n nodes, 1) //to end
19:
20: //Adding internal layers edges
21: for t = 0; t < n nodes− 4; t = t+ 4 do
22: i offset← t
23: j offset← t+ 4
24: for i = 0; i < 4; i++ do
25: i idx← i offset+ i
26: for j = 0; j < 4; j ++ do
27: j idx← j offset+ j
28: delivery id← t

4 + 1 //next delivery
29: G← edge(i idx, j idx, P (delivery id, j))

return G

VI. K-BEST DNA SEQUENCES

A nucleotide base classifier predicts q = 4 possible output
classes (A,G,C,T) for each base. The classifier first estimates
the conditional probability distribution of possible outputs
(Y = {c1, ..., cq}) for the set of given input features f . Then,
the classifier reports the class S = ck ∈ Y, k ∈ (1, 2, . . . , q)
with the highest probability as the result:

f is assigned to class ck ⇐⇒ p(ck|f) ≥ p(cr|f)∀k 6= r. (4)

where r ∈ (1, 2, . . . , q). The confidence of a classification
algorithm for a certain prediction is defined to be equal to
the probability of the predicted class. Since the prediction for
each base delivery is independent from the others, the classifier
computes the confidence value for the sequence as

Confidence =

n∏
i=1

p(cki |fi), (5)

where Si = cki is the predicted class for the ith nucleotide
base, based on the input features fi. The confidence defined
in Equation 5 represents the chance of predicting the target
sequence with 100% accuracy. An attacker would want to
maximize this value. Choosing a class such that p(cki |xi) ≥
p(cri |xi)∀ki 6= ri, will maximize the confidence value, thereby
increasing the probability that the predicted sequence exactly
matches the original sequence. However, as explained in the
previous section, there exist scenarios where the attacker would

prefer more candidate sequences in addition to the best-
predicted one. In response, we propose an algorithm to predict
the K-most probable orders of bases in a sequence by keeping
the value of confidence as close as its possible to its maximum
value. Our algorithm is inspired by the Viterbi algorithm [28]
which is commonly used to find the most probable sequence of
hidden states in an HMM for a given sequence of observations.

Algorithm 1 accepts as input a two-dimensional array P
which contains the conditional probability distribution of the
four base types with n delivery stages. The value of array
entry P (i, j) is equal to p(cj |fi) where cj ∈ {A, G, C, T} and
fi is the given input (set of features [fi1 , fi2 , . . . , fil ]) to the
classifier for the ith nucleotide base prediction. Algorithm 1
converts P into a Directed Acyclic Graph (DAG). The first step
is to instantiate two dummy nodes to represent the beginning
and end of the sequence. Second, four nodes with {A, G, C, T}
labels are added as a layer between the start and end nodes to
represent the four possible outputs of each classification step.
The start node is connected to the four nodes labeled in the first
layer by directed edges with weights set to p(cj |fi), where cj
corresponds to the label of the destination node. The process
repeats iteratively to add subsequent layers: the nodes in layer
i are connected to the nodes in layer i + 1 by instantiating a
directed edge with a weight equal to p(cj |fi+1). Directed edges
with weight 1 are added from the four nodes in the final layer
to the end node. The DAG enables simple and intuitive way
to calculate the confidence of the reconstructed sequence.

Assumption 1: Algorithm 1 generates a DAG.

Remark 1: Algorithm 1 generates a graph layer-by-layer and
only adds edges between layers i and i+ 1.

Assumption 2: A path from the start to the end node in
the DAG represents a candidate reconstructed sequence. The
confidence of the corresponding sequence is equal to the
product of the weights of the edges along the path.

Remark 2: A path in the DAG emanating from the start node
will pass through each layer exactly once. Choosing the node’s
label as be the delivery base type yields a nucleotide sequence
whose length is equal to the number of layers in the graph. All
input edges to a node with a given label will weight equal to
the probability of that label being correct for its corresponding
base delivery. Considering that the value of the last edge in
the path, which terminates at the end node, is 1, the product
of the weights on the path is equivalent to the definition of the
confidence shown in Equation 5.

We first call Algorithm 1 to generate DAG G from input P .
We then replace all the weight values with their corresponding
log base values for mathematical simplicity in later steps. We
also define the length of a path to be equal to the summation
of edge weights on the path. In this case, the k longest paths in
the graph will represent the k-most probable sequences. Notice
that the summation of the log of a set of values is equal to
calculating the log of the multiplication of those values.

