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Abstract—We present a framework by which websites can
coordinate to make it difficult for users to set similar passwords
at these websites, in an effort to break the culture of password
reuse on the web today. Though the design of such a framework
is fraught with risks to users’ security and privacy, we show that
these risks can be effectively mitigated through careful scoping
of the goals for such a framework and through principled design.
At the core of our framework is a private set-membership-test
protocol that enables one website to determine, upon a user
setting a password for use at it, whether that user has already
set a similar password at another participating website, but with
neither side disclosing to the other the password(s) it employs
in the protocol. Our framework then layers over this protocol a
collection of techniques to mitigate the leakage necessitated by
such a test. We verify via probabilistic model checking that these
techniques are effective in maintaining account security, and since
these mechanisms are consistent with common user experience
today, our framework should be unobtrusive to users who do
not reuse similar passwords across websites (e.g., due to having
adopted a password manager). Through a working implementa-
tion of our framework and optimization of its parameters based
on insights of how passwords tend to be reused, we show that our
design can meet the scalability challenges facing such a service.

I. I NTRODUCTION

The reuse of passwords is the No. 1 cause of harm
on the internet.

Alex Stamos [12]
Facebook CSO (Jun 2015–Aug 2018)

Password reuse across websites remains a dire problem
despite widespread advice for users to avoid it. Numerous
studies over the past fifteen years indicate that a large majority
of users set the same or similar passwords across different
websites (e.g., [8], [59], [65], [14], [39], [54], [70]). As such,
a breach of a password database or a phish of a user’s
password often leads to the compromise of user accounts on
other websites. Such “credential-stuffing” attacks are a primary
cause of account takeovers [74], [47], allowing the attacker to
drain accounts of stored value, credit card numbers, and other
personal information [47]. Ironically, stringent password re-
quirements contribute to password reuse, as users reuse strong
passwords across websites to cope with the cognitive burden of
creating and remembering them [73]. Moreover, notifications
to accounts at risk due to password reuse seem insufficient to
cause their owners to stop reusing passwords [35].

It is tempting to view password reuse as inflicting costs
on only users who practice it. However, preventing, detecting,
and cleaning up compromised accounts and the value thus
stolen is a significant cost for service providers, as well. A
recent Ponemon survey [57] of 569 IT security practitioners
estimated that credential-stuffing attacks incur costs in terms
of application downtime, loss of customers, and involvement
of IT security that average $1.7 million, $2.7 million and
$1.6 million, respectively, per organization per year. Some
companies go so far as to purchase compromised credentials on
the black market to find their vulnerable accounts proactively
(e.g., [12]). Companies also must develop new technologies
to identify overtaken accounts based on their use [12]. Even
the sheer volume of credential-stuffing attacks is increasingly a
challenge; e.g., in November 2017, 43% (3.6 out of 8.3 billion)
of all login attempts served by Akamai involved credential
abuse [3]. Finally, the aforementioned Ponemon survey esti-
mated the fraud perpetrated using overtaken accounts could
incur average losses of up to $54 million per organization
surveyed [57]. As such, interfering with password reuse would
not only better protect users, but would also reduce the
considerable costs of credential abuse incurred by websites.

Here we thus explore a technical mechanism to interfere
with password reuse across websites. Forcing a user to au-
thenticate to each website using a site-generated password
(e.g., [49]) would accomplish this goal. However, we seek to
retain the same degree of user autonomy regarding her selec-
tion of passwords as she has today—subject to the constraint
that she not reuse them—to accommodate her preferences
regarding the importance of the account, the ease of entering
its password on various devices, etc. At a high level, the
framework we develop enables a website at which a user is
setting a password, here called arequester, to ask of other
websites, here calledresponders, whether the user has set
a similar password at any of them. A positive answer can
then be used by the requester to ask the user to select a
different password. As we will argue in Sec. III, enlisting a
surprisingly small number of major websites in our framework
could substantially weaken the culture of password reuse.

We are under no illusions that our design, if deployed, will
elicit anything but contempt (at least temporarily) from users
who reuse passwords across websites. Its usability implications
are thus not unlike increasingly stringent password require-
ments, to which users have nevertheless resigned. However,
options for password managers are plentiful and growing,
with a variety of trustworthiness, usability, and cost properties
(e.g., [62], [28]). Indeed, experts often list the use of a pass-
word manager that supports a different password per website
to be one of the best things a user can do to reduce her online
risk [39]. While there might be users who, despite having a
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rich online presence, cannot use a password manager for some
reason, we expect them to be few. Of course, nearly anyone
capable of using a computer should be able to write down
her passwords, as a last resort. Though historically maligned,
the practice is now more widely accepted, exactly because it
makes it easier to not reuse passwords (e.g., [46], [37]).

There are many technical issues that need to be addressed
to make a framework like the one we propose palatable. First,
such a framework should not reduce the security of user
accounts. Second, the framework should also not decay user
privacy substantially, in the sense of divulging the websites at
which a user has an account. Third, it is important that the
protocol run between a requester and responders should scale
well enough to ensure that it does not impose too much delay
for setting a password at a website.

Our framework addresses these challenges as follows. To
minimize risk to user accounts, we design a protocol that
enables the requester to learn if a password chosen by a user
is similar to one she set at a responder; neither side learns the
password(s) the other input to the protocol, however, even by
misbehaving. Our framework leverages this protocol, together
with other mechanisms to compensate for leakage necessitated
by the protocol’s output, to ensure that account security and
privacy are not diminished. Among other properties, this
framework ensures that the responders remain hidden from
the requester and vice-versa. We verify using probabilistic
model checking that the success rate of account takeover
attempts is not materially changed by our framework for users
who employ distinct passwords across websites. Scalability
is met in our framework by carefully designing it to involve
only a single round of interaction between the requester and
responders. And, using observations about password reuse
habits, we optimize our framework to detect similar password
use with near-certainty while maximizing its scalability.

To summarize, our contributions are as follows:

• We initiate debate on the merits of interfering with
password reuse on the web, through coordination among
websites. Our goal in doing so is to question the zeitgeist
in the computer security community that password reuse
cannot be addressed by technical means without imposing
unduly on user security or privacy. In particular, we show
that apparent obstacles to a framework for interfering with
password reuse can be overcome through careful scoping
of its goals and through reasonable assumptions (Sec. III).
• We propose a protocol for privately testing set member-

ship that underlies our proposed framework (Sec. IV). We
prove security of our protocol in the case of a malicious
requester and against malicious responders.
• We embed this protocol within a framework to facilitate

requester-responder interactions while hiding the iden-
tities of protocol participants and addressing risks that
cannot be addressed by—and indeed, that are necessitated
by—the private set-membership-test protocol (Sec. V).
We demonstrate using probabilistic model checking that
our framework does not materially weaken account secu-
rity against password guessing attacks.
• We evaluate implementations of our proposed framework

with differing degrees of trust placed in it (Sec. VI).
Using password-reuse tendencies, we illustrate how to
configure our framework to minimize its costs while en-

suring detection of reused passwords with high likelihood.
Finally, we demonstrate its scalability through experi-
ments with a working implementation in deployments that
capture its performance in realistic scenarios.

II. RELATED WORK

We are aware of no prior work to enable websites to
interfere with password reuse by the same user. Instead, server-
side approaches to mitigate risks due to password reuse have
set somewhat different goals.

Web single sign-on (SSO): SSO schemes such as OAuth
(https://oauth.net/), OpenID (http://openid.net), OpenID Con-
nect (http://openid.net/connect/), and Facebook Login (https://
developers.facebook.com/docs/facebook-login/), enable one
website (an “identity provider”) to share a user’s account
information with other websites (“relying parties”), typically
in lieu of the user creating distinct accounts at those relying
parties. As such, this approach mitigates password reuse by
simply not having the user set passwords at the relying parties.
While convenient, SSO exposes users to a range of new
attacks, leading some to conclude “the pervasiveness of SSO
has created an exploitable ecosystem” [34]. In addition, the
identity provider in these schemes typically learns the relying
parties visited by the user [21].

Detecting use of leaked passwords by legitimate users: As
mentioned in Sec. I, some companies cross-reference account
passwords against known-leaked passwords, either as a ser-
vice to others (e.g., https://www.passwordping.com, https://
haveibeenpwned.com) or for their own users (e.g., [12]).
While recommended [36], this approach can detect only pass-
words that areknownto have been leaked. Because password
database compromises often go undiscovered for long periods
(as of 2017, 15 months on average [64]), this approach cannot
identify vulnerable accounts in the interim.

Detecting leaked passwords by their use in attacks: Various
techniques exist to detect leaked passwords by their attempted
use, e.g., honey accounts [18] and honey passwords [6], [40],
[27], the latter of which we will leverage as well (Sec. V-A1).
Alone, these methods do little to detect an attacker’s use of
a leaked, known-good password for one website at another
website where the victim user is known to have an account.
Defending against such discriminating attacks would seem
to require the victim’s use of different passwords at distinct
websites, which we seek to compel here.

Detecting popular passwords: Schechter et al. [63] proposed
a service at which sites can check whether a password chosen
by a user is popular with other users or, more specifically, ifits
frequency of use exceeds a specified threshold. Our goals here
are different—we seek to detect the use of similar passwords
by the same user at different sites, regardless of popularity.

