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Abstract—We present a black-box, dynamic technique to
detect and quantify side-channel information leaks in networked
applications that communicate through a TLS-encrypted stream.
Given a user-supplied profiling-input suite in which some aspect
of the inputs is marked as secret, we run the application over the
inputs and capture a collection of variable-length network packet
traces. The captured traces give rise to a vast side-channel feature
space, including the size and timestamp of each individual packet
as well as their aggregations (such as total time, median size, etc.)
over every possible subset of packets. Finding the features that
leak the most information is a difficult problem.

Our approach addresses this problem in three steps: 1) Global
analysis of traces for their alignment and identification of phases
across traces; 2) Feature extraction using the identified phases;
3) Information leakage quantification and ranking of features via
estimation of probability distribution.

We embody this approach in a tool called Profit and ex-
perimentally evaluate it on a benchmark of applications from
the DARPA STAC program, which were developed to assess the
effectiveness of side-channel analysis techniques. Our experimen-
tal results demonstrate that, given suitable profiling-input suites,
Profit is successful in automatically detecting information-leaking
features in applications, and correctly ordering the strength of the
leakage for differently-leaking variants of the same application.

I. INTRODUCTION

Our world’s professional, governmental, and personal ac-
tivities are quickly migrating to networked software systems.
Standalone systems are becoming an artifact of the past.
To mitigate information leakage, most of the top-100 online
services are now using SSL/TLS encryption, and its adoption
by smaller websites and services is growing at a fast pace [24].
This is a positive step toward avoiding trivial leaks, but can
also provide a false sense of security. This kind of encryption
only hides the content of TCP/IP packet payloads. There is
still a plethora of visible metadata (e.g., packet sizes, timings,
directions, flags) that can be obtained from message headers
and whose patterns may be exploitable as side channels. Side-
channel analysis of encrypted network traffic has been used,
for example, to gain some knowledge about user keystrokes
during SSH connections [46], to identify medical conditions
of a patient from the encrypted traffic generated by a healthcare
website [12], and to identify which app, among a known set of
fingerprinted apps, is being used by a mobile phone user [47].

Detecting network-based side channels requires searching
for correlations between sensitive information that the system
accesses (i.e., some kind of secret inputs to the system)
and the outputs of the system that are observable over the
network. Packet traces are a complex form of output. Each
captured trace contains a large number of observable aspects,
including not just the size and the timing of each individual
packet, but also their aggregations over every possible subset
of packets. This results in an intractable number of potential
features to investigate for information leakage. Deciding which
features to analyze and quantifying the amount of information
leaked are challenging problems. We present Profit, a tool
that, given a software application and a profiling-input suite,
determines whether and how much information leakage occurs
in a network stream for a particular secret of interest. Profit
uses black-box profiling to build a model of the correlation
between the secret value associated with each input and the
observable side-channel outputs on the network. It does so by
successively running the set of inputs through the system and
capturing a set of packet traces (pcaps), each one labeled with
the secret value used to produce it. To identify the features that
leak information and to quantify the amount of information
leaked, Profit uses a three-step approach:

1) Alignment and Phase Detection: We use multiple-sequence-
alignment techniques from genomics to align the packets
of captured traces. By studying recurrent patterns and
variations across aligned traces, we automatically identify
phases in the traces, which often reflect application-level
behavior such as a login phase, a file upload phase, etc.

2) Feature Extraction: We define a feature space that includes
observations about individual packets and about sequences
of packets (e.g., the time difference between two packets,
the total size of all packets). Phase detection allows us
to identify additional features that we would not consider
otherwise (e.g., total size of all packets in the third phase).
We also extract features from the full original traces.

3) Information Leakage Quantification: We use information-
theoretic techniques based on Shannon entropy to quantify
the amount of information leaked by network observations
based on the features identified during phase detection and
feature extraction and the automatically inferred probability
distributions for features. After quantifying the leakage for
each extracted feature, we present the user with a ranking
of the features that are most worth looking into, sorted by
their amount of information leakage.

Combined, these three steps provide a black-box approach
for detecting and quantifying information leakage from appli-
cations that communicate over an encrypted network stream.
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We experimentally evaluate Profit using applications from
the DARPA Space/Time Analysis for Cybersecurity (STAC)
program [20], which are publicly available [21]. The STAC
applications are developed by DARPA to evaluate the effective-
ness of side-channel vulnerability detection techniques. They
are software systems that

• are of significant size (often hundreds of classes)
• are hard to analyze statically
• are Web-based, client-server, or peer-to-peer
• communicate over TLS-encryped TCP streams
• require user inputs that are often complex and structured

(sequences of actions, file uploads, etc.)

Many of these applications contain a side-channel vulner-
ability that causes the value of some secret variable of interest
to be leaked, totally or partially, at the network packet level.
DARPA gave us applications that contained and that did not
contain vulnerabilities, without telling us which ones did. In
some cases they gave us multiple variants of each application,
each of which could potentially contain different vulnerabilities
that leak different amounts of information about the secret.

Since the challenge has ended, we now know (from our
own investigations and from DARPA’s official correct answers)
whether or not a side-channel vulnerability is present in each
of the application variants. We also know the most accurate
way to spot each vulnerability on the network. This allows
us to evaluate whether the ranking of top-leaking features
that Profit generates is consistent with reality. In some cases
we also know the relative strength of the vulnerability in
different variants, allowing us to evaluate whether Profit’s
leakage estimations are consistent with reality. For example,
a variant of a vulnerable application that contains a mitigated
version of a vulnerability should leak less than a variant that
contains the same vulnerability in full strength, and leak more
than a variant in which the vulnerability is not present at all.

Our experiments with the DARPA STAC benchmark show
that, given a suitable profiling-input suite, Profit is able to
automatically identify features associated with the side-channel
vulnerabilities in these applications and quantify the amount of
information leaked by each feature, providing crucial insight
about the existence and severity of side-channel vulnerabilities.

The rest of the paper is organized as follows. In Section II
we give an overview of our approach and discuss two moti-
vating examples. In Section III we discuss the system model
that we use. In Section IV we present the trace alignment and
phase detection techniques. In Section V we present the feature
extraction and leakage quantification techniques. In Section VI
we discuss the experimental evaluation of our approach using
the DARPA STAC benchmark. In Section VII we discuss the
limitations of our approach. In Section VIII we discuss the
related work. In Section IX we conclude the paper.

II. MOTIVATION AND OVERVIEW

Before we present the technical details of our analysis, we
discuss two examples that motivate our approach.

During the challenge we investigated the applications from
scratch, with almost no initial knowledge. In each case, we did
not know whether a vulnerability was present, and if so, what
parts of the code might cause it, which network packets might

be affected by it, and how. We were only told which was the
secret variable of interest, which gave us some hints regarding
which functionalities of the application to consider.

First example

TOURPLANNER is a client-server system. Given the names
of five cities that the user would like to visit, it can compute
a Hamiltonian circuit that minimizes certain costs. The secret
of interest specified by DARPA is the set of five cities that the
user wants to visit. In other words, we want to find out whether
someone who can eavesdrop on the TLS-encrypted TCP traffic
between client and server would gain information about the set
of cities that the user wants to visit. The eavesdropper could
build a statistical model by profiling the system beforehand
(that is, by interacting with it many times through the network).
Armed with such a profile, they could inspect the packets
exchanged between another client and the server, and use the
statistical model to infer some information about the secret
value contained in that interaction.

Suppose that we have a profiling-input suite consisting
of many different queries (i.e., many random sets of five
cities). For each set in the suite, we send a “compute tour”
request to the server and receive the response. To account for
network noise, we can execute each input multiple times. All
traffic is sniffed and recorded. This black-box profiling yields a
series of 〈input, output〉 pairs, where each output is a captured
packet trace file (pcap) that contains thousands of observables,
including every header of every layer of every packet. Even if
we focus only on the most important side-channel observables
(such as the time, size and direction of each packet), automat-
ically finding features that have maximum correlation with the
secret is a hard problem, since there are too many features.