There exist multiple algorithms that compute the K longest
paths from a source node to sink node in a DAG [23]. The
algorithm presented in [24] achieves an optimal asymptotic
time complexity of O(m+nlogn+k), where n is the number
of nodes and m is the number of edges in the DAG. This al-
gorithm has an O(1) time complexity per pathfinding attempt,
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after a preprocessing stage that uses Dijkstra’s Algorithm to
identify the shortest path. This is a substantially more efficient
than a brute-force approach, which would enumerate all 4n

length-n base sequences and compute their confidence values
in O(n) time per sequence, yielding an overall time complexity
of O(n4n).

TABLE I: Probability distribution of base types for three
consecutive deliveries.

Base Name Delivery #1 Delivery #2 Delivery #3
A 0.9 0.03 0.12
G 0.05 0.8 0.4
C 0.01 0.15 0.35
T 0.04 0.02 0.13

Table I presents a sample probability distribution of base
types for a DNA synthesis procedure consisting of three deliv-
ery stages. Based on this table it is easy to infer that the most
probable sequence is AGG with confidence of 0.9∗0.8∗0.4 =
0.288. However, since the probability of delivering base C in
the last stage is very close to the probability of delivering base
G, if the sequence does not support our requirements, then we
would intuitively consider the sequence AGC. If the attacker
determines that both AGG and AGC are incorrect sequences,
then he/she would turn to Algorithm 1 to generate the DAG
shown in Figure 7. A top-11 analysis of the DAG generates
the following sequences, in order: AGG, AGC, AGT, AGA,
ACG, ACC, ACC, ACT, ACA, GGG, GGC.

G

A

C

T

G

A

C

T

G

A

C

T

Start End

Fig. 7: A DAG corresponding to the probability distribution
provided in Table I (Thicker arrows represents higher proba-
bilities for the destination nodes.)

VII. RESULTS AND CASE STUDY

This section presents the experimental results obtained by
implementing the proposed attack methodology on an Applied
Biosystems Inc. (ABI) 3400, one of the most widely used
commercial DNA synthesizers. To validate this choice, we
contacted a DNA synthesizer sales expert who stated: ”I
strongly recommend you consider either the ABI 394 or the
ABI 3400. They are by far the workhorses of the industry.
95% of our customers use the ABI 394.” - [Email]). This
section also presents a test cases where we reconstructed the
complete oligonucleotide sequences using the proposed K-best
DNA sequences algorithm and post-processing steps.

A. Test Bed

As shown in Figure 3, the experimental setup consists of
an AB 3400 DNA Synthesizer [4] and a Zoom H6 audio

recorder to acquire the acoustic signal. We record the signals
through three channels simultaneously at a sampling frequency
of 48 kHz with a resolution of 24 bits per sample. For every
DNA synthesis run, we randomly place a recorder with two
condenser microphones near the DNA synthesizer (on top of
the machine or on the setup desk, no further than 10 cm
from the machine). We also use a contact microphone to
record acoustic signals with almost no environmental noise.
Our attack methodology is implemented in Python 3.6. We use
the tsfresh [17] library package for feature extraction; scikit-
learn [50] for profiling model generation; and networkx [32]
for modeling the network discussed in Section VI. We also use
MATLAB [44] to represent the Short-Time Fourier Transform
(STFT) results.

B. Evaluations Assumptions

We used the Zoom H6 portable handy recorder tool kit,
which has publicly available coil condenser microphone char-
acteristics, to carry out our attack. The Zoom H6 is similar to
an iPhone 4, which contains two similar internal microphones.
As a ubiquitous consumer product, an iPhone 4 placed in
a discreet location near a DNA synthesizer, would seem
innocuous to the typical user of such a machine, and could
easily collect days’ worth of data without detection.

We assume that the DNA synthesizer is used exclusively
for oligonucleotide synthesis. DNA synthesizers have various
cycle scripts for producing different polymerases. If a user
intends to synthesize DNA, the same script should be used,
without modification, regardless of the target sequence; mod-
ification of the cycle script can cause erroneous synthesis
behavior. (Over six months of studying this machine in an
active biomedical laboratory, we observed that the settings
were never changed. We verified that the cycle script that was
run repeatedly by different users always matched the cycle
script for oligonucleotide synthesis in the AB 3400 synthesizer
manual. This assertion was subsequently confirmed by direct
communication with the machine operators).

