
Data Oblivious ISA Extensions for Side
Channel-Resistant and High Performance Computing

Jiyong Yu, Lucas Hsiung, Mohamad El Hajj, Christopher W. Fletcher
University of Illinois at Urbana-Champaign

{jiyongy2, ljhsiun2, melhajj2, cwfletch}@illinois.edu

Abstract—Blocking microarchitectural (digital) side channels
is one of the most pressing challenges in hardware security today.
Recently, there has been a surge of effort that attempts to block
these leakages by writing programs data obliviously. In this model,
programs are written to avoid placing sensitive data-dependent
pressure on shared resources. Despite recent efforts, however,
running data oblivious programs on modern machines today is
insecure and low performance. First, writing programs obliviously
assumes certain instructions in today’s ISAs will not leak privacy,
whereas today’s ISAs and hardware provide no such guarantees.
Second, writing programs to avoid data-dependent behavior is
inherently high performance overhead.

This paper tackles both the security and performance aspects
of this problem by proposing a Data Oblivious ISA extension
(OISA). On the security side, we present ISA design principles
to block microarchitectural side channels, and embody these
ideas in a concrete ISA capable of safely executing existing data
oblivious programs. On the performance side, we design the OISA
with support for efficient memory oblivious computation, and
with safety features that allow modern hardware optimizations,
e.g., out-of-order speculative execution, to remain enabled in the
common case.

We provide a complete hardware prototype of our ideas, built
on top of the RISC-V out-of-order, speculative BOOM processor,
and prove that the OISA can provide the advertised security
through a formal analysis of an abstract BOOM-style machine.
We evaluate area overhead of hardware mechanisms needed to
support our prototype, and provide performance experiments
showing how the OISA speeds up a variety of existing data
oblivious codes (including “constant time” cryptography and
memory oblivious data structures), in addition to improving their
security and portability.

I. INTRODUCTION

With the rise of cloud computing and internet services,
digital or microarchitectural side channel attacks [1] have
emerged as a central privacy threat. These attacks exploit
how victim and adversarial programs share hardware/virtual
resources on shared remote servers (e.g., an amazon EC2 cloud).
Simply by co-locating to the same platform, researchers have
shown how attackers can learn victim program secrets through
the victim’s virtual memory accesses [2], [3], hardware memory
accesses [4], [5], branch predictor usage [6], [7], arithmetic
pipeline usage [8], [9], [10], speculative execution [11], [12]
and more. Given the many avenues to launch an attack, it
is paramount for researchers to explore holistic and efficient
defensive strategies.

1 x = 0, y = 64
2 if (secret)
3 x = y
4 z = Memory[x]

(a) Insecure code.

1 x = 0, y = 64
2 z = Memory[x]
3 tmp = Memory[y]
4 z = (secret) ? tmp : z

(b) Equivalent data oblivious code.

Fig. 1: Non-oblivious (1a) and equivalent data oblivious codes (1b.
The word secret denotes private data.

Recently, there has been a surge of work that attempts to
block all digital side channels, on commercial machines, by
writing and compiling programs in a data oblivious fashion
(e.g., [13], [14], [15], [1], [16], [17], [18], [19], [20], [21],
[22], [23], [24], [8], [25]). Data oblivious code, a.k.a. “constant
time” or “running programs as circuits,” blocks side channels
by disallowing private data-dependent control flow. Figure 1
gives an example. Figure 1a leaks private information over
microarchitectural side channels—namely, program execution
time (the ‘if-taken’ case executes more instructions) and
memory footprint (if x and y touch different lines in cache).
To block these leakages, a data oblivious program will evaluate
both sides of the branch as shown in Figure 1b. A ternary
operator—e.g., implemented as the x86 cmov instruction or
bitwise operations—chooses the correct final result (Figure 1b,
Line 4). Since executing each side of the branch is independent
of the secret, and the ternary operator does work independent
of the secret, running the code data obliviously does not leak
the secret.

A. Challenges

Despite the promise of data oblivious programs to block
side channels, future progress faces two key challenges.

Security: Existing Instruction Set Architectures (ISAs) provide
no guarantees that instructions used in data oblivious codes
can block leakages over microarchitectural side channels. For
example, if cmov (used as the ternary operator in [1], [23],
[17], [19]) was ever implemented as the microcode sequence
branch+mov, the secret condition would leak through branch
predictor state and whether hardware speculation results in a
squash. Being ISA-invisible, these changes can occur at any
time. Case in point, Intel has stated that cmov’s behavior w.r.t.
speculation may change in future processors ([26], Section 3.2).

Beyond cmov, the larger problem is that commercial
ISAs such as x86 give engineers significant rope to perform
data-dependent optimizations during program execution. For
example, it is well known that arithmetic units can sometimes
take data-dependent time [8], [9]. We provide a comprehensive
background on related vulnerabilities in Section III-B. Any
of these software-invisible optimizations can undermine the

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA
ISBN 1-891562-55-X
https://dx.doi.org/10.14722/ndss.2019.23xxx
www.ndss-symposium.org

security of prior and future work that attempts to write data
oblivious programs.

Performance: Data oblivious codes can incur large per-
formance overheads. The reason, once again, is that data
obliviousness does not have ISA-level support. As a result,
programmers are forced to use only the simplest instructions
to achieve data oblivious execution, out of fear that other
instructions will leak privacy. For example, data oblivious codes
must make two memory accesses in Figure 1b out of fear that
a single access will reveal the address through the processor
cache, or other, side channel. This overhead scales with deeper
data-dependent control �ow and larger data sizes.

B. This Paper

In this paper, we tackle both the security and performance
aspects of this problem by developing a novel type of ISA
extension which we call aData Oblivious ISAextension (OISA).
To our knowledge, this represents the �rst foundation for writing
and executing secure, portable and performant data oblivious
code on commercial-class (out-of-order, speculative) processors.
To this end we make the following contributions:

1.) Design principles for OISA design.Our key idea is to
explicitly specify security guarantees at the ISA level, while
decoupling those guarantees from the implementation details
of a particular processor. Speci�cally, each operand of each
instruction is given an ISA-level attribute specifying whether
that operand isSafeto receive private data. If marked Safe,
processor implementations (microarchitectures) using that ISA
must hide operand-dependent side effects from other parts of
the system due to that instruction's execution. Importantly, how
protecting Safe operands is implemented is left to the hardware
designer, who can devise ef�cient protections depending on
each microarchitecture (e.g., by breaking the instruction into
simpler data oblivious instructions [8] or using hardware
partitioning [27] or using cryptographic techniques [23]). In all
cases, the programmer works with a simple, portable guarantee.

2.) Design of a concrete OISA.With these principles, we
de�ne a set of instructions that can serve as the foundation
for the rich line of ongoing work in data oblivious program-
ming [14], [13], [17], [18], [19], [20], [24], [23], [22], [1], [21],
[8], [25]. Beyond Turing completeness and security, we also
want to reduce the performance overhead common with data
oblivious code. To that end, we provide additional instructions
that implement ef�cientmemory obliviouscomputation [23],
[21] (featuring loads/stores with private addresses). Given the
principles above, this extension is conceptually simple: instead
of emulating memory obliviousness with dummy memory
operations (Figure 1b), we designate a new load instruction
whose address operand isSafe, which gives hardware designers
the ability to build secure and ef�cient implementations, e.g.,
using partitioning, for that speci�c operation.

3.) Hardware prototype on an out-of-order, speculative
processor.To show that our ideas are practical, we prototype
all hardware changes needed to support our ISA on top of
the RISC-V BOOM processor (for “Berkeley Out-of-Order
Machine”) [28]. BOOM is the most sophisticated open RISC-V
processor, featuring modern performance optimizations such
as speculative and out-of-order execution, and is similar to

commercial machines that run data oblivious code today.1

4.) Formal analysis: non-interference on out-of-order, spec-
ulative execution-class processors.In parallel to our hardware
prototype, we develop a formal analysis that models an abstract
BOOM-class processor (out-of-order, speculative, superscalar),
and describe how to map the abstract BOOM to our concrete
BOOM prototype. A key insight enabling this analysis is that
by applyinglocal checks to each instruction as it executes, the
analysis/hardware need not be aware of whether each instruction
is speculative, executed out-of-order, etc.: the checks performed
to maintain security are the same in all cases. Through this
formalism, we prove that the ISA provides a basis to satisfy
strong security de�nitions such as non-interference [32] on
advanced machines. Importantly, we achieve this resultwhile
allowing high performance hardware optimizations (e.g., out-of-
order, speculative execution) to remain enabled in the common
case andwithout ever requiring hardware �ushes to structures
such as the cache or branch predictors [33], [34].

5.) Evaluation. We evaluate our proposal in terms of hardware
area and performance over a range of existing data oblivious
programs (including linear algebra, data structures, and graph
traversal). Area-wise, our proposal takes< 5% the area of the
unmodi�ed BOOM processor. Performance-wise, our ISA and
hardware implementation provides an8:8� /1:7� speedup on
small/large data sets, respectively, relative to data oblivious code
running on commodity machines (and with the security and
portability bene�ts stated before). We also show case studies,
where our ISA speeds up constant time AES [35], [36] by 4:4�
and the memory oblivious ZeroTrace [23] library by 4:6� to
several orders of magnitude, depending on parameters.