Figure 1 (left side) shows a sample of 1,000 captured traces
that correspond to 100 different inputs, each one executed 10
times. We represent each packet with a bubble. The size of
the bubble is proportional to the size of the packet. The x-axis
shows the timestamp of each packet. The y-axis denotes the
trace number (i-th trace). It is hard to extract any information
by looking at the raw traces as they were captured. Even the
fact that each input was run multiple times is hard to see.

Figure 1 (right side) shows the same traces after a very
simple alignment: add an offset to each trace so that the first
packet of every trace occurs at the same time. Now it is clear
that each input was repeated multiple times. More importantly,
visible patterns emerge which suggest that (i) the first few
packets of each trace are not input-dependent, and (ii) some
of the inter-packet time differences (deltas) might be correlated
with the secret input (the set of five cities).

It turns out that, during the computation of the optimal tour,
the server sends some progress packets back to the client. The
four deltas shown in Figure 2 are affected by the time taken by
each step of the computation, and may be used as a fingerprint
for the user’s query. Each one of the four deltas reveals some
information and has some correlation with the secret. When all
four delta-values are considered together, the resulting vector
in R4 bears a strong correlation with the secret.
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Fig. 1: TOURPLANNER: A sample of 1,000 traces obtained
by running 100 different inputs, 10 times each. Bubble size is
packet size. Left: raw packets from original pcap file. Right:
same data after a simple alignment based on the first packet.

Fig. 2: Right side of Figure 1, magnified for detail. The four
time differences shown with red arrows constitute a fingerprint
in R4 that correlates with the secret.

Second example

One basic assumption of this work is that during profiling,
the Profit user can control the secret value for each execution,
even if that value would not normally be publicly visible. This
is true in many real-world scenarios. In the most common
scenario, the Profit user is a security analyst who is trying to
determine whether their own system leaks a certain secret. In
a different kind of scenario, an external attacker could build
a replica of a system, populate it with their own data, and
use it to build a profile that can then be leveraged against the
real system. This scenario becomes increasingly likely with the

growing trend of running open-source software components on
standardized cloud hardware.

GABFEED is another DARPA STAC application. It is a
Web-based forum. Users can post messages, search the posted
messages, engage in direct chat, etcetera. The server has a
private key that is used for authentication purposes.

The following situation arose during our exploration of
GABFEED. The secret variable that we were interested in
was the Hamming weight (number of ones) of the server’s
private key. We were studying the following interaction: A user
performs a search for something public and then, after an
authentication step, performs another search for something
nonpublic. (We would later confirm that the delay between
two of the network packets that are spawned by this inter-
action is proportional to the Hamming weight of the binary
representation of the server’s private key.)

To build a profile, we executed this interaction repeatedly,
using different server keys with varying Hamming weight, and
captured all network traffic. However, examining pcaps by
hand (using a tool like WireShark [16]) is cumbersome. Even
when you do have some hypothesis about which packets might
be leaking information, verifying it by artisanally skimming
through thousands of packets is an extremely tedious task.
Considering that we had no hypothesis whatsoever as to which
packets might be leaking information, manual inspection of the
captured traces would have been a daunting endeavor.

An automated tool that can assist in such a search would
need to examine a vast feature space—not just the size of each
packet, its flags, and its direction, but also all possible time
differences (deltas), all sums of sizes over all possible subsets
of packets, etcetera. This is infeasible for all but the shortest
network traces. Therefore, an appropriate feature space needs
to be automatically selected for further consideration.

Figure 3a shows the network traffic captured by Profit
for the GABFEED application for 50 successive interactions,
using many different server private keys with 12 different
Hamming weights for the key, and different search queries.
Each row represents a complete interaction (a captured trace)
as a sequence of packet sizes. Colors encode packet sizes and
direction. The color palette is intentionally not a gradient in
order to keep small variations visible.

In this example, the crucial feature is harder to characterize
due to the fact that both search operations introduce a variable
number of packets before and after the packet that leaks
information. As a consequence of this, even naming the crucial
feature in terms of the captured traffic becomes difficult, since
it is not “the i-th packet” for any consistent value of i.

In the general case, interactions with an application often
involve a sequence of actions, and some actions spawn a
non-constant number of packets. The captured traces can be
seen as consisting of several phases—subsequences of packets
that may correspond to different phases of application-level
behavior, e.g., uploading a file and then downloading another
one. Recurring patterns that appear across most of the traces
can be helpful for automatically detecting phase boundaries.

Figures 3b and 3c show the same 50 GABFEED traces
after being globally aligned and then separated into phases,
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(a) Traces as captured. (b) After alignment. (c) After splitting into phases.

Fig. 3: Trace alignment and phase detection (50 traces shown) for GABFEED. Colors represent different packet sizes.

(a) Feature: Time elapsed between first and
last packets of the whole trace.

(b) Feature: Time elapsed between first and
last packets of the fifth phase of the trace.

(c) Feature: Time elapsed between packets
#3 and #4 of the fifth phase of the trace.

Fig. 4: Probability densities for the top-leaking time-based features in the GABFEED example. X-axis is feature value in seconds.
Y-axis is probability. Different curves represent different secret values. Intuitively, features with less overlap between curves leak
more information—for a given observation of the feature value, there is less uncertainty about the secret value.

respectively, by Profit. This process enables Profit to synthesize
the crucial feature that successfully captures this side channel.

Figure 4 shows one plot for each of the three top-leaking
features among the numerous features that were considered by
Profit during the leakage quantification step. Each plot shows
the probability distributions for each value of the secret, i.e.,
for each Hamming weight of the private key.

Without knowledge of phases, the best (i.e., most-leaking)
feature that Profit can report is the time elapsed between the
first and last packets of each trace—that is, the duration of
each trace. Since there are 12 different values of the secret
(Hamming weight of key), there are log2 12 = 3.58 bits of
secret information. Profit quantified the leakage of this feature
as roughly 40% of the secret information (1.44 of 3.58 bits).
Figure 4a shows the probability density functions inferred
by Profit. Each curve represents one possible value of the
secret. Intuitively, the leakage of 40% is much less than 100%
because of the significant overlap between the distributions,
yet well above 0% because there is some degree of certainty
(the first and last curves, for instance, are almost completely
non-overlapping).

With phase knowledge, Profit can consider more refined
features, such as the time elapsed between the first and last

packets of the fifth phase. Figure 4b shows the probability
densities for this feature, for which Profit computed 99%
leakage (3.56 of 3.58 bits). Note that the total duration of
phase 5 includes some noise from other packets in that phase,
which entails some overlap.

In fact, the top-ranking feature reported by Profit was the
time difference between packets #3 and #4 of the fifth phase.
As illustrated in Figure 4c, this even more specific feature has
maximal separation between the distributions of each secret’s
probability given an observation. This is the only feature that
yielded 100% leakage (3.58 of 3.58 bits) according to Profit’s
feature extraction and leakage quantification.

Figure 5 shows the three main steps of our approach
implemented in our tool Profit. Given a profiling suite, we
first generate network traces that correspond to each input
value. We run each input value multiple times in order to
capture variations due to noise. Next, we align network traces
and divide the aligned block into phases. After alignment and
phase detection, each network trace is divided into a fixed
number of subtraces, where each subtrace corresponds to a
phase. Next, using our feature library, we identify the set
of features for each phase. We then quantify the amount of
information leaked via each feature in terms of entropy using
the automatically inferred probability distributions for features.
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In the end, Profit produces a ranked list of features, sorted with
respect to the amount of information leaked via that feature.
Profit also reports the amount of information leaked via each
feature in terms of number of bits using Shannon entropy.

III. SYSTEM MODEL

We present a simple formalization of the system model and
definitions for some of the concepts used in our approach.

Inputs and secrets: We target networked applications, such
as client-server and peer-to-peer systems, that communicate
through an encrypted network channel (typically TCP en-
crypted using SSL/TLS). Our target systems often require
complex, structured inputs. For a particular system of choice,
let the input domain I be the set of all valid inputs, and let
ζ : I −→ S be a function which, given an input, projects the
value of the secret—a piece of confidential information that
the user wants to make sure that the system does not leak. We
will call ζ the secret function (i.e., the secret-value-projecting
function), and S the secret domain (i.e., the domain of the
secret).