Limiting password-based access: Takada [68] proposed to
interfere with the misuse of accounts with shared passwordsby
adding an “availability control” to password authentication. In
this design, a user disables the ability to log into her website
account at a third-party service and then re-enables it when
needed. This approach requires that the attacker be unable to
itself enable login, and so requires an additional authentication
at the third-party service to protect this enabling.
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Website Users (M) Website Users (M)

Facebook 2234 Sina Weibo 431
YouTube 1900 Outlook 400
WhatsApp 1500 Twitter 335
Wechat 1058 Reddit 330
Yahoo! 1000 Amazon 310
Instagram 1000 LinkedIn 303
QQ 803 Quora 300
iCloud 768 Baidu Tieba 300
Taobao 634 Snapchat 291
Douyin/TikTok 500 Pinterest 250

TABLE I: Estimates of active users for selected websites

III. G OALS AND ASSUMPTIONS

In this section we seek to clarify the goals for our system
and the assumptions on which our design rests.

A. Deployment Goals

It is important to recognize that in order to break the culture
of password reuse, we do not require universal adoption of
the framework we propose here. Instead, it may be enough to
enlist a (surprisingly small) number of top websites. To see
this, consider just the 20 websites listed in Table I.1 For a
back-of-the-envelope estimate, suppose that the users of each
website in Table I are sampled uniformly at random from
the 3.58 billion global Internet users.2 Then, in expectation
an Internet user would have accounts at more than four of
them. As such, if just these websites adopted our framework,
it would force a large fraction of users to manage five or
more dissimilar passwords, which is already at the limit of
what users are capable of managing themselves: “If multiple
passwords cannot be avoided, four or five is the maximum
for unrelated, regularly used passwords that users can be
expected to cope with” [2]. We thus believe that enlisting these
20 websites could already dramatically improve password-
manager adoption, and it is conceivable that with modest
additional adoption (e.g., the top 50 most popular websites),
password reuse could largely be brought to an end.

A user might continue using similar passwords across sites
that do not participate in our framework. Each such reused
password may also be similar to one she set at a site thatdoes
participate in our framework, but likely at onlyonesuch site.
If this reused password is compromised at a non-participating
site (e.g., due to a site breach), then the attacker might still
use this password in a credential-stuffing attack against the
user’s accounts at participating sites, as it could today. Again,
however, due to our framework, this attack should succeed
at only one participating site, not many. Importantly, our
framework restricts the attacker from posing queries about
the user’s accounts as a requester unless it gains the user’s

1User counts were retrieved on December 4, 2018 from https://www.
statista.com/statistics/272014/global-social-networks-ranked-by-number-of-
users/, https://www.statista.com/statistics/476196/number-of-active-amazon-
customer-accounts-quarter/, http://blog.shuttlecloud.com/the-most-popular-
email-providers-in-the-u-s-a/, and https://expandedramblings.com/index.
php/{yahoo-statistics/, taobao-statistics/, quora-statistics/}.

2Estimate of Internet users was retrieved from https://www.statista.com/
statistics/273018/number-of-internet-users-worldwide/ on December 4, 2018.

consent to do so (see Sec. V-A1). Even if it tricked the user
into consenting, it could use such a query to confirm that the
compromised password is similar to one set by the same user
at someparticipating site, but notwhich site (see Sec. III-C).
More generally, in Sec. V-B, we will show quantitatively that
our framework offers little advantage to an attacker that can
pose a limited number of queries as a requester.

B. User Identifiers

An assumption of our framework is that there is an identi-
fier for a user’s accounts that is common across websites. An
email address for the user would be a natural such identifier,
and as we will describe in Sec. V-A1, this has other uses in our
context, as well. Due to this assumption, however, a user could
reuse the same password across different websites, despiteour
framework, if she registers a different email address at each.

Several methods exist for a user to amass many distinct
email addresses, but we believe they will interfere little
with our goals here. First, some email providers support
multiple addresses for a single account. For example, one
Gmail account can have arbitrarily many addresses, since
Gmail addresses are insensitive to capitalization, insertion
of periods (‘.’), or insertion of a plus (‘+’) followed by
any string, anywhere before ‘@gmail.com’. As another ex-
ample, 33mail (https://33mail.com) allows a user to receive
mail sent to <alias>@<username>.33mail.com for
any alias string. Though these providers enable a user to
provide a distinct email address to each website (e.g., [52]),
our framework could nevertheless extract a canonical identifier
for each user. For Gmail, the canonical identifier could be
obtained by normalizing capitalization and by eliminating
periods and anything between ‘+’ and ‘@gmail.com’. For
33mail, you@<username>.33mail.com should suffice.
Admittedly this requires customization specific to each such
provider domain, though this customization is simple.

Second, some hosting services permit a customer to register
a domain name and then support many email aliases for
it (e.g., <alias>@<domain>.com). For example, Google
Domains (http://domains.google) supports 100 email aliases
per domain. Since these domains are custom, it might not be
tractable to introduce domain-specific customizations as above.
However, registering one’s own domain as a workaround to
keep using the same password across websites presumably
saves the user little effort or money (registering domains is not
free) in comparison to just switching to a password manager.
Going further, a user could manually register numerous email
accounts at free providers such as Gmail. Again, this is
presumably at least as much effort as alternatives that involve
no password reuse. As such, we do not concern ourselves with
such methods of avoiding password reuse detection.

This discussion highlights an important clarification regard-
ing our goals: we seek to eliminateeasymethods of reusing
passwords but not ones that require similar or greater effort
from the user than more secure alternatives, of which we take
a password manager as an exemplar. That is, we do not seek
to make itimpossiblefor a user to reuse passwords, but rather
to make reusing passwords about as difficult as not reusing
them. We expect that even this modest goal, if achieved, will
largely eliminate password reuse, since passwords are reused
today almost entirely for convenience.
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C. Security and Privacy Goals

The goals we take as more absolute have to do with the
privacy of users and the security of their accounts. Specifically,
we seek to ensure the following:

• account location privacy: Websites do not learn the
identities of other websites at which a user has an account.
• account security: Our framework strengthens security of

user accounts at a site that participates in our framework,
by interfering with reuse of similar passwords at other
participating sites. Moreover, it does not qualitatively
degrade user account security in other ways.

As we will see,account security is difficult to achieve, since
our framework must expose whether responders’ passwords are
similar to the one chosen by the user at the requester. However,
account location privacy hides from the requester each
responder from which the requester learns this information.
As such, if a user attempts to set the same password at a
malicious requester that she has also set at some responder,
or if a malicious requester otherwise obtains this password
(e.g., obtaining it in a breach of a non-participating site), the
malicious requester must still attempt to use that password
blindly at participating websites, just as in a credential-stuffing
attack today. (The attacker might succeed, but it would succeed
without our framework, too.) Moreover, in Sec. V we will
detail additional defenses against this leakage to furtherreduce
the risk of attacks from malicious requesters to whom the
user does not volunteer this password, and show using formal
verification that these defenses are effective.

We conclude this section by summarizing some potential
goals that we (mostly) omit from consideration in this paper.
From a privacy perspective, we try to hide neitherwhena pass-
word is being set at some requester for an account identifier
nor thenumberof responders at which an account has been
established using that account identifier, simply because we are
unaware of common scenarios in which these leakages would
have significant practical ramifications. And, while we strive
to guaranteeaccount location privacy andaccount security
even against a requester and responders that misbehave, we
generally do not seek to otherwise detect that misbehavior.
So, for example, each requester and responder has complete
autonomy in determining the passwords that it provides to
the protocol as the candidate password submitted by the user
and the passwords similar to the one for the account with the
same identifier, respectively. As we will see in Sec. VII, such
misbehaviors can give rise to denial-of-service opportunities,
for which we propose remedies there.

IV. PRIVATELY TESTING SET MEMBERSHIP

A building block of our framework is a protocol by which
a requesterR can inquire with a responderS as to whether a
passwordπ chosen atR for an account identifier is similar to
one already in use atS for the same identifier. If for an account
identifier a, the responderS has a setP(a) of passwords
similar to that already set atS, then the goal of this protocol
is for the requester to learn whether the candidate passwordπ
is in P(a). However, any additional information leakage to the
requester (about any passwords inP(a) or even the number
of passwords inP(a)) or to the responder (aboutπ) should be
minimized.

This general specification can be met with a private set-
membership-test (PMT) protocol. Though several such pro-
tocols exist (e.g., [53], [50], [69], [58]), we develop a new
one here with an interaction pattern and threat model that
is better suited for our framework. In particular, existing
protocols require special hardware [69] or more rounds of
interaction [53], [50], or leak more information in our threat
model [53], [50], [58] than the one we present.

In designing this protocol, we sought guidance from the
considerable literature on private set intersection (PSI), sur-
veyed recently by Pinkas et al. [56]. Informally, PSI protocols
allow two parties to jointly compute the intersection of the
sets that each inputs to the protocol, and ideally nothing else.
Furthermore, PSI protocols secure in the malicious adversary
model, where one party deviates arbitrarily from the protocol,
have been proposed (e.g., [17], [13], [31], [32], [41], [45], [60],
[61]). Still, while a PSI protocol would allowR to determine
whetherπ ∈ P(a), without additional defenses it could reveal
too much information; e.g., ifR input multiple passwords to
the protocol, then it would learn which of these passwords
were in P(a). Moreover, as Tamrakar et al. [69] argue, PSI
protocols are not ideal for implementing PMT due to their
high communication complexity and poor scalability.