We have open-sourced our prototype design on the RISC-V
BOOM processor at https://github.com/cw�etcher/oisa.

II. BACKGROUND AND THREAT MODEL

A. Hardware Terminology

1) Out-of-order execution:Modern commercial processors
such as the RISC-V BOOM [28] dynamically schedule and
execute data-independent instructions in parallel and out of
program order to improve performance. Instructions arefetched
and issued(enter the scheduling system) inprogram order,
execute(perform their operations and produce their results)
possibly out of program order, and �nallyretire (make their
operation externally visible by irrevocably modifying the
architected system state) in program order.

2) Speculative execution:Speculative execution improves
performance by executing instructions whose validity is un-
certain instead of waiting to determine their validity. If such
a speculative instruction turns out to be valid, it is eventually
retired; otherwise, it issquashedand the processor's state is
rolled back to a valid state. (As a byproduct, all following
instructions also get squashed.) That is, a squash causes a large
pipeline disturbance. There are multiple ways an instruction
stream can be speculative—e.g., due to branches, memory
accesses [37], or even arithmetic instructions [38]—discussed
further in Section III-B.

More details on BOOM are given in Section V-A.

1We note that prior work [29], [30], [31] requires the use of discrete co-
processors with simple microarchitecture. To match modern cloud deployments,
our goal is to supportconcurrentexecution of many processes on advanced
microarchitectures.

2

B. Threat Model

We consider the setting where a victim program runs on
a shared machine in the presence of adversarial software.
The adversary's goal is to learn private data in the victim
program through digital side channels. For example, private
inputs contributed by another party or secret program state
(e.g., a cryptographic key). The program itself is considered
public. We trust the processor hardware and that the victim
program is correctly using the OISA.

We defend against two classes of adversary: supervisor-
level (Ring-0) or user-level (Ring-3) software. In both cases,
we strive to block digital side channels that could be exploited
by the standard Intel SGX adversary used in prior work on data
oblivious programming [19], [1], [23], [24], [16], [17], [18],
[21]. This adversary is supervisor-level software that controls
when victim threads run, and therefore can monitor/in�uence
the victim's hardware resource utilization (e.g., monitor/prime
the cache/branch predictors [4], [12], [34]) at near-perfect
resolution (e.g., via [39], [2], [3]). By extension, this adversary
can monitor the victim's termination time, and determine when
a precise exception [1], [40] or system call [41] occurs. We
don't make assumptions on where the victim runs relative to
adversarial code (e.g., as an adjacent SMT context, adjacent
core, etc.). If the adversary is actually user-level software, our
threat model is strictly conservative.2

In the case of a supervisor-level adversary, we assume the
victim is running within a virtual shielding system, such as an
SGX enclave [43], [44], to prevent direct inspection/tampering
on victim data. The OISA is orthogonal to which virtual
shielding system is used, in the sense that shielded programs can
execute oblivious instructions regardless of the exact shielding
system implementation. We will therefore only discuss the
OISA, independent of the shielding system, for the rest of the
paper.

Non-goals.Physical side channels (e.g., power [45] or EM [46])
are out of scope. Similar to previous works on data oblivious
programming, we also do not consider integrity of computation.
Integrity relies on orthogonal mechanisms, e.g., traditional or
SGX-augmented process/memory isolation.

III. D ATA OBLIVIOUS EXECUTION

We now give background on data oblivious execution and
give examples for where prior work on commercial ISAs (e.g.,
x86) and modern machines (e.g., speculative, out-of-order) is
vulnerable to attack.

A. Security De�nition

Data oblivious execution satis�es computational indistin-
guishably3 of program traces, once the trace is projected by
an appropriate observability function.

De�nition III.1. (Con�dential input privacy). Given a pro-
gram l with Public (non-sensitive) inputx and Con�dential
(sensitive) inputy, O(mArch(l (x;y))) = X = f X0;X1; : : : ;XMg
represents the program's observable execution trace (projected

2Note that even user-level adversaries have been shown to be surprisingly
powerful in their ability to monitor digital side channels [42].

3Here, computational indistinguishability (adopted from the Oblivious RAM
literature [47]) is synonymous with computational non-interference [48], and
the de�nition can be easily changed to require strict non-interference [32] if
the program does not require computational assumptions.

through functionO) when running on a processormArch. What
information is contained in eachXt (for each time stept)
depends on the observability functionO. W.l.o.g. we will treat
x and y as �xed-size arrays, thusl can accept an arbitrary
number of Public and Con�dential inputs. Privacy for the
Con�dential inputs then requires:

8x 2 DataP; 8y;y02 DataC :
O(mArch(l (x;y))) ' O(mArch(l (x;y0)))

where' denotes computational indistinguishability, andDataP
and DataC denote the space of Public and Con�dential inputs,
respectively.

We denote De�nition III.1 parameterized by an observ-
ability function O and a speci�c microarchitecturemArch as
Oblivious[O;mArch], droppingmArch when it is clear which
microarchitecture we are referring to.

Existing data oblivious programs written for commodity
machines demand a rich observability function that reveals �ne-
grain details about processor state [14], [13], [17], [18], [19],
[20], [24], [23], [22], [1], [21], [25]. The reason is that machines
today are shared, and adversaries from SectionII-B can monitor
internal activity such as caches and pipeline behavior. It is
therefore useful to de�ne the most conservative observability
function that could apply to adversaries from Section II-B:

De�nition III.2. (BitCycleobservability: Security labels at bit-
level spatial granularity, cycle-level temporal granularity). Let
St = f 0;1gN denote the processor state during clock cycle
t, where state includes all on-chip storage (e.g., �ip-�ops,
SRAM).Si

t denotes the value of thei-th bit in cyclet. Given
a program executionl (x;y), BitCycle(mArch(l (x;y))) = X =
f X0;X1; : : : ;XMg whereXt = f 0;1gN and Xi

t = 1 indicatesSi
t

contains an explicit �ow4 of Con�dential data in cyclet (Xi
t = 0

otherwise).

For example, writing datad to the processor cache at address
a in cycle t sets bits inXt , corresponding to cache memory
cells ata, if either d or a were computed based on Con�dential
data. More generally, the de�nition implies the adversary can
monitor every possible hardware resource pressure (e.g., �ip-
�op level pipeline utilization, cache footprint, etc.) every cycle.
This paper's goal is to provide a basis for programs to achieve
Oblivious[BitCycle] on advanced commercial-class machines.

B. Security Issues in Existing Data Oblivious Code

Existing data oblivious codes are written extremely con-
servatively to remove code constructs that blatently violate
Oblivious[BitCycle]. For example, prior works rely solely
on a carefully chosen subset of arithmetic operations (e.g.,
bitwise operations), conditional moves, branches with data-
independent outcomes, jumps with public destinations, and
memory instructions with data-independent addresses [13], [14],
[15], [1], [16], [17], [18], [19], [20], [21], [22], [23], [24], [8],
[25].

4Formally: Let each memory cellSi take two inputs: data (ini) and write
enable (wei) where both are functions (combinational logic) taking a subset of
bits in S as input. For timet = 0: S0 (i.e., att = 0) is initialized with starting
program state,Xi

0 = 1 iff Si
0 is Con�dential data. For timet > 0: Xi

t = 1 if
(a) wei outputs 0 in cyclet andXi

t� 1 = 1 or (b) wei outputs 1 in cyclet and
X j

t� 1 = 1 for some j in the inputs toSi (ini or wei). We note that implicit
�ows [49] are accounted for onceBitCycle is applied to De�nition III.1.

3

It is important to understand when this isn't suf�cient for
security. To that end, we now detail 11 possible attack vectors
on today's data oblivious code. Importantly, we do not list many
popular attacks (e.g., prime+probe in the cache [4]) as these are
defeated by writing programs in the style described above. Yet,
attacks can still occur because the hardware can apply invisible
optimizations to undermine software-level transformations.
In the following, we describe attack vectors known to be
implemented today, and also proposals whose implementation
status is unknown. However, importantly, each optimization
could be implemented at any time, breaking existing codes.

Vectors 1, 2, 3: branch, jump, memory speculation:While
transient execution attacks [12], [11] are known to impact
general purpose code, their impact on data oblivious code has
not been adequately studied. We make an important observation
that data oblivious code security is undermined even by `honest'
speculative execution. By `honest', we mean the speculation
is not intentionally being controlled in a malicious way, e.g.,
as in [12]. The root problem is that modern ISAs have limited
resources (e.g., ISA-level registers) and executing unintentional
instructions can cause secrets stored inaliased resourcesto be
exposed accidentally.

