Data Oblivious ISA Extensions for Side
Channel-Resistant and High Performance Computing

Jiyong Yu, Lucas Hsiung, Mohamad EI Hajj, Christopher W. Fletcher
University of Illinois at Urbana-Champaign
{jiyongy2, ljhsiun2, melhajj2, cwfletch}@illinois.edu

Abstract—Blocking microarchitectural (digital) side channels
is one of the most pressing challenges in hardware security today.
Recently, there has been a surge of effort that attempts to block
these leakages by writing programs data obliviously. In this model,
programs are written to avoid placing sensitive data-dependent
pressure on shared resources. Despite recent efforts, however,
running data oblivious programs on modern machines today is
insecure and low performance. First, writing programs obliviously
assumes certain instructions in today’s ISAs will not leak privacy,
whereas today’s ISAs and hardware provide no such guarantees.
Second, writing programs to avoid data-dependent behavior is
inherently high performance overhead.

This paper tackles both the security and performance aspects
of this problem by proposing a Data Oblivious ISA extension
(OISA). On the security side, we present ISA design principles
to block microarchitectural side channels, and embody these
ideas in a concrete ISA capable of safely executing existing data
oblivious programs. On the performance side, we design the OISA
with support for efficient memory oblivious computation, and
with safety features that allow modern hardware optimizations,
e.g., out-of-order speculative execution, to remain enabled in the
common case.

We provide a complete hardware prototype of our ideas, built
on top of the RISC-V out-of-order, speculative BOOM processor,
and prove that the OISA can provide the advertised security
through a formal analysis of an abstract BOOM-style machine.
We evaluate area overhead of hardware mechanisms needed to
support our prototype, and provide performance experiments
showing how the OISA speeds up a variety of existing data
oblivious codes (including ‘constant time” cryptography and
memory oblivious data structures), in addition to improving their
security and portability.

I. INTRODUCTION

With the rise of cloud computing and internet services,
digital or microarchitectural side channel attacks [1] have
emerged as a central privacy threat. These attacks exploit
how victim and adversarial programs share hardware/virtual
resources on shared remote servers (e.g., an amazon EC2 cloud).
Simply by co-locating to the same platform, researchers have
shown how attackers can learn victim program secrets through
the victim’s virtual memory accesses [2], [3], hardware memory
accesses [4], [5], branch predictor usage [6], [7], arithmetic
pipeline usage [8], [9], [10], speculative execution [11], [12]
and more. Given the many avenues to launch an attack, it
is paramount for researchers to explore holistic and efficient
defensive strategies.

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA

ISBN 1-891562-55-X

https://dx.doi.org/10.14722/ndss.2019.23xxx
www.ndss-symposium.org

»1f (secret)

1x =0, y = 64 1x =0, y = 64
2>z = Memory[x]
stmp = Memoryl[y]

(secret) ? tmp : z

X =y
1z = Memory[x] 1z =

(a) Insecure code. (b) Equivalent data oblivious code.

Fig. 1: Non-oblivious (1a) and equivalent data oblivious codes (1b.
The word secret denotes private data.

Recently, there has been a surge of work that attempts to
block all digital side channels, on commercial machines, by
writing and compiling programs in a data oblivious fashion
(e.g., [131, [14], [151, [11, (161, [17], (18], [19], [20], [21],
[221, [23], [24], [8], [25]). Data oblivious code, a.k.a. “constant
time” or “running programs as circuits,” blocks side channels
by disallowing private data-dependent control flow. Figure 1
gives an example. Figure la leaks private information over
microarchitectural side channels—namely, program execution
time (the °‘if-taken’ case executes more instructions) and
memory footprint (if x and y touch different lines in cache).
To block these leakages, a data oblivious program will evaluate
both sides of the branch as shown in Figure 1b. A ternary
operator—e.g., implemented as the x86 cmov instruction or
bitwise operations—chooses the correct final result (Figure 1b,
Line 4). Since executing each side of the branch is independent
of the secret, and the ternary operator does work independent
of the secret, running the code data obliviously does not leak
the secret.

A. Challenges

Despite the promise of data oblivious programs to block
side channels, future progress faces two key challenges.

Security: Existing Instruction Set Architectures (ISAs) provide
no guarantees that instructions used in data oblivious codes
can block leakages over microarchitectural side channels. For
example, if cmov (used as the ternary operator in [1], [23],
[17], [19]) was ever implemented as the microcode sequence
branch+mov, the secret condition would leak through branch
predictor state and whether hardware speculation results in a
squash. Being ISA-invisible, these changes can occur at any
time. Case in point, Intel has stated that cmov’s behavior w.r.t.
speculation may change in future processors ([26], Section 3.2).

Beyond cmov, the larger problem is that commercial
ISAs such as x86 give engineers significant rope to perform
data-dependent optimizations during program execution. For
example, it is well known that arithmetic units can sometimes
take data-dependent time [8], [9]. We provide a comprehensive
background on related vulnerabilities in Section III-B. Any
of these software-invisible optimizations can undermine the

security of prior and future work that attempts to write datacommercial machines that run data oblivious code tdday.

oblivious programs.))

4.) Formal analysis: non-interference on out-of-order, spec-
Performance: Data oblivious codes can incur large per_ulative execution-class processorsn parallel to our hardware
formance overheads. The reason. once again, is that d ototype, we develop a formal analysis that models an abstract
obliviousness does not have ISA-level support. As a resulPOOM-class processor (out-of-order, speculative, superscalar),
programmers are forced to use only the simplest instructiondnd describe how to map the abstract BOOM to our concrete
to achieve data oblivious execution, out of fear that othePOOM prototype. A key insight enabling this analysis is that
instructions will leak privacy. For example, data oblivious codesPY @PPlyinglocal checks to each instruction as it executes, the

Analysis/hardware need not be aware of whether each instruction

must make two memory accesses in Figure 1b out of fear th lati q f-ord - the check ¢ d
a single access will reveal the address through the processgrSPeculative, executed out-of-order, etc.: the checks performe
maintain security are the same in all cases. Through this

cache, o oter,side channel. Ths overhead scles with deeril i, we prove tha the 1SA provides basis 1o sy
strong security de nitions such as non-interferenéée] [on
advanced machines. Importantly, we achieve this reshile
allowing high performance hardware optimizations (e.g., out-of-
B. This Paper order, speculative execution) to remain enabled in the common
case andvithout ever requiring hardware ushes to structures
In this paper, we tackle both the security and performancauch as the cache or branch predictors [33], [34].
aspects of this problem by developing a novel type of ISA
extension which we call Bata Oblivious ISAextension QISA. 5.) Evaluation. We evaluate our proposal in terms of hardware
To our knowledge, this represents the rst foundation for writing area and performance over a range of existing data oblivious
and executing secure, portable and performant data obliviouyograms (including linear algebra, data structures, and graph
code on commercial-class (out-of-order, speculative) processotsaversal). Area-wise, our proposal take% the area of the
To this end we make the following contributions: unmodi ed BOOM processor. Performance-wise, our ISA and
hardware implementation provides 88 /1.7 speedup on
1.) Design principles for OISA design.Our key idea is to small/large data sets, respectively, relative to data oblivious code
explicitly specify security guarantees at the ISA level, whilerunning on commodity machines (and with the security and
decoupling those guarantees from the implementation detaifgortability bene ts stated before). We also show case studies,
of a particular processor. Speci cally, each operand of eaclwhere our ISA speeds up constant time ABS]|[3€] by 4:4
instruction is given an ISA-level attribute specifying whetherand the memory oblivious ZeroTraced library by 4:6 to
that operand isSafeto receive private data. If marked Safe, several orders of magnitude, depending on parameters.
processor implementationsicroarchitecturey using that ISA
must hide operand-dependent side effects from other parts
the system due to that instruction's execution. Importantly, ho
protecting Safe operands is implemented is left to the hardware
designer, who can devise ef cient protections depending on
each microarchitecture (e.g., by breaking the instruction intg\. Hardware Terminology
simpler data oblivious instructions3][or using hardware
partitioning [27] or using cryptographic techniquesd). In all
cases, the programmer works with a simple, portable guarant

We have open-sourced our prototype design on the RISC-V
OOM processor at https://github.com/cw etcher/oisa.

