How to End Password Reuse on the Web

Ke Coby Wang Michael K. Reiter
University of North Carolina at Chapel Hill University of North Carolina at Chapel Hill
kwang@cs.unc.edu reiter@cs.unc.edu
Abstract—We present a framework by which websites can It is tempting to view password reuse as inflicting costs

coordinate to make it difficult for users to set similar passwords  on only users who practice it. However, preventing, detecting,
at these websites, in an effort to break the culture of password gnd cleaning up compromised accounts and the value thus
reuse on the web today. Though the design of such a framework  gtglen is a significant cost for service providers, as well. A
is fraught with risks to users’ security and privacy, we show that — yacent Ponemon survey [57] of 569 IT security practitioners
these risks can be effectively mitigated through careful scoping  oqtimated that credential-stuffing attacks incur costs in terms

of the goals for such a framework and through principled design. . . .
At the core of our framework is a private set-membership-test of application downtime, loss of customers, and involvement

protocol that enables one website to determine, upon a user ©Of IT security that average $1.7 million, $2.7 million and
setting a password for use at it, whether that user has already $1.6 million, respectively, per organization per year. Some
set a similar password at another participating website, but with ~ companies go so far as to purchase compromised credentials on
neither side disclosing to the other the password(s) it employs the black market to find their vulnerable accounts proactively
in the protocol. Our framework then layers over this protocol a (e.g., [12]). Companies also must develop new technologies
collection of techniques to mitigate the leakage necessitated by to identify overtaken accounts based on their use [12]. Even
such a test. We verify via probabilistic model checking that these  the sheer volume of credential-stuffing attacks is increasingly a
tﬁchnlqueshareleffectlve in maintaining ﬁccount security, and since  challenge: e.g., in November 2017, 43% (3.6 out of 8.3 billion)
these mechanisms are consistent with common user experience ¢ o1 1o4in attempts served by Akamai involved credential
today, our framework should be unobtrusive to users who do X . .
abuse [3]. Finally, the aforementioned Ponemon survey esti-

not reuse similar passwords across websites (e.g., due to having .
adopted a password manager). Through a working implementa- Mated the fraud perpetrated using overtaken accounts could

tion of our framework and optimization of its parameters based  incur average losses of up to $54 million per organization
on insights of how passwords tend to be reused, we show that our surveyed [57]. As such, interfering with password reuse would
design can meet the scalability challenges facing such a service. not only better protect users, but would also reduce the

considerable costs of credential abuse incurred by websites.

. INTRODUCTION . . .
Here we thus explore a technical mechanism to interfere

The reuse of passwords is the No. 1 cause of harm with password reuse across websites. Forcing a user to au-

on the internet. thenticate to each website using a site-generated password
Alex Stamos [12] (e.g., [49]) would accomplish this goal. However, we seek to
Facebook CSO (Jun 2015-Aug 2018) retain the same degree of user autonomy regarding her selec-

tion of passwords as she has today—subject to the constraint

Password reuse across websites remains a dire probleiiat she not reuse them—to accommodate her preferences
despite widespread advice for users to avoid it. Numerougegarding the importance of the account, the ease of entering
studies over the past fifteen years indicate that a large majorit§s password on various devices, etc. At a high level, the
of users set the same or similar passwords across differeffemework we develop enables a website at which a user is
websites (e.qg., [8], [59], [65], [14], [39], [54], [70]). As such, setting a password, here calledrequestey to ask of other
a breach of a password database or a phish of a usemyebsites, here calledesponders whether the user has set
password often leads to the compromise of user accounts ¢h Similar password at any of them. A positive answer can
other websites. Such “credential-stuffing” attacks are a primaryhen be used by the requester to ask the user to select a
cause of account takeovers [74], [47], allowing the attacker tdlifferent password. As we will argue in Sec. llI, enlisting a
drain accounts of stored value, credit card numbers, and oth&trprisingly small number of major websites in our framework
personal information [47]. Ironically, stringent password re-could substantially weaken the culture of password reuse.
guirements contribute to password reuse, as users reuse strong
passwords across websites to cope with the cognitive burden ST

creating and remembering them [73]. Moreover, notifications icit anything but contempt (at least temporarily) from users

to accounts at risk due to password reuse seem insufficient tvagrgo trr?ljjsseng?susmlii(rad?ni?;%ss?nwlebsslttreir?. gﬁtusgggwo'rrgprlfaﬂ?g.s
cause their owners to stop reusing passwords [35]. . gy g pas d
ments, to which users have nevertheless resigned. However,

options for password managers are plentiful and growing,
with a variety of trustworthiness, usability, and cost properties

We are under no illusions that our design, if deployed, will

Network and Distributed SystemsSecurity (NDSS) Symposium2019 (e.g., [62], [28]). Indeed, experts often list the use of a pass-
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www.ndss-symposium.org risk [39]. While there might be users who, despite having a



rich online presence, cannot use a password manager for some suring detection of reused passwords with high likelihood.
reason, we expect them to be few. Of course, nearly anyone Finally, we demonstrate its scalability through experi-
capable of using a computer should be able to write down  ments with a working implementation in deployments that

her passwords, as a last resort. Though historically metign capture its performance in realistic scenarios.
the practice is now more widely accepted, exactly because it
makes it easier to not reuse passwords (e.g., [46], [37]). 1. RELATED WORK

There are many technical issues that need to be addressed We are aware of no prior work to enable websites to
to make a framework like the one we propose palatable. Firsinterfere with password reuse by the same user. Insteagkrser
such a framework should not reduce the security of useside approaches to mitigate risks due to password reuse have
accounts. Second, the framework should also not decay useet somewhat different goals.
privacy substantially, in the sense of divulging the wedssiat i )
which a user has an account. Third, it is important that the//eb single sign-on (SSOBSO schemes such as OAuth
protocol run between a requester and responders shoulel scAl'tPs:/oauth.net/), OpenlID (http://openid.net), Ojeon-

well enough to ensure that it does not impose too much delageCt (http://openid.net/connect)), and Facebook Logitpg/
for setting a password at a website. evelopers.facebook.com/docs/facebook-login/), enabhe

website (an “identity provider”) to share a user's account
Our framework addresses these challenges as follows. T@formation with other websites (“relying parties”), tyailly

minimize risk to user accounts, we design a protocol thatn lieu of the user creating distinct accounts at those nelyi
enables the requester to learn if a password chosen by a usgirties. As such, this approach mitigates password reuse by
is similar to one she set at a responder; neither side lehens tsimply not having the user set passwords at the relyinggsarti
password(s) the other input to the protocol, however, eyen bwhile convenient, SSO exposes users to a range of new
misbehaving. Our framework leverages this protocol, teget attacks, leading some to conclude “the pervasiveness of SSO
with other mechanisms to compensate for leakage neceskitathas created an exploitable ecosystem” [34]. In additioe, th

by the protocol's output, to ensure that account security anidentity provider in these schemes typically learns thgingl
privacy are not diminished. Among other properties, thisparties visited by the user [21].

framework ensures that the responders remain hidden from

the requester and vice-versa. We verify using probatulisti Detecting use of leaked passwords by legitimate us@ss
model checking that the success rate of account takeovénentioned in Sec. I, some companies cross-reference accoun
attempts is not materially changed by our framework for siserpasswords against known-leaked passwords, either as a ser-
who employ distinct passwords across websites. Scalabilitvice to others (e.g., https://www.passwordping.com, shttp

is met in our framework by carefully designing it to involve haveibeenpwned.com) or for their own users (e.g., [12]).
only a single round of interaction between the requester an#hile recommended [36], this approach can detect only pass-
responders. And, using observations about password reu¥@rds that ar&knownto have been leaked. Because password
habits, we optimize our framework to detect similar passwor database compromises often go undiscovered for long fgeriod
use with near-certainty while maximizing its scalability. (as of 2017, 15 months on average [64]), this approach cannot

. _ identify vulnerable accounts in the interim.
To summarize, our contributions are as follows:

etecting leaked passwords by their use in attadkarious
chniques exist to detect leaked passwords by their atesmp
se, e.g., honey accounts [18] and honey passwords [6], [40]
27], the latter of which we will leverage as well (Sec. V-Al)
cannot be addressed by technical means without imposi lone, these methods do little to detect an attapker’s use of
unduly on user security or privacy. In particular, we show Ieaked, known—gopd_password for one website at another
that apparent obstacles to a framework for interfering Withwebs'te. where _the victim user s knc_>wn to have an account.
password reuse can be overcome through careful SCopi’_!%efendmg against such discriminating attacks would seem

e We initiate debate on the merits of interfering with D
password reuse on the web, through coordination amon
websites. Our goal in doing so is to question the zeitgeis
in the computer security community that password reus

of its goals and through reasonable assumptions (Sec. IIl}. Leqtuwe trr‘f ;]nctlms ulff of d|ffer|err]1t passwords at ditin
e We propose a protocol for privately testing set member- ebsites, which we seek to compel here.