Consider a toy example for data oblivious decryption,
exploiting conditional branch misprediction (denoted Vector
1):

1 for (i = 0; i < NUM_ROUNDS; i++)
2 state = OblDecRound(state, rkey[i])
3 declassify(state)

A legal data oblivious code can implement decryption round
logic data obliviously, with the round keysrkey considered
Con�dential (De�nition III.1), and wrap the round in a data-
independent branch to reduce code footprint. Once decryption
is complete, the program may use the plaintext in a non-
oblivious way, e.g., by using it as an address to lookup a
record in cache (denoteddeclassify(state)). Such a
non-oblivious operation can reveal information related to the
decryption keyon a speculative machine. Speci�cally, if the
branch mispredicts “not taken” (e.g., while the predictor is
training), state is prematurely exposed before all rounds
complete, allowing an attacker to perform cryptanalysis on
encryption round intermediate state.

Removing branches or disabling branch speculation is not
suf�cient to �x this issue, as other forms of speculation (e.g.,
unconditional branches/jumps, memory disambiguation [11]—
denoted Vectors 2 and 3) cause similar issues on legal data
oblivious code.

Vectors 4, 5: sub-address optimizations:Numerous data
oblivious codes, e.g., “constant time” cryptography [50], [51],
make an assumption that modulating certain bits in a memory
address (e.g., the bits indicating offset within a cache line) does
not create observable behaviors. This assumption doesn't hold
on some microarchitectures due to hardware optimizations such
as speculative store forwarding (Vector 4) and cache banking
(Vector 5), and attacks exploiting these features have been
shown to lead to full cryptographic breaks [52], [53].

Vector 6: input-dependent arithmetic:It is well known that
complex arithmetic operations (e.g., multiply/divide, �oating
point square root) exhibit observable data-dependent timing
based on their operands [9], [8]. While prior work can
mitigate these threats by re-writing complex arithmetic using

bitwise operations, this can incur over an order of magnitude
performance overhead depending on the operation [8].

Vector 7: microcode:Even simple instructions may be
decomposed into simpler instructions, called micro-ops, before
being executed. In some cases, micro-op conversion can
create data-dependent behavior. For example,cmov (which
implements conditionals based on Con�dential values [1], [23],
[17], [19]) can be broken into abranch+mov . There is
evidence to suggest that this transformation will be applied in
future Intel processors ([26], Section 3.2). This breaks privacy:
the branch direction will be speculatively guessed and whether
a misprediction occurs changes program timing due to the
squash (Section II-A).

Vectors 8, 9, 10, 11: data-based compression, data-based
speculation, silent stores:Finally, there are a number of pro-
posals whose implementation status on commercial machines
is unknown. In register �le [54] and cache [55] compression
(analogous to OS-level page de-duplication [56]), register �le
and cache pressure is a function of program data (Vectors 8 and
9, respectively). Value prediction [38] (Vector 10) speculates
on the result of a memory load or long-running arithmetic
operation, causing a squash if the prediction is incorrect
(SectionII-A). Finally, silent stores [57] (Vector 11) remove
redundant store operations (impacting cache pressure) when the
hardware detects the memory already contains the same value
at the same address. What all of the above have in common
is that they areprogram data-centric optimizations that don't
discriminate between Public and Con�dential data. Thus, they
can undermine any data oblivious code written in any style.

Takeaway:Not only is writing data oblivious code dif�cult,
it is fraught with danger due to subtle ISA-invisible optimiza-
tions such as those given above. Our proposed OISA gives
hardware the visibility it needs to decide when and when not
to apply leaky performance optimizations (such as those above)
and enables richer hardware support for data oblivious code to
speedup core operations such as oblivious memory.

IV. DATA OBLIVIOUS ISAS

We now describe data oblivious ISA (OISA) design prin-
ciples and give an example concrete OISA that we will later
implement on top of the RISC-V BOOM.

A. Design Principles

We had two primary goals in designing an OISA. First, the
ISA should expose security guarantees in a microarchitecture-
independent way. A single ISA may be embodied in many
different microarchitectures (within and across processor gen-
erations), each with different organizations and optimizations.
It isn't reasonable to ask software to reason about each
microarchitecture: a developer who writes a data oblivious
code correctly once should have con�dence that security will
hold on each microarchitecture. Second, the ISA should not pre-
clude modern hardware performance techniques, except when
those techniques have a chance to leak privacy. Speci�cally,
we want to be compatible with wide (multiple instructions
fetched per cycle), speculative, out-of-order commercial-class
machines, e.g., those described in SectionII-A , and also point
optimizations (e.g., banked caches, data-dependent arithmetic;
c.f. SectionIII-B) that, left unchecked, cause security problems.

To achieve these goals, an OISA has the following main
components (which require hardware support).

4

1) Dynamic tracking for Con�dential (sensitive) data:
We use hardware-based dynamic information �ow tracking
techniques (DIFT, similar to [58], [59]) to track how Con�-
dential data propagates through the processor as the program
executes. Conceptually, all data in the processor islabeled
Con�dential/Public at some granularity (e.g., word-level).5 This
gives hardware the ability to decide when to apply optimizations
to data in use (e.g., attack Vectors 6-7, 10-11; c.f. SectionIII-B)
and at rest (e.g., Vectors 8-9).

Prior work does not specify precise rules for when data
labeled Con�dential can be processed relative to when its label
is resolved. A conservative strategy is to require allf data, labelg
state to correspond to program order, which would preclude
speculative, out-of-order execution. A more aggressive strategy
is to allow speculation, and to further allow data to be used
before its label is resolved.6 Based on our use of DIFT, it will
be clear the latter approach is not secure. Instead, we adopt
(and prove secure in Section VI) a middle ground which we
call coherent labels.

Rule IV.1. (Coherent labels) When reading an operand, its
label must be resolved with respect to the dynamic sequence
of speculative/non-speculative instructions (which does not
necessarily follow program order) that have executed so far to
generate that operand.

A simple implementation that satis�es Rule IV.1 is to
physically extend each data word with a label bit, which allows
normal processor dependency tracking to ensure labels are
resolved on time. We use this strategy for our implementation
in Section V.

2) Instruction operand-level security speci�cations:In an
OISA, instruction de�nitions specify, for each operand, whether
that operand can accept Public or both Public/Con�dential data.
We call the former anUnsafeoperand and the latter aSafe
operand. Once speci�ed, the hardware designer must handle
the following cases.

Rule IV.2. (Con�dential ! Safe) When Con�dential data
is sent to a Safe operand: the hardware designer must
add mechanisms to enforce De�nition III.1, for a speci�ed
observability function, despite that instruction's execution. For
example, by disabling performance optimizations, scrubbing
side effects and masking exceptions that occur as a function of
Con�dential operands.

Rule IV.3. (Con�dential ! Unsafe) When Con�dential data
is presented to an Unsafe operand: the hardware must stop
(squash) that instruction's execution as soon as the label is
resolved. This event is called a label violation#LV. Due
to Rule IV.1,#LV will be signaled immediately after regis-
ter/memory read, and before the execute stage begins. If the
violating instruction is the next instruction to retire (i.e., is
non-speculative), terminate the program. This event is called a
label fault #LF.

That is, Rule IV.3 is similar to rules that handle badly typed
programs, extended to speculative execution. Label violations
(#LV) are caused by transient conditions, e.g., imperfect

5`Public' and `Con�dential' semantics are equivalent to the latticef L;Hg
(f low, highg security) whereL v H [60], [61].

6For example, [59] proposes storing labels in the page table. If the processor
supports speculative store-forwarding [52] (Vector 4), data will be used before
the label lookup completes.

prediction (SectionIII-B , Vector 1), and are correctable. Label
faults (#LF) indicate a program bug or illegal typing. Fixing
bugs is outside of our scope, so we will focus on #LV.

An important question is whether#LV creates a side channel
based onwhenit is triggered. We prove in SectionVI-B that
it does not, and further prove that#LV signals enable the
OISA to block multiple additional attacks (Vectors 1-5; c.f.
SectionIII-B), e.g., speculation that can reveal Con�dential
data, on top of the vectors blocked from SectionIV-A 1. Finally,
Public data is handled as:

Rule IV.4. (Public ! Safe/Unsafe) When Public data is sent
to Safe or Unsafe operands, no special treatment is needed
and execution can proceed without protection.

As the above de�nitions apply at operand granularity, the
OISA permits optimizations that are functions of individual
operands. For example, zero-skip multiply can be enabled if a
Public operand is 0, regardless of whether other operands are
Con�dential.

Specifying each instruction operand as Safe/Unsafe at the
ISA level is a key design feature, and provides signi�cant
�exibility to both the ISA and hardware designer while
simplifying programmer-level reasoning about security. At the
ISA level, an ISA designer can decide which instructions are
suf�ciently important to warrant Safe operands. These choices
should be made carefully: On one hand, Safe operands impose
a burden on hardware designers as the processor must support
mechanisms to uphold De�nition III.1 for those operands. On
the other hand, Safe operands do not specify an implementation
strategy. Hardware designers can implement a given operation
using simpler data oblivious instructions (e.g., [8]), hardware
partitioning (e.g., [27]) or cryptographic techniques (e.g., [23])—
depending on what is ef�cient given public parameters and the
speci�c microarchitecture. In either case, programmers work
with a simple guarantee: Con�dential values will not be at risk
when consumed by Safe operands, and dynamic execution will
be terminated when violations to this policy are detected.