Although the AB 3400 can synthesize four columns in par-
allel, in practice, the deliveries to output columns do not occur
simultaneously, as described in Chapter 6 of the user manual
[4]; for each output column, the same solenoid valves and pipes
are used. The only difference is setting the Front Reagent Block
to a different output column before the next delivery cycle.
Since the same script is used for every column, extracting the
delivery stages for each output is straightforward. To avoid
unnecessary complication, we focus on single output column
DNA synthesis.

C. Training and Evaluation

The attack model described in Section V consists of
functions (f̂(., θ)) that need to be trained before they are
used for a specific synthesizer. Since the objective of each
model is known, we use supervised learning to estimate the
functions. We initially synthesized seven different 60-base
oligonucleotide sequences, each consisting of 15 A’s C’s G’s
and T’s in varying orders. An attacker could increase the
number of synthesis runs if the classification results do not
converge, however, as shown in this section, the initial runs
were sufficient. Each synthesis run took 7 hours, 29 minutes,
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and 53 seconds. As an attacker, we label the acquired signals
into different stages: ‘initialization’, ‘repetitive cycle’, and
‘base delivery’. The labeling is possible because the user
manual for the synthesizer machine lists the operations which
take place during synthesis and the corresponding duration of
each operation [4]. Based on the manual, it is easy to infer that
the DNA synthesizer initialization stage takes approximately
787 seconds and only occurs at the beginning of the synthesis
procedure. The ‘repetitive cycle’ stage takes approximately 463
seconds, and the ‘base delivery’ stage takes approximately 5
seconds inside the ’repetitive cycle’ stage.
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Fig. 8: Recorded acoustic signal from the DNA synthesizer
during synthesis followed by an idle state (top). Short-Time
Fourier Transform (STFT) of the corresponding signal (bot-
tom).

To pre-process the signals, first the STFT spectrum is
calculated. The analysis of the acquired signals reveals there
is no difference in the magnitude of frequency components
below 300 Hz between the portion of the signal which belongs
to environment noise versus actual DNA synthesis (see Figure
8). Hence, we chose 300 Hz as a cutoff frequency and filter
the signal frequency components below this limit using a high-
pass filter. We apply Equation 3 to normalize the signal before
further processing.

In Figures 6 and 8, each valve operation produces an
audible click from the machine which is clearly visible as a
peak in the recorded waveforms. When operational, the DNA
synthesizer executes the cycle script, for which the sequence
and duration of valve operations during the synthesis run are
known. By correlating valve operation timings between the
waveform and cycle script, sections of the waveform can be
labeled with the corresponding valve operations. On the AB
3400 DNA synthesizer, the base delivery stage contains six
valve operations with a unique sequence of timings relative to
other stages in the synthesis process. With practice, the base
delivery stage can be visually identified and extracted from
the waveform. Additionally, the specific valve operation that
delivers the base always occurs at the same time in the delivery
stage. Therefore, this operation can be extracted and used for
base identification in the classification step of the attack model.
Since a human can manually extract the base delivery operation

using these features, we implemented an algorithm to extract
the base deliveries using the same process. First, we identify
the peak locations in the signal using continuous wavelet
transforms [21]. Then, based on the cycle script, the algorithm
identifies the sequence of distances that correspond to the base
delivery stage. For each stage, the algorithm references the
cycle script again and extracts the segment that corresponds to
the base delivery valve operation.

Once the base delivery segment is extracted from the signal
(similar to what is shown in Figure 6), we train six classifiers
as shown in Table II. Feeding the raw base delivery acoustic
signal to these classifiers results in random classification (≤
25% accuracy), so a feature extraction step is required before
classification. We select the best set of features to be used for
classification in two steps. First, we extract all the features
introduced with the tsfresh [17] library. These features consist
of the time domain, frequency domain, and wavelet-based
features. Next we calculate the significance of each feature
and carry out multiple test procedures [8] to select the most
relevant features with the lowest dependency score [17].