Il. BACKGROUND AND THREAT MODEL

1) Out-of-order executionModern commercial processors
Hch as the RISC-V BOOMZ[] dynamically schedule and
execute data-independent instructions in parallel and out of

2.) Design of a concrete OISAWith these principles, we Program order to improve performance. Instructionsfatehed
de ne a set of instructions that can serve as the foundatiog"d issued(enter the scheduling system) program ordey

for the rich line of ongoing work in data oblivious program- €x€cute(perform their operations and produce their results)
ming [14], [13, [17], [18], [19, [201, [24], [2), [22), [1], [27], possibly out of program order, and nalisetire (make their
[8], [25]. Beyond Turing completeness and security, we alsd®Peration externally visible by irrevocably modifying the
want to reduce the performance overhead common with da@/chitected system state) in program order.

oblivious code. To that end, we provide additional instructions 2) Specu]aﬁ\/e executiorSpecwative execution improves
that implement ef cientmemory obliviousomputation 3, performance by executing instructions whose validity is un-
[21] (featuring loads/stores with private addresses). Given theertain instead of waiting to determine their validity. If such
principles above, this extension is conceptually simple: instead speculative instruction turns out to be valid, it is eventually
of emulating memory obliviousness with dummy memoryretired; otherwise, it isquashedand the processor's state is
operations (Figure 1b), we designate a new load instructiofplled back to a valid state. (As a byproduct, all following
whose address operand3afe which gives hardware designers instructions also get squashed.) That is, a squash causes a large
the ability to build secure and ef cient implementations, e.g.pipeline disturbance. There are multiple ways an instruction
using partitioning, for that speci ¢ operation. stream can be speculative—e.g., due to branches, memory

, accesses [37], or even arithmetic instructions [38]—discussed
3.) Hardware prototype on an out-of-order, speculative f,rther in Section IlI-B.

processor.To show that our ideas are practical, we prototype .]]]

all hardware changes needed to support our ISA on top of More details on BOOM are given in Section V-A.
the R-ISS.:_V BOOM p!’OCGSSOI’ (for “B-er-keley Out-of-Order 1We note that prior work49], [30], [31] requires the use of discrete co-
Machine) [] BO.OM is the most SOph'Stlcated.open .RISC'V rocessors with simple microéréhitec'ture. To match modern cloud deployments,
processor, featuring modern performance optimizations SUCE‘JI’ goal is to supportoncurrentexecution of many processes on advanced
as speculative and out-of-order execution, and is similar tanicroarchitectures.

B. Threat Model through functionO) when running on a processonArch. What

information is contained in eacl (for each time step)

We consider the setting where a victim program runs Ofye e on the observability functiah W.l.o.g. we will treat

a shared machine in the presence of adversarial softwaiey,qy a5 xed-size arrays, thub can accept an arbitrary
The adversary's goal is to learn private data in the victim

-) - humber of Public and Con dential inputs. Privacy for the
program through digital side channels. For example, privates o dential inputs then requires:

inputs contributed by another party or secret program state
(e.g., a cryptographic key). The program itself is considered 8x 2 Datap; 8y;y°2 Datac :

public. We trust the processor hardware and that the victim . .)
program is correctly using the OISA. O(mAreh(l (x;y))) " O(mArch(l (xy?))

We defend against two classes of adversary: supervisofhere’ denotes computational indistinguishability, abdtap
level (Ring-0) or user-level (Ring-3) software. In both cases'?md Datac denote the space of Public and Con dential inputs,
we strive to block digital side channels that could be exploited©SPectively.
by the standard Intel SGX adversary used in prior work on data N .
oblivious programming 1], [11, [23], [24], [1€], [17], , ‘We denote De nition Ill.1 parameterized by an observ-
[21]. This adversary is supervisor-level software that controlgbility function O and a speci ¢ microarchitecturaArch as
when victim threads run, and therefore can monitor/in uenceOblivioudO; mArch], droppingmArch when it is clear which
the victim's hardware resource utilization (e.g., monitor/primemicroarchitecture we are referring to.
the cache/branch predictorg][[17], [34]) at near-perfect
resolution (e.g., via9, [2], [3]). By extension, this adversary ma
can monitor the victim's termination time, and determine when
a precise exceptionl], [40] or system call {1] occurs. We 1124, 123, 122, [1], [21], [25]. The reason is that machines

don't make assumptions on where the victim runs relative t oday are shared, and adversaries from Sedti@ncan monitor

23;’:%?;'? I Ifc?ﬁ: ég\'/%r’SZf 6}2 :gtjggfnhsse'\rﬂ:lre\f;n;géfl’v;?agﬁﬂternal activity such as caches and pipeline behavior. It is

threat model is strictl y g y » OUtherefore useful to de ne the most conservative observability
reat modetl 1s strictly conservative. function that could apply to adversaries from Section II-B:

In the case of a supervisor-level adversary, we assume th§a nition 111.2

victim is running within a virtual shielding system, such as anje\e| spatial granularity, cycle-level temporal granularity). Let
SGX enclave {3, [44], to prevent direct inspection/tampering g = . 1gN denote the processor state during clock cycle
on victim data. The OISA is orthogonal to which virtual ; wher’e state includes all on-chip storage (e.g., ip- Ops
shielding system is used, in the sense that shielded programs Céf—*eAM) S denotes the value of theth bit in cyclét.’Given '
execute oblivious instructions regardless of the exact shielding progrém execution (x:y), BitCycle(mArch(l (x: y))).: X =
system implementation. We will therefore only discuss the Xoi X011 13 Xg where)&{ Zfo 19N and X = 1 indicatesS{
OISA, independent of the shielding system, for the rest of thecontair;s a,n explicit o of Con, dential data in cycle (X = 0
paper. otherwise).

Non-goals.Physical side channels (e.g., powét]or EM [46])

are out of scope. Similar to previous works on data oblivious For example, writing date to the processor cache at address
programming, we also do not consider integrity of computationa in cyclet sets bits inX;, corresponding to cache memory
Integrity relies on orthogonal mechanisms, e.g., traditional ocells ata, if eitherd or a were computed based on Con dential

Existing data oblivious programs written for commodity
chines demand a rich observability function that reveals ne-
grain details about processor staté][[13], [17], [1€], [19],

(BitCycle observability: Security labels at bit-

SGX-augmented process/memory isolation. data. More generally, the de nition implies the adversary can
monitor every possible hardware resource pressure (e.g., ip-
I1l. DATA OBLIVIOUS EXECUTION op level pipeline utilization, cache footprint, etc.) every cycle.

This paper's goal is to provide a basis for programs to achieve

~ We now give background on data oblivious execution antbp|iviougBitCyclel on advanced commercial-class machines.
give examples for where prior work on commercial ISAs (e.g.,

x86) and modern machines (e.g., speculative, out-of-order) is
vulnerable to attack. B. Security Issues in Existing Data Oblivious Code

Existing data oblivious codes are written extremely con-
A. Security De nition servatively to remove code constructs that blatently violate
ObliviougdBitCyclg. For example, prior works rely solely
uishably of program traces, once the trace is projected b on a carefully chosen subset of arithmetic operations (e.g.,
9 : tp g Flie funct proj Yitwise operations), conditional moves, branches with data-
an appropriate observapility function. independent outcomes, jumps with public destinations, and
De nition Ill.1. (Con dential input privacy). Given a pro- memory instructions with data-independent addressds[[14],
gram| with Public (non-sensitive) inpwt and Con dential ~ [15], [1], [16], [17], [1€], [19], [20], [21], [22], [23], [24], [8],

Data oblivious execution satis es computational indistin-

represents the program's observable execution trace (projected

“Formally: Let each memory cefi take two inputs: datair() and write

2Note that even user-level adversaries have been shown to be surprisin%ﬁame We) where both are functions (combinational logic) taking a subset of

powerful in their ability to monitor digital side channels [42]. Its in S as input. For timd = 0: S (i.e., att= 0) is initialized WIthistartlng
3Here, computational indistinguishability (adopted from the Oblivious RAM Program stateX; = 1iff &, is Con dential data. For time > 0: X/ = 1 if

literature [17]) is synonymous with computational non-interferencé][and ~ (8) we outputs 0 in cycle andX{ ; = 1 or (b) we outputs 1 in cycle and

the de nition can be easily changed to require strict non-interferefzkif)(tJ 1 = 1 for somej in the inputs toS (in' or we). We note that implicit

the program does not require computational assumptions. ows [49] are accounted for oncBitCycle is applied to De nition 111.1.

It is important to understand when this isn't suf cient for bitwise operations, this can incur over an order of magnitude
security. To that end, we now detail 11 possible attack vectorperformance overhead depending on the operation [8].

on today's data oblivious code. Importantly, we do not list many Vector 7: microcode:Even simple instructions may be

opular attacks (e.g., prime+probe in the cactjds these are . . - . .