B. Concrete OISA Speci�cation

Using the principles from the previous section, we now
present a concrete OISA that we will implement on top of
the RISC-V BOOM processor. Figure 2 shows data oblivious
instruction encodings, supported instruction types, and the
Safe/Unsafe characteristics for each operand (Section IV-A2).

1) Label propagation:Our ISA requires word-granularity
labels, tracked in the register �le and memory. In most cases,
label update logic follows standard taint tracking rules, given the
2-level security latticef Public, Con�dentialg [60], as shown
in Figure 2. When the result is fully determined by Public
operands, regardless of other operands (e.g., zero-skip multiply),
the result label is set to Public (as done in GLIFT [63], but
not shown in Figure 2 for simplicity).

2) Label declassi�cation:Declassi�cation—downgrading
data marked Con�dential to Public—is a rare but necessary
task needed to, e.g., return results. Our ISA supports a
single serializing declassi�cation instruction calledounseal.
Serializing instructions are not executed until all older in-�ight
instructions retire. This is necessary for security: declassi�cation
is the only mechanism to demote Con�dential to Public, and
this action under malicious speculative execution could be used
to bypass label checking.

5

Fig. 2: Dat Oblivious ISA.R/Lr , M/Lm denote register �le data/labels, memory data/labels, respectively. The label Public is denoted logic 0,
Con�dential logic 1.rs1 andrs2 denote operand registers in RISC-V instructions whilerd denotes destination register. R, I, B, J, S-type refers to
standard RISC-V instruction formats [62]. ext extends the immediate to the word width. If assembly notation is unspeci�ed, it follows RISC-V
with an `o' pre�x (e.g., add becomesoadd). OSZ refers to the microarchitecture-speci�c oblivious memory partition size (Section IV-B6).

3) Instruction set: Our ISA supports the following in-
struction types, which we chose to maximize compatibility
with existing data oblivious codes and minimize hardware
changes. First, all RISC-V integer and �oating point arithmetic
with Safe operands. This means programmers can implement
�oating point directly, without invoking bitwise libraries [8].
Second, random number generation, as many randomized data
oblivious codes require private random numbers (e.g., [64], [65],
[66], [23], [21]). Third, a cmov-style ternary/conditional move
operator with a Safe predicate for implementing conditionals,
and branches/jumps with Unsafe operands to reduce code
footprint. Fourth, load/store operations (orld and orst) with
Unsafe address operands.

Lastly, we support a second �avor of load/stores (with Safe
address operands) which can be used to implement oblivious
memory using Con�dential addresses (Section IV-B6).

4) Mixing in non-oblivious instructions:Oftentimes, only a
small program region should be made data oblivious (e.g., the
inner branch in modular exponentiation) to prevent unnecessary
performance overheads. To support these situations, we support
mixing data oblivious instructions with instructions from the
original ISA. All operands for all original instructions are
considered Unsafe. All data oblivious instructions are encoded
on top of the normal RISC-V ISA by modifying existing
instruction �elds (e.g., theopcodeand func [62]).

1 oaddi %x1, %x0, 0
2 oaddi %x2, %x0, 64
3 oseal %x3, secret
4 orld %x1, 0(%x1) //Mem
5 orld %x2, 0(%x2) //Mem
6 ocmov %x1, %x3, %x2

(a) Data obl. Fig. 1b.

1 oaddi %x1, %x0, 0
2 oaddi %x2, %x0, 64
3 oseal %x3, secret
4 ocmov %x1, %x3, %x2
5 ocld %x1, 0(%x1) //Mem

(b) Data obl. Fig. 1b w/ OMP.

Fig. 3: Data oblivious code, using the OISA, implementing Figure 1b.
The wordsecret denotes Con�dential data.%x... are RISC-V
general purpose registers.%x0 is a RISC-V idiom for constant 0.

5) Putting it all together: To summarize the section, we
show a version of Figure 1b written using our OISA in
Figure 3a. The programmer need only specify what data is
Con�dential via oseal. The ISA and hardware will prevent
%x3 from being processed by subsequent speculative/non-
speculative Unsafe operands. For example, specifying%x3
as an address to a speculative/non-speculativeorld triggers a
#LV/#LF, respectively.

6) Oblivious memory extension:A common bottleneck in
existing data oblivious code is the inability to use Con�dential
data as memory addresses [23], [1], [27], [21]. For example,
Figure 3a needed to execute twoorld instructions. More
generally, looking up an array with a Con�dential address
requires a memory scan.

To accelerate these operations, our OISA exposes two new
instructionsocld and ocst, which are analogous toorld/orst
(SectionIV-B3) except with Safe address operands, and a new
variant of CPUIDocpuid which returns a microarchitecture-
speci�c constantOSZ (“oblivious memory partition size”).

Each microarchitecture is responsible for providingOSZ
bytes of “fast” oblivious storage, called theoblivious memory
partition (OMP), which only ocld and ocst can read/write.
This storage can be used to speedup data oblivious code. For
example, ifx and y in Figure 1b both fall within the OMP,
then Figure 3a can be rewritten as Figure 3b (saving a memory
access).

How much storage is provided (the value ofOSZ) and
how that storage is implemented—e.g., a dedicated scratchpad,
�exible cache partition, etc.—is left to hardware designers and
can be decided on an implementation-by-implementation basis.
(Our prototype in SectionV-B uses ways in a cache.) We note
that the hardware constrains addresses sent toocld/ocst to fall
within bounds 0 toOSZ-1.

To make data oblivious code portable across machines (each
of which can specify a differentOSZ), we provide the following
software/programmer-level functions:

6

� Unsafe OblObj� obl alloc(Unsafe int size)
� void obl free(Unsafe OblObj� o)
� Safe int obl read(Unsafe OblObj� o; Safe int addr)
� void obl write(Unsafe OblObj� o; Safe int addr; Safe int data)

Safe/Unsafe quali�ers are implied based on how these
functions are implemented. That is,size must be Public.
obl alloc/free dynamically allocate/free an oblivious memory
object OblObj which exposestype, base and bound �elds.
type= f OMP;ORAM;SCANg and is determined byobl alloc
under the hood using the following rules:

1) If the new object will completely �t into the OMP, based
on thesizeargument, previous allocations, andOSZ: set
type= OMP.

2) Else: depending on remaining space in the OMP and the
sizeargument, set the type asORAM or SCAN. Heuristics
to select which are described below.

Post-allocation, users perform reads and writes toOblObjs
throughobl readandobl write, which instrument each oper-
ation based on the allocator's prescribedtype, as shown in
Figure 4. We describe theORAM type below.

1 int obl_read(OblObj * o, int addr) {
2 #oblivious {
3 int ret; int tmp;
4 switch (o->type)
5 case OMP:
6 asm ("oaddi %0, %1, %2":
7 "=r" (tmp): "r" (addr), "r" (o->base));
8 asm ("ocld %0, 0(%1)":
9 "=r" (ret): "r" (tmp));

10 break;
11 case ORAM:
12 ret = oram("read", o, addr); break;
13 case SCAN:
14 for (int j = o->base, j < o->bound; j+=4) {
15 asm ("orld %0, 0(%1)":
16 "=r" (tmp): "r" (j));
17 asm ("ocmov %0, %1, %2)":
18 "+r" (ret): "r" (j==addr), "r" (tmp));
19 } break;
20 return ret; } }

Fig. 4: obl read implementation (obl write is analogous).
#oblivious is short-hand to indicate that the body consists only
of data oblivious instructions.oram's implementation is discussed in
SectionIV-B6. “=r”,“+r” denotes output register; “r” denotes input.

obl alloc decides on each allocation'stype based on
information returned byocpuid. In the current design,ocpuid
returnsOSZ, the implementation-speci�c size of the OMP.
Future implementations may also return richer information,
such as machine cache sizes/etc. to make more informed
decisions. Sincesize and branches/jumps in our OISA are
Unsafe, the strategy selected for each allocation depends only
on the program (which is Public) and the machine architecture.
Lastly, we note that since the allocator makes decisions based
on the order of previous allocations, more performance-sensitive
objects should be allocated �rst.

ORAM and SCAN types. When the oblivious object does
not �t into the OMP, the allocator may implement it as an
Oblivious RAM [47] (ORAM) or memory scan. ORAMs are
randomized algorithms which implement oblivious memory
in poly-logarithmic time. ForORAM, we use the ZeroTrace

library [23] which is a data oblivious ORAM client written
in our threat model. Depending on remaining OMP space,
ZeroTrace's internal sub-structures (e.g., the ORAM stash and
position map [23]) can be placed in the OMP, which we show
can speedup the original ZeroTrace by> 4� (SectionVII-C6).
SCAN is a fallback that emulates oblivious memory using
normal memory, and is implemented as a sequence oforld and
ocmov instructions (Figure 4).

Pointed out by [1], when scan vs. ORAM is more ef�cient
depends on the memory size and the allocator should take this
into account based on the allocationsizeparameter.

C. Process-OS Interface

Processes interact with the OS through exception handling,
context switching and system calls. We design the OISA to
cause minimal friction with the existing OS-process interface.