Packets: A packet is an abstraction of a network packet.
Real-world packets contain many details, including nested
payloads and headers with many fields and options. We assume
that payloads are encrypted, and attacks trying to break the
encryption itself are outside the scope of this work. However,
an attack which attempts to find an encryption key are in
scope. We limit our abstraction of packets to a core subset
of metadata from the highest-level header that is particularly
relevant for side-channel analysis: the size of the encrypted

payload in bytes (p.size), the time at which the packet was
captured (p.time), and the source and destination addresses
(p.src, p.dst) of the packet.

Traces: Running a certain input i ∈ I through the system
while capturing network traffic yields a trace, which is a
sequence of packets t = 〈 p1, p2, . . . , p|t|〉. Let T be the set
of all possible traces.

Input set and secret set: Generally, it is not feasible to run
all possible inputs exhaustively through the system. Therefore,
the user typically needs to select a subset of I that she wants
to profile, i.e., a profiling input suite. Let the input set I ⊆ I
denote this set of distinct inputs that will be fed into the system
during the analysis.

As explained above, each input i ∈ I has an associated
secret value ζ(i). By choosing a set of inputs, the user is also
choosing a set of secrets. Let the secret set (i.e., the set of
secrets) S ⊆ S be the set of distinct secrets fed into the system
during the analysis.

Input list, secret list, captured trace list: Due to system
nondeterminism (e.g., network noise, randomized padding),
two runs with the same input i ∈ I may yield different traces.
The user may find it desirable to run each input multiple times.
We thus introduce input lists, which may include multiple
appearances of each input.

When conducting a Profit analysis, the user generates a
list of n inputs 〈 i1, i2, . . . , in〉, which implies a list of n
secrets 〈 s1, s2, . . . , sn〉 that can be obtained via ζ(ij). Running
all the inputs through the system while capturing network
traffic yields a list of traces 〈 t1, t2, . . . , tn〉. We will call these
lists the input list, the secret list, and the captured trace list,
respectively.

Features: A feature is a function f : T −→ R that projects
some measurable aspect of a network trace. Some examples of
possible features are: the size of the first packet in the trace,
the time of the last packet in the trace, the maximum of all
sizes of odd-numbered packets in the trace, etc. There is an
infinite number of possible features, ranging from very simple
to arbitrarily complex ones.

Profiles: By running a Profit analysis, a profile of the
system is obtained, which maps each feature name to the
profile for that feature. The profile of the system for a feature
f is the list of (ζ(ij), f(tj)) tuples for j ∈ [1 . . . n], i.e.,
〈 (s1, f(t1)), (s2, f(t2)), . . . , (sn, f(tn))〉. In other words, the
system profile for a feature f associates the secret value of
each trace with the value of f for that trace.
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Direction-induced subtraces: If t ∈ T is a trace, let t↑
and t↓ be the traces induced by keeping only the packets
from t whose attributes p.src and p.dst are consistent with the
specified direction, respectively (see Figure 6). For instance,
suppose t = 〈 p1, p2, p3, p4〉 where p1 and p4 were sent from
client to server, and p2 and p3 were sent from server to
client. Then t↑ = 〈 p1, p4〉 and t↓ = 〈 p2, p3〉. For peer-to-
peer systems, as shown in Figure 6, the lower side denotes a
designated peer that runs on the client machine, and the upper
side denotes all other peers, running on the server machine.
Finally, the notation tl is equivalent to just t.

Split traces: A trace-splitting function φ is a function
that, given a trace t ∈ T, splits t into subtraces (which are
themselves traces) whose concatenation is the original t. A
split trace is a sequence of traces obtained by splitting a trace.

IV. ALIGNMENT AND PHASE DETECTION

We now describe our heuristics for trace alignment, which
is based on tools from computational biology, and for phase
detection, which is based on the aligned traces.

Our goal is to study the patterns that appear across traces,
use them to detect potentially meaningful phases, and generate
a mechanism that can split any trace into phases accordingly.
In other words, we want to generate a trace-splitting function
from a collection of traces. Its construction requires examining
multiple traces at once, but once constructed, it can be applied
to any individual trace. Note that the word phases can be used
in a global sense, denoting the trace-splitting function obtained
from a collection of traces, and in a local sense, denoting the
result of splitting one particular trace into phases.

A. Trace alignment

Given a list of captured traces 〈 t1, t2, . . . , tn〉, where each
ti may have a different length, we would like to detect stable
patterns that appear in nearly identical form across nearly all
of the ti, and use them to identify the variable parts in be-
tween them, which, despite varying significantly across traces,
could be semantically related in a meaningful way. This is
essentially multiple sequence alignment (MSA), a well-studied
problem in computational biology [38] where sequences of
nucleic acids need to be aligned in a similar fashion. Many
crucial analyses in biology (e.g., determining the evolutionary
history of a family of proteins) depend on MSA. However,
obtaining an optimal alignment is an NP-hard problem [22],
[36]. Many heuristic approaches exist, typically based on
progressive methods [25] or iterative refinement [2], [3].
Some popular heuristic toolkits that yield a good compromise
between accuracy and execution time are the CLUSTAL [33]
family, T-COFFEE [37], and MAFFT [32]. Typically they
are limited to small alphabets, give each character a specific
biological meaning, and rely heavily on precomputed tables
for common character combinations from the biology domain.
We use MAFFT, which offers a generic mode in which the
alphabet can comprise up to 255 symbols and no biology-
specific meaning is attributed to the symbols.

We align the traces based on their sequences of packet
sizes, i.e., for a trace t = 〈 p1, p2, . . . , p|t|〉 we consider
〈 p1.size, p2.size, . . . , p|t|.size〉. We also incorporate some in-
formation about packet direction into the sequence of sizes

2 5 8 8 9 -4 -3 1 1 1
0 5 8 7 -4 -3 1 1
2 5 8 8 8 6 -4 -3 1 1 1
2 3 8 8 4 -4 -6 1 1 1 1

Fig. 7: A few unaligned sequences of values.

2 5 8 8 9 – -4 -3 1 1 1 –
0 5 8 7 – – -4 -3 1 1 – –
2 5 8 8 8 6 -4 -3 1 1 1 –
2 3 8 8 4 – -4 -6 1 1 1 1

Fig. 8: Post-alignment matrix (with gaps).

by encoding the direction of each packet into the sign of
its size. Considering packet timestamps could also provide
useful insight for alignment. However, we found it difficult
to leverage both size and time information simultaneously in
a consistent way. For the purpose of alignment, and for our
benchmark, sequences of (directed) packet sizes proved to be a
far more useful characterization than sequences of timestamps.
Moreover, a size-based alignment can also help find time-based
features, as we saw in the GABFEED example from Section II.

Recall Figure 3 from Section II, which shows 50 traces
captured from GABFEED before alignment, after alignment,
and after phase splitting. White boxes represent the absence of
a packet. Alignment yields a list of sequences of packet sizes
in which each sequence may contain gaps, shown in white.
Gaps are inserted so as to maximize the alignment of patterns
that are recurrent across many traces. As a consequence, stable
patterns are aligned into columns. The variable patterns located
between these columns give rise to meaningful features which
would be hard to isolate without alignment.

B. Phase detection

As exemplified by Figure 3 (b), thanks to the inserted gaps,
the matrix of aligned sequences presents a new horizontal axis
that is better suited for splitting the traces into meaningful
subtraces. This eases the detection of stable regions, which we
will call stable phases, and as a consequence, of the variable
regions that appear before, in between, or after them, which
we will call variable phases.

We now need a heuristic method to find stable phases and
select cut-points along the horizontal axis of the matrix. Let
M be an aligned matrix with n rows and m columns. Let Cj

be the j-th column, and #Gj the number of gaps in it. The
density of the j-th column is the ratio Cj/n, and its diversity
is the variance of the (n − #Gj) values in Cj that are not
gaps. We characterize stable regions using two thresholds: the
maximum diversity (ψ) that a column may have in order to be
part of a stable phase, and the minimum width (ω), in columns,
that may constitute a stable phase.