This procedure reduced the number of features from 57,018
to 75 (selected features in Table II). The selected features
include the magnitude of the Fourier transform components
of the input signal in certain frequencies as well as the
autocorrelation of the signal with a lag of 2 and 3 samples.
The selected set of features matches what was expected from
the feasibility analysis of the attack described in Section
IV. The structural differences between the pipes used for
different base deliveries causes each base delivery to generate
slightly different frequencies. However, for practicality, the
tsfresh library with default settings does not generate all of
the frequency components. To discover all of the possible
features in the frequency domain while keeping computational
resources fixed, we calculate the frequency components with
an accuracy of 200 mHz, but only at frequencies above 300
Hz with local peaks in the frequency transform (see Figure 8).
We reran the same feature selection algorithm and identified
310 features within those frequency bands (improved selected
features in Table II).

To ensure that the amount of training data is sufficient for
the models, we analyze the prediction accuracy based on the
number of base delivery samples in the training dataset. We
selected AdaBoost [34], linear Support Vector Machine (SVM)
[19], Naı̈ve Bayes [67], Neural Network [35], and Random
Forest [11] classifiers to estimate the function f̂(., θ). We also
implemented a weighted majority rule voting [51] based en-
semble that uses random forest and neural network as the base
classifiers; for simplicity we set the weights of both classifiers
to be equal. As shown in Figure 9, around 200 samples is suf-
ficient to train the models to achieve maximum accuracy when
classifying nucleotide bases based on the selected features. We
used 80% of the dataset for training and 20% for validation,
coupled with 10-fold cross validation [39] to produce the
results reported in Figure 9 and Table II. The reported accuracy
numbers shown are averaged across the 10 folds. Figure 9 and
Table II show that the majority rule voting-based ensemble of
classifiers achieves faster convergence and higher classification
accuracy than the other classifiers for the improved selected
features. This can be explained by the fact that each individual
classifier effectively searches a space H of hypotheses in
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TABLE II: Accuracy of the classification models.

Classifier Settings
Accuracy (%)

Raw Signal All Features Selected Features Improved Selected Features

AdaBoost [34] 18.54 39.58 57.22 69.46
Support Vector kernel= ’linear’, 26.8 17.63 57.77 84.05Machine (SVM) [19] penalty error(C) = 0.025
Naive Bayes [67] 12.12 27.63 58.61 75.31

Neural Network[35], [56]

architecture= ’fully
connected
feed forward’, 14.59 34.99 64.44 87.51
activation func=’relu’,
num hidden layers=100,
num training iteration=1000,
solver = ’adam’[38]

Random Forest [11] num estimators=100 23.4 46.66 60.69 78.46

Voting [51] classifiers = {RandomForest, 24.18 51.25 62.5 88.07NeuralNetwork}
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Fig. 10: The impact of added noise effects on the side-channel
attacks against DNA synthesizers.

search of the hypothesis with the highest accuracy. Different
classifiers identify different hypotheses with similar, if not
the best overall, accuracy. If each classifier’s hypothesis has
uncorrelated errors with error rates exceeding 50%, then the
voting-based ensemble method is likely to increase overall
accuracy [20]; however, this improved performance is obtained
at the cost of increased computing power and training time for
the ensemble of classifiers used in voting.

The next step in the attack model, as discussed in Sec-

tion V, is post-processing the reconstructed DNA sequence
with domain-based knowledge after generating the K-best
sequences. Since the accuracy of the classifiers is reported
based on random delivery samples, we did not integrate this
stage into our initial experiments. Instead, we evaluate the
value of such techniques for reconstructing meaningful DNA
sequences in Section VII-F.

D. Noise Effect on Accuracy

Although the pre-processing stage used in the attack re-
duces the effect of environmental noise and normalizes the
acquired signals, significant ambient noise might obfuscate
the information leaked in the side-channels, reducing the
effectiveness of the attack. Hence, it is important to evaluate
the robustness of the trained models against potential environ-
mental noises. To this end, we generate six types of different
noises and add them to the recorded raw signals for the test
samples: brown noise, which has very high intensity in lower
frequencies (β = 2); pink noise, which has high intensity
in lower frequencies (β = 1); white noise, which has same
intensity in all frequencies (β = 0); blue noise, which has high
intensity in higher frequencies (β = −1); violet noise, which
has very high intensity in higher frequencies (β = −2); and
conversation noise, which is a recorded conversation between
two persons (the power spectral densities of the color noises
are proportional to 1

fβ
).