1) Exceptions:Exceptions leak data-dependent conditions
(e.g., when a divide by zero occurs) in programs [40], [1]. When
an exception occurs on instructions with all Public operands, it
is handled like a normal exception. When an exception occurs
on an instruction with a Con�dential operand, the hardware
must mask that exception (e.g., by replacing the result with
a canonical value and leaving the label unchanged). In this
design, the adversary may learn an exception has occurred only
if resulting data is explicitly declassi�ed withounseal.

2) Context switching: In the current design, the OMP
(SectionIV-B6) and register �le labels are added as thread
state. Labels in memory are mapped to pages in a region
of virtual memory that cannot be accessed directly by the
program (SectionV-C1). While adding the OMP to thread
state doesn't make context switching performance-prohibitive
for the OMP sizes we consider in Section VII, it will for
suf�ciently large OMPs. We leave integrating the OMP into
normal process virtual memory (e.g., by using the RISC-V
VLS technique [67]), as future work. Finally, if the adversary
is supervisor-level (SectionII-B), we rely on the shielding
system, e.g., SGX, to protect program data during context
switches. For example, in an SGX setup [43], all data (Public
and Con�dential) would be stored within the SGX ELRANGE.

3) System calls:We rely on orthogonal software techniques
to sanitize system call arguments [68], [41].

V. I MPLEMENTATION

This section describes how we prototyped our OISA on
the RISC-V BOOM microarchitecture. Our design augments
BOOM `v2,' which is the most recent iteration of the BOOM
design [28]. We give the exact parameters used for the
architecture in Table II, which corresponds to the block diagram
in Figure 5 and is a default BOOM con�guration.

A. RISC-V BOOM Summary

We �rst summarize unmodi�ed BOOM (referencing Fig-
ure 5). These details will be used for our implementation (this
section) and formal analysis (Section VI).

First, multiple instructions arefetchedeach cycle¶ . Based
on the current program counter (PC) and decoded instructions,
multiple levels of branch/jump predictors issue predictions for
fetched branches/jumps. Mispredicted branches/jumps are dis-
covered in the execute stage, and cause subsequent speculatively

7

Fig. 5: RISC-V `BOOM v2' pipeline [28]. `exeXX' are execution
units, and contain arithmetic/branch/etc units stated in Table II.
Hardware modi�cations needed to support the OISA (Figure 2) are
shown in the legend. No modi�cations are needed before the int/fp
register �les. Label stations are discussed in SectionV-C2. `omp' is
the oblivious memory partition (Section V-B).

decoded instructions to squash (SectionII-A). Oncedecoded,
instructions are added to the issue windows· where they
wait for their operands to be ready, at which point they are
scheduled(possibly out-of-order) to execution units. Operands
become ready when they are written (or written back) to one
of two register �les (RFs, for �oats and integers)¸ , or when
an execution unit �nishes early andbypassesthe result directly
to the consumer instruction. RFs contain speculative and non-
speculative data.

BOOM supports a con�gurable number of execution units
¹ , each of which contains a con�gurable number of primitive
arithmetic/branch/etc. units, shown in Table II. Each execution
unit receives dedicated read/write ports to the RFs. Primitive
arithmetic blocks may bepipelined(have input-independent
latency) orun-pipelined(have input-dependent latency). Lastly,
a load/store unit interfaces to the cache and decides whether
load data should be read from the cache or store data queue
(SDQ) which contains speculative stores (store-load forwarding).
Loads may speculatively execute after stores whose address
has not resolved [37]; address alias violations are caught and
squashed at retire time. Finally, a reorder buffer (ROB)º
tracks in-�ight instructions in-order to facilitate in-order commit
(Section II-A).

The current BOOM does not currently support SMT/hyper-
threading. We note that our OISA is compatible with an SMT-
enabled machine and that the hardware mechanisms discussed
below need not change to support SMT.

B. Support for New Instructions

Discussed in SectionIV-B, most instructions in the OISA
have exact counterparts in RISC-V, but with additional semantic-
s/dynamic checks for Safe/Unsafe operands. These instructions
reuse existing RISC-V encodings and have altered opcode/func
�elds to be identi�ed during the decode stage. Several excep-
tions areoseal, unseal, orng, ocmov, ocld/ocst/ocpuid which
don't have RISC-V counterparts (Figure 2).

We implementoseal and ounsealas the RISC-Vaddi
instruction with the immediate �eld set to 0 (functionally a
move operation), but with modi�ed logic to set/clear label
bits. As discussed in SectionIV-B, ounsealmust also serialize

(execute non-speculatively) to prevent malicious declassi�cation.
Since BOOM already implements serializing instructions, we
reuse that functionality forounseal. Our prototype implements
orng as a cryptographic PRNG (iterative AES core), although
a hardware TRNG [69] may be used for a production design.

ocmovpresents a challenge, as conditional move requires
three operands (predicate, new value and old value) whereas
no RISC-V integer instruction requires three input operands.
To minimize ISA-level changes, we design a single ALU (in
one execution unit) to serveocmov instructions, and add a
new RF port for that execution unit. We design this ALU to
support bypassing. This design is low overhead and ef�cient.
Having one execution unit supportocmovmeans we only need
to add a single read port to the RF (not+ 1 per execution
unit). Through bypassing, our design can execute back-to-back
dependentocmovs, one per cycle.

Finally, our current implementation implements the obliv-
ious memory partition (OMP) forocld/ocst as a quarantined
region of the �rst-level data cache. We isolate a region of
the cache using way partitioning techniques [70], which are
a low-complexity mechanism to divide the cache into non-
interferring regions as long as the region size is a multiple of
the associativity (our �rst-level cache is 16-way; Table II). This
design has low hardware overhead. If no process has allocated
oblivious objects (SectionIV-B6), OMP storage can be used
as normal cache memory. While anocld/ocst instruction is
looking up the OMP, all concurrent cache lookups are stalled
to avoid cache bank contention [53].

C. Tracking and Checking Labels

An important component in our OISA is checking and
tracking Public/Con�dential labels as data �ows through the
pipeline and signalling#LV when violations occur. Noted in
Section IV-B, we track labels at word granularity.

1) Label storage:Labels must be stored alongside each
word, where-ever each word resides in the processor. This
includes the RF, the SDQ, the data cache hierarchy, and
intermediate pipeline registers. In all of the above structures,
we treat data label as an extra bit in each word. This makes
it simpler to satisfy Rule IV.1: whenever a speculative or non-
speculative instruction reads an operand, normal out-of-order
processor dependency checking ensures the label is resolved.

Unfortunately, this strategy would require large changes to
the DRAM/below memory levels because wider words would
require wider DRAM lines and larger page tables. Thus, at
the DRAM level, we store data and labels in separate disjoint
pages and modify the hardware DRAM controller to join data
and label into a widened cache line when on-chip (a similar
scheme was used in [58]). This means any DRAM access in
our system turns into two DRAM accesses.

2) Label checks:To satisfy Rules IV.2 and IV.3: once a
consumer instruction indicates its intent to use an operand, that
operand's label must be checked against the instruction opcode/-
func �elds, before the use occurs. We design a parameterizable
hardware module called alabel station, which wraps each
BOOM execution unit, to administer these checks. The main
observation enabling the label station design is that in BOOM,
all operand-dependent processor state updates are signalled
from the execution units. This makes it possible to implement
a shim at the input of each execution unit to perform label

8

checks, handle label violations/faults, and disable hardware
optimizations on Con�dential inputs.

Fig. 6: Label station (SectionV-C2) for an execution unit with one internal
arithmetic unit. A real execution unit may contain multiple arithmetic units
(Table II), in which case this logic is replicated as needed. Added hardware is
shaded.

Speci�cally, the label station (visualized in Figure 6):

À (Rule IV.2: Con�dential ! Safe) Blocks access to/from
arithmetic units so that any operation processing Safe operands
takes the worst case time. This is implemented using input/out-
put buffers (e.g., �ip-�ops), a timer (counter), and operand/label
decode logic (“Check label” in the �gure). Variable-time
arithmetic units and their worst-case times are given in Table II.
Lastly, any status bits set as a function of Con�dential operands
are set to canonical values.

Á (Rule IV.3: Con�dential ! Unsafe) Checks each incom-
ing operation for illegal label-operand violations, and signals
#LV when violations are detected. All checks are performed
before operands are forwarded to the execution unit. If any
violation is detected, the execution unit does not receive the
operation and an#LV signal is sent to the ROB, where it is
interpreted as a violation (squash) or a fault (termination,#LF),
respectively.

Â (Label propagation) Computes the result label based on
operand labels and stages the label to travel with the result
when it writes back to the RF or exits early via bypass.

Label stations are parameterized at design-time based on
what functionality is actually needed. For example, Execution
unit 2 (Table II) only supports Safe-operand arithmetic and
therefore doesn't need logic to enforce Rule IV.3 (Con�dential
! Unsafe). Hence, this logic is pruned away at hardware
synthesis time.

VI. SECURITY ANALYSIS

We will show that the OISA provides a basis for satisfying
Oblivious[BitCycle] (SectionIII-A) by proving its security over
an abstractout-of-order, speculative machine (AOOM), and
arguing that this abstract machine can be reduced to real
hardware such as the BOOM.