(Fj)elPeated by Writgnggprtc))gramsp in the style desjfr%ed above. Yege_composed into simpler instructions, called micro-ops, before
attacks can still occur because the hardware can apply invisibcfé';?e %);?g?ézdé r!gefm?nt:ghac\?iséfsﬁgglce;oa_op C?/m(’\?vﬁg? can
optimizations to undermine software-level transformations:; I % Is based : d 'ml ml 3

In the following, we describe attack vectors known to bemPlements conditionals based on Con dential valuels [2,

; : “117], [19]) can be broken into &ranch+mov . There is
implemented today, and also proposals whose lmplementatlo[envidence to suggest that this transformation will be applied in

izﬂllésl;: i%]glg?nvér:{t;joge;ﬁ; tlimg?g?enéllgi,nSaecxri]s?irqgrzlozggs_ Yuture Intel processors {[], Section 3.2). This breaks privacy:
the branch direction will be speculatively guessed and whether
Vectors 1, 2, 3: branch, jump, memory speculatiddhile a misprediction occurs changes program timing due to the
transient execution attacks], [11] are known to impact squash (Section II-A).
general purpose code, their impact on data oblivious code has Vectors 8, 9, 10, 11: data-based compression, data-based
not been adequately studied. We make an important Observat'%beculation, ’silént s’,tore.sl::inally, there are a numt;er of pro-
o}

;haécdjﬁigg Ig/)l((éucsugg(rjle éec}gg%ésst?n\?vgmggﬂ ?%’gnsbé cﬁ?arl[(iao sals whose implementati_on status on commercial machines
P - BY ! P unknown. In register le 4] and cache {5] compression

is not intentionally being controlled in a malicious way, e'g"(analogous to OS-level page de-duplicatian]], register le

s T T ooy 0 20 pressre i a inlon ofprogram caa (Vectors and
instructions 6aH cause secrets storedlinsed resourceto be , respectively). Value predictiors{] (Vector 10) speculates
exposed accidentally on the result of a memory load or long-running arithmetic
' operation, causing a squash if the prediction is incorrect

Consider a toy example for data oblivious decryption,(SeCtion||-A). Finally, silent storesq7] (Vector 11) remove
exploiting conditional branch misprediction (denoted Vectorredundant store operations (impacting cache pressure) when the
1): hardware detects the memory already contains the same value
at the same address. What all of the above have in common
is that they argorogram datacentric optimizations that don't
discriminate between Public and Con dential data. Thus, they
can undermine any data oblivious code written in any style.

A legal data oblivious code can implement decryption round Takeaway:Not only is writing data oblivious code dif cult,
logic data obliviously, with the round keygey considered it is fraught with danger due to subtle ISA-invisible optimiza-
Con dential (De nition 111.1), and wrap the round in a data- tions such as those given above. Our proposed OISA gives
independent branch to reduce code footprint. Once decryptiohardware the visibility it needs to decide when and when not
is complete, the program may use the plaintext in a norto apply leaky performance optimizations (such as those above)
oblivious way, e.g., by using it as an address to lookup @nd enables richer hardware support for data oblivious code to

i for (i = 0; i < NUM_ROUNDS; i++)
2 state = OblDecRound(state, rkeyli])
s declassify(state)

record in cache (denotedeclassify(state)). Such a speedup core operations such as oblivious memory.
non-oblivious operation can reveal information related to the
decryption keyon a speculative machine. Speci cally, if the IV. DATA OBLIVIOUS ISAS

branch mispredicts “not taken” (e.g., while the predictor is : - . .
training), state is prematurely exposed before all rounds . Ve now describe data oblivious ISA (OISA) design prin-

; . iples and give an example concrete OISA that we will later
complete, allowing an attacker to perform cryptanalysis orf'P
encryption round intermediate state. implement on top of the RISC-V BOOM.

Removing branches or disabling branch speculation is not. Design Principles
suf cient to x this issue, as other forms of speculation (e.g.,

unconditional branches/jumps, memory disambiguatiof-- We had two primary goals in designing an OISA. First, the
denoted Vectors 2 and 3) cause similar issues on legal daj@” Should expose security guarantees in a microarchitecture-
oblivious code. Independent way. A single ISA may be embodied in many

different microarchitectures (within and across processor gen-
Vectors 4, 5: sub-address optimizationSumerous data erations), each with different organizations and optimizations.
oblivious codes, e.g., “constant time” cryptography][[51], It isn't reasonable to ask software to reason about each
make an assumption that modulating certain bits in a memorynicroarchitecture: a developer who writes a data oblivious
address (e.g., the bits indicating offset within a cache line) doesode correctly once should have con dence that security will
not create observable behaviors. This assumption doesn't holtbld on each microarchitecture. Second, the ISA should not pre-
on some microarchitectures due to hardware optimizations suatiude modern hardware performance techniques, except when
as speculative store forwarding (Vector 4) and cache bankinthose techniques have a chance to leak privacy. Speci cally,
(Vector 5), and attacks exploiting these features have beame want to be compatible with wide (multiple instructions
shown to lead to full cryptographic breaks [52], [53]. fetched per cycle), speculative, out-of-order commercial-class
Vector 6: input-dependent arithmetidt is well known that machines, e.g,, those described in SectloA, and also point
: optimizations (e.g., banked caches, data-dependent arithmetic;

complex arithmetic operations (e.g., multiply/divide, oating :) -
point square root) exhibit observable data-dependent timinﬁ'f' Sectionlll-B) that, left unchecked, cause security problems.

based on their operand®]] [8]. While prior work can To achieve these goals, an OISA has the following main
mitigate these threats by re-writing complex arithmetic usingcomponents (which require hardware support).

4

1) Dynamic tracking for Con dential (sensitive) data: prediction (Sectionll-B, Vector 1), and are correctable. Label
We use hardware-based dynamic information ow trackingfaults ¢LF) indicate a program bug or illegal typing. Fixing
techniques (DIFT, similar to5(], [59]) to track how Con - bugs is outside of our scope, so we will focus div#
dential data propagates through the processor as the program
executes. Conceptually, all data in the processdalieled
Con dential/Public at some granularity (e.g., word-levelJhis
gives hardware the ability to decide when to apply optimization
to data in use (e.g., attack Vectors 6-7, 10-11; c.f. SedtleB)
and at rest (e.g., Vectors 8-9).

An important question is whethétV creates a side channel
based onwhenit is triggered. We prove in Sectiovil-B that
%does not, and further prove th#tV signals enable the

ISA to block multiple additional attacks (Vectors 1-5; c.f.
Sectionlll-B), e.g., speculation that can reveal Con dential
data, on top of the vectors blocked from SectigbA 1. Finally,
Prior work does not specify precise rules for when dataPublic data is handled as:

labeled Con dential can be processed relative to when its labe;je 1v/4 (Public! Safe/Unsafe) When Public data is sent
is resolved. A conservative strategy is to requird dhta, labed to Safe or Unsafe operands, no special treatment is needed

state to correspond to program order, which would precludgmd execution can proceed without protection
speculative, out-of-order execution. A more aggressive strategy '

is to allow speculation, and to further allow data to be used

. X Y As the above de nitions apply at operand granularity, the
before its label is resolve‘ijBas_ed on our use of DIFT, it will ISA permits optimizations that are functions of individual
be clear the latter approach is not secure. Instead, we ado E)

; : . . erands. For example, zero-skip multiply can be enabled if a
(CZTIng{]%\;gnﬁgggsm Section VI) a middle ground which W blic operand is 0, regardless of whether other operands are

Con dential.

Rule 1V.1. (Coherent labels) When reading an operand, its Specifying each instruction operand as Safe/Unsafe at the

label must be resolved with respect to the dynamic sequen g ; : . o
; : L ; : A level is a key design feature, and provides signi cant
of speculative/non-speculative instructions (which does n(ﬁtexibility to both the ISA and hardware designer while

necessarily follow program order) that have executed so far to;” ~..~2 . ;
generate that operand. simplifying programmer-level reasoning about security. At the

ISA level, an ISA designer can decide which instructions are
suf ciently important to warrant Safe operands. These choices

: . - ‘ should be made carefully: On one hand, Safe operands impose
physically extend each data word with a label bit, which allowsg y,rqen on hardware designers as the processor must support

normal processor dependency tracking to ensure labels afgs hanisms to uphold De nition I11.1 for those operands. On
resolved on time. We use this strategy for our implementatiog gther hand, Safe operands do not specify an implementation
in Section V. strategy. Hardware designers can implement a given operation

2) Instruction operand-level security speci cationgn an ~ USing simpler data oblivious instructions (e.gi})[hardware
OISA, instruction de nitions specify, for each operand, whetherPartitioning (e.g., £7]) or cryptographic techniques (e.g2,q)—
that operand can accept Public or both Public/Con dential datgl€pending on what is ef cient given public parameters and the
We call the former arUnsafeoperand and the latter @afe ~ SP€CI C 'mlcroarchltecture. In elther case, programmers V\{ork
operand. Once speci ed, the hardware designer must handygth a simple guarantee: Con dential values will not be at risk
the following cases. when consumed by Safe operands, and dynamic execution will

)) be terminated when violations to this policy are detected.
Rule IV.2. (Condential ! Safe) When Con dential data

is sent to a Safe operand: the hardware designer musg concrete OISA Speci cation

add mechanisms to enforce De nition Ill.1, for a specied

observability function, despite that instruction's execution. For ~ Using the principles from the previous section, we now

example, by disabling performance optimizations, scrubbingresent a concrete OISA that we will implement on top of

side effects and masking exceptions that occur as a function ¢he RISC-V BOOM processor. Figure 2 shows data oblivious
Con dential operands. instruction encodings, supported instruction types, and the
Rule IV.3. (Condential! Unsafe) When Con dential data Safe/Unsafe characteristics for each operand (Section IV-A2).

is presented to an Unsafe operand: the hardware must stop 1) Label propagation:Our ISA requires word-granularity
(squash) that instruction's execution as soon as the label isabels, tracked in the register le and memory. In most cases,
resolved. This event is called a label violatigthV. Due label update logic follows standard taint tracking rules, given the
to Rule IV.1,#LV will be signaled immediately after regis- 2-level security latticd Public, Con dentiag [60], as shown
ter/memory read, and before the execute stage begins. If the Figure 2. When the result is fully determined by Public
violating instruction is the next instruction to retire (i.e., is operands, regardless of other operands (e.g., zero-skip multiply),
non-speculative), terminate the program. This event is called #he result label is set to Public (as done in GLIFE][but

label fault #LF. not shown in Figure 2 for simplicity).