By comparison, two-party private set-intersectioncardinal-
ity (PSI-CA) protocols are closer to our needs; these protocols
output the size of the intersection of each party’s input set,
and ideally nothing else (e.g., [15], [16], [19], [25], [43]). As
with PSI protocols, however, using a PSI-CA protocol with-
out modification to implement PMT would reveal too much
information ifR input multiple passwords to the protocol. As
such, our protocol here is an adaptation of a PSI-CA protocol
due to Egert et al. [25, Section 4.4], in which we (i) reduce
the information it conveys to only the results of a membership
test, versus the cardinality of a set intersection, and (ii)analyze
its privacy properties in the face of malicious behavior by
a requester or responder (versus only an honest-but-curious
participant in their work), accounting for leakage intrinsic in
the application for which we use it here.

A. Partially Homomorphic Encryption

Our protocol builds upon a multiplicatively homomorphic
encryption schemeE = 〈Gen,Enc,Dec,×[·]〉 with the follow-

ing algorithms. Below,z
$
← Z denotes random selection

from setZ and assignment toz, andY
d
= Y ′ denotes that

random variablesY andY ′ are distributed identically.

• Gen is a randomized algorithm that on input1κ outputs
a public-key/private-key pair〈pk , sk〉 ← Gen(1κ). The
value of pk uniquely determines aplaintext spaceG
where 〈G,×G〉 denotes a multiplicative, cyclic group
of order r with identity 1G, and wherer is a κ-bit
prime. The randomized function$(G) returns a new,

randomm
$
← G. We let Zr = {0, . . . , r − 1} and

Z∗
r = {1, . . . , r − 1}, as usual.

• Enc is a randomized algorithm that on input public key
pk and plaintextm ∈ G produces a ciphertextc ←
Encpk (m). Let Cpk (m) denote the set of all ciphertexts
that Encpk (m) produces with nonzero probability. Then,
Cpk =

⋃

m∈G
Cpk (m) is the ciphertext space of the

scheme with public keypk .
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R(a, π, ℓ, 〈hi〉i∈[k]) S({P(a′)}a′∈A)

r1. 〈pk , sk〉 ← Gen(1κ)

r2. JR ←
⋃

i∈[k]

{hi(π)}

r3. ∀j ∈ [ℓ] : cj ←

{

Encpk ($(G)) if j ∈ JR
Encpk (1G) if j 6∈ JR

m1.
a, pk , 〈hi〉i∈[k], 〈cj〉j∈[ℓ]
−−−−−−−−−−−−−−−−−→

s1. abort if ∃j ∈ [ℓ] : cj 6∈ Cpk

s2. JS ←
⋃

π′∈P(a)

⋃

i∈[k]

{hi(π
′)}

s3. z
$
← Z

∗
r

s4. ρ ← exppk









∏

pk

j∈[ℓ]\JS

cj



, z





m2.
ρ

←−−−−−−−−−−−−−−−−−
r4. abort if ρ 6∈ Cpk

r5. m ← Decsk (ρ)

r6. return (m
?
= 1G)

Fig. 1: PMT protocol; see Sec. IV-B. RequesterR returnstrue
if passwordπ is similar to another password used at responder
S for the same account identifiera, i.e., if π ∈ P(a).

• Dec is a deterministic algorithm that on input a private
key sk and ciphertextc ∈ Cpk (m), form ∈ G andpk the
public key corresponding tosk , producesm ← Decsk (c).
If c 6∈ Cpk , thenDecsk (c) returns⊥.
• ×[·] is a randomized algorithm that on input a public key
pk and ciphertextsc1 ∈ Cpk (m1) and c2 ∈ Cpk (m2)
produces a ciphertextc ← c1 ×pk c2 chosen uniformly
at random fromCpk (m1m2). If c1 6∈ Cpk or c2 6∈ Cpk ,
then c1 ×pk c2 returns⊥. We use

∏

pk and exppk to

denote multiplication of a sequence and exponentiation
using×pk , respectively, i.e.,

z
∏

pk
i=1

ci
d
= c1 ×pk c2 ×pk . . .×pk cz

exppk (c, z)
d
=

z
∏

pk
i=1

c

B. Protocol Description

Our protocol is shown in Fig. 1, with the actions by
the requesterR listed on the left (linesr1–r6), those by the
responderS listed on the right (s1–s4), and messages between
them in the middle (m1–m2). In Fig. 1 and below,[z] for
integerz > 0 denotes the set{0, . . . , z − 1}.

At a conceptual level, our PMT protocol works as follows.
The requesterR takes as input an account identifiera, the
user’s chosen passwordπ, a Bloom-filter [5] lengthℓ, and
the hash functions〈hi〉i∈[k] for the Bloom filter (i.e., each
hi : {0, 1}∗ → [ℓ]). R computes its Bloom filter containing
π, specifically a set of indicesJR ←

⋃

i∈[k]{hi(π)} (line r2).
The responderS receives as input a setP(a′) of passwords
similar to the password for each local accounta′ ∈ A (i.e.,
A is its set of local account identifiers), and upon receiving

messagem1 computes its ownℓ-sized Bloom filter containing
P(a), i.e., indicesJS ←

⋃

π′∈P(a)

⋃

i∈[k]{hi(π
′)} (line s2).3

The protocol should returntrue to R if π ∈ P(a), which for a
Bloom filter is indicated byJR ⊆ JS (with some risk of false
positives, as will be discussed in Sec. VI-A2).

Our protocol equivalently returns a value toR that indicates
whether[ℓ] \ JS ⊆ [ℓ] \ JR, where “\” denotes set difference,
without exposingJS to R or JR to S. To do so, the requester
R encodesJR as ciphertexts〈cj〉j∈[ℓ] wherecj ∈ Cpk (1G) if

j ∈ [ℓ]\JR andcj ∈ Cpk (m) for a randomly chosenm
$
← G

if j ∈ JR (r3). In this way, whenS computesρ in line s4—
i.e., by homomorphically multiplyingcj for eachj ∈ [ℓ] \ JS

and then exponentiating by a randomz
$
← Z∗

r (s3)—ρ is in
Cpk (1G) if [ℓ]\JS ⊆ [ℓ]\JR and otherwise is almost certainly
not in Cpk (1G). As such,R returnstrue, indicating thatπ is
similar to the password set atS for accounta, if and only if
Decsk (ρ) = 1G (r5–r6).

It is important that bothS and R check the validity of
the ciphertexts they receive (liness1 and r4, respectively).
For S, implicit in this check is thatpk is a valid public key
(i.e., capable of being output byGen). For our implementation
described in Sec. VI-A, these checks are straightforward.

C. Security

We now reason about the security of the protocol of Fig. 1
against malicious requesters (Sec. IV-C1) and against mali-
cious responders (Sec. IV-C2). More specifically, our focus
in this section is properties that underlieaccount security
as informally described in Sec. III;account location privacy
will be discussed in Sec. V. Proofs for all propositions in this
section can be found in our technical report [72].

1) Security against malicious requester:R learns nothing
more from executing the protocol in Fig. 1 besides the result
m

?
= 1G in line r6 because no other information is encoded

in ρ if the responder follows the protocol (i.e., unconditional
security). First, ifρ 6∈ Cpk (1G) thenρ is a ciphertext of any
m ∈ G \ {1G} with equal probability:

Proposition 1. If the responder follows the protocol, then
P
(

ρ∈Cpk (m)
∣

∣ ρ 6∈Cpk (1G)
)

= 1
r−1 for anym ∈ G \ {1G}.

Second, ifρ∈Cpk (m), it is uniformly distributed inCpk (m):

Proposition 2. If the responder follows the protocol, then
P
(

ρ = c
∣

∣ ρ ∈ Cpk (m
)

) = 1
|Cpk (m)| for anym ∈ G and any

c ∈ Cpk (m).

2) Security against malicious responder:The system of
which the protocol in Fig. 1 is a component will typically leak
the result of the protocol run to the responder. Specifically, if
a run of the protocol is immediately followed by another run
of the protocol, then this suggests that the protocol returned
true, i.e., thatπ ∈ P(a). We will discuss in Sec. V-A2 using
extra, “decoy” protocol runs to obscure this leakage. However,
for the purposes of this section, we will assume that the result
of the protocol is leaked to the responder reliably.

3This assumes that all ofP(a) will “fit” in an ℓ-sized bloom filter. If not,
S can use any subset ofP(a) it chooses of appropriate size. This will be
discussed further in Sec. VI-A2.
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The implications of this leakage to the requirements for
the encryption schemeE are that the requester serves as an
oracle for the responder to learn whether one ciphertextρ
of its choosing satisfiesρ ∈ Cpk (1G). The responder could
potentially use this oracle to determine which of the ciphertexts
〈cj〉j∈[ℓ] that it receives in linem1 satisfycj ∈ Cpk (1G) and,
in turn, gain information about the passwordπ that the user is
trying to set. Indeed, some leakage of this form is unavoidable;
e.g., the responder could simply setρ = c0 and, in doing so,
learn whetherc0 ∈ Cpk (1G). Similarly, the responder could set
ρ = c0×pk c1; if the protocol returnstrue, then the responder
can conclude that bothc0 ∈ Cpk (1G) andc1 ∈ Cpk (1G).