A. Takeaways and Main Insights

The takeaway from the analysis is that the OISA provides
a basis to prove (computational) noninterference on an out-of-
order processor with speculative execution. Importantly, we
achieve this resultwhile allowing hardware optimizations, such
as branch predictors, to remain enabled andwithout requiring
those structures to be partitioned or periodically �ushed.

Informally, for this result to hold we need to show that (a)
each instruction's visible execution and (b) the sequence of

TABLE I: Notations and simple helper functions.

jTj Returns number of elements inT
T[i : j] Returns items with indexi to j (inclusive)
l Public program
Fetch;Execute;Retire Instruction stages
Arithmetic ;Branch MemLoad=Store Instruction types
stage;pc;squash;update Trace entry format
Write (addr;data; label) Token denoting write to program memory
Proj(T) Trace withupdates removed
argi (pc; l);dest(pc; l) Returns instruction operand/dest �elds
op(pc; l) Returns instruction's implied arithmetic op
T:append(e) Appende to end of ofT
type(pc; l) Return instruction atpc's type (Branch, etc)
done(e; l) Returnstrue if e:stage= Retire ande:pc is

the stop PC givenl
SCHEDULE; PREDICT Instruction scheduler and predictor functions

instructions that are executed is independent of Con�dential
data. (a) follows by de�nition, given Rules IV.2-IV.4, and is
enforced by label stations in our implementation (SectionV-C2).
A key insight here is that by applying these ruleslocally, and to
each instruction as it executes, the analysis/hardware need not
be aware of whether each instruction is speculative, executed
out-of-order, etc.: the checks performed to maintain security are
the same in all cases. To show (b), we leverage a key property
inherent in any OISA:that the inter-instruction program counter
(PC) never becomes a function of (“tainted by”) Con�dential
data.

Guaranteeing that the PC stays “untainted” involves some
subtlety. On an out-of-order speculative machine, the sequence
of dynamic instructions clearly depends on more than just
the program and its input. For example, the PC is in�uenced
by hardware predictors and dynamic data-dependent events
such as when squashes occur. Yet, the untainted PC property
(once proven) is surprisingly powerful,7 and is the crux behind
why hardware performance optimizations can remain safely
enabled. For example, if the PC is untainted, branch predictor
structures are also by extension untainted. In our design, this
holds because only branch instructions that do not cause#LV
(i.e., those based on Public decisions) are allowed to update the
branch predictor, and because maliciously “priming” the branch
predictor [12] can be modeled using only Public information.
If the branch predictor is untainted, it can by de�nition remain
enabled.

In general, the only new source of overhead occurs when
Con�dential ! Unsafe events cause squashes. The analysis will
show that when this occurs doesn't depend on Con�dential data
and, in particular, that a correctly written program should only
see this event when “honest” miss-speculation (SectionIII-B)
occurs. Predictors must be high accuracy to be effective, thus
honest miss-speculation should be rare.

B. ISA Level

The following analysis assumes the OISA disables the
ounsealinstruction (Section IV-B) unless otherwise stated.

1) Abstract machine basics:The functional model for
AOOM is given in Algorithm 2, with notations/helper functions
explained in Table I and Algorithm 1. Our goal was to
keep the model as simple as possible, while capturing core
features. Speci�cally, the abstract machine: (1) has a 3-stage
pipeline f Fetch;Execute;Retireg where each stage is atomic

7Similar observations were also made in prior work [63].

9

and takes one unit of time, (2) has four instruction types
f Arithmetic;Branch;MemLoad;MemStoreg, (3) has in�nite
fetch bandwidth and execution units, (4) can be parameterized
as an in-order or out-of-order/speculative machine. Which
instruction types support Safe/Unsafe operands are encoded
as conditionals checking operands for label violations (#LV).
We explain how to extend the model (e.g., to account for
variable latency instructions, cache, limited execution units,
more pipeline stages, etc.) in Section VI-C.

2) Execution traces:The abstract machineAOOM takes
as input a programl , Public inputx and Con�dential inputy
and generates a traceT where each entryTt tracks a stage of
each instruction as it executes on the machine. That is, thet-th
element inT is a 4-tuple:

Tt = (staget ;pct ;squasht ;updatet):

staget denotes the instruction's stagef Fetch;Execute;Retireg.
pct denotes the instruction address/program counter. Different
stages for the same logical instruction share the samepc. If
staget = Execute, squasht = f true; falseg denotes whether the
instruction caused a squash during speculation (SectionII-A)
or due to a label violation#LV (SectionIV-A 2). If staget 6=
Execute, squasht = false. updatet = Write(addr;data; label)
whereWrite is a token denoting whether program memory was
written, and with whataddr, data and label. The Publiclabel
is logic 0, Con�dential is logic 1. If no write occurs,addr= ? .

3) Modeling time: In our abstraction, entries inT are
ordered in time astime(Ti) � time(Ti+ j) for i; j � 0 where
time is a metric for real time (e.g., clock cycles). That is,
multiple events may occur in the same clock cycle (as in a
real processor) or be separated far apart. Therefore,staget and
type(pct ; l) allows us to model contention in different pipeline
stages for different instruction types.

4) Modeling out-of-order and speculative execution:A key
feature in our analysis is thatAOOM is parameterized by
two functions,SCHEDULEandPREDICT. SCHEDULErepresents
control logic in a real processor and decides which stage of
which instruction should be evaluated next. It takes as input
the programl and Proj(T), a projection ofT that removes
update from each entry, i.e.,

Proj(T) = f e:stage;e:pc;e:squashfor e2 Tg

Importantly,Proj(T) constrains scheduling to not be a function
of program data (i.e.,e:update) beyond the sequence of
present/past fetched instructions (e:stage, e:pc) and whether
those instructions result in a squash (e:squash). SCHEDULE
outputs an indexidx 2 [0; jTj) or ? . If idx = ? , the machine
will fetch the next instruction. Ifidx 6= ? , the machine will
evaluate the next stage for the instruction atT[idx]. PREDICT
represents branch/jump predictor logic, takes the same inputs
as SCHEDULE and outputs the predicted next PC. W.l.o.g. we
assumeSCHEDULE and PREDICT are deterministic.8

Importantly,SCHEDULE and PREDICT are representative of
modern processors and allow us to model simple in-order
processors to advanced out-of-order speculative processors
(details on this claim related to BOOM are in SectionVI-C).
The only assumption we will make is thatSCHEDULE respects
in-orderFetch andRetire, as done by machines today.

8Heuristics based on randomness can be modeled with an additional seed
input.

5) Modeling machine state:The current machine state at
some pointidx in the trace is determined based on the trace
pre�x from 0 to idx. This includes program state (register �le,
cache, etc.) and intermediate pipeline/machine state. Program
state is calculated based onmem(Algorithm 1). We merge
the register �le and other memory into a single memory for
simplicity. Data always travels with its label, which models
Rule IV.1. As mentioned in SectionVI-B2, pipeline state (e.g.,
�ip-�ops/SRAM not included in program state) is modeled by
the sequence of PCs and stages in the trace.

6) Proof of Security:We now prove that the abstract model
AOOM satis�es De�nition III.1 with respect to the following
observability functionWordStage.

De�nition VI.1. (WordStageobservability: Public data and
labels at Word spatial granularity, instruction stage-level
temporal granularity) Given T= AOOM(l ;x;y),

WordStage(T) = f e:stage;e:pc;e:squash;h(e) for e2 Tg

whereh(e) returnse:update (unmodi�ed) if e:update:label=
false, and returnsWrite(e:addr;? ; true) otherwise.

Algorithm 1: Helper functionsmeminitandmem.
/ * fill memory w/ Public x, Confidential y * /
function: meminit(x;y)

1 T := [] ;
2 for xi 2 x do
3 T:append((Execute;? ; false;Write(i;xi ; false)))

4 for yi 2 y do
5 T:append((Execute;? ; false;Write(jxj + i;yi ; true)))

6 return T;
7

/ * return coherent memory snapshot, given T.
Note, an instruction that is squashed by
another instruction may still create visible
state changes in the window of time before
the other instruction reaches Execute. * /

function: mem(T)
8 T0= T with all squashed instructions (trace entries) removed.

That is, remove fromT any entry that occurs in between the
Fetch andExecutestage of an instructionI if I satis�es
I :stage= Executê I :squash(inclusive);

9 mem:= [? for t 2 T0]; // jT0j upper-bounds mem size
10 for xi 2 T0 do
11 up := xi :update;
12 if up:addr 6= ? then
13 mem[up:addr] = up:data;up:label;

14 return mem;

That is, WordStage only removes write data from the
trace if the label corresponding to that data is Con�dential.
Satisfying De�nition III.1 with theWordStagefunction implies
the strongest level of privacy with respect to our abstract
machine, and implies that the machine's pipeline utilization,
PC sequence, set of squash events, and state w.r.t. Public
data is independent of Con�dential data. We proceed to show
Theorem 1:

Theorem 1. Oblivious[WordStage;AOOM] holds.