A simple implementation that satis es Rule IV.1 is to

. S 2) Label declassi cation: Declassi cation—downgrading
That is, Rule IV.3 is similar to rules that handle badly typed ya5" marked Con dential to Public—is a rare but necessary

programs, extended to speculative execution. Label violationgysi needed to e.g., return results. Our ISA supports a

(#LV) are caused by transient conditions, e.g., imperfeckjngle serializing declassi cation instruction calleinseal

FR—— - — - - Serializing instructions are not executed until all older in- ight
(f . “ﬁg?gaggcuﬁgg dential \feﬁ?m']cs[iy equivalent to the latiteHg jnstryctions retire. This is necessary for security: declassi cation
SFor example, §9] proposes storing labels in the page table. If the proceSSO|JS.the qnly meChamS.m to demote .Con dem"’?" to Public, and
supports speculative store-forwardirig] (Vector 4), data will be used before this action under malicious speculative execution could be used

the label lookup completes. to bypass label checking.

Fig. 2: Dat Oblivious ISA.R/Lr, M/Lm denote register le data/labels, memory data/labels, respectively. The label Public is denoted logic O,
Con dential logic 1.rs1 andrs2 denote operand registers in RISC-V instructions whilelenotes destination register. R, I, B, J, S-type refers to
standard RISC-V instruction format§7]. ext extends the immediate to the word width. If assembly notation is unspeci ed, it follows RISC-V
with an "o’ pre x (e.g.,add becomesadd). OSZ refers to the microarchitecture-speci ¢ oblivious memory partition size (Section 1V-B6).

3) Instruction set: Our ISA supports the following in- 5) Putting it all together: To summarize the section, we
struction types, which we chose to maximize compatibilityshow a version of Figure 1b written using our OISA in
with existing data oblivious codes and minimize hardwareFigure 3a. The programmer need only specify what data is
changes. First, all RISC-V integer and oating point arithmetic Con dential via oseal The ISA and hardware will prevent
with Safe operands. This means programmers can implemeéx3 from being processed by subsequent speculative/non-
oating point directly, without invoking bitwise librariesg]. speculative Unsafe operands. For example, specifgixg
Second, random number generation, as many randomized deda an address to a speculative/non-speculatiktriggers a
oblivious codes require private random numbers (ecd], [65], #LV/LF, respectively.

[66], [2]], [21]). Third, acmov-style ternary/conditional move - . .
operator with a Safe predicate for implementing conditionals, . 6) Oblivious memory extensiom common bottleneck in
and branches/jumps with Unsafe operands to reduce Coc?qstmg data oblivious code is the inability to use Con dential

footprint. Fourth, load/store operationsrlfl and orsf) with ata as memory addresses]| [1], [27], [21]. For example,
Unsafe address operands. Figure 3a needed to execute tvaold instructions. More

generally, looking up an array with a Con dential address
Lastly, we support a second avor of load/stores (with Saferequires a memory scan.
address operands) which can be used to implement oblivious

memory using Con dential addresses (Section IV-B6). To accelerate these operations, our OISA exposes two new

instructionsocld and ocst, which are analogous torld/orst

4) Mixing in non-oblivious instructionsOftentimes, only a (SectionlV-B 3) except with Safe address operands, and a new
small program region should be made data oblivious (e.g., theariant of CPUIDocpuid which returns a microarchitecture-
inner branch in modular exponentiation) to prevent unnecessagpeci ¢ constantOSZ (“oblivious memory partition size”).
performance overheads. To support these situations, we support
mixing data oblivious instructions with instructions from the
original ISA. All operands for all original instructions are
considered Unsafe. All data oblivious instructions are encodeff.
on top of the normal RISC-V ISA by modifying existing
instruction elds (e.g., theopcodeand func [62]).

Each microarchitecture is responsible for provid@§Z
bytes of “fast” oblivious storage, called tloblivious memory
artition (OMP), which onlyocld and ocst can read/write.

his storage can be used to speedup data oblivious code. For
example, ifx andy in Figure 1b both fall within the OMP,
then Figure 3a can be rewritten as Figure 3b (saving a memory

access).
igggg: zf’g 2%8’ 24 1oaddi %x1, %x0, O How much storage is provided (the value ©52 and
. oseal %‘jxg,; Sgcr’et z0addi %x2, %x0, 64 how that storage is implemented—e.g., a dedicated scratchpad,
Lorld %x1, 0(%x1) /Mem s oseal fygxs, sgcret . exible cache partition, etc.—is left to hardware designers and
sorld %x2, 0(%x2) //Mem socmov 91, %X3, 96x2 can be decided on an implementation-by-implementation basis.
socmov %x1, %x3, %x2 socld %x1, 0(%x1) //Mem (Our prototype in SectiolV-B uses ways in a cache.) We note
() Data obl. Fig. 1b. (b) Data obl. Fig. 1b w/ OMP. that the hardware constrains addresses seatlaocst to fall

within bounds 0 toOSZ-1.

Fig. 3: Data oblivious code, using the OISA, implementing Figure 1b. . .
The wordsecret denotes Con dential dat®x... are RISC-V To make data oblivious code portable across machines (each

general purpose registex0is a RISC-V idiom for constant 0. of which can specify a differer®S2), we provide the following
software/programmer-level functions:

1
2
3
4

Unsafe OblObj obl_allodUnsafe int sizp library [23] which is a data oblivious ORAM client written
void obl freg(Unsafe OblObj o) in our threat model. Depending on remaining OMP space,
Safe int obl read Unsafe OblObj o; Safe int addy ZeroTrace's internal sub-structures (e.g., the ORAM stash and
void ob] write(Unsafe OblObj o; Safe int addr Safe int datg position map ?3]) can be placed in the OMP, which we show
. Lo can speedup the original ZeroTrace byt (SectionVII-C6).
Safe/Unsafe quali ers are implied based on how thesescan s a fallback that emulates oblivious memory using

functions are implemented. That isjze must be Public. ma| memory, and is implemented as a sequenagldfand
obl_allodfree dynamically allocate/free an oblivious memory §-movinstructions (Figure 4).

object OblObj which exposedype, baseand bound elds.
type= f OMP; ORAM; SCANg and is determined bgbl_alloc Pointed out by], when scan vs. ORAM is more ef cient
under the hood using the following rules: depends on the memory size and the allocator should take this
into account based on the allocatisize parameter.
1) If the new object will completely t into the OMP, based
on thesizeargument, previous allocations, a@i5Z set ~ process-OS Interface
type= OMP.
2) Else: depending on remaining space in the OMP and the Processes interact with the OS through exception handling,
sizeargument, set the type &RAM or SCAN Heuristics ~ context switching and system calls. We design the OISA to
to select which are described below. cause minimal friction with the existing OS-process interface.

1) Exceptions:Exceptions leak data-dependent conditions
(e.g., when a divide by zero occurs) in programd[[1]. When
an exception occurs on instructions with all Public operands, it
is handled like a normal exception. When an exception occurs
on an instruction with a Con dential operand, the hardware
must mask that exception (e.g., by replacing the result with
a canonical value and leaving the label unchanged). In this
design, the adversary may learn an exception has occurred only
if resulting data is explicitly declassi ed witlbunseal

Post-allocation, users perform reads and write©dObjs
throughobl_read and obl_write, which instrument each oper-
ation based on the allocator's prescribggge, as shown in
Figure 4. We describe theRAM type below.

int obl_read(OblObj * 0, int addr) {
#oblivious {

int ret; int tmp;

switch (o->type)

case OMP: . 2) Context switching:In the current design, the OMP
?_srrp érﬁaﬁdf-r-%?adfﬁ)l’ "(;/'?2(6->base))- (SectionIV-B6) and register le labels are added as thread
asm ("ogld %0, 0(%1)": ’ state. Labels in memory are mapped to pages in a region
"=t (ret): r" (tmp)); of virtual memory that cannot be accessed directly by the
break: program (Sectiorv-C1). While adding the OMP to thread
case ORAM: state doesn't make context switching performance-prohibitive
ret = oram("read"”, o, addr); break; for the OMP sizes we consider in Section VII, it will for
case SCAN: suf ciently large OMPs. We leave integrating the OMP into
for (int j = o->base, | < o->bound; j+=4) { normal process virtual memory (e.g., by using the RISC-V
asm (‘orld %0, 0(%1)" VLS technique §7]), as future work. Finally, if the adversary
=" (tmp): T 0/(%); %l o) is supervisor-level (Sectioii-B), we rely on the shielding
?fp? ((re‘i;:.mf?.\.’ ng'add"r)v arh)(fmp))' system, e.g., SGX, to protect program data during context
} break: ' ' ’ switches. For example, in an SGX setud]] all data (Public

and Con dential) would be stored within the SGX ELRANGE.