Hence, a stable phase is a maximally wide run of adjacent
columns that are fully dense and that satisfy both thresholds: (i)
the run is at least ω columns wide, and (ii) each column within
the run has at most ψ diversity. Using this characterization,
we synthesize a regular pattern that can parse all sequences
of values. The pattern is akin to a regular expression, but
with arbitrary integer values instead of characters. Figures 7
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and 8 are analogous to Figures 3a and 3b, respectively, but
show a much smaller example with shorter sequences. For the
example shown in Figure 8, assuming ω = 3 and ψ = 0.25,
the synthesized pattern would be

(int*)((2|0)(5|3)(8)(8|7))(int*)((−4)(−3| − 6)(1)(1)(int*))

where int stands for “any integer” and * is the Kleene star.

The pattern demands that the stable parts be present,
accounts for some amount of diversity in them, and allows
for freedom before, after, and in between the stable parts. In
general, assuming k > 0 stable regions are found, we build a
pattern of the form

(V1)(S1)(V2)(S2) . . . (Vk)(Sk)(Vk+1)

Each Si represents a stable region. For the i-th stable region
with length l, Si = d1d2 . . . dl, where each of the dj is
either a constant integer (if position j within Si always had
the exact same value for all traces), or a union of integers
dj = (x1|x2| . . . |xr) if that position exhibited r different
values within the allowed threshold. Each Vi represents a
variable region and consists of a free pattern (any sequence
of integers). All regions are named and used to extract the
corresponding groups. The synthesized expression becomes a
parser for sequences of packet sizes, and thus an implementa-
tion of the trace-splitting function that we wanted to construct.

If the number of available captured traces is so large that
the MSA tool would take too long to find an alignment, we
can still apply the tool to a reasonably large random subset
of the traces. We then detect phases as explained above, and
use the synthesized expression to parse the rest of the traces.
Some traces could fail to parse if their stable parts include
extraneous values that were not present in any of the aligned
traces. If the traces that fail to parse are less than 1% of the
total number of traces, we consider them outliers and ignore
them. If they exceed 1%, we add them to the initial subset and
realign. For all the examples in our benchmark, using a subset
of at least 500 traces, we have never encountered a case where
more than 1% of the traces have failed to parse.

V. LEAKAGE QUANTIFICATION

Once the traces have been separated into phases, we apply
a set of feature extraction functions. For any particular feature,
we use Shannon entropy to estimate the amount of information
an attacker can gain by making side-channel observations
about that feature in network traces. We find the features that
leak information about a benign user’s secret values, and rank
them to identify the most informative trace features.

A. Feature extraction

Feature extraction is commonly used in leakage quantifi-
cation and machine learning to extract information from data
[47]. In our approach, we process full network traces to obtain
subtraces by splitting the full trace using the phase alignment
and use the subtraces and full trace to extract features of
interest. Each subtrace t (including the full trace) is converted
to three subtraces t↑, t↓ and tl according to the direction
of packets as explained in Section III. We define a feature
set F = {f1, f2, . . . , fn} such that each feature function f j

extracts a statistic from a packet or all packets from a subtrace.

We define aggregate features, which compute the sum
of packet sizes and sum of timing differences between the
first and last packets in a subtrace. We define fine-grained
packet-level features, consisting of the size of packet pi and
timing differences between consecutive packets pi and pi+1.
To ensure that we have the same number of features for each
sampled trace, we align each subtrace on the left side and
remove packets that are not fully aligned when computing
per-packet features. Aggregate features are not affected by
this change and use the entire subtrace. The features are
summarized in Table I. Applying a feature function f j to
each packet series obtained from traces results in a feature
profile P i = 〈 (s1, vj1), (s2, v

j
2), . . . , (sn, v

j
n)〉, which is used

to compute information leakage.

TABLE I: Definition of network trace features.

Feature Function Definition Description
f sum-size(t)

∑
p∈t p.size Sum of sizes

of packets in
sub-trace t.

f size(〈 p1, . . . , pn〉, i) pi.size Size of packet i.
f total-time(〈 p1, . . . , pn〉, i) pn.time− p1.time Total time of

subtrace.
f∆time(〈 p1, . . . , pn〉, i) pi+1.time− pi.time Time diff. of

packets i & i + 1.

B. Information theory for quantifying leakage

In our threat model, an attacker who is observing the
network communication can record a network trace, extract
features from that trace, and make an inference about the value
of an unknown secret. Our goal in this section is to describe
how to measure the strength of this inference process. The
ultimate goal is to compare and rank individual features in
terms of their usefulness in determining the value of the secret.
Here, we fix our attention on the relationship between secrets
and a single particular feature of interest, f j , and so we omit
the superscript j for the current discussion and refer simply to
f as the feature of interest, and vi as the ith sampled value of
feature f in the given feature profile.

Quantitative information flow: Before observing a run
of the system, an outside observer has some amount of initial
uncertainty about the value of the secret. Benign users of
the system perform interactions and, meanwhile, an attacker
observes the network traces and computes the value of feature
f . In our scenario, observing a trace feature results in some
amount of information gain. In other words, measuring f
reduces an observer’s remaining uncertainty about the secret
s. Our goal is to measure the strength of flow of information
from s to f , which is called the mutual information between
the feature and the secret. This intuitive concept can be
formalized in the language of quantitative information flow
(QIF) using information theory [45]. Specifically, we make use
of Shannon’s information entropy which can be considered a
measurement of uncertainty [19], [43].

Given a random variable S which can take values in S
with probability function p(s), the information entropy of S,
denoted H(S), which we interpret as the observer’s initial
uncertainty, is given by

H(S) = −
∑
s∈S

p(s) log2 p(s) (1)

7



Given another random variable, V , denoting the value of
the feature of interest, and a conditional distribution for the
probability of a secret given the observed feature value, p(s|v),
the conditional entropy of S given V , which we interpret as
the observer’s remaining uncertainty about S, is

H(S|V ) = −
∑
v∈V

p(v)
∑
s∈S

p(s|v) log2 p(s|v) (2)

Given these two definitions, we can compute the expected
amount of information gained about S by observing V . The
mutual information between V and S, denoted I(S;V ) is
defined as the difference between the initial entropy of S and
the conditional entropy of S given V :

I(S;V ) = H(S)−H(S|V ) (3)

Probability estimation via profile samples. The preceding
discussion assumes that the probabilistic relationships between
the secret and the feature values are known, i.e. p(s|v).
However, since we do not know this relationship in advance,
we estimate the conditional probability distribution using the
samples generated via profiling.

We begin with a generic discussion of estimating prob-
ability distributions from a finite sample set. Let V be a
sample space, V be a random variable that ranges over V,
v represent a particular element of V, and v = 〈v1, . . . , vn〉
be a finite list of n random samples from V. We estimate the
probability of any v ∈ V in two ways. Each method relies on
a choice of “resolution” parameter, which we make explicit in
the following descriptions. The reader may refer to Figure 9.

Histogram estimation. We choose a discretization which
partitions the sample set v into m intervals or “bins” where ci
is the count of the samples in bin i. The bins are represented
by intervals of length ∆v = m/(maxv −minv). Then for
any v, p(v) is estimated by the number of samples that
are contained in the same interval as v divided by the total
number of samples. The resolution parameter is m and the
probability estimator for v which falls in bin i is given by
p̂(v) = ci/n. This estimation of probability is straightforward
and commonly used. However, our experiments indicate that,
due to the huge search space, our sampling is extremely
sparse. Hence, histogram-based probability estimation fails to
generalize well to predict the probability of unseen samples.

Gaussian estimation. We can estimate the probability of
any v ∈ V by assuming the sample set comes from a Gaussian
distribution. We compute the mean, µ, and standard deviation
σ from the set of samples v. We then have an estimate p̂(v)
assuming v comes from the normal distribution N(µ, σ). This
allows us to more smoothly interpolate the probability of
feature values for any v that was not observed during profiling.