We prove Theorem 1 using strong induction over traces of
two program executionsAOOM(l ;x;y) and AOOM(l ;x;y0),
relying heavily onPREDICTandSCHEDULEnot being functions

10

Algorithm 2: Abstract machine de�nition. As in Figure 2, the
Public label is logic 0, Con�dential is logic 1.

function: AOOM(l ;x;y)
1 T := meminit(x;y); // initialize memory
2 while !done(T[jTj � 1]; l) do
3 idx := SCHEDULE(Proj(T); l);
4 if idx = ? then // Fetch new instr
5 pc := PREDICT(Proj(T); l);
6 T:append((Fetch;pc; false;Write(? ;? ; false))) ;

7 else
8 pc := T[idx]:pc;
9 stage:= T[idx]:stage;

10 if stage= Fetch then // Execute instr
11 T:append(execute(Execute;pc;T; l)) ;

12 else if stage= Executethen // Retire instr
13 T:append((Retire;pc; false;Write(? ;? ; false))) ;

14 return T;
15

function: execute(stage;pc;T; l)
16 update:= Write(? ;? ; false); squash:= false;
17 arg0;data;arg0;label := mem(T)[arg0(pc; l)];
18 arg1;data;arg1;label := mem(T)[arg1(pc; l)];
19 if type(pc; l) = Arithmetic then
20 data := arg0;data op(pc; l) arg1;data;
21 label:= arg0;label _ arg1;label;
22 update:= Write(dest(pc; l);data; label);

23 else if type(pc; l) = Branch then
24 if arg0;label _ arg1;label then
25 squash:= true; // #LV: Confidential->Unsafe

26 else
27 �dx := index of Fetch for current instr inT;
28 guess:= direction for PREDICT(Proj(T[0 : �dx]); l);
29 actual := arg0;data op(pc; l) arg1;data;
30 squash:= guess6= actual; // mispredict

31 else
32 if arg0;label then
33 squash:= true; // #LV: Confidential->Unsafe

34 else
35 if type(pc; l) = MemLoad then
36 data; label:= mem(T)[arg0;data];
37 addr := dest(pc; l)

38 else if type(pc; l) = MemStore then
39 data; label:= arg1;data;arg1;label;
40 addr := arg0;data

41 update:= Write(addr;data; label)

42 return stage;pc;squash;update;

of trace data. Details for the proof are given in the full
version [71].

7) Extensions to randomized cryptographic algorithms:
It is straightforward to extend the above analysis to support
randomized cryptographic algorithms such as ORAM [47],
[23]. For example, ORAM client logic can be written data
obliviously to satisfyOblivious[WordStage;AOOM] [23], [72].
What is left is to show how the visible ORAM access pattern—
which forms a subset of the trace—satis�es computational
indistinguishability [47]. This reduces to the security of the
ORAM protocol itself and to the OISA's mechanism to
declassify private data, i.e.,ounseal. For the latter, sinceounseal
is a serializing instruction, we know private randomness will

TABLE II: RISC-V BOOM parameters we use for our prototype and
evaluation. Arithmetic units with a `(xx)' next to their name are un-
pipelined (variable latency), where `xx' denotes the worst-case latency.
The pre�x `i' denotes integer, `f' denotes �oating point.CondMove
andOmp denote logic forocmov and the oblivious memory partition
(SectionIV-B), respectively, and are only present on our modi�ed
BOOM.

Core march out-of-order, speculative
Fetch/issue width 4 instructions fetched/issued per cycle
Execution unit 1 iALU, Branch, iMul, iDiv (6-66)
Execution unit 2 iALU, CondMove
Execution unit 3 IntToFP casting
Execution unit 4 fAdd, fMul, fDiv (5-21), fSqrt (5-29), FPToInt casting
Execution unit 5 Load/store +Omp (memory unit)
L1 I/D cache 32 KB, 4 way/64 KB, 16 way; 64 B cache lines
I/D TLB 16/32 entries

be exposed if and only if it is intended by the protocol.

C. Implementation Level

We now map our ISA-level security analysis (SectionsIV-B
andVI-B) to our prototype on BOOM (Section V), referred to
asBOOM.

1) Threat vectors in unmodi�ed BOOM:Unmodi�ed
BOOM hardware (SectionV-A) supports speculation over
branches, jumps and unresolved store instructions (Vectors 1-
3; c.f. SectionIII-B) as well as arithmetic units with input-
dependent timing (Vector 6, Table II).9 Our implementation
of the OMP (SectionV-B) is also susceptible to cache bank
contention (Vector 5) because it uses space in the data cache.

2) Securing BOOM:Recall, the primary hardware mecha-
nisms we added to get security are dynamic information �ow
tracking (SectionV-C1), label stations per execution unit to
implement Safe/Unsafe operand semantics (SectionV-C2), and
logic to isolate the OMP (Section V-B).

In SectionVI-B, we provedOblivious[WordStage;AOOM].
We show how to use the proof to argueOblivious[BitCycle;
BOOM]—i.e., cycle-level security of our implementation—
which implies that Vectors 1-3 and 5-6 are blocked. There
are two steps: (1) mappingAOOM to BOOM and (2) mapping
WordStageto BitCycle. We omit detail here, and refer readers
to the full version of the paper [71].

Finally, we remark that our current reduction to BOOM is
best effort, and consider using formal/automated methods to
improve design con�dence to be important future work.

VII. E VALUATION

We now evaluate the OISA in terms of area overhead
(given our prototype on RISC-V BOOM) and performance
over data oblivious workloads. We also show two case studies,
showing how the OISA secures and accelerates constant time
cryptographic code and memory oblivious libraries.

A. Methodology

We evaluate our system through hardware prototyping
to show area overheads and software simulation to show
performance.

9We note BOOM also supports load/store forwarding but is not susceptible
to Vector 4 because the data TLB is accessed sequentially before checking the
SAQ (Section V-A).

11

TABLE III: Area (um2) for baseline and modi�ed BOOM cores.

BOOM BOOM + OISA Overhead

Logic 363,900 388,658 6.80%
SRAM 384,232 391,291 1.84%
Total 748,132 779,949 4.25%

1) Hardware prototyping:We build on top of the open-
source BOOM design [28] which is written in the Chisel
hardware description language [73]. We parameterized the
prototype according to Table II and synthesized the design
using a 32 nm commercial process and the Synopsys �ow. We
report standard cell (logic cell) area for logic and �ip-�ops post-
synthesis, and report SRAM area using the widely used Cacti
tool [74]. BOOM maps the instruction/data caches/TLBs and
branch predictor tables to SRAM. Remaining storage structures
(e.g., the SDQ, RFs) are mapped to �ip-�ops. The BOOM
word width is 64 bits.

2) Software simulation:The BOOM hardware only features
a single-level cache, whereas commercial machines feature
two- or three-level caches to reduce traf�c to DRAM. Thus, to
measure more realistic performance �gures for our system we
use Multi2Sim [75], parameterized to match Table II as closely
as possible. For all experiments, we use a 256 KB 4-way level
2 cache (that is shared by data and instructions) and a 2 MB
16-way level 3 cache. This con�guration is similar to a single
slice on an Intel Skylake machine.

3) OMP usage:We use a 32 KB OMP (SectionIV-B6) that
is built into the level 1 data cache. This is suf�cient to store
ORAM sub-structures (SectionIV-B6) and also big enough to
�t tables for constant time cryptographic routines (e.g., AES
T-tables and RSA multiplier tables). Some workloads do not
bene�t from the OMP (e.g., some do not have data-dependent
memory access patterns). In this case, a bit in thread state
disables the OMP to recover cache space.

B. Hardware Prototyping and Area Results

We show area results for unmodi�ed BOOM and BOOM
extended to support our OISA in Table III. Our prototype
supports all instructions in SectionIV-B and Figure 2. The main
hardware components needed to support the OISA are storage
for DIFT, logic/storage for label stations, logic to partition the
OMP, and a random number generator fororng (Section V).
For structures that need to store labels, we store those labels
alongside the data in whatever medium the data was stored
in. That is, labels in data cache are stored in SRAM, labels in
the SDQ and register �les are stored in �ip-�ops. The largest
single area overhead comes from an iterative AES core that we
downloaded from OpenCores [76] to implementorng. This unit
has area 10,935 um2 (3% of the logic area for the unmodi�ed
BOOM), and can be replaced by a hardware TRNG (whose
area is negligibly small [69]) in a production design.

The takeaway is that hardware overheads are tolerable, both
on the logic and SRAM side, showing the practicality of the
proposal on advanced commercial-class machines.

C. Performance Results

We now perform studies to evaluate the performance
overhead of running data oblivious code securely, with and
without the oblivious memory partition.

TABLE IV: Benchmarks and input data sizes for comparinginsecure,
doisaanddoisa omp.