ship that underlies our proposed framework (Sec. IV). Wepetecting popular passwordSchechter et al. [63] proposed
prove security of our protocol in the case of a maliciousy service at which sites can check whether a password chosen
requester and against malicious responders. . by a user is popular with other users or, more specificaliys if
 We embed this protocol within a framework to facilitate frequency of use exceeds a specified threshold. Our goas her
requester-responder interactions while hiding the idenyye gifferent—we seek to detect the use of similar passwords

tities of protocol participants and addressing risks thapy the same user at different sites, regardless of popyilarit
cannot be addressed by—and indeed, that are necessitated

by—the private set-membership-test protocol (Sec. V)Limiting password-based acces$akada [68] proposed to
We demonstrate using probabilistic model checking thatnterfere with the misuse of accounts with shared passwuayds
our framework does not materially weaken account secuadding an “availability control” to password authentioati In
rity against password guessing attacks. this design, a user disables the ability to log into her websi

e We evaluate implementations of our proposed frameworlaccount at a third-party service and then re-enables it when
with differing degrees of trust placed in it (Sec. VI). needed. This approach requires that the attacker be urmble t
Using password-reuse tendencies, we illustrate how tdself enable login, and so requires an additional autkatitin
configure our framework to minimize its costs while en- at the third-party service to protect this enabling.
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Website UsersNI) Website UsersN]) consent to do so (see Sec. V-Al). Even if it tricked the user

Facebook 2234 Sina Weibo 431 into consenting, it could use such a query to confirm that the
YouTube 1900 Outlook 400 compromised password is similar to one set by the same user
WhatsApp 1500 Twitter 335 at someparticipating site, but notvhich site (see Sec. IlI-C).
Wechat 1058 Reddit 330 More generally, in Sec. V-B, we will show quantitatively tha
Yahoo! 1000 Amazon 310 our framework offers little advantage to an attacker that ca
Instagram 1000 LinkedIn 303 pose a limited number of queries as a requester.

QQ 803 Quora 300

Taobao 634 Snapchat 291

Douyin/TikTok 500 Pinterest 250 An assumption of our framework is that there is an identi-

fier for a user’s accounts that is common across websites. An
TABLE |: Estimates of active users for selected websites email address for the user would be a natural such identifier,
and as we will describe in Sec. V-A1, this has other uses in our
context, as well. Due to this assumption, however, a usddcou
reuse the same password across different websites, despite

Il. GOALS AND ASSUMPTIONS framework, if she registers a different email address aheac
In this section we seek to clarify the goals for our system  Several methods exist for a user to amass many distinct
and the assumptions on which our design rests. email addresses, but we believe they will interfere little
with our goals here. First, some email providers support
A. Deployment Goals multiple addresses for a single account. For example, one

o ) ) Gmail account can have arbitrarily many addresses, since

Itis important to recognize that in order to break the c@ltur gmaj| addresses are insensitive to capitalization, iisert
of password reuse, we do not require universal adoption of¢ periods (: *), or insertion of a plus @) followed by
the framework we propose here. Instead, it may be enough tgny string, anywhere before@mai | . coni. As another ex-
enlist a (surprisingly small) number of top websites. To seeymple, 33mail (https://33mail.com) allows a user to reeeiv
this, consider just the 20 websites listed in TableFor a  mail sent to <al i as>@cuser nanme>. 33mai | . com for
back-of-the-envelope estimate, suppose that the useracbf € any alias string. Though these providers enable a user to
website in Table | are sampled uniformly at random fromproyide a distinct email address to each website (e.g.),[52]
the 3.58 billion global Internet usefsThen, in expectation oy framework could nevertheless extract a canonical ifient
an Internet user would have accounts at more than four Ofr each user. For Gmail, the canonical identifier could be
them. As such, if just these websites adopted our frameworlgptained by normalizing capitalization and by eliminating
it would force a large fraction of users to manage five Orfperiods and anything between’'and ‘@mai | . com. For
more dissimilar passwords, which is already at the limit of33majl, you@user nane>. 33mai | . com should suffice.
what users are capable of managing themselves: *If multipl\gmittedly this requires customization specific to eachhsuc

for unrelated, regularly used passwords that users can b

expected to cope with” [2]. We thus believe that enlistingsi Second, some hosting services permit a customer to register
20 websites could already dramatically improve password® domain name and then support many email aliases for
manager adoption, and it is conceivable that with modesi (€.9., <al i as>@domai n>. com). For example, Google
additional adoption (e.g., the top 50 most popular webyites Pomains (http://domains.google) supports 100 email etias

password reuse could largely be brought to an end. per domain. Since these domains are custom, it might not be
tractable to introduce domain-specific customizationsdase.

A user might continue using similar passwords across sitegjowever, registering one’s own domain as a workaround to
that do not participate in our framework. Each such reusegteep using the same password across websites presumably
password may also be similar to one she set at a sitedtf&®t  saves the user little effort or money (registering domasrsoit
participate in our framework, but likely at onlynesuch site.  free) in comparison to just switching to a password manager.
If this reused password is compromised at a non-particigati Going further, a user could manually register numerous kemai
site (e.g., due to a site breach), then the attacker might stiaccounts at free providers such as Gmail. Again, this is
use this password in a credential-stuffing attack agairest thpresumably at least as much effort as alternatives thatiavo
user’s accounts at participating sites, as it could tod@aid  no password reuse. As such, we do not concern ourselves with
however, due to our framework, this attack should succeeduch methods of avoiding password reuse detection.
at only one participating site, not many. Importantly, our o ) o ) L
framework restricts the attacker from posing queries about NS discussion highlights an important clarification nega

the user's accounts as a requester unless it gains the use®d our goals: we seek to eliminagasymethods of reusing
passwords but not ones that require similar or greater teffor

1User counts were retrieved on December 4, 2018 from hitpsul from the user than more secure alternatives, of which we take
statista.com/statistics/272014/global-social-nekmeranked-by-number-of- @ password manager as an exemplar. That is, we do not seek
users/, https://www.statista.com/statistics/47619rer-of-active-amazon-  to make itimpossiblefor a user to reuse passwords, but rather
customer-accounts-quarter/,  http://blog.shuttleclooh/the-most-popular- to make reusing passwords about as difficult as not reusing
email-providers-in-the-u-s-a/, and https://expandedhiangs.com/index. . . . .
phpKyahoo-statistics/ taobao-statistics/ quora-statistics/. them. We e,XpeCt that even this moqut goal’ if achieved, will

2Estimate of Internet users was retrieved from https://vetatista.com/  largely eliminate password reuse, since passwords aredeus
statistics/273018/number-of-internet- users-worlawidn December 4, 2018. today almost entirely for convenience.
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C. Security and Privacy Goals This general specification can be met with a private set-
membership-test (PMT) protocol. Though several such pro-
focols exist (e.g., [53], [50], [69], [58]), we develop a new
one here with an interaction pattern and threat model that
is better suited for our framework. In particular, existing
e account location privacy. Websites do not learn the protocols require special hardware [69] or more rounds of
identities of other websites at which a user has an accouninteraction [53], [50], or leak more information in our tlate
e account security. Our framework strengthens security of model [53], [50], [58] than the one we present.
user accounts at a site that participates in our framework,
by interfering with reuse of similar passwords at other
participating sites. Moreover, it does not qualitatively
degrade user account security in other ways.

The goals we take as more absolute have to do with th
privacy of users and the security of their accounts. Spedlific
we seek to ensure the following:

In designing this protocol, we sought guidance from the
considerable literature on private set intersection (PSl)-
veyed recently by Pinkas et al. [56]. Informally, PSI praiisc
allow two parties to jointly compute the intersection of the

As we will see,account securityis difficult to achieve, since Sets that each inputs to the protocol, and ideally nothisg.el
our framework must expose whether responders’ passwaeds arurthermore, PSI protocols secure in the malicious advgrsa
similar to the one chosen by the user at the requester. Hoyevénodel, where one party deviates arbitrarily from the protoc
account location privacy hides from the requester each have been proposed (e.g., [17], [13], [31], [32], [41], [45D],
responder from which the requester learns this information[61]). Still, while a PSI protocol would allow? to determine
As such, if a user attempts to set the same password at vehetherm € P(a), without additional defenses it could reveal
malicious requester that she has also set at some respond®@ much information; e.g., if? input multiple passwords to
or if a malicious requester otherwise obtains this passworghe protocol, then it would learn which of these passwords
(e.g., obtaining it in a breach of a non-participating sitag ~ Were in P(a). Moreover, as Tamrakar et al. [69] argue, PSI
malicious requester must still attempt to use that passworgrotocols are not ideal for implementing PMT due to their
blindly at participating websites, just as in a credensiaifing ~ high communication complexity and poor scalability.