To capture this leakage and the properties of our protocol
more formally, we define a responder-adversaryB to be a
pair B = 〈B1, B2〉 of probabilistic algorithms.B1 takes
as inputpk and 〈cj〉j∈[ℓ] and outputs a ciphertextρ and a
state φ.4 B2 is provided the oracle response (i.e., whether
ρ ∈ Cpk (1G)) and the stateφ and then outputs a setJB ⊆ [ℓ].
B is said tosucceedif JB = JR, whereJR is the set of
indices the requester “set” in its Bloom filter by encryptinga
random group element (liner3). More specifically, we define
experimentExpt

S
E (〈B1, B2〉) as follows:

Experiment Expt
S
E (〈B1, B2〉) :

〈pk , sk〉 ← Gen(1κ)

JR
$
← {J ⊆ [ℓ] | |J| = k}

∀j ∈ [ℓ] : cj ←

{

Encpk ($(G)) if j ∈ JR
Encpk (1G) if j 6∈ JR

〈ρ, φ〉 ← B1

(

pk , 〈cj〉j∈[ℓ]

)

JB ← B2

(

φ,

(

ρ
?
∈ Cpk (1G)

))

return (JB
?
= JR)

Then, we analyze the security of our protocol against
responder-adversariesB that run in time polynomial inκ by
boundingP

(

Expt
S
E (B) = true

)

.

ElGamal encryption: To prove security against a malicious
responder, we instantiate the encryption schemeE as ElGamal
encryption [26], which is implemented as follows.

• Gen(1κ) returns a private keysk = 〈u〉 and public key

pk = 〈g, U〉, whereu
$
← Zr, g is a generator of the

(cyclic) group〈G,×G〉, andU ← gu. We leave it implicit
that the public keypk and private keysk must include
whatever other information is necessary to specifyG, e.g.,
the elliptic curve on which the members ofG lie.

• Enc〈g,U〉(m) returns〈V,W〉 whereV ← gv , v
$
← Zr,

andW ← mUv .
• Dec〈u〉(〈V,W〉) returns WV −u if {V,W} ⊆ G and

returns⊥ otherwise.
•

z
∏

〈g,U〉
i=1

〈Vi,Wi〉 returns〈V1 . . . Vzgy,W1 . . .WzU
y〉 for

y
$
← Zr if each{Vi,Wi} ⊆ G and returns⊥ otherwise.

〈V1,W1〉 ×〈g,U〉 〈V2,W2〉 is just the special casez = 2.

Generic group model: We prove the security of our protocol
against a responder-adversaryB in the generic group model

4We elide the other values in messagem1 from the input toB1 only
because they do not contribute the security of the protocol.

as presented by Maurer [48]. The generic group model allows
modeling of attacks in which the adversaryB cannot exploit
the representation of the group elements used in the crypto-
graphic algorithm. For some problems, such as the discrete
logarithm problem on general elliptic curves, generic attacks
are currently the best known (though better algorithms exist
for curves of particular forms, e.g., [22]). Somewhat like the
random oracle model [9], the generic group model is idealized,
and so even an algorithm proven secure in the generic group
model can be instantiated with a specific group representation
that renders it insecure. Still, and also like the random oracle
model, it has been used to provide assurance for the security
of designs in numerous previous works; e.g., see Koblitz and
Menezes [44] for a discussion of this methodology and how
its results should be interpreted.

A function f : N → R is said to benegligible if for any
positive polynomialφ(κ), there is someκ0 such thatf(κ) <

1
φ(κ) for all κ > κ0. We denote such a function bynegl(κ).

Proposition 3. If E is ElGamal encryption, then in the generic
group model,

P

(

Expt
S
E (B) = true

)

≤ 2

(

ℓ

k

)−1

+ negl(κ)

for any responder-adversaryB that runs in time polynomial
in κ.

Our proof of Prop. 3 (see [72]) depends on disclosing toB

the resultρ
?
∈ Cpk (1G) for only a singleρ or, in other words,

on the use of a new public keypk per run of the protocol
in Fig. 1 (see liner1). Since for ElGamal, generating a new
public key costs about the same as an encryption, reusing a
public key saves at most only1/(ℓ+ 1) of the computational
cost for R in the protocol, and so we have not prioritized
evaluating the security of such an optimization.

Prop. 3 is tight, i.e., there is a generic responder-adversary
that achieves its bound (to within a term negligible inκ). This
adversaryB = 〈B1, B2〉 performs as follows:B1 outputs, say,

ρ ← c0 and, upon learningρ
?
∈ Cpk (1G), B2 guessesJB to be

a k-element subset of[ℓ] where0 ∈ JB iff ρ 6∈ Cpk (1G). Once
G is instantiated in practice, security rests on theassumption
that no responder-adversary can do better, i.e., that giventhe
decisional Diffie-Hellman (DDH) instances〈cj〉j∈[ℓ] for public
key 〈g, U〉, no adversary can create a single DDH instanceρ
for which the answer enables it to solve the instances〈cj〉j∈[ℓ]

with probability better than that given in Prop. 3. Informally,
Prop. 3 says that any such adversary would need to leverage
the representation ofG to do so.

V. I NTERFERING WITHPASSWORDREUSE

In this section, we propose a password reuse detection
framework based on the PMT protocol proposed in Sec. IV.

A. Design

Our password reuse detection framework enables a re-
questerR to inquire with multiple responders as to whether
the passwordπ chosen by a user for the account atR with
identifier a is similar to another password already set fora
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at some responder. The requester does so with the help of a
directory, which is a (possibly replicated) server that provides a
front-end to requesters for this purpose. The directory stores,
per identifiera, a list of addresses (possibly pseudonymous
addresses, as we will discuss below) of websites at whicha
has been used to set up an account. We stress that the directory
doesnot handle or observe passwords in our framework.

The requesters and responders need not trust each other in
our framework, and employ the protocol described in Sec. IV
to interact via the directory. More specifically, a user of the
requesterR selects a passwordπ for her account with identifier
a, and submitsπ to R. R sends the message in linem1

of Fig. 1 to the directory, which it forwards to some subset
of m responders, out of theMa total registered as having
accounts associated witha at the directory. (How it selects
m is discussed in Sec. VI-C.) The response from responder
Si is denotedm2i in Fig. 2. Once the directory collects
these responses, it forwards them back toR, after permuting
them randomly to preventR from knowing which responder
returned which result (see Sec. V-A1).R then processes each
as in linesr4–r6; any of these results that aretrue indicates
that some responder that was queried has a password similar
to π set for accounta. If any are true, then the requester
(presumably) rejectsπ and asks the user to select a different
password (perhaps with guidance to help her choose one that
is likely to not be used elsewhere).

b

b

b

m1

m1

m21

{m2i}
m
i=1

password

R

Directory

S1

Perm

accept
or

reject

User Requester Responders

Sm
m2m

m1

Fig. 2: Password reuse detection framework based on the PMT
protocol introduced in Sec. IV.

There are some additional operations needed to support the
framework, as well.

• Directory entry addition: After a new account is set up,
the requester sends its address (discussed below) to the
directory to be stored with the account identifiera.
• Directory entry deletion: When an accounta on a web

server (responder) is no longer used, the responder can
optionally update the directory to remove the responder’s
address associated witha.
• Password change: When a user tries to change the pass-

word of an account, the web server should launch the
protocol (as a requester) before the new password is
accepted to replace the old.

The requester can communicate with the directory nor-
mally (e.g., using TLS over TCP/IP), trusting the directoryto
mask its identity from each responder to implementaccount
location privacy (in which case, the directory behaves as an
anonymizing proxy, cf., [7], [33]). Or, if the requester does not
trust the directory to hide its identity, then it can communicate
with the directory using an anonymizing protocol such as Tor
(https://www.torproject.org/, [23]). Similarly, each responder

address registered at the directory can be a regular TCP/IP
endpoint, if it trusts the directory to hide its identity from
others, or an anonymous server address such as a Tor hidden-
service address [23] if it does not. In the latter case, the
responder should register a distinct anonymous server address
at the directory per account identifiera, to prevent identifying
the responder by the number of accounts it hosts.

While each website could choose individually whether to
trust the directory to hide its identity from others, we will
evaluate the performance of our system only when either all
websites trust the directory in this sense or none do. We refer
to these models in the rest of the paper as theTALP-directory
model (short for “trusted foraccount location privacy”) and
the UALP-directory model (“untrusted foraccount location
privacy”), respectively. We believe that the TALP-directory
model would be especially well-suited for deployment by a
large cloud operator to serve its tenants, since these tenants
already must trust the cloud operator.

Our framework is agnostic to the method by which each
responder generates the setP(a) of similar passwords for an
accounta. We envision it doing so by leveraging existing
password guessers (e.g., [14], [70], [71], [75]), seeded with the
actual password for the account. In addition, if, say, Google
observes a usera set the passwordgoogle123, it could add
twitter123 andfacebook123 toP(a). So as to eliminate
the need to store trivial variations of passwords inP(a) and so
reduce its size, the responder could reduce all such variants to
a single canonical form, e.g., by translating all capital letters
to lowercase, provided that requesters know to do the same.

1) Security for each responder:The responder need not
retain the elements ofP(a) explicitly, but instead should store
in P(a) only the hash of each similar password, using a time-
consuming cryptographic hash functionH , makingP(a) more
costly to exploit if the site is breached [66]. In particular, this
hash function need not be the same as that used to hash the
real password during normal login, and so can be considerably
more time-consuming. In addition,H can be salted with a salt
computed deterministically from user identifiera, so that the
salts fora used at different sites are identical. Going further,
the responder could proactively generate the setJS when the
password fora is set atS, and dispense ofP(a) altogether.
However, this precomputation would require the Bloom filter
size ℓ and hash functions〈hi〉i∈[k] to be fixed and known to
the responder in advance.