Fig. 4: obl_read implementation ¢blwrite is analogous). 3) System callsWe rely on orthogonal software techniques

#oblivious is short-hand to indicate that the body consists onlytO Sanitize system call arguments [65], [41].
of data oblivious instruction®ram's implementation is discussed in
SectionlV-B6. “=r",“+r" denotes output register; “r’ denotes input. V. |IMPLEMENTATION

return ret; } }

This section describes how we prototyped our OISA on
the RISC-V BOOM microarchitecture. Our design augments
returns OSZ, the implementation-speci ¢ size of the OMP. BOOM 'v2," which is the most recent iteration of the BOOM

: ; ; . . design Pg. We give the exact parameters used for the
Egéweaémﬂ:g]?nnéagggﬁ em;yz/ezllséctmcrettg r?n glfg erfn 'onr?rirr?]%tr'%n@dchitecture in Table II, which corresponds to the block diagram
decisions. Sincesize and branches/jumps in our OISA are N Figure 5 and is a default BOOM con guration.

Unsafe, the strategy selected for each allocation depends onl

on the program (which is Public) and the machine architecturé). RISC-V BOOM Summary

LasttAy, Wg notfe that smce” thet_allocator mak?s decisions b?‘fed We rst summarize unmodi ed BOOM (referencing Fig-
OB. (ior her ?dpbrevulalus at odca '?”S’ more periormance-SensiiVe 5y These details will be used for our implementation (this
objects should be allocated rst. section) and formal analysis (Section VI).

obl_alloc decides on each allocationtype based on
information returned bycpuid In the current desigmcpuid

ORAM and SCAN types. When the oblivious object does First, multiple instructions aréetchedeach cyclef . Based

not t into the OMP, the allocator may implement it as an on the current program counter (PC) and decoded instructions,
Oblivious RAM [47] (ORAM) or memory scan. ORAMs are multiple levels of branch/jump predictors issue predictions for
randomized algorithms which implement oblivious memoryfetched branches/jumps. Mispredicted branches/jumps are dis-
in poly-logarithmic time. FOIORAM, we use the ZeroTrace covered in the execute stage, and cause subsequent speculatively

(execute non-speculatively) to prevent malicious declassi cation.
Since BOOM already implements serializing instructions, we
reuse that functionality foounseal Our prototype implements

orng as a cryptographic PRNG (iterative AES core), although
a hardware TRNG [69] may be used for a production design.

ocmovpresents a challenge, as conditional move requires
three operands (predicate, new value and old value) whereas
no RISC-V integer instruction requires three input operands.
To minimize ISA-level changes, we design a single ALU (in
one execution unit) to servecmov instructions, and add a
new RF port for that execution unit. We design this ALU to
support bypassing. This design is low overhead and ef cient.
Having one execution unit suppastmovmeans we only need
to add a single read port to the RF (nbflL per execution
Fig. 5: RISC-V "BOOM v2' pipeline pg]. “exeXX' are execution unit). Through bypassing, our design can execute back-to-back
units, and contain arithmetic/branch/etc units stated in Table lidependenbcmovs, one per cycle.
Hardware modi cations needed to support the OISA (Figure 2) are
shown in the legend. No modi cations are needed before the int/fp Finally, our current implementation implements the obliv-
register les. Label stations are discussed in Sectib@2. ‘'omp'is ious memory partition (OMP) foocldocst as a quarantined
the oblivious memory partition (Section V-B). region of the rst-level data cache. We isolate a region of
the cache using way partitioning techniqué&s][which are
a low-complexity mechanism to divide the cache into non-
interferring regions as long as the region size is a multiple of
dhe associativity (our rst-level cache is 16-way; Table II). This

scheduled(possibly out-of-order) to execution units. Operandsdesign has low hardware overhead. If no process has allocated

become ready when they are written (or written back) to on@PlVious (l)bjec;]s (Sectioﬂ/—l?/\(/sr)],_IOMlj d?tora;ge <t:an tbe used
of two register les (RFs, for oats and integers), or when &S normai cacheé memory. VVhile atidocst instruction 1S

an execution unit nishes early armypasseshe result directly Iooklngdup tr;]e %Mi all ?ontc;urrent cache lookups are stalled
to the consumer instruction. RFs contain speculative and nof avoid cache bank contention [53]:
speculative data.

decoded instructions to squash (SectibA). Oncedecoded
instructions are added to the issue windowswhere they
wait for their operands to be ready, at which point they ar

BOOM supports a con gurable number of execution unitsC' Tracking and Checking Labels

1, each of which contains a con gurable number of primitive An important component in our OISA is checking and
arithmetic/branch/etc. units, shown in Table Il. Each executionracking Public/Con dential labels as data ows through the
unit receives dedicated read/write ports to the RFs. Primitivgyipeline and signallingfLV when violations occur. Noted in
arithmetic blocks may beipelined (have input-independent Section IV-B, we track labels at word granularity.

latency) orun-pipelined(have input-dependent latency). Lastly,

a load/store unit interfaces to the cache and decides whether 1) Label storage:Labels must be stored alongside each
load data should be read from the cache or store data quew®rd, where-ever each word resides in the processor. This
(SDQ) which contains speculative stores (store-load forwardingincludes the RF, the SDQ, the data cache hierarchy, and
Loads may speculatively execute after stores whose addreggermediate pipeline registers. In all of the above structures,
has not resolved?[/]; address alias violations are caught andwe treat data label as an extra bit in each word. This makes
squashed at retire time. Finally, a reorder buffer (ROB) it simpler to satisfy Rule IV.1: whenever a speculative or non-
tracks in- ight instructions in-order to facilitate in-order commit Speculative instruction reads an operand, normal out-of-order
(Section II-A). processor dependency checking ensures the label is resolved.

The current BOOM does not currently support SMT/hyper- Unfortunately, this strategy would require large changes to
threading. We note that our OISA is compatible with an SMTthe DRAM/below memory levels because wider words would
enabled machine and that the hardware mechanisms discusgediuire wider DRAM lines and larger page tables. Thus, at
below need not change to support SMT. the DRAM level, we store data and labels in separate disjoint
pages and modify the hardware DRAM controller to join data
and label into a widened cache line when on-chip (a similar
scheme was used in{]). This means any DRAM access in

Discussed in Sectiof-B, most instructions in the OISA our system turns into two DRAM accesses.
have exact counterparts in RISC-V, but with additional semantic-] .)
s/dynamic checks for Safe/Unsafe operands. These instructions 2) Label checks:To satisfy Rules V.2 and 1V.3: once a
reuse existing RISC-V encodings and have altered opcode/furf@NSUMer instruction indicates its intent to use an operand, that
elds to be identi ed during the decode stage. Several exce operand's label must be checked against the instruction opcode/-

tions areosea) unsea) orng, ocmoy, ocldocstocpuid which func elds, before the use occurs. We design a parameterizable
don't have RISC-V counte,rparts (I’:igure 2). hardware module called bel station which wraps each

BOOM execution unit, to administer these checks. The main
We implementoseal and ounsealas the RISC-Vaddi observation enabling the label station design is that in BOOM,
instruction with the immediate eld set to O (functionally a all operand-dependent processor state updates are signalled
move operation), but with modi ed logic to set/clear label from the execution units. This makes it possible to implement
bits. As discussed in SectidiW-B, ounsealmust also serialize a shim at the input of each execution unit to perform label

B. Support for New Instructions

checks, handle label violations/faults, and disable hardware

optimizations on Con dential inputs. TABLE [: Notations and simple helper functions.

iTi Returns number of elements ih

Tli: j] Returns items with index to j (inclusive)

| Public program

Fetch; Execute; Retire Instruction stages

Arithmetic ; Branch MemLoad=Store Instruction types

stage; pc; squash update Trace entry format

Write (addr; data; label) Token denoting write to program memory

Proj(T) Trace withupdates removed

arg;(pc;|);destpc;l) Returns instruction operand/dest elds

op(pc; 1) Returns instruction's implied arithmetic op

T:appende) Appende to end of of T

typepc;|) Return instruction apc's type (Branch, etc)

dondel) Returnstrue if estage= Retire andepc is
the stop PC givemh

SCHEDULE PREDICT Instruction scheduler and predictor functions

Fig. 6: Label station (Sectioiv-C2) for an execution unit with one internal
arithmetic unit. A real execution unit may contain multiple arithmetic units
(Table 11), in which case this logic is replicated as needed. Added hardware is

shaded. instructions that are executed is independent of Con dential
data. (a) follows by de nition, given Rules 1V.2-IV.4, and is
Speci cally, the label station (visualized in Figure 6): enforced by label stations in our implementation (Sectied2).