attack today. (The attacker might succeed, but it wouldeedc By comparison, two-party private set-intersecteandinal-

without our framework, too.) Moreover, in Sec. V. we will v (pg|.cA) protocols are closer to our needs; these protocols
detal[ additional defenses against this leakage to furdgsiuce output the size of the intersection of each party’s input set
the risk of attacks from malicious requesters to whom the, g ideally nothing else (e.g., [15], [16], [19], [25], [33Rs
user does not volunteer this password, and show using formgli, ps) protocols, however, using a PSI-CA protocol with-

verification that these defenses are effective. out modification to implement PMT would reveal too much

We conclude this section by summarizing some potentiainformation if R input multiple passwords to the protocol. As
goals that we (mostly) omit from consideration in this papersuch, our protocol here is an adaptation of a PSI-CA protocol
From a privacy perspective, we try to hide neitirena pass- due to Egert et al. [25, Section 4.4], in which we (i) reduce
word is being set at some requester for an account identifidhe information it conveys to only the results of a membershi
nor the numberof responders at which an account has beeriest, versus the cardinality of a set intersection, anc(iglyze
established using that account identifier, simply becawsane  itS privacy properties in the face of malicious behavior by
unaware of common scenarios in which these leakages wouRy requester or responder (versus only an honest-but-curiou
have significant practical ramifications. And, while we\atri Participant in their work), accounting for leakage intitin
to guarante@ccount location privacy andaccount security ~ the application for which we use it here.
even against a requester and responders that misbehave, we . ) .
generally do not seek to otherwise detect that misbehaviof. Partially Homomorphic Encryption

So, for example, each requester and responder has complete o, protocol builds upon a multiplicatively homomorphic

autonomy in determining the passwords that_ it provides t‘bncryption schemé = (Gen, Enc, Dec, x (1) with the follow-
the protocol as the candidate password submitted by the user

. $ .
and the passwords similar to the one for the account with thé9 algorithms. Below,z < 72 denoteds random selection
same identifier, respectively. As we will see in Sec. VII,Isuc from setZ and assignment te, andY = Y’ denotes that
misbehaviors can give rise to denial-of-service oppottesii  random variabled” andY” are distributed identically.

for which we propose remedies there. e Gen is a randomized algorithm that on inplt outputs

a public-key/private-key paifpk, sk) <+ Gen(1"). The
IV. PRIVATELY TESTING SET MEMBERSHIP value of pk uniquely determines laintext spaceG
A building block of our framework is a protocol by which where (G, x¢) denotes a multiplicative, cyclic group
a requester can inquire with a respondet as to whether a of order r with identity 1, and wherer is a r-bit
passwordr chosen atR for an account identifier is similar to prime. The randomized functioi(G) returns a new,
one already in use &t for the same identifier. If for an account randomm & G. We let zZ. = {0,...,r — 1} and
identifier a, the responderS has a setP(a) of passwords zZ:={1,...,r — 1}, as usual.
similar to that already set &, then the goal of this protocol e Enc is a randomized algorithm that on input public key
is for the requester to learn whether the candidate password pk and plaintextm € G produces a ciphertext «+

is in P(a). However, any additional information leakage to the Enc,i(m). Let Cpir(m) denote the set of all ciphertexts
requester (about any passwordsfu) or even the number that Enc, (m) produces with nonzero probability. Then,
of passwords inP(a)) or to the responder (abow) should be Cpr = Uneg Cpr(m) is the ciphertext space of the
minimized. scheme with public keyk.



R(a,m, ¢, (hi)icx) S{P(a')}area) messagenl computes its owrd-sized Bloom filter containing
) P(a), i.e., indicesJs + U,cpia) Uiy {hi()} (line s2).°
rl. (pk, sk) « Gen(1") The protocol should returtrue to R if # € P(a), which for a
2. Jp U {hi(m)} Bloom filter is indicated by/r C Js (with some risk of false
ie k] positives, as will be discussed in Sec. VI-A2).
. Enc,x($(G)) if j € Jr
r3.Vj €[] : ¢; + {Enc:kglé) ) i i 2T

a, pk, (hi)ie(r), (¢i) jele)
ml.
sl. abort if 3j € [{] : ¢; é Cpk

2.Js + |J U{h

n’eP(a)ic(k

Our protocol equivalently returns a valueRathat indicates
whether[¢] \ Js C [¢] \ Jr, where " denotes set difference,
without exposing/s to R or Ji to S. To do so, the requester
R encodes/r as ciphertextsc;) e Wherec; € Cpi(lg) if

€ [{]\ Jr andc; € Cpi(m) for a randomly chosem el
if 7 € Jr (r3). In this way, whenS computesp in line s4—
i.e., by homomorphically multiplying; for eachj € [{] \ Js

$3.2 & 7y o A
and then exponentiating by a randamé- Z} (s3)—p isin
s4. p < exp,, I, <.z Cor(1g) if [(]\ Js C ]\ Jr and otherwise is almost certainly
J€leNTs not in Cpx(1g). As such,R returnstrue, indicating thatr is
p similar to the password set &t for accounta, if and only if
Decyi(p) = 1g (r5—6).

It is important that bothS and R check the validity of
the ciphertexts they receive (line@ and r4, respectively).
For S, implicit in this check is thapk is a valid public key
Fig. 1: PMT protocol; see Sec. IV-B. Requesitereturnstrue  (i.e., capable of being output §en). For our implementation

if passwordr is similar to another password used at respondegiescribed in Sec. VI-A, these checks are straightforward.
S for the same account identifier i.e., if 7 € P(a).

m2.
r4. abort if p & Cpi
r5. m < Decs(p)

-
r6. return (m = lg)

C. Security

We now reason about the security of the protocol of Fig. 1
e Dec is a deterministic algorithm that on input a private against malicious requesters (Sec. IV-C1) and against- mali
key sk and ciphertext € C,;(m), form € G andpk the  cious responders (Sec. IV-C2). More specifically, our focus

public key corresponding tek, producesn + Dec(c).
If ¢ & Cpr, thenDecg(c) returns_L.

in this section is properties that underkEcount security
as informally described in Sec. llgccount location privacy

e x| is arandomized algorithm that on input a public key will be discussed in Sec. V. Proofs for all propositions iisth

pk and ciphertexts; € Cpi(my) andcy € Cpi(ma)

produces a ciphertext <— ¢; X c2 chosen uniformly

at random fromCpy(mime). If ¢1 & Cpi Or c2 & Chi,

section can be found in our technical report [72].

1) Security against malicious requesteR learns nothing

more from executing the protocol in Fig. 1 besides the result

m = 1g in line r6 because no other information is encoded
denote multiplication of a sequence and exponentiatiomn p if the responder follows the protocol (i.e., unconditional
using x ., respectively, i.e., security). First, ifp ¢ Cpi(1g) thenp is a ciphertext of any
m € G\ {1g} with equal probability:

then ¢; x,i c2 returns L. We use]_[pk and exp,,, to

z

d
1:[pk Ci = €1 Xpk C2 Xpk -+ Xpk Cz Proposition 1. If the responder follows the protocol, then
=t i 2 P(Pecpk(m) ‘ pgcpk(lG)) = ril
exppi(c,2) = [l ¢ _ o . _
i=1 Second, ifp € Cpi(m), it is uniformly distributed inCp, (m):

Proposition 2. If the responder follows the protocol, then
Plp=c|p€Cp(m)) = Temve m)l for anym € G and any
Our protocol is shown in Fig. 1, with the actions by . Cpi(m).

the requester? listed on the left (lines1-r6), those by the
responderS listed on the right{l-s4), and messages between

them in the middle ro1-m2). In Fig. 1 and below,[z] for  \yhich the protocol in Fig. 1 is a component will typically lea
integerz > 0 denotes the sef0, ...,z — 1}. the result of the protocol run to the responder. Specificiflly

At a conceptual level, our PMT protocol works as follows. @ run of the protocol is immediately followed by another run
The requesterR takes as input an account identifiey the  ©Of the protocol, then this suggests that the protocol reirn
user's chosen password, a Bloom-filter [5] length¢, and ~ true, i.e., thatr € P(a). We will discuss in Sec. V-A2 using
the hash functiongh;),c,) for the Bloom filter (i.e., each €xtra, “decoy” protocol runs to obscure this leakage. Hamev

. {0,1)* — [f]). R computes its Bloom filter containing for the purposes of this section, we will assume that thelresu
7, specmcally a set of indicedg « Uze w{hi(m)} (line r2). of the protocol is leaked to the responder reliably.

The respondes receives as input a Sd?( ) of passvv_ords 3This assumes that all dP(a) will “fit” in an ¢-sized bloom filter. If not,
similar to the password for each local accountc A (i.e., g can use any subset dP(a) it chooses of appropriate size. This will be
A is its set of local account identifiers), and upon receivingdiscussed further in Sec. VI-A2.