As shown in Figure 10, adding any noise with a high-
decibel sound pressure level (SPL) reduces the attack model
accuracy. We observe that the noises, which have a medium to
high emphasis on their higher frequency components, can mask
the leaked signal with lower SPL. If a noise generator is added
as a countermeasure against acoustic side channel attacks, then
to be effective, it must generate high-frequency noises in close
proximity to the synthesizer. General noises in the laboratory,
such as employee conversations or air conditioner emission
(pink), are unlikely to be effective countermeasures.

E. Microphone Distance Effect on Accuracy

The SPL induced by the DNA synthesizer is inversely
proportional to the distance between the DNA synthesizer and
the microphone. If an SPL is measured to be L1 at distance r1,
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it will reduce to L2 at distance r2 according to the following
equation [26]:

L2 = L1 − |20log(
r1
r2

)|. (6)

We used this equation to evaluate the effect of microphone
distance to the target DNA synthesizer. During the delivery
stages, our experiments yielded an average SPL of 81.15
dB and 77.1 dB for the contact and condenser microphones.
We assume that the acoustic signal collected by the contact
microphone is free of environment noise. In this scenario,
decreasing the SPL of the recorded signal by the contact
microphone while adding a constant room noise is equivalent
to placing the recorder at a further distance.

Figure 11 shows the result of decreasing the SPL of a
recorded signal near the contact microphone in 1 dB incre-
ments while keeping the added room noise level constant.
Since we know the SPL of the signal within 10 cm of
the machine, we add a secondary horizontal axis to the top
of the chart to show the distance of the microphone from
the DNA synthesizer using Equation 6. If we assume that
there is no noise in the environment, the degradation of
the SPL of a signal at a further distance would have no
effect on the accuracy of a given voting classifier, since a
normalization step can revert the SPL back to its expected
value; in practice, environment noise is unavoidable. As shown
in the figure, increasing the distance decreases the accuracy
for all types of classifiers. Once the distance between the
microphone and DNA synthesizer exceeds 0.7 meters, the
accuracy of all classifiers noticeably degrades, although the
exact amount of degradation varies among the classifiers. For
example, the Neural Network classifier has a higher accuracy
than the Random Forest classifier in close proximity to the
DNA synthesizer; however, the Random Forest classifier has
higher accuracy when the microphone is placed further away
from the synthesizer. The ensemble voting classifier used in the
attack methodology can often reach and exceed the accuracy
of these two classifiers individually, regardless of the distance.
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used in the attack methodology.

F. Test Case Evaluation

This section evaluates the impact of our proposed attack
methodology by reconstructing four DNA sequences which
were synthesized using the DNA synthesizer shown in Figure
3. To ensure fairness, the test cases considered here were
chosen by an author different than the attacker, and the original

sequence was provided to the attacker only after the results
were submitted for comparison. The attacker makes only one
assumption: the sequence is later going to be implanted in a
living organism to create some type of protein. Every three
oligonucleotide bases translate to a certain amino acid (the
building block of a protein) based on this table [58]. As
discussed in Section V this assumption may help during post-
processing. The DNA sequence test cases evaluated are:

1- Conotoxins. We synthesized part of a DNA sequence
that translates to a lethal protein: conotoxin. Conotoxins are
recognized by the US Government as potential agents of
bioterrorism [27]. We assume that the attacker is potentially
a government agency or a similar entity.
2- Human insulin. We synthesized the DNA that encodes
the alpha chain of human insulin. Insulin was originally
extracted from pig pancreases; in 1979 Goeddel et al. added
DNA encoding human insulin to bacteria to produce actual
human insulin [31]. This was the first major drug produced
by synthetic biology and led to the founding of Genentech,
a multi-billion-dollar pharmaceutical company.
3 & 4- Peptide. We synthesized two DNA sequences which
encoded peptides that were isolated by in vitro selection to
bind the protein target streptavidin. The peptides have been
characterized in [40] and function as high-affinity ligands to
the protein target. These peptides could be used as protein
affinity tags to purify other proteins from crude cellular lysate
or cell-free translation systems.