ProtectingJS from disclosure: As shown in Sec. IV-C1, the
only information leaked to the requester is the result of the

protocol in Fig. 1, i.e.,ρ
?
∈ Cpk (1G), regardless of the behavior

of the requester (Props. 1–2). Still, however, this information
can erode the security ofJS over multiple queries. For
example, if a malicious requester setscj ← Encpk (m) where
m 6= 1G for one Bloom-filter indexj andcj′ ← Encpk (1G) for

j′ 6= j, then the result ofρ
?
∈ Cpk (1G) reveals whetherj ∈ JS .

After ℓ such queries, the requester can learn the entirety ofJS
and then search for the items stored in the Bloom filter offline.

Our framework mitigates this leakage using three mech-
anisms. First, each responder serves only PMT queries for-
warded through the directory, i.e., by authenticating requests
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as coming from the directory. This step is important for the
following two mitigations to work.

Second, the directory randomly permutes them2i messages
received from responders before returning them to the re-
quester, thereby eliminating any indication (by timing or order)
of the responderSi from which eachm2i was returned. This
largely eliminates the information that a malicious requester
can glean from multiple PMT queries. In particular, the method
above reveals nothing to the requester except the number
of queried respondersSi for which j ∈ JSi

, but not the
responders for which this is true.

Third, we involve the user to restrict the number of PMT
queries that any requester can make. Assuminga is an email
address or can be associated with one at the directory, the
directory emails the user upon being contacted by a requester,
to confirm that she is trying to (re)set her password at that
website.5 This email could be presented to the user much
like an account setup confirmation email today, containing a
URL at the directory that user clicks to confirm her attempt to
(re)set her password. The directory simply holds messagem1

until receiving this confirmation, discarding the message if
it times out. (Presumably the requester website would alert
the user to check her inbox for this confirmation email.) To
avoid requiring the user to confirm multiple attempts to set a
password at the requester and so multiple runs of the protocol
in Fig. 1 (which should occur only if the user is still not
using a password manager), the directory could allow one
such confirmation to permit queries from this requester for
a short window of time, at the risk of allowing a few extra
queries if the requester is malicious. However, except during
this window, requester queries will be dropped by the directory.

Leveraging the directory to permute PMT responses and
limit PMT queries requires that we place trust in the directory
to do so. If desired, this trust can be mitigated by replicating
the directory using Byzantine fault-tolerance methods to over-
come misbehavior by individual replicas. Ensuring that only
user-approved PMTs are allowed can be implemented using
classic BFT state-machine replication, for which increasingly
practical frameworks exist (e.g., [4], [11]). Permuting PMT
responses in a way that hides whichSi returned eachm2i

even fromf corrupt directory replicas can be achieved by
simply havingf+1 replicas permute and re-randomize them2i

messages in sequence before returning them to the requester.

Limiting utility of a JS disclosure: The risk that the adversary
finds the password for usera at responderS, even with
JS , is small if the user leveraged a state-of-the-art password
manager to generate a password that resists even an offline
dictionary attack. Even if the user is not already using a
password manager, obtaining the account password using this
attack should again be expensive if the cryptographic hash
functionH is costly to compute. Moreover, the attacker can
utilize a guessed account password only if it can determine
the responderS at which it is set for accounta, with which
account location privacy interferes.

5The user can check that the confirmation email pertains to thesite at which
she is (re)setting her password if the site generates a noncethat it both displays
to the user and passes to the directory to include in the confirmation email.
The email should instruct the user to confirm this password (re)set only if the
nonce displayed by the website matches that received in the email.

Still, to counter any remaining risk in case the attacker
finds JS , we advocate thatS form its setP(a) to include
honey passwords[6], [40], [27]. That is, when the password is
set (or reset) at a website for accounta, the website chooses
a collection ofd honey passwordŝπ1, . . . , π̂d, as well, via
a state-of-the-art method of doing so. It then generates a
clusterof similar passwords for each of thed+1 passwords—
we denote the cluster for the real passwordπ by Ψ(π)
and the honey-password clusters byΨ(π̂1), . . . ,Ψ(π̂d)—with
each cluster being the same sizeψ. Then, it sets the similar
passwords for accounta to be the union of these clusters, i.e.,
P(a) = Ψ(π) ∪

(

⋃d

j=1 Ψ(π̂j)
)

.

In this way, even if the attacker learns the entire contents
of JS for a responderS, the setJS will contain at least
d + 1 passwords that appear to be roughly equally likely.
If any password in a honey-password cluster is then used
in an attempt to log into the account, the website can lock
the account and force the user to reset her password after
authenticating via a fallback method. The main cost of using
honey passwords is a linear-in-d growth in the size ofP(a),
which reduces the cluster sizeψ that can be accommodated by
the Bloom-filter sizeℓ (which is determined by the requester).
We will show in Sec. VI-C, however, that this cost has little
impact on interfering with password reuse.

2) Security for the requester:Security for the requester is
more straightforward, given Prop. 3 that proves the privacyof
JR against a malicious responder (and from the directory) in
the generic group model. Moreover, the requester’s identity is
hidden from responders either by the directory (in the TALP-
directory model) or because the requester contacts the directory
anonymously (in the UALP-directory model).

As discussed in Sec. IV-C2 and accounted for in Prop. 3,
responders (and the directory) learn the outcome of the proto-
col, since they see if the requester runs the protocol again.That
is, a true result will presumably cause the requester to reject
the password and ask the user for another, with which it repeats
the protocol. However, because the password is different in
each run (which the requester should enforce), the information
leaked to responders does not accumulate over these multiple
runs. And, the responders learn only thatat least oneresponse
resulted intrue, not how many or which responders’ did so.

Still, if the information leaked by thefalse result for the
passwordπ finally accepted at the requester is of concern, it
is possible to obfuscate even this information to an extent,at
extra expense. To do so, the requester follows the acceptance
of π with a number of “decoy” protocol runs (e.g., each using
a randomly chosenJR set of sizek), as if the run onπ had
returnedtrue. The user need not be delayed while each decoy
run is conducted. That said, because decoy runs add overhead
and because the responder is limited to learn information about
π in only a single protocol run (and to learn a limited amount,
per Prop. 3), we do not consider decoys further here.

B. Analysis via Probabilistic Model Checking

Probabilistic model checking is a formal method to analyze
probabilistic behaviors in a system. In this section, we evaluate
the security of our framework against a malicious requester
using Storm, a probabilistic model checker [20].
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Storm supports analysis of a Markov decision process
(MDP), by which we model the attacker targeting a specific
accounta. That is, we specify the adversary as a set ofstates
and possibleactions. When in a state, the attacker can choose
from among these actions nondeterministically; the chosen
action determines a probability distribution on the state to
which the attacker then transitions. These state transitions
satisfy theMarkov property: informally, the probability of next
transitioning to a specific state depends only on the current
state and the attacker’s chosen action. Storm exhaustively
searches all decisions an attacker can make to maximize the
probability of the attacker succeeding in its goal. Here, we
define this goal to be gaining access to accounta on any
responder, and so Storm calculates the probability of the
attacker doing so under an optimal strategy.

As is common in formal treatments of password guessing
(e.g., [42]), we parameterize the attacker with a password
dictionary of a specified size, from whicha’s passwordπi
at each responderSi is chosen independently and uniformly
at random. The base-2 logarithm of this size represents the en-
tropy of the password. We then vary the size of this dictionary
to model the attacker’s knowledge abouta’s password choices
at responders. We further presume that the similar-password
setPi(a) at each responderSi is contained in this dictionary
(or equivalently we reducePi(a) to the subset that falls into
the dictionary). For simplicity, we assume that the clusters
Ψ(πi),Ψ(π̂1

i ), . . . ,Ψ(π̂d
i ) that comprisePi(a) are mutually

disjoint and disjoint across responders; so,|
⋃m

i=1 Pi(a)| =
∑m

i=1 |Pi(a)| = m(d + 1)ψ where ψ is the size of each
cluster. Below, we denote bySim =

⋃m

i=1 Pi(a) the union
of all similar-password sets constructed by responders.

The attacker is limited by two parameters. First, we pre-
sume that each responder limits the number of consecutive
failed logins per account before the account locks, as is typical
and recommended (e.g., [36]); we call this number thelogin
budgetand denote itζ. Second, our framework limits the PMT
queries ona’s accounts to those approved by usera when she
is (re)setting her password (see Sec. V-A1); we model this
restriction as aPMT budget. The login budget is per responder,
whereas the PMT budget is a global constraint.

We also permit the adversary advantages that he might not
have in practice. First, he knows the full set of responders,
so he can attempt to log into any of them, and the login
budget at each. Second, if he receives a positive response toa
PMT query with passwordπ′, then the cluster containingπ′

becomes completely known to him. That is, ifπ′ ∈ Ψ(πi) for
the actual account-a passwordπi atSi, thenΨ(πi) is added to
the adversary’s set of identified clusters, and ifπ′ ∈ Ψ(π̂j

i ) for
a honey password̂πj

i at Si, thenΨ(π̂j
i ) is added to that set.