A (Rule IV.2: Con dential! Safe) Blocks access to/from A key insight here is that by applying these rulesally, and to

. . ; : ; ch instruction as it executethe analysis/hardware need not
arithmetic units so that any operation processing Safe operan % aware of whether each instructior¥ is speculative, executed
takes the worst case time. This is implemented using input/ou}- !

out buffers (e.g., ip- ops), a timer (counter), and operand/label ut-of-order, etc.: the checks performed to maintain security are

decode logic (“Check label” in the gure). Variable-time the same in all cases. To show (b), we leverage a key property

; : : : . . : herent in any OISAthat the inter-instruction program counter
arithmetic units and their worst-case times are given in Table | n : __ b ;
Lastly, any status bits set as a function of Con dential operandgzctg never becomes a function of (*tainted by) Con dential
are set to canonical values. '

Guaranteeing that the PC stays “untainted” involves some
s'subtlety. On an out-of-order speculative machine, the sequence
f dynamic instructions clearly depends on more than just
e program and its input. For example, the PC is in uenced
y hardware predictors and dynamic data-dependent events
Such as when squashes occur. Yet, the untainted PC property
(once proven) is surprisingly powerflland is the crux behind
why hardware performance optimizations can remain safely
-~ enabled. For example, if the PC is untainted, branch predictor

A (Label propagation) Computes the result label based ostructures are also by extension untainted. In our design, this
operand labels and stages the label to travel with the resutiolds because only branch instructions that do not c&lge
when it writes back to the RF or exits early via bypass. (i.e., those based on Public decisions) are allowed to update the
é)rganch predictor, and because maliciously “priming” the branch

redictor [LZ] can be modeled using only Public information.
f the branch predictor is untainted, it can by de nition remain
enabled.

A (Rule IV.3: Con dential! Unsafe) Checks each incom-
ing operation for illegal label-operand violations, and signal
#LV when violations are detected. All checks are performecf
before operands are forwarded to the execution unit. If an
violation is detected, the execution unit does not receive th
operation and a#LV signal is sent to the ROB, where it is
interpreted as a violation (squash) or a fault (terminatiut;),
respectively.

Label stations are parameterized at design-time based
what functionality is actually needed. For example, Executio
unit 2 (Table Il) only supports Safe-operand arithmetic an
therefore doesn't need logic to enforce Rule 1V.3 (Con dential
! Unsafe). Hence, this logic is pruned away at hardware |n general, the only new source of overhead occurs when
synthesis time. Con dential! Unsafe events cause squashes. The analysis will

show that when this occurs doesn't depend on Con dential data
VI. SECURITY ANALYSIS and, in particular, that a correctly written program should only

We will show that the OISA provides a basis for satisfying S€€ this event when honesa_ rrr11|ss—speculat|on (Sgdﬂe;ﬁ) H
ObliviougBitCycle (Sectionlll-A) by proving its security over Occurs. Predictors must be high accuracy to be effective, thus
an abstractout-of-order, speculative machind@OM), and ~ Nonest miss-speculation should be rare.
arguing that this abstract machine can be reduced to real
hardware such as the BOOM. B. ISA Level

The following analysis assumes the OISA disables the
ounsealinstruction (Section IV-B) unless otherwise stated.

The takeaway from the analysis is that the OISA provides
a basis to prove (computational) noninterference on an out-of-
order processor with speculative execution. Importantly, w
achieve this resulivhile allowing hardware optimizations, such
as branch predictors, to remain enabled artthout requiring
those structures to be partitioned or periodically ushed.

A. Takeaways and Main Insights

1) Abstract machine basicsThe functional model for
OOM is given in Algorithm 2, with notations/helper functions
explained in Table | and Algorithm 1. Our goal was to
keep the model as simple as possible, while capturing core
features. Speci cally, the abstract machine: (1) has a 3-stage
pipeline f Fetch ExecuteRetireg where each stage is atomic

Informally, for this result to hold we need to show that (a)
each instruction's visible execution and (b) the sequence of Similar observations were also made in prior work [63].

and takes one unit of time, (2) has four instruction types 5)Modeling machine stateThe current machine state at

f Arithmetic; Branch MemLoad MemStorey, (3) has innite some pointidx in the trace is determined based on the trace
fetch bandwidth and execution units, (4) can be parameterizegre x from 0 to idx. This includes program state (register le,
as an in-order or out-of-order/speculative machine. Whicltache, etc.) and intermediate pipeline/machine state. Program
instruction types support Safe/Unsafe operands are encodsthte is calculated based omem (Algorithm 1). We merge

as conditionals checking operands for label violatio#is/f. the register le and other memory into a single memory for
We explain how to extend the model (e.g., to account foisimplicity. Data always travels with its label, which models
variable latency instructions, cache, limited execution unitsRule IV.1. As mentioned in Sectiovl-B2, pipeline state (e.g.,
more pipeline stages, etc.) in Section VI-C. ip- ops/SRAM not included in program state) is modeled by

. . the sequence of PCs and stages in the trace.
2) Execution traces:The abstract machinAOOM takes q 9

as input a progranh , Public inputx and Con dential inputy 6) Proof of Security:We now prove that the abstract model
and generates a tradewhere each entrif; tracks a stage of AOOM satis es De nition 111.1 with respect to the following
each instruction as it executes on the machine. That igt-the observability functionWordStage

element inT is a 4-tuple: De nition VI.1. (WordStageobservability: Public data and

T: = (stage; pg; squask; updatg): labels at Word spatial granularity, instruction stage-level
r ' temporal granularity) Given E AOOM(I ;x;y),
stagg denotes the instruction's stagé&etch ExecuteRetireg. e o
pc denotes the instruction address/program counter. Different WOrdStageT) = fe:stagee:pc; eisquashh(e) for e2 Tg

stages for the same logical instruction share the saondf \\heren(e) returns eupdate (unmodi ed) if eupdatelabel=

stage = Execute squash= f true;falseg denotes whether the 556 “and returnsWrite(e:addr, ? ; true) otherwise.
instruction caused a squash during speculation (Sedttiar)

or due to a label violatio#LV (SectionIV-A2). If stagg 6
Execute squash = false. updatg = Write(addr, data; labe)
whereWrite is a token denoting whether program memory was

Algorithm 1: Helper functionsmeminitand mem

written, and with whaiddr, data andlabel The Publiclabel ’fangt':orr']‘_ef;g{nim’(x?“;"ic x Confidential y «/
is logic 0, Con dential is logic 1. If no write occurgddr= ?. LT) Y,
2 for x; 2 x do

3) Modeling time: In our abstraction, entries i are
ordered in time adime(T;) time(Ti+;j) for i;j O where
time is a metric for real time (e.g., clock cycles). That is, 4 for yi2ydo
multiple events may occur in the same clock cycle (as in as | T:append(Execute? ;false;Write(jxj + i;yi;true)))
real processor) or be separated far apart. Thereftage and 6 return T;
typegpG;l) allows us to model contention in different pipeline 7

w

| T:append(Execute ? ;false; Write(i; x;; false)))

stages for different instruction types. /= return coherent memory snapshot, given T.
Note, an instruction that is squashed by
4) Modeling out-of-order and speculative executioh:key another instruction may still create visible
feature in our analysis is tha#OOM is parameterized by state changes in the window of time before
two functions,SCHEDULEandPREDICT. SCHEDULErepresents the other instruction reaches Execute. */

control logic in a real processor and decides which stage of function: men(T) _ _ _
which instruction should be evaluated next. It takes as input® T_= T with all squashed instructions (trace entries) removed.

the programl and Proj(T), a projection ofT that removes That is, remove fronT any entry that occurs in between the
updatefrom each entry ié Fetch and Execute stage of an instructioh if | satis es

|:stage= Execute" I:squash(inclusive);
9 mem:=[? fort2 T9; /I jTY upper-bounds mem size
10 for %2 T%do

Importantly,Proj(T) constrains scheduling to not be a function *! L up:= x:update;

Proj(T) = festageepc, esquastfor e2 Tg

of program data (i.e.,eupdate beyond the sequence of if up:addré 2 then
pregengt/past fetchéd instrﬂctio?ms(tgge epo) andqwhether [mem{up:addr] = up:data; up-labet
those instru_ctior]s resul; ir) a squasl;s(quasl). SCHEDULE 14 return mem
outputs an indexdx 2 [0;jTj) or ?. If idx= ?, the machine
will fetch the next instruction. Iidx6& ?, the machine will))
evaluate the next stage for the instructionT§itlx]. PREDICT That is, WordStage only removes write data from the
represents branch/jump predictor logic, takes the same inputgace if the label corresponding to that data is Con dential.
as SCHEDULE and outputs the predicted next PC. W.l.0.g. weSatisfying De nition I1l.1 with theWordStagefunction implies
assUMESCHEDULE and PREDICT are deterministié. the strongest level of privacy with respect to our abstract
] machine, and implies that the machine's pipeline utilization,
Importantly, SCHEDULE and PREDICT are representative of PC sequence, set of squash events, and state w.r.t. Public

modern processors and allow us to model simple in-ordegiata is independent of Con dential data. We proceed to show
processors to advanced out-of-order speculative processorgeorem 1:

(details on this claim related to BOOM are in SectidhC). L
The only assumption we will make is thatHEDULE respects | nheorem 1. ObliviougWordStageAOOM] holds.
in-order Fetch and Retire, as done by machines today.