For the test cases, we use the majority voting rule-based
ensemble of classifiers trained in Section VII. We first collect
the acoustic signal generated by the machine while synthe-
sizing the aforementioned sequences. After preprocessing and
background noise elimination, we manually ensure that the
correct signal delivery segments are extracted from the given
signals. After segment extraction, the model extracts the same
set of features that were used for training. Next, the trained
classifier predicts the probabilities for each base type for each
delivery. As shown in Table III, choosing the base type with
the highest probability results in average accuracies close to
the classifier accuracy which is calculated in Section VII.
Since we assume that the reconstructed sequences will be used
in a biological application, we also provide the number of
errors in terms of mispredicted amino acids. We use the K-
best sequence algorithm described in Section VI to show the
number of trials that an attacker would need to reconstruct the
original sequence with perfect accuracy. The results show that,
for short sequences, it is possible to reconstruct the sequence
with a reasonable number of trials. However, as sequences
grow in length, due to the limited accuracy of the classifiers,
finding the exact location of the errors in the sequence becomes
more difficult. Hence, we conclude that if the number of bases
is long enough, achieving 100% accuracy for reconstructing
the whole sequence with the given attack methodology solely
based on acoustic side-channel data may not be possible.
However, failing to reconstruct the sequence with perfect
accuracy does not translate to the absolute confidentiality
of the data passed to the machine. An attacker can acquire
enough information to determine the intended purpose of a
reconstructed DNA sequence even if some base predictions
are incorrect. As it turns out, reading the sequence of bases in
a DNA molecule have always been error-prone.
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TABLE III: Results for reconstructing the test cases.

The bold colors with larger font size in oligonucleotide sequence  represents the misclassified  nucleotide bases

Predicted Oligonucleotide sequencev N=3 N=2 N=1 N=0

CGCAAGTACTCCTGC

CGCAATTACTCCTGA

GGAATAGTAGAAGAATGCTGCACAAGCATATGCAGCCTATACGAACTAGAAGACTACTGCGAC

GGAATAGTAGAAGCGTGCTGCACAATCATATGCAGCCTACACGAACTAGAAGACGACTGCGAG

TGGCGACATGATAACCCGTCGGAGGATCCGGGGCGGGGGCACCTC

TGGCGACATTATAACCCGTCGGATGATCCGGGTCGTGTTCACCTC

TTTTTCGACCGGTATGATTCCGCCCGTGACCCAGGACGCTTGCTT

TTTTGCGACCGGTCTTCTGCCGCCCGTGACCCAGGACGCTTGCTT

Brute Force 

Com plexity

15x4^15

63x4^63

45x4^45

45x4^45>100

BLAST  

m atch

Sequence 

Length

29

3

3

3

>100

19

35

Yes

Accuracy  

(%)

86.67

90.48

86.67

88.89 Yes

1

12

1

14 45

15

63

45

Number of guesses to have 

N or less mispredicted amino acid

11

2

3

Yes

Yes

Case 

#

21

>100

>100

Original Oligonucleotide sequence

Publicly available software such as BLAST [3] store DNA
sequence, their functionality, and can readily determine the
most similar known DNA sequences, along with their ap-
plication, for a given amino acid sequence. If the attacker
is a government agency, tools like BLAST may be used to
determine if a hostile user is synthesizing DNA sequences that
have structural similarities to known hazardous sequences.

In an industrial setting an attacker may work for a com-
petitor whose objective is industrial espionage; in this case,
the attacker can use tools like BLAST to derive the likely
amino acid sequence of a protein being developed by the
company under attack. To quantify the relevant information in
the reconstructed sequences, we import amino acid sequences
that correspond to the original and reconstructed test cases
to the BLAST and then compare output reported for each
sequence. Table III summarizes the result of this experiment.
If BLAST reports a similar set of candidates for the original
and the reconstructed sequences, Table III reports YES in the
”BLAST match” column.

VIII. DISCUSSION

A. Attack Cost and its Implications

We spent 56 hours collecting training data on the AB 3400
DNA synthesizer; during this time, human supervision was
required for less than one hour in total. We dedicated 5 hours
to understanding the structure of the AB 3400 and the scripts
used for oligonucleotide synthesis. Manual segmentation of the
signal took 20 minutes per synthesis run (less than 3 hours in
total); an Intel Core i7-7820X CPU with 16 gigabytes of RAM
extracted the features, selected the best features, and trained
6 models in 14 minutes and 28 seconds. Although access to
the DNA synthesizer was granted by its operator (a university
laboratory) at no cost, the synthesis runs consumed $300 worth
of raw chemical materials. Once the models are trained, the
attack phase requires 20 minutes to manually segment 60 base
deliveries and less than one second per delivery to predict the
base.