Critically, however, he learns neither whether the new cluster
is the cluster of a real password or a honey password, nor the
responderSi at which the cluster was chosen; both of these
remain hidden in our design. Third, each failed login attempt
at Si provides the adversary complete information about the
attempted passwordπ′, specifically if it is in a honey-password
cluster (π′ ∈

⋃d

j=1 Ψ(π̂j
i )) or simply incorrect (π′ 6= πi).

1) Model Description:A state in our model is defined to
include the following items of information: previous adversary
PMT queries and their results; the number of PMT queries that

remain available to the attacker; the password clusters whose
existence inSim has been confirmed by the adversary via
PMTs, to which we refer as theconfirmedclusters; and per
website, the previous adversary login attempts, their results,
and the number of login queries remaining at that website.

STATE 2

ACTION 1

Probablistic transition
Adversary’s decision

STATE 1: PMT negative response
STATE 2: PMT positive response
STATE 3: Failed login

ACTION 1: Submit a PMT query (PMT budget−−)
ACTION 2: Try to log in (login budget−−)

STATE 3

STATE 1 STATE 4

ACTION 2

STATE 4: Successful login

STATE 5

STATE 5: Detected by honey passwords

P (π′ ∈ Sim)

P (π′ /∈ Sim)

P

(

π′ ∈
⋃d

j=1 Ψ(π̂j
i )
)

P (π′ = πi)

P

(

π′ 6= πi ∧

π′ 6∈
⋃d

j=1 Ψ(π̂j
i )

)

Fig. 3: Abstract MDP automaton for attacker interaction with
Si. πi is the correct account password;π̂1

i , . . . , π̂d
i are its honey

passwords;π′ is an attacker’s password guess. Probabilities are
conditioned on attacker knowledge gained so far.

Fig. 3 shows an automaton that represents the attacker
interacting with one websiteSi. The entire model includes
multiple such automata, one per website, and the adversary can
switch among these automata at each step. Actions and states
shown in Fig. 3 represent sets of actions and states in the actual
automaton. For example, when the adversary tries to login by
submitting a password to the login interface of the website,
the password could be chosen from a “confirmed” cluster list
or not, which is determined by the adversary. Though these
are separate actions in our model, we let ACTION 2 serve as
an abbreviation for all such actions in Fig. 3, to simplify the
figure. Similarly, a state shown in Fig. 3 represents all states
resulting from the same query response but that differ basedon
the state variables described above. Final states (for interacting
with Si) are indicated by double circles.

If the adversary enters STATE 5 for a website or uses up its
login budget for a website, he must switch to another website
to continue attacking. The adversary wins if he enters STATE4
on any one of the websites, while he loses if he uses up the
login budget or triggers account locked-down on all websites.

2) Results:The model-checking results, and in particular
the impact of various parameters on those results, are sum-
marized in Fig. 4. This figure plots the attacker’s success
probability, under an optimal strategy, as a function of the
password entropy. The leftmost data point in each graph
pertains to a dictionary size equal to|Sim | = m(d+1)ψ, which
is the minimum dictionary size consistent with our model.
This minimum dictionary size—representing a large amount
of attacker knowledge about the dictionary from which the
user chooses her password—is the reason why the attacker
succeeds with such high probability. Each graph shows four
curves, corresponding to PMT budgets of 0, 3, 6, and 9. The
PMT budget of 0 provides a baseline curve that shows the
security of each configuration in the absence of our design
(though in the optimistic case where usera nevertheless chose
different passwords at each website).
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Subfigures show different settings for the numberm of respon-
ders queried, the login budgetζ, and the cluster sizeψ. The
number of honey-password clusters isd = 4. All subfigures
have the same axes.
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Fig. 5: Maximum probability with which attacker logs into
account at some responder, as a function of password entropy,
wherem = 12, ζ = 9, ψ = 4, andd = 4.

Fig. 4a shows a baseline with small parameters; the other
subgraphs show the effect of increasing one parameter at a
time. Fig. 4b and Fig. 4c show the impacts of increasing the
per-website login budgetζ and the numberm of responders
queried in each PMT, respectively, which both increase the
attacker’s probability of success somewhat. Fig. 4d shows that
increasing the sizeψ of each password (including honey-
password) cluster suppresses the success probability.

These graphs show that while growing the PMT budget
increases the attacker’s probability of success, the amount by
which it does so is modest and diminishes as the password en-
tropy grows. Fig. 5 shows somewhat more realistic parameters
(though we were limited in growing these calculations to truly
realistic sizes by the computational expense of doing so). As
shown there, any attacker advantage gained by up to 9 PMT
queries all but disappears with a dictionary of size only214.

VI. EVALUATION AND PARAMETER OPTIMIZATION

A. Implementation

We built a prototype of our framework to evaluate its
performance and scalability, and to inform its parameterization
(see Sec. VI-C). We realized the cryptographic parts of our
protocol in C and other parts using Go.

1) Cryptography: We used the ElGamal cryptosystem in
an elliptic-curve group (EC-ElGamal) as the multiplicatively
homomorphic schemeE in Fig. 1. We realized all crypto-
graphic operations using MIRACL (https://github.com/miracl/
MIRACL). Our implementation includes four standardized
elliptic curves: secp160r1, secp192r1 (NIST P-192), secp224r1
(NIST P-224) and secp256r1 (NIST P-256) [10], [29]. Elliptic-
curve cryptosystems based on these curves can provide security
roughly equivalent to RSA with key lengths of 1024, 1536,
2048 and 3072 bits, respectively. The generatorg used with
each curve has a cofactor of1 [10], so that the group includes
all curve points. This allows the requester and responders to
check the validity of ciphertexts (i.e., liness1 andr4 in Fig. 1)
by checking if each ciphertext component is a valid point on
the elliptic curve (or the point at infinity).

To make messages shorter and save bandwidth, we enable
point compressionin our implementation. Point compression
(e.g., [38, Section A.9.6]) is a technique that compresses each
elliptic-curve point to half its original size by using only
y mod 2 in place of itsy coordinate value. Correspondingly,
point decompressionreconstructs the point by recovering the
y coordinate based on thex coordinate andy mod 2.

2) Bloom filters:A Bloom filter has a false positive rate of
≈ (1−e−k·n

ℓ )k wheren = |P(a)| denotes the number elements
to be inserted into the Bloom filter by the responder,ℓ denotes
the length of the Bloom filter andk denotes the number of hash
functions (e.g., see [51, pp. 109–110]). As such, the numberof
hash functions that minimizes false positives iskopt = ℓ

n
· ln 2

and in this case, the minimized false positive rate is2−kopt =
2−

ℓ

n
·ln 2 ≈ (0.6185)

ℓ

n . In our framework,k andℓ are decided
by the requester, whilen is determined by each responder with
the knowledge ofk andℓ received from the requester. In our
implementation, the requester choosesk = 20 by default, and
so each responder then generates a setP(a) of sizen ≤ ℓ

k
·ln 2

to ensure a false positive rate of≈ 2−20.

3) Precomputation:We use precomputation to optimize the
creation of ciphertextscj by the requester in our protocol.
Specifically, the requester precomputes private keyu, public
key U , and values{Vj}j∈[ℓ] and {Wj}j∈[ℓ], where each
〈U, Vj ,Wj〉 is a valid Diffie-Hellman triple, i.e.,〈Vj ,Wj〉 ∈
C〈g,U〉(1G). To create a ciphertextcj of a different group
elementm 6= 1G, the requester need only multiplyWj by
m; thus, liner3 is completed in at most one multiplication
per j ∈ [ℓ]. In practice, this precomputation could begin once
the user enters the account registration web page and continue
during idle periods until a password is successfully set.

B. Response Time

In this section, we evaluate the response time of our pro-
totype system as seen by the requester (and in the absence of
any user interaction, such as that described in Sec. V-A1), with
two goals in mind. First, we want to systematically measure
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the effects of various parameter settings on our prototype
implementation, to inform the selection of these parameters
through an optimization process discussed in Sec. VI-C. We
mainly explore two different parameters of our framework:
The maximum number of similar passwordsn = |P(a)| per
responder (as determined by setting the Bloom filter size
ℓ = ⌈ 20nln 2 ⌉ in the protocol), and the numberm of responders.
The second main goal of our experiments here is to compare
the performance of our prototype with and without leveraging
Tor for implementingaccount location privacy, i.e., the
UALP-directory and TALP-directory models, respectively.In
doing so, we hope to shed light on the performance costs of
adopting a more pessimistic trust model in which the directory
is not trusted to hide the websites where each account identifier
a has been used to register an account.

1) Experimental setup:In our evaluations, we set up one
requester, one directory, and up to 128 responders, spread
across six machines located in our department. The requester
and the directory ran on separate machines with the same
specification: 2.67GHz × 8 physical cores, 72GiB RAM,
Ubuntu 14.04 x8664. The (up to) 128 responders were split
evenly across four other, identical machines: 2.3GHz × 32
physical cores with hyper-threading enabled (and so 64 logical
cores), 128GiB RAM, Ubuntu 16.04 x8664. Each of the
responders sharing one machine was limited to two logical
cores, and had its own exclusive data files, processes, and
network sockets. The six machines were on the same1Gb/s
network. Thus, while our results might be pessimistic due
to resource sharing among responders, they might also be
somewhat optimistic in our TALP-directory experiments due
to leveraging LAN communication. (The UALP-directory case
is discussed further below.)