B. Protocol Description

2) Security against malicious respondefhe system of




The implications of this leakage to the requirements foras presented by Maurer [48]. The generic group model allows
the encryption schemé are that the requester serves as ammodeling of attacks in which the adversaBycannot exploit
oracle for the responder to learn whether one ciphertext the representation of the group elements used in the crypto-
of its choosing satisfiep € Cp;(1g). The responder could graphic algorithm. For some problems, such as the discrete
potentially use this oracle to determine which of the cipdse¢s  logarithm problem on general elliptic curves, generic Gisa
(cj)jelq that it receives in linenl satisfyc; € Cpr(1g) and,  are currently the best known (though better algorithmstexis
in turn, gain information about the passwordhat the useris for curves of particular forms, e.g., [22]). Somewhat like t
trying to set. Indeed, some leakage of this form is unavda&ab random oracle model [9], the generic group model is idedlize
e.g., the responder could simply set= ¢y and, in doing so, and so even an algorithm proven secure in the generic group
learn whether, € Cp(1g). Similarly, the responder could set model can be instantiated with a specific group representati
p = co X pi c1; if the protocol returngrue, then the responder that renders it insecure. Still, and also like the randontlera
can conclude that botky € C,(1g) ande; € Cpi(lg). model, it has been used to provide assurance for the security

f designs in numerous previous works; e.g., see Koblitz and
enezes [44] for a discussion of this methodology and how
its results should be interpreted.

To capture this leakage and the properties of our protoc
more formally, we define a responder-advers&yo be a
pair B = (B, B2) of probabilistic algorithms.B; takes

as inputpk and (c;) e and outputs a ciphertext and a A function f : N — R is said to benegligibleif for any
state ¢.* B, is provided the oracle response (i.e., whetherpositive polynomiakj(x), there is somes, such thatf(x) <
p € Cpi(1g)) and the state and then outputs a séiz C [4]. ﬁ for all k > ko. We denote such a function byegl(x).

B is said tosucceedif Jg = Jg, where Jr is the set of
indices the requester “set” in its Bloom filter by encryptiag
random group element (ling). More specifically, we define
experimentExpt?((Bl, Bs)) as follows:

Proposition 3. If £ is EIGamal encryption, then in the generic
group model,

A
P ( Expt2(B) = true §2<) + negl(k
Experiment Expt? ((Bi, Bs)) : ( pte(B) ) k 9l(r)

(pk, sk) « Gen(1") for any responder-adversari that runs in time polynomial

Jr & {IC] 1) =k} in .
Vil e — Encpi(8(G)) if j€Jr _ _
Enc,i(lg) if j & Jr Our proof of Prop. 3 (see [72]) depends on disclosinggto
(p,¢) < Bu (pk, <C?j>jem) the resultp é Cyi(1g) for only a singlep or, in other words,
- on the use of a new public keyk per run of the protocol
To = B2 {9, (p € Cuillc) ) in Fig. 1 (see linerl). gince foreyEl(gamaI, generatiﬁg a new
return (Jp z Jr) public key costs about the same as an encryption, reusing a

_ . public key saves at most only/(¢ + 1) of the computational
Then, we analyze the security of our protocol againsiost for R in the protocol, and so we have not prioritized
responder-adversarigs that run in time polynomial in by evaluating the security of such an optimization.
. S o
boundingl? (EXpt5 (B) = tme)' Prop. 3 is tight, i.e., there is a generic responder-adwersa

ElGamal encryption To prove security against a malicious that achieves its bound (to within a term negligible<in This
responder, we instantiate the encryption schénas EIGamal adversaryB = (B1, Bz) perfc?>rms as followsB; outputs, say,
encryption [26], which is implemented as follows. p < co and, upon learning € Cpx(1g), B2 guessedg to be
ak-element subset df] where0 € Jp iff p ¢ Cpi(1g). Once

s _ G is instantiated in practice, security rests on #ssumption
pk = (g,U), whereu & Z,, g is a generator of the that no responder-adversary can do better, i.e., that diven
(cyclic) group(G, x¢), andU « g". We leave itimplicit  decisional Diffie-Hellman (DDH) instances;) (¢ for public
that the public keypk and private keysk must include ey (4, /), no adversary can create a single DDH instapce
whatever other information is necessary to Spe€ife.g.,  for which the answer enables it to solve the instanegsc ()

e Gen(1") returns a private keyk = (u) and public key

the elliptic curve on which the members Gf lie. with probability better than that given in Prop. 3. Informyal

e Enc(, vy (m) returns(V, W) whereV < g, v & /. Prop. 3 says th_at any such adversary would need to leverage
andW < mU". the representation d& to do so.

e Deci,y((V,W)) returns WV~ if {V,IW} C G and
returns.L otherwise. V. INTERFERING WITHPASSWORDREUSE

. H<g7U> (Vi, W;) returns(Vy ... V,g¥, Wy .. . W, UY) for
=1
Y & Z, if each{V;, W;} C G and returnsL otherwise.
(Vi, W1) x(g.uy (Va, W2) is just the special case= 2.

In this section, we propose a password reuse detection
framework based on the PMT protocol proposed in Sec. IV.

A. Design
Generic group modelwWe prove the security of our protocol

: . : Our password reuse detection framework enables a re-
against a responder-adversdsyin the generic group model P

questerR to inquire with multiple responders as to whether
“We elide the other values in messagé from the input to3; only ~ the passwordr chosen by a user for the accountatwith
because they do not contribute the security of the protocol. identifier ¢ is similar to another password already set for




at some responder. The requester does so with the help ofaaldress registered at the directory can be a regular TCP/IP
directory, which is a (possibly replicated) server that provides aendpoint, if it trusts the directory to hide its identity fno
front-end to requesters for this purpose. The directoryesto others, or an anonymous server address such as a Tor hidden-
per identifiera, a list of addresses (possibly pseudonymousservice address [23] if it does not. In the latter case, the
addresses, as we will discuss below) of websites at which responder should register a distinct anonymous serveeasdr
has been used to set up an account. We stress that the directat the directory per account identifiey to prevent identifying
doesnot handle or observe passwords in our framework. the responder by the number of accounts it hosts.

The requesters and responders need not trust each other in Wwhile each website could choose individually whether to
our framework, and employ the protocol described in Sec. IMruyst the directory to hide its identity from others, we will
to interact via the directory. More specifically, a user o th evaluate the performance of our system only when either all
requester? selects a passwordfor her account with identifier \vebsites trust the directory in this sense or none do. We refe
a, and submitst to R. R sends the message in linel  to these models in the rest of the paper asTA&P-directory
of Fig. 1 to the directory, which it forwards to some subsetmodel (short for “trusted fomccount location privacy’) and
of m responders, out of tha/, total registered as having the UALP-directorymodel (“untrusted foraccount location
accounts associated with at the directory. (How it selects privacy”), respectively. We believe that the TALP-directory
m is discussed in Sec. VI-C.) The response from respondefnodel would be especially well-suited for deployment by a

S; is denotedm2; in Fig. 2. Once the directory collects |arge cloud operator to serve its tenants, since these tenan
these responses, it forwards them back#oafter permuting  already must trust the cloud operator.

them randomly to prevenk from knowing which responder

returned which result (see Sec. V-ATj.then processes each Our framework is agnostic to the method by which each
as in linesr4—r6; any of these results that ateue indicates responder generates the $&u) of similar passwords for an
that some responder that was queried has a password similagcounta. We envision it doing so by leveraging existing
to = set for accountz. If any are true, then the requester password guessers (e.g., [14], [70], [71], [75]), seedeH thie
(presumably) rejects and asks the user to select a differentactual password for the account. In addition, if, say, Geogl
password (perhaps with guidance to help her choose one thabserves a user set the passworgoogl 123, it could add

is likely to not be used elsewhere). twitter123andfacebookl123to P(a). So as to eliminate
the need to store trivial variations of password$’@) and so
password mi reduce its size, the responder could reduce all such variant
_m / S a single canonical form, e.g., by translating all capitétieles
% " m2, : to lowercase, provided that requesters know to do the same.
R .

aceent (m2,}m, o 1) Security for each respondefThe responder need not

_reject__ - @ \r;é“* Sm retain the elements dP(a) explicitly, but instead should store
" in P(a) only the hash of each similar password, using a time-

consuming cryptographic hash functiéh makingP(a) more
) ] costly to exploit if the site is breached [66]. In particyldris
Fig. 2: Password reuse detection framework based on the PM{ash function need not be the same as that used to hash the
protocol introduced in Sec. IV. real password during normal login, and so can be considerabl
more time-consuming. In additiol/ can be salted with a salt
. . computed deterministically from user identifier so that the
There are some additional operations needed to support thg,s for, used at different sites are identical. Going further,
framework, as well. the responder could proactively generate theJsetvhen the
« Directory entry addition After a new account is set up, Password fora is set atS, and dispense of(a) altogether.
the requester sends its address (discussed below) to tiowever, this precomputation would require the Bloom filter
directory to be stored with the account identifier size ¢ and hash functionsh;);c(x) to be fixed and known to
e Directory entry deletionWhen an account on a web the responder in advance.
server (responder) is no longer used, the responder can
optionally update the directory to remove the responder'$rotecting Js from disclosure As shown in Sec. IV-C1, the
address associated with only information leaked to the requester is the result of the

i ?
» Password changéWhen a user tries to change the passz§rotocol in Fig. 1,i.e.p € Cpi(1g), regardless of the behavior
word of an account, the web server should launch they the requester (Props. 1-2). Still, however, this infaiora

protocol (as a requester) before the new password igan erode the security offy over multiple queries. For
accepted to replace the old. example, if a malicious requester sefs« Enc,(m) where