We prove Theorem 1 using strong induction over traces of

8Heuristics based on randomness can be modeled with an additional se8#/0_program executionAOOM(I ;x;y) and AOOM(l §X;y(),
input. relying heavily onPREDICTandSCHEDULENot being functions

10

Algorithm 2: Abstract machine de nition. As in Figure 2, the
Public label is logic 0, Con dential is logic 1.

DU A WN

~

10
11

12
13

14
15

16
17
18
19
20
21
22

23
24
25

26
27
28
29
30

31
32
33

34
35
36
37

38
39
40

41

42

function: AOOM(l ;x;y)

T := memini{x;y); /I initialize memory
while 'dongT[jTj 1];1) do
idx := SCHEDULEProj(T);!);
if idx=? then /I Fetch new instr
pc:= PREDICT(Proj(T);!);
T:append(Fetch; pc; false; Write (? ; ? ; false))) ;
else
pc:= T[idx]:pc;
stage:= TJ[idx]:stage
if stage= Fetch then Il Execute instr
| T:appendexecutéExecutepc;T;l));
else if stage= Executethen /I Retire instr
| T-append(Retire; pc; false; Write(? ;2 ;false))) ;
return T;

function: executéstage pc;T;l)

update:= Write(? ;? ;false); squash= false;
ardo.data; &o;label = MengT)[argo(pc;1)];
argy.data: A1:label = mengT)[arg; (pc;!)];

if typgpc;l)= Arithmetic then

data:= ardo;data Op(pC;l) argy.datas
label:= argyape|_ gy jabel:

update:= Write(des{pc;|);data;label);

Ise iftypgpc;l) = Branch then

if ardo;japel_ ardz;jael then
| squash=true; // #LV: Confidential->Unsafe

else
dx := index of Fetch for current instr inT;
guess= direction for PREDICT(Proj(T[0: dx]);!);
actual = argegaia O(PC |) Gy gata;
squash:= guesss actual /I mispredict

D

else

if argyjapel then

L squashi= true; // #LV: Confidential->Unsafe

else

if typgpc;!) = MemLoad then
data;label:= men{T)[ardy qatal:

L addr:= des{pc;l)

else iftypgpc;l) = MemStore then
data;label:= argy.qgata; ardjabel:

L addr:= argygata

| update:= Write(addr, data; labe)

return stage pc; squashupdate;

TABLE Il: RISC-V BOOM parameters we use for our prototype and
evaluation. Arithmetic units with a “(xx)' next to their name are un-
pipelined (variable latency), where “xx' denotes the worst-case latency.
The pre x "i' denotes integer, “f' denotes oating poin€ondMove

and Omp denote logic forocmov and the oblivious memory partition
(SectionlV-B), respectively, and are only present on our modi ed
BOOM.

Core march
Fetch/issue width
Execution unit 1
Execution unit 2
Execution unit 3
Execution unit 4
Execution unit 5
L1 I/D cache

I/D TLB

out-of-order, speculative

4 instructions fetched/issued per cycle

IALU, Branch, iMul, iDiv (6-66)

iALU, CondMove

IntToFP casting

fAdd, fMul, fDiv (5-21), fSqrt (5-29), FPTolnt casting
Load/store +Omp (memory unit)

32 KB, 4 way/64 KB, 16 way; 64 B cache lines
16/32 entries

be exposed if and only if it is intended by the protocol.

C. Implementation Level

We now map our ISA-level security analysis (Sectidv3
andVI-B) to our prototype on BOOM (Section V), referred to
asBOOM.

1) Threat vectors in unmodied BOOM:Unmodi ed
BOOM hardware (SectionV/-A) supports speculation over
branches, jumps and unresolved store instructions (Vectors 1-
3; c.f. Sectionlll-B) as well as arithmetic units with input-
dependent timing (Vector 6, Table f)Our implementation
of the OMP (Sectior'/-B) is also susceptible to cache bank
contention (Vector 5) because it uses space in the data cache.

2) Securing BOOM:Recall, the primary hardware mecha-
nisms we added to get security are dynamic information ow
tracking (Sectionv-C1), label stations per execution unit to
implement Safe/Unsafe operand semantics (Se&ti@2), and
logic to isolate the OMP (Section V-B).

In SectionVI-B, we provedObliviougWordStage AOOM].
We show how to use the proof to arg@bliviougBitCycle
BOOM]—i.e., cycle-level security of our implementation—
which implies that Vectors 1-3 and 5-6 are blocked. There
are two steps: (1) mappingOOM to BOOM and (2) mapping
WordStageto BitCycle We omit detail here, and refer readers
to the full version of the paper [71].

Finally, we remark that our current reduction to BOOM is
best effort, and consider using formal/automated methods to
improve design con dence to be important future work.

VIlI. EVALUATION

We now evaluate the OISA in terms of area overhead

of tr.ace data. Details for the prOOf are given in the full (given our prototype on RISC-V BOOM) and performance
version [71]. over Qata oblivious workloads. We also show two case studi'es,
7) Extensions to randomized cryptographic algorithms: showing how the OISA secures and accelerates constant time

It is straightforward to extend the above analysis to supporgfYPtographic code and memory oblivious libraries.
randomized cryptographic algorithms such as ORAM],[
[23]. For example, ORAM client logic can be written data A. Methodology

obliviously to satisfyObliviougWordStageAOOM] [27], [77]. We evaluate our system through hardware prototyping

What is left is to show how the visible ORAM access pattern— X :
which forms a subset of the trace—satis es computationat)oer?:“o,n\’\;n%r:a overheads and software Simulation o= show

indistinguishability 7). This reduces to the security of the
ORAM pmtoco' itself and to the OISAs mechanism to 9We note BOOM also supports load/store forwarding but is not susceptible

declassify private data, i.eopnseal For the latter, sinceunseal 1o vector 4 because the data TLB is accessed sequentially before checking the
is a serializing instruction, we know private randomness willSAQ (Section V-A).

11

TABLE Ill: Area (un?) for baseline and modi ed BOOM cores. TABLE IV: Benchmarks and input data sizes for compaiirggcure
doisa and doisa omp.

BOOM BOOM + OISA Overhead

- Name Implementation Data size (small / large)
0,
éc;%gAI(l:\/l ggz'ggg ggfggf E'ggof; mat. muft data oblivious by default 256x256 1 1024x1024
Total 748’132 779’949 4'250/ neural network " 64-1K-8 / 1024-32K-256 (2 layers)
’ ! E970 ndmax 8K / 1M integers
sort bitonic-sort goisa), data obl. 4K / 256K integers
. i merge-sort doisa_omp)
1) Hardware prototyping: We build on top of the open- _pagerank GraphSC [77] 1K / 16K nodes

source BOOM design2f] which is written in the Chisel bPinary search — memory scanddisa), obl. 8K/ 16M integers
memory ¢loisa_omp)

hardware deSCriPtion Ianguage I We parameterized the_ kmeans obl. memory for histogram 64/256 clusters, 4K/32K points
prototype according to Table Il and synthesized the desigheap push 835[[]] 88}5 // 322’\1\//'! integers in rr:eap

i i eap pop integers in heap
using a 32 nm commercial process and the Synopsys ow. Wéparse dikstra ObIVM [5] 256 / 4K veriioss

report standard cell (logic cell) area for logic and ip- ops post
synthesis, and report SRAM area using the widely used Cacti

tool [] BOOM maps the instruction/data caches/TLBs and 1) Comparison systemsiVe compare two systemsd.eisa
branch predictor tables to SRAM. Remaining storage structuregnd doisa omp—to a baselineinsecure system. All three
(e.g., the SDQ, RFs) are mapped to ip- ops. The BOOM systems use the same microarchitecture (Table Il). Benchmarks
word width is 64 bits. run oninsecureare written in a non-data oblivious fashion (i.e.,

2) Software simulationThe BOOM hardware only features Without the constraints in Sectidfl-B). Benchmarks run on.
a single-level cache, whereas commercial machines featuﬁ?'saare data oblivious, and written using only instructions in
two- or three-level caches to reduce traf ¢ to DRAM. Thus, to F19ure 2 excepocldocst (the oblivious memory extension; c.f.
measure more realistic performance gures for our system w ectl_o?IV—%62. Tgllj.s.'do'sa"l’j'” be S|m||£ar pe(rformanhcg-W|lfe
use Multi2Sim [5], parameterized to match Table Il as closely \© €XIStng da ? o Ngll\J/ISPC% es, ﬁ.g., f acccrgh_\[v ich don
as possible. For all experiments, we use a 256 KB 4-way levejave access to an . Bénchmarks rundorsa omp use
Il instructions in Figure 2 includingcld/ocst

2 cache (that is shared by data and instructions) and a 2 MB
16-way level 3 cache. This con guration is similar to a single 2) workloads: We evaluate a suite of common workloads
slice on an Intel Skylake machine. (Table IV) which have previously been written and evaluated

3) OMP usage:We use a 32 KB OMP (Sectiov-B6) that ~ data obliviously [], [6€], [77], [64] on existing x86 machines.
is built into the level 1 data cache. This is suf cient to store 1 N€S€ codes are divided into three categories. First, codes

ORAM sub-structures (Sectioiv-B6) and also big enough to that are nearly data oblivious in their default form (mat mult,
t tables for constant time cryptographic routines (e.g., AESN€Ural network, ndmax). Second, codes that rely heavily on
T-tables and RSA multiplier tables). Some workloads do noflata oblivious sort as a subroutine (sort and pagerank). Third,

bene t from the OMP (e.g., some do not have data-dependerfiodes that rely heavily on oblivious memory (binary search,
memory access patterns). In this case, a bit in thread stafg€ans, heap, dijkstra). We will also perform case studies

disables the OMP to recover cache space. showing our proposal's applicability in two additional important
settings—constant time cryptography and oblivious memory—

in Sections VII-C5 and VII-C6.