Information gain estimation via profile. We make use
of the profile for the current feature of interest f to esti-
mate the expected information gain. We consider a profile
P that consists of n pairs of secrets and feature values,
P = 〈(s1, v1), (s2, v2), . . . , (sn, vn)〉. For any particular secret
s ∈ S let vs = 〈vi : si = s〉 be the list of feature value samples
that correspond to s. We use vs to estimate the probability
distribution of the feature value given the secret, p̂(v|s), using
either the histogram- or Gaussian-based method. We then
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Fig. 9: Estimating a probability distribution from samples using
histograms or Gaussian estimates.

compute the probability of a secret value given a feature
value, p̂(s|v), using a straightforward application of Bayes’
rule. We assume a uniform probability distribution for p(s).
Using p̂(s|v), we apply equations 1, 2, and 3 to compute the
estimated information gain (leakage) for the secret given the
current feature of interest, Î(S, V ). In later sections, we refer
to the value that Profit computes for Î as LeakH (histogram-
based estimation) or LeakG (Gaussian-based estimation).

Example. Consider a scenario in which we have two
possible equally likely secrets, s1 and s2. Thus, we have
1 bit of secret information. After conducting profiling for a
feature f , we can compute the estimate for the probability of
the feature values given the secret values p̂(v|s1) and p̂(v|s2)
using either histogram-based estimation or Gaussian estimation
as depicted in Figure 9. Using histogram-based estimation
with a bin-width of ∆v = 0.5 as shown, we observe that
the only sample collisions occur at v = 17 and v = 20.5.
Since we observe very few collisions this way, we expect that
histogram-based estimation will tell us that there is a high
degree of information leakage since most observable feature
values correspond to distinct secrets. Indeed, the estimated
information gain is 0.8145 bits out of 1 bit.

On the other hand, we have sparsely sampled the feature
value space, and if we were able to perform more sampling,
we would “fill in” the gaps in the histogram. Hence, using
Gaussian distributions to interpolate the density, as shown in
Figure 9, we see that we are much better able to capture the
probability of observable feature value collisions. Using the
Gaussian probability estimates, we compute that the expected
information leakage is 0.4150 bits out of 1 bit, much less than
when estimating with the histogram method. We say that the
histogram overfits the sampled data. Estimating probabilities
from a sparse set of features without overfitting is addressed
in multiple works [8], [27], [30], [44]. Our experimental
evaluation (Section VI) indicates that Gaussian fitting works
well for estimating entropy in network traffic features.
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VI. EXPERIMENTAL EVALUATION

In this section we present the experimental evaluation of
Profit on the DARPA STAC benchmark.

A. DARPA STAC systems and vulnerabilities

The applications in our benchmark are from the DARPA
Space/Time Analysis for Cybersecurity program [20], which
seeks to push the state of the art in both side-channel and
algorithmic-complexity vulnerability detection. Algorithmic
complexity attacks are beyond the scope of this paper; we fo-
cus on STAC’s side-channel-related applications. These STAC
applications [21] include a collection of realistic Java systems,
many of which contain side-channel leaks in time or in space,
and certain secrets of interest. Some of the systems come in
multiple variants, some of which may leak more than others,
or have a particular vulnerability added or removed. All the
systems are network-based (web-based, client-server, peer-to-
peer), and most of the vulnerabilities are based on profiling
network traffic and eavesdropping. We have omitted some
applications whose side channels are based on other media,
such as interception of file I/O, or whose vulnerabilities are
exclusively about cryptography.

AIRPLAN is a Web-based client-server system for airlines.
It allows uploading, editing, and analyzing flight routes by
metrics like cost, flight time, passenger and crew capacities.
One secret of interest is the number of cities in a route map
uploaded by a user; the challenge is to guess this using a side
channel in space. AIRPLAN 2 has a vulnerability by which
the cells of the table shown on the View passenger capacity
matrix page are padded with spaces to a fixed width. Thus, the
HTML code for the table looks neatly laid out. This is easily
overlooked by the end-user, as multiple spaces are rendered as
one space by Web browsers, but it does influence the number of
bytes transmitted. Thus, the download size of this particular
page becomes proportional to the number of cities squared.
In AIRPLAN 5, the HTML cell padding is randomized rather
than fixed, which dilutes the leakage but does not eliminate
it. AIRPLAN 3 does not pad the cells, and is thus much more
resilient to this kind of attack; there is still a correlation, but
it is a much weaker one.

Another secret of interest in AIRPLAN is the strong connec-
tivity of a route map uploaded by an airline. Both AIRPLAN 3
and AIRPLAN 4 have a Get properties page that shows various
attributes of a route map. AIRPLAN 3 has a vulnerability
that causes a slight variation in the byte size of this page
depending on whether the route map in question, viewed as a
graph, is strongly connected. AIRPLAN 4 does not have this
vulnerability. The fault can be exploited to fully leak the secret
in the former, while the latter does not leak at all.

BIDPAL is a peer-to-peer system that allows users to buy
and sell items via a single-round, highest-bidder-wins auction
with secret bids. It allows users to create auctions, bid on an
auction, find auctions, etc. The secret of interest is the value
of the secret bid placed by a user. BIDPAL 2 contains a timing
vulnerability whereby a certain loop is executed a number
of times proportional to the maximum possible bid, and a
counter is increased; after the counter exceeds the victim’s
offered bid, a different action is performed per iteration which

takes slightly longer. Thus, the total execution time of the loop
correlates with the secret.

GABFEED, as explained in Section II, is a Web-based
forum where users can post messages, search posted messages,
and chat. In GABFEED 2, an authentication mechanism is
affected by a timing vulnerability in a modPow() method,
where a branch is only taken when the i-th bit of the server’s
private key is 1. Thus, the delay between two network packets
involved in this authentication is proportional to the Hamming
weight of the binary representation of the private key. In
GABFEED 1, the modPow() method is securely implemented
and the vulnerability is not present.

SNAPBUDDY is a Web application for image sharing; it
allows users to upload photos from different locations, share
them with friends, and find out who is online nearby. The
secret is the physical location of the victim user. During the
execution of the Change user location operation, a few network
messages are sent, including one whose size correlates with
the destination location. By careful manual inspection one can
confirm that each one of the 294 known locations has a unique
associated message size, thus providing a unique signature
for each location. However, the crucial message may impact
the size of one, two, three, or up to four adjacent packets
depending on its total size. Thus, one should pay attention to
the sum of those packets.

POWERBROKER is a peer-to-peer system used by power
suppliers to exchange power. Power plants with excess supply
try to sell power, whereas those with a shortfall try to purchase
it. The secret of interest is the value offered by one of the
participating power plants. POWERBROKER 1 has a vulnera-
bility in time whereby a certain loop is executed a number of
times that is proportional to the amount of the price, in dollars,
offered for the power. This induces a time execution difference
that ends up affecting network traces. In POWERBROKER 2
and POWERBROKER 4, this loop is always executed a constant
number of times, which removes the vulnerability. In addition
to this, in POWERBROKER 2 as in BIDPAL 2, the behavior
of the program changes when loop counter reaches the bid.
However unlike BIDPAL 2, this change in behavior does not
impact the time taken for a loop iteration so the program
remains non-vulnerable.

TOURPLANNER is a client-server system that, given a list
of places that the user would like to visit, calculates a tour
plan that is optimal with respect to certain travel costs. It
is essentially a variation of the traveling salesman problem.
The secret of interest is the user-given list of places. The
TOURPLANNER system has a subtle timing vulnerability. The
computation can take a while, so the server sends periodic
progress-report packets to the client. Their precise timing ex-
poses the duration of certain internal stages of the computation.
There are five consecutive packets of which the four time-
deltas in between (i.e., the time differences between each
packet and the following one) are particularly relevant. Each
of these deltas, by itself, leaks just a little information about
the secret. Their sum leaks more information than each of
them separately. And when interpreted as a vector in R4, they
constitute a signature for the secret list of places with a high
level of leakage.
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B. Experimental setup

Profiling-input suite generation: In many real-world con-
texts, one can leverage existing input suites and/or existing
input generators that might be available for the system. If no
input suite is available, we will need to generate inputs to run
the system. Generating complex structured inputs for black-
box execution of a system is a nontrivial task, and its full
automation is beyond the scope of this work.