Name Implementation Data size (small / large)
mat. mult data oblivious by default 256x256 / 1024x1024
neural network “” 64-1K-8 / 1024-32K-256 (2 layers)
�ndmax “” 8K / 1M integers
sort bitonic-sort (doisa), data obl.

merge-sort (doisa omp)
4K / 256K integers

pagerank GraphSC [77] 1K / 16K nodes
binary search memory scan (doisa), obl.

memory (doisa omp)
8K / 16M integers

kmeans obl. memory for histogram 64/256 clusters, 4K/32K points
heap push ODS [66] 8K / 32M integers in heap
heap pop ODS [66] 8K / 32M integers in heap
sparse dijkstra ObliVM [64] 256 / 4K vertices

1) Comparison systems:We compare two systems—doisa
and doisa omp—to a baselineinsecuresystem. All three
systems use the same microarchitecture (Table II). Benchmarks
run oninsecureare written in a non-data oblivious fashion (i.e.,
without the constraints in SectionIII-B). Benchmarks run on
doisaare data oblivious, and written using only instructions in
Figure 2 exceptocld/ocst (the oblivious memory extension; c.f.
SectionIV-B6). Thus,doisawill be similar performance-wise
to existing data oblivious codes, e.g., Raccoon [1], which don't
have access to an OMP. Benchmarks run ondoisa omp use
all instructions in Figure 2 includingocld/ocst.

2) Workloads: We evaluate a suite of common workloads
(Table IV) which have previously been written and evaluated
data obliviously [1], [66], [77], [64] on existing x86 machines.
These codes are divided into three categories. First, codes
that are nearly data oblivious in their default form (mat mult,
neural network, �ndmax). Second, codes that rely heavily on
data oblivious sort as a subroutine (sort and pagerank). Third,
codes that rely heavily on oblivious memory (binary search,
kmeans, heap, dijkstra). We will also perform case studies
showing our proposal's applicability in two additional important
settings—constant time cryptography and oblivious memory—
in Sections VII-C5 and VII-C6.

3) Data set sizes:For each benchmark, we evaluate `small'
and `large' data sizes. `small' indicates the largest input size
that wholly �ts into the 32 KB OMP (SectionVII-A). We use
this con�guration for two reasons. First, to show the bene�t of
having an OMP. Second, to performance compare against prior
work (Raccoon [1], which uses similar data sizes). Finally, we
show the `large' data size to illustrate overheads where program
data does not completely �t into the OMP. In that case, we
fallback toORAM or SCAN as described in Section IV-B6.

4) Results: Figure 7 shows the overhead off doisa,
doisa ompg � f small, largeg relative toinsecure. The main
takeaway is thatdoisa omp achieves signi�cant (8:8� /1:7�
for small/large data sizes) speedup overdoisa. Furthermore,
doisa omp has only3:2� /40:4� slowdown relative toinsecure
on the same data sizes. This shows that our OISA makes data
oblivious computing practical in cases where data �ts in the
OMP.

There are two avenues for future work. First, enhance the
OMP to support larger sizes (e.g., beyond the level 1 data
cache, see SectionIV-C2). As we see on the large data set
size, overhead for bothdoisaanddoisa omp can be large for
workloads that depend on oblivious memory, as large data sizes
cannot �t into the OMP. Second, engineer more sophisticated
instructions supporting Safe operands. For example, sort is an

12

Fig. 7: Performance comparison betweendoisa and doisa omp
relative toinsecurefor small/large data sets.

important kernel in multiple data oblivious codes [78], [77],
[19], [64]. An OISA can support anosort instruction with
Safe operands directly, and use techniques such as hardware
partitioning to speedup that operation.

5) Case study: constant time AES:An important com-
mercial use-case for data oblivious code today is “constant
time” cryptography. Many papers have demonstrated how un-
protected codes—e.g., T-table AES [35] and naive modular
exponentiation for RSA—leak privacy over microarchitectural
side channels [4], [53], [52]. As a result, practitioners use slower
codes to improve security—e.g., S-box or bitslice AES [36]
and montgomery ladder exponentiation for RSA.10

Our OISA provides a basis for running high-performance
cryptography securely. To demonstrate the bene�t, we compare
the performance of T-table AES [35] (high performance, low
security) vs. bitslice AES [36] (low performance, high security).
For this study, we retro�t T-table AES using our ISA and store
the T-tables in the OMP to prevent cache attacks (the rest
of the code is naturally data oblivious). This gives us a high
performance, high security code. The OISA can securely run
both the fully unrolled code or a variant with a loop over the
number of rounds, regardless of branch prediction accuracy
(Section III-B). We argue that on commodity machines today,
highly sensitive applications will have to resort to codes like
bitslice AES.

Both codes are compiled with gcc using-03 optimizations.
Relative to an insecure T-table AES code (insecure), our data
oblivious T-table AES (doisa omp) has a2:17� slowdown,
while bitslice AES has a9:6� slowdown against the same
baseline. Our slowdown relative toinsecureis caused by
the compiler not optimizing code aroundocld instructions.
Thus,doisa omp can achieve even lower slowdown with better
compiler support.

6) Case Study: ZeroTrace [23]: Beyond encryption, there
is a rich literature to accelerate data structure operations
data obliviously [66], [64], [21]. These schemes typically use
oblivious memory as a subroutine. We now demonstrate how the
OISA can speedup this subroutine by comparing our oblivious
memory API to the original ZeroTrace [23] proposal. Discussed
in SectionIV-B6, our library combines ZeroTrace with the OMP
to achieve speedup for different oblivious memory sizes.

10Discussed in SectionIII-B , even hardened codes may be insecure due to
subtle hardware optimizations.

Fig. 8: Comparison between oblivious memory primitives. Scan
is the SCAN code from Figure 4, shown for completeness. non-
recursive/recursive Path ORAM are baseline ZeroTrace [23].

Results are shown in Figure 8.doisa omp provides signif-
icant speedup in all size regimes. For small data,doisa omp
places the entire memory in the OMP, providingO(1) (> 1000�
speedup) time access to that data. For larger data,doisa omp
usesSCAN or ORAM, depending on which strategy yields
best performance, and places the ORAM stash in the OMP in
the latter case. An important �nding in the ZeroTrace paper
is that stash management, written data obliviously, creates a
performance bottleneck.11 Since the stash does not grow as a
function of the ORAM capacity, we can use the OMP to store
the stash and manage it more ef�ciently, which allows us to
improve over baseline ZeroTrace by� 4:6� in all regimes.

VIII. R ELATED WORK

Data oblivious stack.Beyond data oblivious code written for
today's ISAs, there is a rich literature to improve algorithm/data
structure [47], [79], [78], [77], [80], [81], [64], [82], [83], [66]
performance in thesoftware circuitabstraction. Additionally,
there is rich literature to write (e.g., [65], [84]) and compile
(e.g., [64], [85], [82]) programs to software circuits. An
important observation is that, although many of these works
target cryptographic backends such as garbled circuits, their
underlying programming abstraction (software circuits) is very
similar to the data oblivious abstraction. For example, bitwise
crypto can be easily mapped to integer-wide operations. Thus,
our proposal can be used as a secure hardware backend for
these works.

Secure co-processors. Secure co-processor proposals
Ghostrider [30] and Ascend [29] have the same security goal
(De�nition III.1) as this paper, but assume a course-grain
observability function that only captures the processor's
external pin activity (whereas this paper considers �ne-grain
observability; c.f. SectionIII-A). These proposals also assume
simple processor pipelines and scheduling (e.g., one process
per chip at a time). Relative to these works, our goal is to

11We note that an alternate ORAM, Circuit ORAM [72], was designed to
avoid stash management overheads. Unfortunately, Circuit ORAM has worse
bandwidth—12� logn vs. 8� logn and3:5� logn for data sizen—than Path
ORAM, which relies on a stash. Since our oblivious memory extensions make
stash management essentially free, our scheme based on Path ORAM will
outperform Circuit ORAM.

13

	Introduction
	Challenges
	This Paper

	Background and Threat Model
	Hardware Terminology
	Out-of-order execution
	Speculative execution

	Threat Model

	Data Oblivious Execution
	Security Definition
	Security Issues in Existing Data Oblivious Code

	Data Oblivious ISAs
	Design Principles
	Dynamic tracking for Confidential (sensitive) data
	Instruction operand-level security specifications

	Concrete OISA Specification
	Label propagation
	Label declassification
	Instruction set
	Mixing in non-oblivious instructions
	Putting it all together
	Oblivious memory extension

	Process-OS Interface
	Exceptions
	Context switching
	System calls

	Implementation
	RISC-V BOOM Summary
	Support for New Instructions
	Tracking and Checking Labels
	Label storage
	Label checks

	Security Analysis
	Takeaways and Main Insights
	ISA Level
	Abstract machine basics
	Execution traces
	Modeling time
	Modeling out-of-order and speculative execution
	Modeling machine state
	Proof of Security
	Extensions to randomized cryptographic algorithms

	Implementation Level
	Threat vectors in unmodified BOOM
	Securing BOOM

	Evaluation
	Methodology
	Hardware prototyping
	Software simulation
	OMP usage

	Hardware Prototyping and Area Results
	Performance Results
	Comparison systems
	Workloads
	Data set sizes
	Results
	Case study: constant time AES
	Case Study: ZeroTrace ZeroTrace

	Related work
	Conclusion
	References