Parameters were set to the following defaults unless oth-
erwise specified:m = 64, and elliptic-curve key length of
192 bits. In particular,m = 64 is conservative based on
recent studies. For example, a 2017 study with 154 participants
found that users have a mean of26.3 password-protected web
accounts [54], which is quite consistent with other studies
(e.g., [30], [67]).

Because the public Tor network is badly under-provisioned
for its level of use and so its performance varies significantly
over time, in our tests for the UALP-directory model, we
utilized a private Tor network with nodes distributed across
North America and Europe. Our private Tor network consisted
of three Tor authorities, eight normal onion routers, and two
special onion routers. The eight normal onion routers were
running on eight different Amazon EC2 (m4.large) instances,
one located in each of the eight Amazon AWS regions in North
America and Europe. Among these onion routers, three were
also running as Tor authorities, with one in Europe, one in U.S.
West, and the other in U.S. East. Two special onion routers
were running on the machine in our department hosting the
directory; one (“Exit” in Fig. 6) exclusively served as the exit
node of Tor circuits from requesters, and the other (“RP” in
Fig. 6) served exclusively as the “rendezvous point” pickedby
the directory to communicate with Tor hidden services, i.e., the
responders. As shown in Fig. 6, each circuit included two more
onion routers (“OR” in Fig. 6) chosen at random from among
the eight normal onion routers already described.

All datapoints reported in the graphs below are averaged

Requester Directory
server

Responder

OR OR OR ORExit RP

Fig. 6: Topology of our UALP-directory experimental setup
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Fig. 7: Response time for variousn andm

from 50 executions. Relative standard deviations, denotedχ,
are reported in figure captions.

2) Results:A measure of primary concern for our frame-
work is the response time witnessed by the requester, since
this delay will be imposed on the user experience while
setting her password. Fig. 7a shows the response time in the
TALP-directory model, where the requester connects directly
to the directory and the directory connects directly with each
responder. In contrast, Fig. 7b shows the response time in
the UALP-directory model, and so connections are performed
through Tor. Precomputation costs (see Sec. VI-A3) are not
included in Fig. 7, as these costs are expected to be borne
off the critical path of interacting with the user. Tor circuit
setup times are amortized over the 50 runs contributing to each
datapoint in Fig. 7b. In practice, we expect this setup cost
to be similarly amortized over attempts needed by the user
to choose an acceptable (not reused) password, or relegated
to a precomputation stage when the user first accesses the
requester’s account creation/password reset page.

One observation from Fig. 7 is that the response-time
cost of mistrusting the directory and so of relying on Tor to
implementaccount location privacy, is typically ≥ 2× for
the parameters evaluated there. Recall that in Fig. 7b, boththe
requester–directory and directory–responder communications
were routed through two onion routers chosen randomly from
Amazon datacenter locations in North America and Europe
(see Fig. 6), in contrast to LAN communication in Fig. 7a.
The costs of these long-haul hops and Tor-specific processing
increased asn grew, due to growth in query message size.

Fig. 7 also shows the impact of more responders (larger
m) on the response time witnessed by the requester. The main
underlying cause of this effect is the variance in the speeds
with which the responders return responses to the directory.
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responses on the vertical axis is returned by directory as soon
as it is available (m = 64)

This variance is small when communication is direct, but it
grows substantially when Tor is used, due to the differences
in routes taken between the directory and each responder.

These effects are also illustrated in Fig. 8, which shows the
response time observed by the requester when the directory
returned the proportion ofm = 64 responses on the vertical
axis as soon as that proportion was available to it. For example,
Fig. 8b shows that whenn = 210, if the directory waited for
75% of the responses (48 responses) before returning them to
the requester, the requester observed an average response time
of 9.55s (since(9.55, 0.75) is a point on then = 210 curve).

Recall that the directory forwards thesamemessagem1 to
all responders in our framework. In the UALP-directory model,
using an anonymous communication system that exploits this
one-to-many multicast pattern to gain efficiencies while still
hiding the multicast recipients (e.g., [55]) could presumably
reduce the delays before the directory receives responses,and
their variance. We leave this extension to future work.

C. Parameter Optimization

At first glance, the results of Sec. VI-B are perhaps dis-
couraging, since they suggest that the response time of testing
with a large numbern of similar passwords and at a large
numberm of queried responders is potentially large, especially
in the UALP-directory model (Fig. 7b). In this section we
describe an approach to select optimal parameters for use in
our framework, specifically parameter valuesm and n that
maximize the likelihood of detecting the use of a similar
password, subject to a response-time goal. As we will see, the
results are not discouraging at all—a high true detection rate
can be achieved within reasonable response-time limits with a
surprisingly smalln and while querying a modest numberm
of responders from among the total number of respondersMa

registered at the directory for accounta.

The reason behind this initially surprising result is the
typical manner in which people create new passwords by
applying simple, predictable transforms to existing passwords.

0 1,000 2,000 3,000 4,000 5,000
0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

ψ

P
(π

′
∈
Ψ
(π

i
))

Fig. 9: Estimate ofP (π′ ∈ Ψ(πi)) for account-a passwordπi
at Si and candidate passwordπ′ selected by usera at R, per
cluster sizeψ = |Ψ(πi)| and taken with respect to random
selection of the usera and responderSi; based on [70, Fig. 7]

Numerous studies (e.g., [75], [70]) have found very low
variation in the transforms that users leverage to modify their
passwords (when they modify their passwords at all). Provided
that responderSi populatesΨ(πi) ⊆ Pi(a) (see Sec. V-A1) by
applying these common transforms to its account-a password
πi, the probability that the user’s chosen passwordπ′ at a
requester is contained withinΨ(πi) at a randomly chosen
responderSi is approximately as shown in Fig. 9 (cf., [70,
Fig. 7]), as a function ofψ = |Ψ(πi)|.6 As we can see,
this probability is already substantial for very smallψ. For
example, this probability is≈ 0.34 for evenψ = 1; in other
words, users on average employ the same password at≈ 34%
of the websites where they have accounts. Moreover, this
probability grows quickly asψ is increased only slightly.

The key insight here is that if a user chooses its candidate
passwordπ′ as users typically do, then using a largeψ provides
little additional power (Fig. 9) but, sincen = (d+1)ψ where
d is the number of honey-password clusters, imposes much
greater cost (Fig. 7) than using a smallψ. Moreover, suppose
we model the true detection rate when queryingm randomly
chosen responders7 as tdr = 1 − (P (π′ 6∈ Ψ(πi)))

m, i.e.,
ignoring the probability of false detections due to the use
of a Bloom filter and assuming that the eventsπ′ 6∈ Ψ(πi)
andπ′ 6∈ Ψ(πi′) are independent ifi 6= i′ (which is perhaps
reasonable since the user is forced to set dissimilar passwords
at Si andSi′ by our framework). Then, increasingm provides
more detection power.

To balance these parameters and the response time of the
protocol, we model the response time using

t(m,n) = β0 + β1 · n+ β2 ·m+ β3 · n ·m

Regression analysis using the data in Sec. VI-B yieldsβ0 =
1.5507, β1 = 5.8834 × 10−3, β2 = 2.6209 × 10−3 and

6Fig. 9 is a log-normal CDF fitted to points selected from [70, Fig. 7] by
manual inspection, as we could not obtain the source data forthat figure.

7The directory should retain its same random choice ofm responders across
the user’s failed attempts to select a password that she has not reused, lest
she simply retry the same or a closely related password untila set ofm
responders at which it is not used is chosen. Alternatively,the requester can
be charged with ensuring that the user’s attempted passwords are sufficiently
different from one another.
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tgoal (s)
.01 .02 .03 .04 .05 .06 .07 .08 .09 .10

d = 0 n 1 1 2 2 5 9 13 16 20 23
m 1 10 17 26 26 26 26 26 26 26
tdr .343 .985 ≈1 ≈1 ≈1 ≈1 ≈1 ≈1 ≈1 ≈1

d = 4 n - 5 5 5 5 10 10 15 20 20
m - 1 10 19 26 24 26 26 26 26
tdr - .343 .985 ≈1 ≈1 ≈1 ≈1 ≈1 ≈1 ≈1

d = 9 n - - - 10 10 10 10 10 20 20
m - - - 8 16 24 26 26 26 26
tdr - - - .965 .999 ≈1 ≈1 ≈1 ≈1 ≈1

(a) TALP directory

tgoal (s)
1.60 1.62 1.64 1.66 1.68 1.70 1.72 1.74 1.76 1.78

d = 0 n 1 2 2 5 8 11 14 17 19 22
m 16 21 26 26 26 26 26 26 26 26
tdr .999 ≈1 ≈1 ≈1 ≈1 ≈1 ≈1 ≈1 ≈1 ≈1

d = 4 n 5 5 5 5 5 10 10 15 15 20
m 6 13 20 26 26 26 26 26 26 26
tdr .920 .996 ≈1 ≈1 ≈1 ≈1 ≈1 ≈1 ≈1 ≈1

d = 9 n - 10 10 10 10 10 10 10 20 20
m - 3 9 16 22 26 26 26 25 26
tdr - .716 .977 .999 ≈1 ≈1 ≈1 ≈1 ≈1 ≈1

(b) UALP directory

TABLE II: Choices form andn computed using optimization
in Sec. VI-C withMa = 26

β3 = 4.7135× 10−5 in the UALP-directory case (root-mean-
square errorRMSE = 0.4547) andβ0 = 6.4595×10−3, β1 =
2.2885× 10−3, β2 = 1.0271× 10−3 andβ3 = 2.0336× 10−5

in the TALP-directory case (RMSE = 0.1276). Then, the
requester choosesm andn using the following optimization:

maximize
m,n

tdr = 1− (P (π′ 6∈ Ψ(πi)))
m

subject tot(m,n) ≤ tgoal
1 ≤ ψ = n/(d+ 1)

1 ≤ m ≤Ma

wheretgoal is the requester’s desired response time andMa is
the number of responders registered at the directory as having
an account for identifiera. The directory can sendMa to the
requester in an initial negotiation round before messagem1.