B. Hardware Prototyping and Area Results
. 3) Data set sizesfor each benchmark, we evaluate “small'

We show area results for unmodi ed BOOM and BOOM 44 jarge’ data sizes. “small' indicates the largest input size
extended to support our OISA in Table lll. Our prototype that wholly ts into the 32 KB OMP (SectiorVII-A). We use
supports all instructions in SectioW-B and Figure 2. The main s con guration for two reasons. First, to show the bene t of
hardware components needed to support the OISA are storag@ying an OMP. Second, to performance compare against prior
for DIFT, logic/storage for label stations, logic to partition the ok (Raccoon {], which uses similar data sizes). Finally, we
OMP, and a random number generator dong (Section V). show the “large' data size to illustrate overheads where program
For structures that need to store labels, we store those Iabe(s] ta does not completely t into the OMP. In that case, we
alongside the data in whatever medium the data was storeg|ipack to ORAM or SCAN as described in Section IV-Bé.
in. That is, labels in data cache are stored in SRAM, labels in
the SDQ and register les are stored in ip- ops. The largest 4) Results: Figure 7 shows the overhead dfdoisa
single area overhead comes from an iterative AES core that waoisaompg f small, largg relative toinsecure The main
downloaded from OpenCores(] to implementorng. This unit takeaway is thatloisa omp achieves signi cant &8 /1.7
has area 10,935 ui(3% of the logic area for the unmodi ed for small/large data sizes) speedup odeisa Furthermore,
BOOM), and can be replaced by a hardware TRNG (whoséoisa omphas only3:2 /40:4 slowdown relative tdnsecure
area is negligibly small [69]) in a production design. on the same data sizes. This shows that our OISA makes data

. blivious computing practical in cases where data ts in the
The takeaway is that hardware overheads are tolerable, bo%Mp' puting p

on the logic and SRAM side, showing the practicality of the
proposal on advanced commercial-class machines. There are two avenues for future work. First, enhance the
OMP to support larger sizes (e.g., beyond the level 1 data
cache, see SectiolV-C2). As we see on the large data set
size, overhead for botHoisaand doisa omp can be large for

We now perform studies to evaluate the performancevorkioads that depend on oblivious memory, as large data sizes
overhead of running data oblivious code securely, with and¢annot t into the OMP. Second, engineer more sophisticated
without the oblivious memory partition. instructions supporting Safe operands. For example, sort is an

C. Performance Results

12

Fig. 7: Performance comparison betwednisa and doisa omp
relative toinsecurefor small/large data sets.

important kernel in multiple data oblivious code&d], [77], Fig. 8: Comparison between oblivious memory primitives. Scan
[19, [64]. An OISA can support arosort instruction with is the SCAN code from Figure 4, shown for completeness. non-
Safe operands directly, and use techniques such as hardwaesursive/recursive Path ORAM are baseline ZeroTrace [23].
partitioning to speedup that operation.

. ; :) Results are shown in Figure 8oisa omp provides signif-
5) Case study: constant time AESn important com H ant speedup in all size regimes. For small ddtzEisa omp

mercial use-case for data oblivious code today is “consta ; . e
time” cryptography. Many papers have demonstrated how u laces the entire memory in the OMP, providing() (> 1000

protected codes—e.g., T-table AES5] and naive modular speedup) time access to that data. For larger dﬁﬂ&a_ompld
exponentiation for RSA—Ieak privacy over microarchitecturf:llEsetsscfAN or ORAM,dd(Tpendmg OOrll?,\Al\vl\r/]llcrt] s';]re_xte?hy %eM;'
side channels]], [53], [52]. As a result, practitioners use slower heslper ormanci, and places g. . hs %S ”.1|_ e In
codes to improve security—e.g., S-box or bitslice AES][the latter case. An important nding in the ZeroTrace paper
and montgomery ladder exponentiation for REA. is that stash management, written data obliviously, creates a
performance bottleneck. Since the stash does not grow as a

Our OISA provides a basis for running high-performancefunction of the ORAM capacity, we can use the OMP to store
cryptography securely. To demonstrate the bene t, we comparthe stash and manage it more ef ciently, which allows us to
the performance of T-table AES] (high performance, low improve over baseline ZeroTrace by4:6 in all regimes.
security) vs. bitslice AESTf] (low performance, high security).

For this study, we retro t T-table AES using our ISA and store VIIl. RELATED WORK

the T-tables in the OMP to prevent cache attacks (the rest . o)

of the code is naturally data oblivious). This gives us a highPata oblivious stack.Beyond data oblivious code written for
performance, high security code. The OISA can securely rutpday's ISAs, there is a rich literature to improve algorithm/data
both the fully unrolled code or a variant with a loop over thestructure {71, [7€], [7€], [77], [80], [81], [64], [87], [87], [6€]
number of rounds, regardless of branch prediction accurad%erfor_mance in theoftware circuitabstraction. Additionally,
(Section 111-B). We argue that on commodity machines todaythere is rich literature to write (e.g.04], [84]) and compile

highly sensitive applications will have to resort to codes like(€-9-, B4, [85], [87]) programs to software circuits. An
bitslice AES. important observation is that, although many of these works

target cryptographic backends such as garbled circuits, their
Both codes are compiled with gcc usiF@3 optimizations. underlying programming abstraction (software circuits) is very
Relative to an insecure T-table AES codlesécurg, our data similar to the data oblivious abstraction. For example, bitwise
oblivious T-table AES doisaomp) has a2:17 slowdown, crypto can be easily mapped to integer-wide operations. Thus,
while bitslice AES has @:6 slowdown against the same our proposal can be used as a secure hardware backend for
baseline. Our slowdown relative timsecureis caused by these works.
the compiler not optimizing code arouratld instructions.
Thus,doisa omp can achieve even lower slowdown with better Secure co-processors. Secure Co-processor proposals
compiler support. Ghostrider (] and Ascend 9] have the same security goal
(De nition 111.1) as this paper, but assume a course-grain
6) Case Study: ZeroTrace’f]: Beyond encryption, there observability function that only captures the processor's
is a rich literature to accelerate data structure operationgxternal pin activity (whereas this paper considers ne-grain
data obliviously [66], [64], [21]. These schemes typically useobservability; c.f. Sectionll-A). These proposals also assume
oblivious memory as a subroutine. We now demonstrate how thgimple processor pipelines and scheduling (e.g., one process
OISA can speedup this subroutine by comparing our obliviouper chip at a time). Relative to these works, our goal is to
memory API to the original ZeroTracé §] proposal. Discussed
in SectionlV-B 6, our library combines ZeroTrace with the OMP We note that an alternate ORAM, Circuit ORANZ], was designed to

to achieve speedup for different oblivious memory sizes. avoid stash management overheads. Unfortunately, Circuit ORAM has worse
bandwidth—2 logn vs. 8 logn and3:5 logn for data sizen—than Path
ORAM, which relies on a stash. Since our oblivious memory extensions make
10piscussed in Sectiotll-B, even hardened codes may be insecure due tostash management essentially free, our scheme based on Path ORAM will
subtle hardware optimizations. outperform Circuit ORAM.

13

	Introduction
	Challenges
	This Paper

	Background and Threat Model
	Hardware Terminology
	Out-of-order execution
	Speculative execution

	Threat Model

	Data Oblivious Execution
	Security Definition
	Security Issues in Existing Data Oblivious Code

	Data Oblivious ISAs
	Design Principles
	Dynamic tracking for Confidential (sensitive) data
	Instruction operand-level security specifications

	Concrete OISA Specification
	Label propagation
	Label declassification
	Instruction set
	Mixing in non-oblivious instructions
	Putting it all together
	Oblivious memory extension

	Process-OS Interface
	Exceptions
	Context switching
	System calls

	Implementation
	RISC-V BOOM Summary
	Support for New Instructions
	Tracking and Checking Labels
	Label storage
	Label checks

	Security Analysis
	Takeaways and Main Insights
	ISA Level
	Abstract machine basics
	Execution traces
	Modeling time
	Modeling out-of-order and speculative execution
	Modeling machine state
	Proof of Security
	Extensions to randomized cryptographic algorithms

	Implementation Level
	Threat vectors in unmodified BOOM
	Securing BOOM

	Evaluation
	Methodology
	Hardware prototyping
	Software simulation
	OMP usage

	Hardware Prototyping and Area Results
	Performance Results
	Comparison systems
	Workloads
	Data set sizes
	Results
	Case study: constant time AES
	Case Study: ZeroTrace ZeroTrace

	Related work
	Conclusion
	References