The requester can communicate with the directory norin # g for one Bloom-filter indexj andc;, «— Enc, (1) for

mally (e.g., using TLS over TCP/IP), trusting the directtwy # j, then the result op é Cyi(1g) reveals whethef € Js.
mask its identity from each responder to implemaotount After ¢ such queries, the requester can learn the entiretigof

location privacy (in which case, the directory behaves as angng then search for the items stored in the Bloom filter offline
anonymizing proxy, cf., [7], [33]). Or, if the requester dasot

trust the directory to hide its identity, then it can comnuate Our framework mitigates this leakage using three mech-
with the directory using an anonymizing protocol such as Tomnisms. First, each responder serves only PMT queries for-
(https:/iwww.torproject.org/, [23]). Similarly, eachsmgonder warded through the directory, i.e., by authenticating esds

User Requester Directory Responders


https://www.torproject.org/

as coming from the directory. This step is important for the  Still, to counter any remaining risk in case the attacker
following two mitigations to work. finds Js, we advocate that form its set P(a) to include

d. the di doml honey passwordg], [40], [27]. That is, when the password is
Second, the directory randomly permutestfi messages et (or reset) at a website for accountthe website chooses
received from responders before returning them to the re

L My o a collection ofd honey passwords!, ..., 7%, as well, via
quester, thereby eliminating any indication (by timing oi@) 5 gtate-of-the-art method of doing so. It then generates a
of the respondes; from which eachm2; was returned. This ¢,sterof similar passwords for each of thier 1 passwords—
largely eliminates the mformatlon_ that a mgI|C|ous redees . denote the cluster for the real passwordby ¥ ()
can glean from multiple PMT queries. In particular, the noeth

k and the honey-password clusters Byz!), ..., ¥(7%)—with
above reveals nothing to the requester except the NUMbL . ciyster being the same size Then, it sets the similar
of queried responders; for which j € Jg,, but not the

. L passwords for accoumtto be the union of these clusters, i.e.,

responders for which this is true. d .
P(a) = U(r) U (szl \I/(WJ)).

Third, we involve the user to restrict the number of PMT '
queries that any requester can make. Assumirig an email In this way, even if the attacker learns the entire contents
address or can be associated with one at the directory, tH Js for a responderS, the set.Js will contain at least
directory emails the user upon being contacted by a requestel + 1 passwords that appear to be roughly equally likely.
to confirm that she is trying to (re)set her password at thatf any password in a honey-password cluster is then used
website> This email could be presented to the user muchn an attempt to log into the account, the website can lock
like an account setup confirmation email today, containing dhe account and force the user to reset her password after
URL at the directory that user clicks to confirm her attempt to@uthenticating via a fallback method. The main cost of using
(re)set her password. The directory simply holds message honey passwords is a linear<hgrowth in the size ofP(a),
until receiving this confirmation, discarding the messafje iwhich reduces the cluster sizethat can be accommodated by
it times out. (Presumably the requester website would alefhe Bloom-filter size/ (which is determined by the requester).
the user to check her inbox for this confirmation email.) ToWe will show in Sec. VI-C, however, that this cost has little
avoid requiring the user to confirm multiple attempts to set dmpact on interfering with password reuse.
password at the requester and so multiple runs of the prbtoco 2) Security for the requesterSecurity for the requester is

in Fig. 1 (which should occur only if the user is still not .0 Gaighiforward, given Prop. 3 that proves the privaicy
using a password manager), the directory could allow ong ", -inot 2 malicious responder (and from the directory) in
such confirmation to permit queries from this requester for

a short window of time, at the risk of allowing a few extra th_e generic group model. Moreover, the. requester's idersit

queries if the requester’ is malicious. However, exceptrduri h!dden from responders either by the directory (in the TALP-

this window, requester queries will be dropped by the dimaet directory mode!) or because the requester contacts thetaliye
anonymously (in the UALP-directory model).

Leveraging the directory to permute PMT responses and
limit PMT queries requires that we place trust in the diregto
to do so. If desired, this trust can be mitigated by repliaati
the directory using Byzantine fault-tolerance methodswero
come misbehavior by individual replicas. Ensuring thatyonl
user-approved PMTs are allowed can be implemented usi
classic BFT state-machine replication, for which incregki
practical frameworks exist (e.g., [4], [11]). Permuting PM
responses in a way that hides whiéh returned eachm?2;
even from f corrupt directory replicas can be achieved by
simply havingf+1 replicas permute and re-randomize th2;
messages in sequence before returning them to the requester Still, if the information leaked by théalse result for the

passwordr finally accepted at the requester is of concern, it
Limiting utility of a Js disclosure The risk that the adversary is possible to obfuscate even this information to an extaint,
finds the password for user at responderS, even with  extra expense. To do so, the requester follows the acceptanc
Js, is small if the user leveraged a state-of-the-art passwordf = with a number of “decoy” protocol runs (e.g., each using
manager to generate a password that resists even an offliaerandomly chosedy set of sizek), as if the run onr had
dictionary attack. Even if the user is not already using aeturnedirue. The user need not be delayed while each decoy
password manager, obtaining the account password usisg thiun is conducted. That said, because decoy runs add overhead
attack should again be expensive if the cryptographic hashnd because the responder is limited to learn informationiab
function H is costly to compute. Moreover, the attacker canr in only a single protocol run (and to learn a limited amount,
utilize a guessed account password only if it can determinger Prop. 3), we do not consider decoys further here.
the respondef at which it is set for account, with which
account location privacy interferes.

As discussed in Sec. IV-C2 and accounted for in Prop. 3,
responders (and the directory) learn the outcome of theprot
col, since they see if the requester runs the protocol agaimt.
is, a true result will presumably cause the requester to reject
the password and ask the user for another, with which it tepea

"the protocol. However, because the password is different in

each run (which the requester should enforce), the infaomat

leaked to responders does not accumulate over these raultipl
runs. And, the responders learn only thateast onaesponse
resulted intrue, not how many or which responders’ did so.

B. Analysis via Probabilistic Model Checking

e e e e e oo diomys _Probabilistic model checking is a formal method to analyze
to the user and passes to the directory to include in the coafion email. prObabllls.tlc behaviors in a system. .ln this secqqn, we
The email should instruct the user to confirm this passwaeysét only if the  the security of our framework against a malicious requester

nonce displayed by the website matches that received inrtfz.e using Storm, a probabilistic model checker [20].



Storm supports analysis of a Markov decision processemain available to the attacker; the password clusterssevho
(MDP), by which we model the attacker targeting a specificexistence inSim has been confirmed by the adversary via
accounta. That is, we specify the adversary as a sestates PMTs, to which we refer as theonfirmedclusters; and per
and possiblactions When in a state, the attacker can choosewebsite, the previous adversary login attempts, theirlt®su
from among these actions nondeterministically; the choseand the number of login queries remaining at that website.
action determines a probability distribution on the staie t

which the attacker then transitions. These state transitio ~ --= fiversavs deoson
satisfy theMarkov property informally, the probability of next @ . @
transitioning to a specific state depends only on the current IR

, . . P(n' € Sim) . R
state and the attacker’s chosen action. Storm exhaustively / T ‘Y(ﬁ/eule\w))
searches all decisions an attacker can make to maximize the _ o’ P( T E A )“ .
- X .. SPPEEEON ¢ Uiz, (i) Lemmn o ,
probability of the attacker succeeding in its goal. Here, we ACTION 1% == e T T CTION NS ¥
H . P ~ L N N B -\ ’
define this goal to be gaining access to accowrtn any “~=----7 . L Tm=mmet
responder, and so Storm calculates the probability of the \ el ‘/W:”
P (' ¢ Sim) N '

attacker doing so under an optimal strategy. Pt
i i i TATE 1: PMT negative responsd
As is common in formal treatments of password guessingZriE 3 it reothe ferons

(e.g., [42]), we parameterize the attacker with a pasSWOrGTATE 3: Failed login )

dictionﬁry of a ngci_fiedhsize, Tr%m Wh(;ch’tsl pasgwor_?lm | STATE 5. Detocted by honey passwords  ACTION 2 Try 0 log 1 foan buaget
at each responde¥; is chosen independently and uniformly
at random. The base-2 logarithm of this size representsithe e
tropy of the password. We then vary the size of this dictignar
to model the attacker’s knowledge abalg password choices
at responders. We further presume that the similar-passwo
set P;(a) at each responded; is contained in this dictionary
(or equivalently we reduc’;(a) to the subset that falls into
the dictionary). For simplicity, we assume that the cluster
U(r;), ¥(7}),..., 0 (7¢) that compriseP;(a) are mutually
disjoint and disjoint across responders; g}, Pi(a)| =
St |Pi(a)] = m(d + 1)y where is the size of each

Fig. 3: Abstract MDP automaton for attacker interactionhwit
S;. m; is the correct account passwor;, ... ,fr;i are its honey
passwordsy’ is an attacker’s password guess. Probabilities are
Ir:onditioned on attacker knowledge gained so far.