These costs are negligible in comparison to the cost of real-
world drug production in industry. In 2004, for example, the
Bill and Melinda Gates Foundation dedicated $42.6 million to
the development of an anti-malaria drug [9]. The recipients of
the award published their initial results two years later, and
completed the research project by the end of the third year.
This particular drug was not patented and its recipe was made
freely available as a humanitarian gesture; however, the key

point is that the drug cost tens millions of dollars to produce,
while an attacker could steal its DNA sequence (if kept a
secret) in less than one week of time and at a cost of several
hundred dollars. This could easily doom a for-profit private
sector drug development project.

B. Limitations of Attack Methodology and Experiments

The AB 3400 DNA synthesizer is a widely used com-
mercial product, but is not the only one on the market. The
feasibility analysis in Section IV implies that the proposed
attack methodology is could be applied to any DNA synthe-
sizer that employs solenoid valves and pipes for chemical
delivery; future work will validate this attack methodology
against similar machines.

This paper used the same machine for training and val-
idation of the attack model and evaluated its robustness to
minute differences between the profiling system and target
through the additional of artificial noise (Section VII-D).
Further investigation is required to evaluate the effectiveness
of the attack model when different AB 3400 machines are used
for profiling and targets of the attack.

IX. COUNTERMEASURES

Secured structure: One way to prevent acoustic side-channel
attacks is to ensure that all the physical components responsi-
ble for the delivery stage are similar: identical solenoids, pres-
sure valves, and pipe lengths must be chosen, and they must
be placed in a geometrically identical manner; for example,
bends in fluid pipes must be identical to eliminate variations
in accoustic emissions. Additionally, anti vibration pads (a.k.a.
vibration isolators) could be integrated into the inner layers of
the DNA synthesizer to reduce the intensity of any emitted
observable acoustic noise.

Artificial noise: Redundant physical components may be
added to introduce additional noise and decrease the signal to
noise ratio, making it difficult to infer the cyber and physical
states of the DNA synthesizer. Although intuitive, adding
loud noise may bother employees who work in the same
environment as the DNA synthesizer. Thus, proper methods,
such as those described in Section VII-D, will be needed
to search for low intensity noises that can mask information
emitted from the acoustic side channel.

Delivery segment obfuscation: The DNA synthesizer’s deliv-
ery stage is the critical point of vulnerability for this particular
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attack. A number of opportunities exist to potentially obfuscate
this stage exclusively, such as adding redundant steps of
varying time length, which are benign to the DNA synthe-
sis process, and randomly selecting them prior to delivery;
however, this may increase DNA synthesis time. Another
possibility is to randomly select and execute steps unrelated to
base delivery, such as cleaning other pipes or waste disposal,
concurrently with base delivery. Although the system will
remain observable, the cyber and physical-domain states will
be obfuscated, which will increase the difficulty of using data-
driven approaches to infer the actual states.

Secured laboratory environment: The most effective practice
to assure confidentiality of the synthesized DNA sequences is
to prevent any visitor or unauthorized personnel from entering
any room that contains a DNA synthesizer. Along similar
lines, any unauthorized device found in the same room as
a DNA synthesizer should be reported as a security threat.
Furthermore, the cyber-security of every electronic device with
recording capabilities that enters the laboratory environment,
even if authorized, should be considered; the device itself may
be compromised by a malicious adversary who can remotely
activate acoustic signal recording.

X. CONCLUSION

We proposed and implemented a novel acoustic side-
channel attack methodology on DNA synthesizers to steal the
type and order of the bases which were synthesized. We tested
our attack model against one of the most widely used DNA
synthesizers and showed that ignoring such a confidentiality
vulnerability can result in a significant research investment
loss. We were able to predict the type of each base delivery
with an average accuracy of 88.07%. We introduced a novel
way to evaluate the effect of microphone distance without
exhaustive experiments which revealed that high accuracy can
be expected from the proposed attack methodology with up to
a 0.7 m gap between the microphone and the DNA synthesizer.
In addition, we showed how a reconstructed sequence can be
leveraged using a post-processing approach in a biological
domain (such as using the publicly available tool BLAST)
to identify the protein that the original sequence intended to
encode, despite any errors.
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