This optimization, together with using the curve in Fig. 9
to estimateP (π′ ∈ Ψ(πi)) and the regression results above to
estimatet(m,n), yields results like those shown in Table II.
In these optimizations, we setMa = 26, because recent work
found the mean number of password-protected online accounts
per user is26 [54]. The response-time goalstgoal used in
Table II were chosen simply to show how the optimalm and
n vary under stringent response-time constraints. As shown
there, for many response-time goalstgoal, a true detection rate
tdr ≈ 1 can be achieved with very small values ofn.

As such, the full range of parameter settings explored in
Sec. VI-B will rarely be needed. This is fortunate, since small
values ofn improve the throughput of requester-responder in-
teractions, especially in the TALP-directory model. To seethis,
Table III shows the throughput of our implementation, mea-
sured as the largest number ofqualifying responses achieved

m

n 1 6 11 16 21 26
1 43041013 492 325 237 174

10 2415 549 277 188 155 122
20 1478 336 182 129 98 78
30 1076 243 124 86 63 53
40 788 187 94 67 49 40
50 683 159 76 52 39 33
60 611 132 63 43 32 25

(a) TALP directory

m

n 1 6 11 16 21 26
1 95 61 42 33 27 22

10 87 59 40 31 25 20
20 78 54 37 28 23 19
30 71 51 35 27 20 16
40 62 44 32 24 18 14
50 53 39 26 20 15 11
60 42 31 20 16 10 10

(b) UALP directory

TABLE III: Maximum qualifying responses per second

as the requests per second were increased, as a function ofn
andm. In Table IIIa and Table IIIb, a response wasqualifying
if its response time was≤ 5s and≤ 8s, respectively.

This 3s difference between the standards forqualifying in
the two tests was needed because we constructed the UALP-
directory test to capture as faithfully as possible the Tor costs
that a real deployment would incur. Notably, even though
them responders queried per request were chosen from only
64 responders in total (the configuration was the same as in
Sec. VI-B), no two requests were allowed to use the same
Tor circuit, since they would be unable to do so in a real
deployment, where different addresses for the same responder
are stored for different user accounts at the directory. (The
exception is if the requests were for the same user and at the
same responder.) So, each request necessitated construction of
new Tor circuits to its responders, which increased response
times commensurately.

To put Table III in context, a throughput of 50 qualifying
responses per second is enough to enable each of the 312
million Internet users in the U.S.8 to setup or change passwords
on about 5 accounts per year. Moreover, we believe the
numbers in Table III to be pessimistic, in that in each request,
them responders were chosen from onlyMa = 64 responders
in total, versus from likely many more in practice. Still, based
on Table IIIb, a deployment using the UALP-directory model
would presumably require adaptations of Tor for our use-case
(e.g., [55]) and distribution of the directory.

We note, however, that even a non-replicated directory
should easily handle thestoragerequirements of our design.
With 3.58 billion active Internet users worldwide and an aver-
age of 26 password-protected accounts per user, the storageof
a Tor hidden service address for each user account at each
website amounts to only≈ 1.5TB of state. In the TALP-
directory model, the storage requirements would be even less.

VII. D ENIALS OF SERVICE

Our design introduces denial-of-service opportunities for
misbehaving requesters, responders, or the directory. We dis-
cuss these risks here, as well as methods to remedy them.

Perhaps the most troubling is a responder who returns
ρ ∈ Cpk (1G) regardless of the request ciphertexts〈cj〉j∈[ℓ] in
messagem1, thereby giving the requester reason to reject the
user’s chosen password even when the user’s chosen password

8This estimate was retrieved from https://www.statista.com/topics/2237/
internet-usage-in-the-united-states/ on December 4, 2018.
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is not similar to others she set elsewhere. This denial-of-
service attack would frustrate users, but fortunately a responder
that misbehaves in this way can be caught by simple audit
mechanisms. For example, at any point, the directory could
generate a messagem1 in which eachcj ∈ Cpk \Cpk (1G) and
for which it knows the private keysk corresponding topk ; if a
responder responds withρ ∈ Cpk (1G), then the directory has
proof that the responder is lying and, e.g., can simply remove
the responder from future queries. In principle, a requester
could also generate such audit queries, though doing so would
require the directory to suspend the user-consent mechanism in
Sec. V-A1. In this case, a detection would enable the requester
to learn that either one of the responders is misbehaving (but
it would need help from the directory to figure out which one)
or that the directory is misbehaving (in which case it would
need to report it to some managing authority).

Other misbehaviors can render our framework silently in-
effective while they persist. For example, a malicious directory
could simply not query responders at all, instead forging the
responseρi purportedly from eachSi to indicateno password
reuse (i.e.,ρi ∈ Cpk \ Cpk (1G)). Again, a simple audit
(knowingly attempting to reuse a password at a requester)
can detect such misbehavior. Presuming such misbehaviors
will occur rarely and be remedied quickly, we believe our
framework will suffice to discourage password reuse even if it
usuallyworks.

As our framework enables the requester to perform pre-
computation to reduce its costs on the critical path of protocol
execution, the critical-path computation cost of the protocol
is greater for the responder than it is for the requester. This
is even more true for misbehaving requesters that replay the
same request, in an effort to occupy directory and responder
resources. Of course, this concern is not unique to our frame-
work, and various techniques to stem such denials of service
exist that would be amenable to adoption in our framework
(e.g., [24], [1]). In addition, steps detailed in Sec. V-A1 to
require user consent (through clicking on a confirmation URL)
to complete the protocol could interfere with such attacks.
In the worst case, however, responders and the directory can
refuse requests until the flood subsides, albeit temporarily
reducing the utility of our framework to the status quo today.

VIII. C ONCLUSION

Adams and Sasse famously declared, “Users are not the
enemy” [2]. While we do not mean to suggest otherwise, it has
also long been understood in a variety of contexts that users
must be compelled to adhere to security policies, as otherwise
they will not do so. Despite decades of haranguing users to
stop reusing passwords, their adoption of methods to manage
passwords more effectively has been painfully slow. This, in
turn, has given rise to credential abuses that inflict considerable
costs on service operators (see Sec. I).

We believe it is now time to consider imposing techni-
cal measures to interfere with the use of similar passwords
across websites. In this paper we have presented one possible
method for doing so, by coordinating password selection
across websites so that similar passwords cannot be used
for the same account identifier. Our framework combines
a set-membership-test protocol (Sec. IV) with a variety of

other defenses (Sec. V-A) to implementaccount securityand
account location privacy, the former of which we confirm via
probabilistic model checking (Sec. V-B). Finally, we leveraged
tendencies of how users reuse passwords to optimize the
parameters for our framework, enabling it to be effective with
surprisingly modest costs (Sec. VI-C).

ACKNOWLEDGMENT

We are grateful for comments on previous versions of this
paper from Prof. Marina Blanton and anonymous reviewers.
This work was supported in part by NSF grant 1330599.

REFERENCES

[1] M. Abadi, M. Burrows, M. Manasse, and T. Wobber, “Moderately hard,
memory-bound functions,”ACM TOIT, vol. 5, no. 2, May 2005.

[2] A. Adams and M. A. Sasse, “Users are not the enemy,”CACM, vol. 42,
Dec. 1999.

[3] Akamai, “[state of the internet]/security, Q4 2017 report,” https://
www.akamai.com/us/en/multimedia/documents/state-of-the-internet/
q4-2017-state-of-the-internet-security-report.pdf, 2017.

[4] A. Bessani, J. Sousa, and E. E. P. Alchieri, “State machine replication
for the masses with BFT-SMaRt,” in44th IEEE/IFIP DSN, Jun. 2014.

[5] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” CACM, vol. 13, no. 7, Jul. 1970.

[6] H. Bojinov, E. Bursztein, X. Boyen, and D. Boneh, “Kamouflage: Loss-
resistant password management,” inESORICS, ser. LNCS, vol. 6345,
Sep. 2010.

[7] J. Boyan, “The Anonymizer: Protecting user privacy on the web,”
Computer-Mediated Communication Magazine, vol. 4, no. 9, Sep. 1997.

[8] A. S. Brown, E. Bracken, S. Zoccoli, and K. Douglas, “Generating and
remembering passwords,”Applied Cognitive Psychology, vol. 18, no. 6,
2004.

[9] R. Canetti, O. Goldreich, and S. Halevi, “The random oracle method-
ology, revisited,”JACM, vol. 51, no. 4, Jul. 2004.

[10] Certicom Research, “SEC 2: Recommended elliptic curvedomain pa-
rameters,” http://www.secg.org/SEC2-Ver-1.0.pdf, 2000, standards for
Efficient Cryptography.

[11] A. Clement, M. K. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin,
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