Fig. 3 shows an automaton that represents the attacker
interacting with one websites;. The entire model includes
multiple such automata, one per website, and the adveraary c
switch among these automata at each step. Actions and states
X ph i shown in Fig. 3 represent sets of actions and states in tbalact
cluster. Below, we denote byim = UJ;_, Fi(a) the union 4 ,1omaton. For example, when the adversary tries to login by
of all similar-password sets constructed by responders. submitting a password to the login interface of the website,

The attacker is limited by two parameters. First, we pre_the passwqrd <_:0u|d be ghosen from a “confirmed” cluster list
sume that each responder limits the number of consecutiv® Not, which is determined by the adversary. Though these
failed logins per account before the account locks, as isayp &' Separate actions in our model, we let ACTION 2 serve as
and recommended (e.g., [36]); we call this numberlggin 2" abbre:wanon for all such actions in Fig. 3, to simplifeth
budgetand denote it. Second, our framework limits the PMT figure. Similarly, a state shown in Fig. 3 represents allestat
queries on’s accounts to those approved by usewhen she resulting from the same query response but that d|ffer_ based
is (re)setting her password (see Sec. V-Al); we model thiéh,e state vanlablles described abovga. Final states (fawictiag
restriction as #MT budgetThe login budget is per responder, With 5:) are indicated by double circles.

whereas the PMT budget is a global constraint. If the adversary enters STATE 5 for a website or uses up its
?gin budget for a website, he must switch to another website

We also permit the adversary advantages that he might n(i) : . L
have in praf:)tice. First, he kn0\)//vs the ful? set of respogderso continue attacking. The adversary wins if he enters STATE

20"he can attempt (0 log nfo any of them, and the logiC™ &% Gne of he websfes whie he loses T e ises up the
budget at each. Second, if he receives a positive resporse t 9 9 99

PMT query with password’, then the cluster containing’ 2) Results: The model-checking results, and in particular
becomes completely known to him. That isxif € ¥(w;) for ~ the impact of various parameters on those results, are sum-
the actual account-passwordr; at.S;, then¥(r;) is added to  marized in Fig. 4. This figure plots the attacker’s success
the adversary’s set of identified clusters, and’i U(#/) for ~ probability, under an optimal strategy, as a function of the
a honey password’ at S;, then¥(#?) is added to that set. password entropy. The leftmost data point in each graph
Critically, however, he learns neither whether the newtelus Pertains to a dictionary size equalltéim| = m(d+1)1, which
is the cluster of a real password or a honey password, nor tHg the minimum dictionary size consistent with our model.
responderS; at which the cluster was chosen; both of theseThis minimum dictionary size—representing a large amount
remain hidden in our design. Third, each failed login attemp©f attacker knowledge about the dictionary from which the
at S; provides the adversary complete information about thdiser chooses her password—is the reason why the attacker
attempted password, specifically if it is in a honey-password Succeeds with such high probability. Each graph shows four
cluster ' € U;l:1 w(#7)) or simply incorrect £’ # ;). Ical;;\_/resl; corresponding to PMT budgets of 0, 3, 6, and 9. The
udget of 0 provides a baseline curve that shows the
1) Model Description: A state in our model is defined to security of each configuration in the absence of our design
include the following items of information: previous adsary  (though in the optimistic case where usenevertheless chose
PMT queries and their results; the number of PMT queries thadifferent passwords at each website).



—— PMT budget =0 --- PMT budget =3

______ PMT budget =6 -~ -- PMT budget =9 VI. EVALUATION AND PARAMETER OPTIMIZATION

A. Implementation

0.5
8'3 B We built a prototype of our framework to evaluate its
>9 09 performance and scalability, and to inform its parame#tion
= § 0.1 | (see Sec. VI-C). We realized the cryptographic parts of our
8S o protocol in C and other parts using Go.
(%]
g.a 1) Cryptography: We used the ElGamal cryptosystem in
g—:‘o“ 0.5 an elliptic-curve group (EC-ElGamal) as the multiplicativ
EZ 0.4 homomorphic schem¢ in Fig. 1. We realized all crypto-
3% 0.3 graphic operations using MIRACL (https://github.com/atl/
= 0.2 MIRACL). Our implementation includes four standardized
0.1 elliptic curves: secpl160rl, secp192rl (NIST P-192), sedpP
0 (NIST P-224) and secp256r1 (NIST P-256) [10], [29]. Eligati
3 5 7 911131517 3 5 7 9 11131517 curve cryptosystems based on these curves can providetgecur
(© m=9,c=3,p=1 (d) m=3,c=3,p=4 roughly equivalent to RSA with key lengths of 1024, 1536,
) 2048 and 3072 bits, respectively. The generatarsed with
Password entropy (bits) each curve has a cofactor d10], so that the group includes

all curve points. This allows the requester and respondaers t
check the validity of ciphertexts (i.e., lines andr4 in Fig. 1)

FBS/ checking if each ciphertext component is a valid point on
the elliptic curve (or the point at infinity).

Fig. 4: Maximum probability with which attacker logs into
account at some responder, as a function of password entro
Subfigures show different settings for the numieof respon-
ders queried, the login budgét and the cluster size. The
number of honey-password clustersdis= 4. All subfigures To make messages shorter and save bandwidth, we enable
have the same axes. point compressiorin our implementation. Point compression
(e.g., [38, Section A.9.6]) is a technique that compresaeh e
elliptic-curve point to half its original size by using only

>0 U5 _ y mod 2 in place of itsy coordinate value. Correspondingly,
= - =+ = PMT budget = 9 int d ; h int b . h
5904l PMT budget = 6 point decompressioreconstructs the point by recovering the
ER .. PMT budget = 3 y coordinate based on thecoordinate and; mod 2.

29 43| T get= ! . .

ag —— PMT budget = 0 2) Bloom filters: A Bloom filter has a false positive rate of
EQS g2 | Ao ~ (1—e~*7%)* wheren = | P(a)| denotes the number elements
ER s, to be inserted into the Bloom filter by the respondedenotes
S84 0.1 R the length of the Bloom filter ankl denotes the number of hash
= 0 IV functions (e.g., see [51, pp. 109-110]). As such, the nurober

T T T I ! ! !

hash functions that minimizes false positivesig, = £.1n2

anq in this case, thze minimized false positive rat@isert =
“win2 & (0.6185)7. In our framework} and/ are decided

Fig. 5: Maximum probability with which attacker logs into by the requester, while is determined by each responder with

account at some responder, as a function of password entrog¢ knowledge ok and/ received from the requester. In our
wherem = 12, ¢ = 9, ¢ = 4, andd = 4. implementation, the requester chooges 20 by default, and

so each responder then generates &g} of sizen < %1112
to ensure a false positive rate sf2-20,

I I I I T
7 8 9 10 11 12 13 14 15 16 17 18 19 20
Password entropy (bits)

i i ) 3) Precomputation\We use precomputation to optimize the
Fig. 4a shows a baseline with small parameters; the oth&freation of ciphertexts; by the requester in our protocol.
subgraphs show the effect of increasing one parameter at gyecifically, the requester precomputes private keyublic
time. Fig. 4b and Fig. 4c show the impacts of increasing the;(ey U, and values{V;},c;q and {W;};c;q, where each
per-webslte login budget and t_he numb_em of re;ponders U,V;,W;) is a valid Diffie-Hellman tfiple, Le.(V; W;) €
queried in each PMT, respectively, which both increase th@w 0y (1g). To create a ciphertext; of a different group
_attacke_r’s probab_|I|ty of success somewhat._ Fig. é_ld shtas t glementm # 1g, the requester need only multiphy/; by
increasing the size) of each password (including honey- ;- thys, liner3 is completed in at most one multiplication
password) cluster suppresses the success probability. perj € [¢]. In practice, this precomputation could begin once
the user enters the account registration web page and aentin

These graphs show that while growing the PMT budgeyring idle periods until a password is successfully set.

increases the attacker’s probability of success, the ammun
which it does sois modest and diminishes as the.password ep- Response Time
tropy grows. Fig. 5 shows somewhat more realistic paramseter
(though we were limited in growing these calculations tdytru In this section, we evaluate the response time of our pro-
realistic sizes by the computational expense of doing s8). Atotype system as seen by the requester (and in the absence of
shown there, any attacker advantage gained by up to 9 PMany user interaction, such as that described in Sec. V-Ai)), w
queries all but disappears with a dictionary of size . two goals in mind. First, we want to systematically measure
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the effects of various parameter settings on our prototype | requester T H H- T oirectory § T H Responder

implementation, to inform the selection of these paranseter R on | Ba sever =ot| 2l —
through an optimization process discussed in Sec. VI-C. We
mainly explore two different parameters of our framework: Fig. 6: Topology of our UALP-directory experimental setup
The maximum number of similar passwords= |P(a)| per

responder (as determined by setting the Bloom filter size

L= (%1 in the protocol), and the numbet of responders. —m=1 m=32 ----m=064

The second main goal of our experiments here is to compar ---m =96 ===m =128
the performance of our prototype with and without leverggin
Tor for implementingaccount location privacy, i.e., the
UALP-directory and TALP-directory models, respectively.
doing so, we hope to shed light on the performance costs o
adopting a more pessimistic trust model in which the dingcto
is not trusted to hide the websites where each account fienti
a has been used to register an account.