Designing a profiling-input suite compels us to consider
the following goals:

1) Secret domain coverage: We want to exercise the system
for many different secrets, i.e., choose a secret set S that
is reasonably representative of the secret domain S.

2) Input domain coverage: We want to choose an input set
I that is reasonably representative of the input domain
I. Typically, for each secret s ∈ S we may need many
different inputs i ∈ I such that ζ(i) = s. Since such
inputs may differ from each other in various different ways,
we may want to sweep several dimensions to capture a
representative subset.

3) Sampling for noise resilience: We want to run each input
i ∈ I multiple times so that system noise can be modeled
and accounted for, especially if we know or suspect that
the system may have a strong degree of nondeterminism.

4) Execution cost: The product of the above can spawn a large
set of inputs. For some systems, executing all inputs may
be costly. Running time vs. coverage is a classic trade-off.

For all the experiments presented in this paper, the inputs
were created by generalizing the example interaction scripts
that were included with the documentation of each system.
Based on the available scripts and documentation, we identified
the main degrees of freedom and strived to sweep each of
those dimensions as uniformly as possible, all while keeping
the total execution time of the Cartesian product within our
resource availability.

The size of our input suites varies from one application
to another because some applications take up to two orders
of magnitude longer than others to execute each interaction.
The number of parameters also varied from one application to
another because different applications’ inputs involve different
orthogonal degrees of freedom. Whenever multiple applica-
tions were executed for the same secret, we used the same
input suite for all of the applications.

Trace alignment parameters: When aligning biological
sequences, MSA tools can be sensitive to parameter tuning.
Our data often contains arbitrarily long unalignable regions,
so we set MAFFT to the mode recommended for that purpose
by its developers (–genafpair –maxiter 1000 –op 1.5 –ep 0.0),
and left all other parameters untouched at their default values.

Phase detection parameters: We used ω = 3 (minimum
stable phase width), ψ = 0.25 (maximum stable column
diversity), and a maximum size of up to 1000 traces for the
subset that we sent to MAFFT for alignment. For the input
suites that consist of less than 1000 traces (see Table IV),
external alignment sufficed. For input suites with more than
1000 traces, the traces that did not parse due to anomalies
(see Section IV-B) were always less than 1%.

Comparison with Leakiest. We have used a leakage quan-
tification tool, Leakiest [14], to compare to our leakage
quantification methods. Leakiest computes mutual information
between an observable feature and a secret from a set of
samples. We provide Leakiest with the same feature-secret
pairs as in our methods. We have used Leakiest in its discrete
probability estimation mode for space features [10] and contin-
uous probability estimation for time features [13] to calculate
p(y|x) and information leakage estimates.

Histogram-based leakage parameters: We used a bin size
of 5 for space-based side-channel analyses, and of 0.001 for
time-based side-channel analyses.

Implementation details: Profit comprises about 3,000 lines
of Python and 400 lines of Mathematica code. It uses Scapy [6]
for capturing network packets, Scipy [31] and Scikit-learn [39]
for computing information leakage, Matplotlib [29] for plotting
probability densities, and MAFFT [32] for trace alignment. We
used Mathematica to prototype the trace alignment module and
generate the trace alignment visualizations.

C. Experimental results

In this section, we are going to discuss our results and
explain our findings on DARPA STAC benchmark.

Comparison of different leakage estimation approaches:
Figure 10 shows the leakage results over three AIRPLAN
applications with both Gaussian and histogram-based estima-
tion with various bin sizes. In this figure, we can see that
Gaussian estimation is estimating 100%, 25% and 79% for
three AIRPLAN applications. The leakage results of histogram
estimation vary with different bin sizes, with overfitting taking
place in the smallest bin size and underfitting in the largest
bin size. Assuming the feature is sampled from a Gaussian
distribution, if we fix the bin size according to one application,
it either overestimates or underestimates the leakage for other
applications. We can obtain different values of leakage by
changing the bin size; thus, the results are meaningless unless
the most accurate bin size is known in advance.

Table VI describes the leakage results obtained over all
applications with Gaussian, histogram-based estimation with
specific bin sizes and estimation using Leakiest over the
best feature that was manually found. For both AIRPLAN 2,
AIRPLAN 3 and their variants, the calculated leakage for
all three approaches according to the best feature is over
95% for vulnerable AIRPLAN variants and under 91% for
non-vulnerable variants. For SNAPBUDDY, both Gaussian and
histogram-based approaches reported leakage but Leakiest
reported 0% for the best feature. For some other feature, it
reported 18% leakage but that is the best result it can find.
We attribute this result to Leakiest requiring a lot of samples
per secret to be confident of the leakage. With a low number
of samples, it underestimates the leakage. For BIDPAL and
POWERBROKER, in the variants where the vulnerability is
present, Gaussian-based estimation underestimates the leakage
and histogram-based method reports a high leakage. In variants
where the vulnerability is absent, the histogram-based report
overestimates the leakage and report over 90% leakage. We
attribute Gaussian reporting lower than expected leakage to
low amount of samples we could obtain for this application
where the estimated mean and variance is not fully accurate.
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Leakiest reported that it could not run because of low number
of samples per secret. For all GABFEED variants and TOUR-
PLANNER, all three approaches report similar leakages.

In comparison, Leakiest works well when the number
of samples per secret is high, but we could not use it for
applications that take a long time to run, due to the number of
samples per secret being too low. For Profit’s histogram-based
approach, its results are dependent on the parametrization and
it overestimates or underestimates in some cases. Gaussian-
based estimation underestimates leakage in cases with low
number of samples as well, but it is more resilient to those
cases than the other two estimation methods. For these reasons,
we have used the Gaussian-based estimation in Table VII.

Example of Profit output: Table VIII shows a ranking
returned by Profit, where the top-leaking features are shown
and ranked according to how much information they leak.

Comparison of best feature and top feature reported by
Profit: Table VII summarizes the results returned by Profit for
each group of applications associated with a particular side-
channel vulnerability. Each group begins with the vulnerable
application that was shown in Table II, followed by other
applications in which the vulnerability has been mitigated or
eliminated. For each application we show the secret leaked by
the known vulnerability and the type of the vulnerability (in
space or in time). We also show whether the vulnerability is
present or not. On the right side, we show the results returned
by Profit. The Best feature column shows the manually found
best feature and the LeakG column shows the percentage
of information leakage computed by Profit using Gaussian-
based probability estimation for that feature. We have chosen
Gaussian-based estimation because of the reasons described
in Section VI-C. Finally, for all applications, the Top feature
column shows the feature that appears at the top of Profit’s
ranking (or the most specific one, in the event of a tie
between features that subsume each other). We will describe
the results according to vulnerable applications and groups of
vulnerable and non-vulnerable applications using Table VII in
the following sections.

Results for vulnerable applications: In 6 out of 7 cases,
the best feature that most closely leads to the vulnerability
appeared at the very top of Profit’s ranking. In all cases, it
appeared within the top-five. In all cases where the vulnera-
bility fully leaks the secret, Profit computed a leakage of 95%
or more, except in the cases of BIDPAL, POWERBROKER 1,
and TOURPLANNER. For BIDPAL and POWERBROKER 1, a
larger number of samples per input would be needed in order
to compensate for the noise, but this was hard to obtain
because both applications take several minutes per execution.
In the case of TOURPLANNER, where each sample takes very
little time, Profit actually identified all four relevant time-
deltas, which appeared within the top-10 with leakages of
about 14% to 16% each. As mentioned in Section VI-A,
an even higher leakage (by no means 100%, but probably
above 50%) can be achieved by considering all four deltas
together as a multi-dimensional feature, but, as explained in
Section VII, this is beyond the abilities of the current version
of Profit. Remarkably, although it only handles one feature
at a time, Profit correctly inferred that the sum of the four
deltas (i.e., the total duration of the phase that isolated them)
yielded a greater leakage than any of the four separately, and
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Fig. 10: Information leakage comparison of Gaussian and
histogram-based entropy estimation for changing bin sizes for
three versions of the AIRPLAN application. Dashed line is
Histogram-based leakage estimation result, solid horizontal
line is Gaussian-based estimation result. Solid vertical line
shows the bin size where two estimation results meet.

reported that feature at the top of the ranking. It is also worth
noting, when looking at the Best feature column, that the phase
detection mechanism allowed Profit to be very specific about
the location of the features listed at the top of its rankings.
Even in cases where the data was insufficient to reach a fully
accurate quantification of the leakage, Profit was able to point
the user to the right features.