time (§)

50

g

40
30
20

1) Experimental setupin our evaluations, we set up one 10

requester, one directory, and up to 128 responders, spre
across six machines located in our department. The requeste
and the directory ran on separate machines with the same

SProtocol run

97 98 59 510 511 512 57 o8 59 510 511 512

specification: 2.6GHz x 8 physical cores, 12iB RAM, n

Ubuntu 14.04 x8664. The (up to) 128 responders were split (a) TALP directory (b) UALP directory
evenly across four other, identical machines:GB x 32 (x < 6%) (x < 28%)
physical cores with hyper-threading enabled (and so 64&#bgi _ . _

cores), 128iB RAM, Ubuntu 16.04 x8664. Each of the Fig. 7: Response time for variousandm

responders sharing one machine was limited to two logical

cores, and had its own exclusive data files, processes, and

network sockets. The six machines were on the safil/s f . . .

network. Thus, while our results might be pessimistic dug’©M S0 executions. Relative standard deviations, dengted
to resource sharing among responders, they might also Fee reported in figure captions.

somewhat optimistic in our TALP-directory experiments due  2) Results: A measure of primary concern for our frame-
to leveraging LAN communication. (The UALP-directory case work is the response time witnessed by the requester, since
is discussed further below.) this delay will be imposed on the user experience while

Parameters were set to the following defaults unless othsetting her password. Fig. 7a shows the response time in the
erwise specifiedm = 64, and elliptic-curve key length of TALP-directory model, where the requester connects direct
192 bits. In particular,,m = 64 is conservative based on to the directory and the directory connects directly witichea
recent studies. For example, a 2017 study with 154 partitspa responder. In contrast, Fig. 7b shows the response time in
found that users have a mean2s.3 password-protected web the UALP-directory model, and so connections are performed

accounts [54], which is quite consistent with other studieghrough Tor. Precomputation costs (see Sec. VI-A3) are not
(e.g., [30], [67]). included in Fig. 7, as these costs are expected to be borne

_ ) o off the critical path of interacting with the user. Tor circu
Because the public Tor network is badly under-provisionedetup times are amortized over the 50 runs contributingth ea
for its level of use and so its performance varies signifigant gatapoint in Fig. 7b. In practice, we expect this setup cost
over time, in our tests for the UALP-directory model, we to pe similarly amortized over attempts needed by the user
utilized a private Tor network with nodes distributed asros to choose an acceptable (not reused) password, or relegated
North America and Europe. Our private Tor network consistedp a precomputation stage when the user first accesses the

of three Tor authorities, 8|ght normal onion routers, and tw requester's account Creation/password reset page.
special onion routers. The eight normal onion routers were

running on eight different Amazon EC2 (m4.large) instances ~ One observation from Fig. 7 is that the response-time
one located in each of the eight Amazon AWS regions in Northeost of mistrusting the directory and so of relying on Tor to
America and Europe. Among these onion routers, three wergnplementaccount location privacy, is typically > 2x for
also running as Tor authorities, with one in Europe, one .U. the parameters evaluated there. Recall that in Fig. 7b, theth
West, and the other in U.S. East. Two special onion routersequester—directory and directory—responder commuaitst
were running on the machine in our department hosting thavere routed through two onion routers chosen randomly from
directory; one (“Exit” in Fig. 6) exclusively served as thete ~Amazon datacenter locations in North America and Europe
node of Tor circuits from requesters, and the other (“RP” in(see Fig. 6), in contrast to LAN communication in Fig. 7a.
Fig. 6) served exclusively as the “rendezvous point” pickgd The costs of these long-haul hops and Tor-specific proagssin
the directory to communicate with Tor hidden services, itee  increased as grew, due to growth in query message size.
responders. As shown in Fig. 6, each circuit included twoamor
onion routers (“OR” in Fig. 6) chosen at random from among
the eight normal onion routers already described.

Fig. 7 also shows the impact of more responders (larger
m) on the response time witnessed by the requester. The main
underlying cause of this effect is the variance in the speeds
All datapoints reported in the graphs below are averageavith which the responders return responses to the directory
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20 O 10 20 30 40

Response times) Fig. 9: Estimate of® (' € ¥(mr;)) for accounta passwordr;
(@) TALP directory (b) UALP directory at S; and candidate password selected by used at R, per
(x < 4%) (x < 33%) cluster sizeyy = |¥(m;)| and taken with respect to random
. ) _ _ _ selection of the usar and respondes$;; based on [70, Fig. 7]
Fig. 8: Response time (horizontal axis) when the propomion
responses on the vertical axis is returned by directory an so

as it is available, = 64)
Numerous studies (e.g., [75], [70]) have found very low

variation in the transforms that users leverage to modirth

, ) i L _passwords (when they modify their passwords at all). Peavid
This variance is small when communication is direct, but ity ¢ respondes; populatest (r;) C Pi(a) (see Sec. V-Al) by
grows substantially when Tor is used, due to the differencegpying these common transforms to its accoupassword
in routes taken between the directory and each responder. i, the probability that the user's chosen passwefdat a

These effects are also illustrated in Fig. 8, which shows théequester is contained withi(m;) at a randomly chosen
response time observed by the requester when the directo'F__QsloonderSi is approximately as ShOWQ in Fig. 9 (cf., [70,
returned the proportion ofr = 64 responses on the vertical Fig- 7]), as a function ofy = [¥(m;)[.° As we can see,
axis as soon as that proportion was available to it. For ei@mp this probability is already substantial for very smail For
Fig. 8b shows that when = 210, if the directory waited for €xample, this probability is< 0.34 for event) = 1; in other
75% of the responsest§ responses) before returning them to WOrds, users on average employ the same passwoed3dts

the requester, the requester observed an average resjmase tof the websites where they have accounts. Moreover, this
of 9.55s (since(9.55,0.75) is a point on then = 210 curve).  Probability grows quickly as) is increased only slightly.

Recall that the directory forwards tsamemessagen1 to The key insight here is that if a user chooses its candidate
all responders in our framework. In the UALP-directory mipde Passwordr’ as users typically do, then using a largerovides
using an anonymous communication system that exploits thiitle additional power (Fig. 9) but, since = (d + 1)y where
one-to-many multicast pattern to gain efficiencies whiig st ¢ is the number of honey-password clusters, imposes much
hiding the multicast recipients (e.g., [55]) could presbiga 9greater cost (Fig. 7) than using a small Moreover, suppose
reduce the delays before the directory receives respoasds, We model the true detection rate when queryingandomly

their variance. We leave this extension to future work. chosen respondersas tdr = 1 — (P (' & ¥(m;)))™, i.e.,
ignoring the probability of false detections due to the use

it of a Bloom filter and assuming that the evemfs¢ ¥ (m;)
C. Parameter Optimization and ' ¢ U(m,;) are independent if # i’ (which is perhaps
At first glance, the results of Sec. VI-B are perhaps disteasonable since the user is forced to set dissimilar pagswo
couraging, since they suggest that the response time afdest at.S; andS;; by our framework). Then, increasing provides
with a large numbern of similar passwords and at a large more detection power.

numberm of queried responders is potentially large, especially .
in the UALP-directory model (Fig. 7b). In this section we 10 balance these parameters and the response time of the
describe an approach to select optimal parameters for use Rfotocol, we model the response time using

our framework, specifically parameter values and n that _ ) ) .