Results for groups of vulnerable and non-vulnerable ap-
plications: For all application groups we can see that, as the
vulnerability is mitigated or removed, the leakage computed
by Profit decreases significantly and in the correct relative
proportion. While we have no firm guarantee that the computed
leakages are exact (since, as stated in Section VII, they depend
on the input suite), we can observe that they are always
consistent with the known facts about the different DARPA
STAC applications and their present and absent vulnerabilities.
Lastly, in 8 out of 13 cases, the top feature reported by Profit
is indeed the best feature, and in all other cases, the top feature
reported was not significantly higher (in rank or in leakage)
than the best one.

VII. LIMITATIONS

Quality of the profiling-input suite: The most important
limitation of our approach that the user should keep in mind
is that the quality of the leakage quantifications computed
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Application Description # Classes # Methods
AIRPLAN Web-based system for management of airline routes and crew 265 1,483
SNAPBUDDY Web-based system for image sharing with photo uploads and location tracking 338 2,561
BIDPAL Peer-to-peer system for management of multiple auctions 251 2,960
GABFEED Web-based forum with authentication, posting, search, chat 115 409
POWERBROKER Peer-to-peer system used by power suppliers to buy and sell energy 315 3,445
TOURPLANNER Client-server system that calculates optimal tours over cities 321 2,742

TABLE II: DARPA STAC systems used in our evaluation (summary).

Application Secret Type Network-level manifestation of the vulnerability (Known by DARPA)
AIRPLAN 2 Number of cities Space Total size of the last HTML page sent by server after the Upload Map workflow
AIRPLAN 3 Strong connectivity Space Size of the third HTML page sent by server after click on Get Map Properties
SNAPBUDDY 1 Location of user Space Sum of sizes of a few packets (2, 3, or 4) sent by client during Change location request
BIDPAL Secret bid value Time Time delta between two of the packets in a server response about bid comparison
GABFEED 1 Server key Hamming wt. Time Time delta between two packets in challenge-response authentication
POWERBROKER 1 Price offered Time Time delta between two packets in the server response about price comparison
TOURPLANNER Places to visit Time 4 timing deltas of 5 consecutive packets during travelling salesman problem calculation

TABLE III: Known network-level manifestation of each vulnerability.

# Different # Unique # Runs # Runs # Phases # Features
Application Secret secrets inputs per input per secret detected found
AIRPLAN 2, 3, 5 Number of cities 13 500 5 192 5 169
AIRPLAN 3, 4 Strong connectivity 2 500 5 1250 5 189
SNAPBUDDY 1 Location of user 294 294 10 10 3 184
BIDPAL 2, 1 Secret bid value 49 49 4 4 5 158
GABFEED 1, 5, 2 No. of 1s in server key 12 60 5 25 2 52
POWERBROKER 1, 2, 4 Price offered 49 49 4 4 5 184
TOURPLANNER Places to visit 250 250 20 20 4 62

TABLE IV: Execution of each system. Number of phases detected and features obtained.

Application Network-level manifestation of the vulnerability (Known by DARPA) Best feature (manually found)
AIRPLAN 2 Total size of the last HTML page sent by server after the Upload Map workflow Sum ↓ phase 4
AIRPLAN 3 Size of the third HTML page sent by server after click on Get Map Properties Pkt 10 ↓ phase 3
SNAPBUDDY 1 Sum of sizes of a few packets (2, 3, or 4) sent by client during Change location request Sum ↑ phase 2
BIDPAL 2 Time delta between two of the packets in a server response about bid comparison ∆ 19-20 ↓ full trace
GABFEED 1 Time delta between two packets in challenge-response authentication ∆ 4-5 ↓ phase 2
POWERBROKER 1 Time delta between two packets in the server response about price comparison ∆ 9-10 ↑ full trace
TOURPLANNER 4 timing deltas of 5 consecutive packets during travelling salesman problem calculation Total time ↓ phase 3

TABLE V: Best feature for each vulnerability. The known network-level manifestation of each vulnerability (Table III) is mapped
to the feature space identified by Profit from the traces (Table IV). This mapping was built manually, for evaluation.

Best feature
Application Secret Type Vulnerability (manually found) LeakG LeakH LeakL
AIRPLAN 2 Number of cities Space Present Sum ↓ phase 4 100% 100% 97%
AIRPLAN 5 Number of cities Space Mitigated Sum ↓ phase 4 79% 91% 68%
AIRPLAN 3 Number of cities Space Absent Sum ↓ phase 4 25% 64% 0%
AIRPLAN 3 Strong connectivity Space Present Packet 10 ↓ phase 3 100% 98% 98%
AIRPLAN 4 Strong connectivity Space Absent Packet 10 ↓ phase 3 0% 0% 0%
SNAPBUDDY 1 Location of user Space Present Sum ↑ phase 2 95% 100% 0%
BIDPAL 2 Secret bid value Time Present ∆ 19-20 ↓ full trace 59% 99% N/A
BIDPAL 1 Secret bid value Time Absent ∆ 19-20 ↓ full trace 9% 92% N/A
GABFEED 1 Server key Hamming wt. Time Present ∆ 6-7 ↓ full trace 100% 100% 100%
GABFEED 5 Server key Hamming wt. Time Absent ∆ 6-7 ↓ full trace 24% 27% 22%
GABFEED 2 Server key Hamming wt. Time Absent ∆ 6-7 ↓ full trace 19% 26% 21%
POWERBROKER 1 Price offered Time Present ∆ 9-10 ↑ full trace 60% 100% N/A
POWERBROKER 2 Price offered Time Absent ∆ 9-10 ↑ full trace 13% 95% N/A
POWERBROKER 4 Price offered Time Absent ∆ 9-10 ↑ full trace 9% 95% N/A
TOURPLANNER Places to visit Time Present Total time ↓ phase 3 30% 48% 27%

TABLE VI: Quantification of leakage for each variant of each applications, obtained by different leakage quantification methods.
LeakH for Histogram-based approach, LeakG for Gaussian-based approach, LeakL for Leakiest-based approach)
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Best feature for vulnerability Top-ranking feature
Application Secret Type Vulnerability (manually found) LeakG (reported by Profit) LeakG
AIRPLAN 2 Number of cities Space Present Sum ↓ phase 4 100% Sum ↓ phase 4 100%
AIRPLAN 5 Number of cities Space Mitigated Sum ↓ phase 4 79% Sum ↓ phase 4 79%
AIRPLAN 3 Number of cities Space Absent Sum ↓ phase 4 25% Packet 20 ↓ full trace 36%
AIRPLAN 3 Strong connectivity Space Present Packet 10 ↓ phase 3 100% Packet 10 ↓ phase 3 100%
AIRPLAN 4 Strong connectivity Space Absent Packet 10 ↓ phase 3 0% Packet 1 ↑ phase 2 4%
SNAPBUDDY 1 Location of user Space Present Sum ↑ phase 2 95% Sum ↑ phase 2 95%
BIDPAL 2 Secret bid value Time Present ∆ 19-20 ↓ full trace 59% ∆ 19-20 ↓ full trace 59%
BIDPAL 1 Secret bid value Time Absent ∆ 19-20 ↓ full trace 9% ∆ 16-17 ↑ full trace 19%
GABFEED 1 Server key Hamming wt. Time Present ∆ 6-7 ↓ full trace 100% ∆ 6-7 ↓ full trace 100%
GABFEED 5 Server key Hamming wt. Time Absent ∆ 6-7 ↓ full trace 24% ∆ 6-7 ↓ full trace 24%
GABFEED 2 Server key Hamming wt. Time Absent ∆ 6-7 ↓ full trace 19% ∆ 11-12 l full trace 20%
POWERBROKER 1 Price offered Time Present ∆ 9-10 ↑ full trace 60% Total time l full trace 60%
POWERBROKER 2 Price offered Time Absent ∆ 9-10 ↑ full trace 13% Total time l full trace 13%
POWERBROKER 4 Price offered Time Absent ∆ 9-10 ↑ full trace 9% ∆ 16-17 ↑ full trace 18%
TOURPLANNER Places to visit Time Present Total time ↓ phase 3 30% Total time ↓ phase 3 30%

TABLE VII: Leakage achieved for each variant of each application using the top-ranked feature automatically identified by Profit
as leaking the most. Comparison with leakage achieved using the manually identified best feature for that vulnerability. Leakage
was computed using LeakG quantification.

Rank Feature Dir. Subtrace Leak (%) Leak (bits)
1 Total size (sum) ↓ Phase 4 79% 2.94 of 3.70
1 Total size (sum) l Phase 4 79% 2.94 of 3.70
1 Total size (sum) ↓ Full trace 79% 2.94 of 3.70
4 Packet 20 size ↓ Full trace 59% 2.16 of 3.70
5 Packet 27 size ↓ Full trace 56% 2.10 of 3.70
6 Packet 24 size ↓ Full trace 53% 1.97 of 3.70
6 Packet 28 size ↓ Full trace 53% 1.97 of 3.70
8 Packet 21 size ↓ Full trace 50% 1.86 of 3.70

TABLE VIII: Example of a feature ranking returned by Profit
(in this case, for AIRPLAN 5).

by Profit depends on the quality of the profiling-input suite.
Our ability to accurately quantify leakage is strongly linked to
our ability to accurately estimate the likelihood of collisions
between observations from different secrets. Ideally, we would
like to increase the size and diversity of our input set I to be as
close as possible to the input domain I, so that the probability
distribution of collisions would approach the real probability
distribution—that is, the one that we would see if we could
afford to execute the whole input domain I. If the input set I
is so small that it hardly ever causes any of those collisions,
leakage could be overestimated. On the other hand, if the suite
is too large, it may be unfeasible to execute it due to resource
constraints.

Normal distribution of feature values: Since we model the
probability density function for each secret with a Gaussian
curve, we are assuming that, for a given feature, and for each
secret, the probability of the feature given the secret should fol-
low an approximately normal distribution. If the user expects
significantly different distributions, or if a goodness-of-fit test
reveals that these distributions are far from being normal, one
may want to model the probability density functions using a
different kind of distribution.

One-dimensionality of features: The feature space that
we consider in this work is intentionally limited to one-
dimensional features. We compute the leakage for many fea-
tures, but consider them one at a time. As exemplified by the
TOURPLANNER vulnerability explained in Section VI-A, when

several features are combined in just the right way, they can
leak more than each one of them separately (or than all of
them combined in a trivial way). Quantifying the joint leakage
of combined features is simple when one can assume that
all the features are independent, but in this context that is
almost never the case. Quantifying the joint leakage (that is,
the correlation with the secret) of multiple features that are
partially correlated between themselves is a complex matter,
which is beyond the scope of this article and which we will
address in future work. Nevertheless, in many cases Profit will
still report partial leakage for one or more of the combinable
features, which can at least point the user in the right direction
(see Section VI-C).

Local area network environment: The network environ-
ment and the hardware setup used in this work follow the
DARPA STAC reference platform specification. As illustrated
in Figure 6, the configuration uses separate machines for client,
server, and eavesdropper. They are connected by means of
a standard Ethernet local area network. This implies certain
favorable conditions, e.g., the network latency, the round-trip
time variance, and the rates of phenomena such as packet loss
or packet reordering are relatively low compared to those of
the public Internet. Nevertheless, as seen in our experimental
results, such phenomena are still present—network noise, for
instance, is a significant factor in our approach, and needs to
be statistically modeled and accounted for. The relatively well-
controlled environment of a LAN is a good testbed for new
ideas, which can then be adapted to a less protected setting
such as the public Internet.

VIII. RELATED WORK

One relevant related paper uses sequence alignment algo-
rithms on the contents of unencrypted packets in order to infer
the contents of similar segments [23]. This technique applies to
the plain-text contents of the packets. Our work, on the other
hand, applies sequence alignment algorithms to the visible
attributes of encrypted packets in order to automatically detect
phases in network interactions, and does not assume that the
payloads are unencrypted.
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Work by Chapman, et. al. illustrates methods for detecting
the potential side channels in client-server application traf-
fic [9]. Their approach crawls the given web application to
build a model of the system side channel and uses Fisher
criterion for quantifying leakage. A different approach by
Chen, et. al. focuses differentiating leakage measurements by
analyzing state diagrams for web applications [12]. Yet another
approach by Mather, et. al. uses a packet-level analysis of
network traffic for estimating information leakage for network
applications [35]. A number of works present specialized
techniques for discovering specific types of vulnerabilities, like
identifying the source identity of an HTTP stream [7], [34]
or automatically determining network-traffic-based fingerprints
for websites [26].

In particular, Conti et. al. [17] use a similar set of side-
channel packet metadata to infer properties about encrypted
network streams. They analyze the shape of sequences of
packet sizes, and use machine learning and classification
techniques that leverage the dynamic time warping (DTW) [4]
metric, which is a type of alignment. However, their approach
is specifically tailored to guessing which action (within a set
of predefined user actions from a fixed set of smartphone
applications) was executed by a user. Our approach is more
general and aims at providing support for explorative side-
channel analysis of arbitrary applications that communicate
over a network stream. Regarding the use of dynamic time
warping, we did experiment with DTW in early prototypes of
Profit’s alignment. However, in the type of analyses that we
address, packet traces may contain arbitrarily long unalignable
sections between the alignable patterns. We found that DTW
is not the right tool for that purpose, which led us to experi-
menting with multiple sequence alignment [38] instead.

The BLAZER tool [1] also addresses the applications in
the DARPA STAC benchmark. Their approach focuses on
showing safety properties of non-vulnerable programs but
is able to indicate possible side-channel vulnerabilities by
detecting observationally imbalanced program branches using
a white-box static program analysis approach. Another recent
tool called SCANNER has shown success in statically detecting
side-channel vulnerabilities in web applications that result
from secret-dependent resource usage differences [11]. The
SIDEBUSTER tool focuses on side-channel detection and quan-
tification during the software development phase using taint
analysis [48]. These three tools all assume access to the source
code of the application, whereas Profit uses a fully black-box
approach. A number of works analyze mobile application for
analyzing side-channels in networks of mobile devices [17],
[18], [47].

Another line of work relies on formal methods and software
verification techniques, like symbolic execution along with
model-counting constraint solvers, to statically quantify the
amount of information an attacker can gain about a secret in
a system [28], [40]–[42]. These works analyze a variety of
attacker models, from active attackers who adaptively query
the system to incrementally infer secret information to passive
attackers who observe systems which they cannot query, and
use methods from quantitative information flow [5], [15], [45]
to automatically derive bounds on side-channel information
leakage. These are white-box analysis techniques that rely on
the ability to symbolically execute a given application.

IX. CONCLUSIONS AND FUTURE WORK

Profit combines network trace alignment, phase detection,
feature selection, feature probability distribution estimation
and entropy computation to quantify the amount of informa-
tion leakage that is due to network traffic. Our experimental
evaluation on DARPA STAC applications demonstrates that
Profit is able to identify the features that leak information for
the vulnerable application variants. Moreover, Profit is able
to correctly order the amount of leakage in different variants
of the same application. In the future, we plan to extend
Profit with 1) fuzzing techniques for input generation, 2)
more flexible ways to estimate the probability distributions of
features, such as kernel density estimation, 3) feature reduction
techniques for reducing the feature space, and 4) relational
analysis to quantify joint information leakage from correlated
features.
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