maximize the likelihood of detecting the use of a similar tmn)=fot+fr-n+fz-m+fs-n-m

password, subject to a response-time goal. As we will see, thRegression analysis using the data in Sec. VI-B yiglgls=
results are not discouraging at all—a high true detectid@ ra 1.5507, 81 = 5.8834 x 1073, 32 = 2.6209 x 10~2 and

can be achieved within reasonable response-time limits avit
surprisingly smalln and while querying a modest number 6Fig. 9 is a Ic_)g-normal CDF fitted to p_oints selected from [7(_@.!7] by
of responders from among the total number of responM:;s me;nual mspectlon, as we cgu!d not obtain the source datth&brfigure.
. . The directory should retain its same random choicerafesponders across
reg|3tered at the dlrectory for account the user’s failed attempts to select a password that she dtasensed, lest
The reason behind this initially surprising result is the o8 ey Tt o et o e i requester oan
typical manner in which people create new passwords bye charged with ensuring that the user's attempted passvesedsufficiently

applying simple, predictable transforms to existing passla.  different from one another.
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tgoal (8) m "
01 02 03 .04 05 .06 .07 .08 .09 .10 nl 1 6 11 16 21 26 n |1 6 1116 21 26
1|[43041013 492 325 237 174 1| 95 61 42 33 27 22
d=0 n 1 1 2 2 5 9 13 16 20 23 10||2415 549 277 188 155 122 10| 87 59 40 31 25 20
m 1 10 17 26 26 26 26 26 26 26 20|(1478 336 182 129 98 78 20| 78 54 37 28 23 19
tdr 343 985 ~1 ~1 ~1 ~1 ~1 ~1 =~1 =1 30||1076 243 124 86 63 53 30| 71 51 35 27 20 16
40| 788 187 94 67 49 40 40| 62 44 32 24 18 14
d=4 n - i 12 12 256 12(31 12% 12% 22% 22% 50| 683 159 76 52 39 33 50|| 53 39 26 20 15 11
m - 60
o 343 985 A1 A1 A1 A1 A A~ Al 611 132 63. 43 32 25 60| 42 31 20.16 10 10
(a) TALP directory (b) UALP directory
d=9 n - - - 10 10 10 10 10 20 20
m - - - 8 16 24 26 26 26 26
tdr - - - 965 999 =1 ~1 w1 A1 oA TABLE lll: Maximum qualifying responses per second
(a) TALP directory
tgoal () as the requests per second were increased, as a function of
160 162 164 1.66 1.68 170 172 1.74 1.76 1.78 andm. In Table llla and Table lllb, a response wasalifying
d=0 n 1 2 2 5 8 11 14 17 19 22 if its response time was. 5s and < 8s, respectively.
m 16 21 26 26 26 26 26 26 26 26
tdr 999 ~1 ~1 ~1 A1 ~1 »1 ~1 ~1 ~1 This 3s difference between the standards pralifying in
d=4 n 5 5 5 5 5 10 10 15 15 20 the two tests was needed because we constructed the UALP-
N A I directory test to capture as faithfully as possible the Tasts
— : '10 T 0 0 1 1o o that a real deployment would incur. Notably, even though
-9 n :
= 3 9 16 22 26 28 26 o5 28 the m responders queried per request were chosen from only

716 977 999 ~1 ~1 ~1 ~1 =~1 =1 64 responders in total (the configuration was the same as in
Sec. VI-B), no two requests were allowed to use the same
Tor circuit, since they would be unable to do so in a real
i i L deployment, where different addresses for the same respond
TABLE II: Choices form andn computed using optimization are stored for different user accounts at the directorye(Th
in Sec. VI-C with M, = 26 exception is if the requests were for the same user and at the
same responder.) So, each request necessitated comstrofiti
new Tor circuits to its responders, which increased respons

B3 = 4.7135 x 105 in the UALP-directory case (root-mean- UMES commensurately.

square ermorR MSE' = 0.4547) andgﬁo = 6.4505x107%, B =~ To put Table 11l in context, a throughput of 50 qualifying
2.2885 x 1077, f = 1.0271 x 10~ and 33 = 2.0336 x 10~ responses per second is enough to enable each of the 312
in the TALP-directory case RMSE = 0.1276). Then, the  mjljion Internet users in the U.Sto setup or change passwords
requester chooses andn using the following optimization: o apout 5 accounts per year. Moreover, we believe the

o+
Q.
=

(b) UALP directory

maximize tdr = 1 — (P (' & ¥(m;)))™ numbers in Table Ill to be pessimistic, in that in each regues
m,n them responders were chosen from onlf, = 64 responders
subject tot(m, n) < tgoal in total, versus from likely many more in practice. Still,Seal
1< =n/(d+1) on Table llIb, a deployment using the UALP-directory model
1 2 m < M would presumably require adaptations of Tor for our usecas

(e.g., [55]) and distribution of the directory.
wheretgoa is the requester’s desired response time &fdis
the number of responders registered at the directory anigpavi
an account for identifiea. The directory can send/, to the
requester in an initial negotiation round before message

We note, however, that even a non-replicated directory
should easily handle thstoragerequirements of our design.
With 3.58 billion active Internet users worldwide and anrave
age of 26 password-protected accounts per user, the stofage

This optimization, together with using the curve in Fig. 9 a Tor hidden service address for each user account at each
to estimateP (7' € ¥(7r;)) and the regression results above towebsite amounts to onlygs 1.5TB of state. In the TALP-
estimatet(m,n), yields results like those shown in Table Il. directory model, the storage requirements would be even les
In these optimizations, we sétf, = 26, because recent work

found the mean number of password-protected online acsount
per user is26 [54]. The response-time goalg., used in VII.  DENIALS OF SERVICE
Table Il were chosen simply to show how the optimaland Our design introduces denial-of-service opportunities fo

n vary under stringent response-time constraints. As showmisbehaving requesters, responders, or the directory. /e d
there, for many response-time goals.,, a true detection rate cuss these risks here, as well as methods to remedy them.

tdr =~ 1 can be achieved with very small valuesraf o
Perhaps the most troubling is a responder who returns

As such, the full range of parameter settings explored in, c ¢, (1) regardless of the request ciphertetds) ;¢ in
Sec. VI-B will rarely be needed. This is fortunate, since & : i S
ec. vVI-b will rarely be needed. 1his Is foriunate, sinceé Bma messagen1, thereby giving the requester reason to reject the
values ofn. improve the throughput of requester-responder inyser's chosen password even when the user’s chosen password
teractions, especially in the TALP-directory model. To ges,
Table 1l shows the throughput Of_ our 'mplementat|0n_- Mea- 8This estimate was retrieved from https://www.statistettopics/2237/
sured as the largest number qdialifying responses achieved internet-usage-in-the-united- states/ on December 48.201
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is not similar to others she set elsewhere. This denial-ofether defenses (Sec. V-A) to implemeatticount securityand
service attack would frustrate users, but fortunately paeder  account location privacy, the former of which we confirm via
that misbehaves in this way can be caught by simple audjprobabilistic model checking (Sec. V-B). Finally, we leaged
mechanisms. For example, at any point, the directory couldendencies of how users reuse passwords to optimize the
generate a messagel in which eache; € C,;\ Cpi(1g) and  parameters for our framework, enabling it to be effectivehwi

for which it knows the private keyk corresponding tok; if a
responder responds wiih € C,x(1g), then the directory has
proof that the responder is lying and, e.g., can simply reamov
the responder from future queries. In principle, a requeste
could also generate such audit queries, though doing sodwoul
require the directory to suspend the user-consent mechamis
Sec. V-Al. In this case, a detection would enable the request
to learn that either one of the responders is misbehaving (bu
it would need help from the directory to figure out which one)
or that the directory is misbehaving (in which case it would [1]
need to report it to some managing authority).
2

Other misbehaviors can render our framework silently in- 2
effective while they persist. For example, a malicious clivey 3]
could simply not query responders at all, instead forgirgy th
responsey; purportedly from eacl$; to indicateno password
reuse (i.e.,p; € Cp. \ Cpr(lg)). Again, a simple audit [4
(knowingly attempting to reuse a password at a requester)?
can detect such misbehavior. Presuming such misbehavior
will occur rarely and be remedied quickly, we believe our
framework will suffice to discourage password reuse even if i
usuallyworks.

(6]

As our framework enables the requester to perform pre-m

computation to reduce its costs on the critical path of proto
execution, the critical-path computation cost of the ptoto
is greater for the responder than it is for the requesters Thi
is even more true for misbehaving requesters that replay thgo)
same request, in an effort to occupy directory and responder
resources. Of course, this concern is not unique to our framg10]
work, and various techniques to stem such denials of service
exist that would be amenable to adoption in our framework
(e.g., [24], [1]). In addition, steps detailed in Sec. V-A4 t
require user consent (through clicking on a confirmation YRL

to complete the protocol could interfere with such attacksy;y
In the worst case, however, responders and the directory can
refuse requests until the flood subsides, albeit tempgraril
reducing the utility of our framework to the status quo taday [13]

(8]

VIIl. CONCLUSION

[14]

Adams and Sasse famously declared, “Users are not tf}%]
enemy” [2]. While we do not mean to suggest otherwise, it has
also long been understood in a variety of contexts that usefgg)
must be compelled to adhere to security policies, as otlserwi
they will not do so. Despite decades of haranguing users to
stop reusing passwords, their adoption of methods to manad¥]
passwords more effectively has been painfully slow. This, i
turn, has given rise to credential abuses that inflict caraiole

costs on service operators (see Sec. ). (18]

We believe it is now time to consider imposing techni- [19]
cal measures to interfere with the use of similar passwords
across websites. In this paper we have presented one pnssiri)i

. L -~ 120]
method for doing so, by coordinating password selectio
across websites so that similar passwords cannot be used
for the same account identifier. Our framework combinegpy)
a set-membership-test protocol (Sec. IV) with a variety of

14

surprisingly modest costs (Sec. VI-C).
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