
Nearby Threats: Reversing, Analyzing, and Attacking
Google’s ‘Nearby Connections’ on Android

Daniele Antonioli
Singapore University of
Technology and Design

daniele antonioli@mymail.sutd.edu.sg

Nils Ole Tippenhauer
CISPA Helmholtz Center
for Information Security

tippenhauer@cispa.saarland

Kasper Rasmussen
Department of Computer Science

University of Oxford
kasper.rasmussen@cs.ox.ac.uk

Abstract—Google’s Nearby Connections API enables any An-
droid (and Android Things) application to provide proximity-
based services to its users, regardless of their network connectivity.
The API uses Bluetooth BR/EDR, Bluetooth LE and Wi-Fi to let
“nearby” clients (discoverers) and servers (advertisers) connect
and exchange different types of payloads. The implementation of
the API is proprietary, closed-source and obfuscated. The updates
of the API are automatically installed by Google across different
versions of Android, without user interaction. Little is known
publicly about the security guarantees offered by the API, even
though it presents a significant attack surface.

In this work we present the first security analysis of the
Google’s Nearby Connections API, based on reverse-engineering
of its Android implementation. We discover and implement sev-
eral attacks grouped into two families: connection manipulation
(CMA) and range extension attacks (REA). CMA-attacks allow an
attacker to insert himself as a man-in-the-middle and manipulate
connections (even unrelated to the API), and to tamper with the
victim’s network interface and configuration. REA-attacks allow
an attacker to tunnel any nearby connection to remote (non-
nearby) locations, even between two honest devices. Our attacks
are enabled by REarby, a toolkit we developed while reversing the
implementation of the API. REarby includes a dynamic binary
instrumenter, a packet dissector, and the implementations of
custom Nearby Connections client and server.

I. INTRODUCTION

Google’s Nearby Connections API enables Android (and
Android Things) developers to offer proximity-based services
in their applications. A proximity-based service allows users
of the same application to share (sensitive) data only if they
are “nearby”, e.g., within Bluetooth radio range. The API
uses Bluetooth BR/EDR, Bluetooth LE and Wi-Fi and it
claims to automatically use the best features of each depending
on the type of communication required. For example, it
uses Bluetooth for short-range low-latency communications
and Wi-Fi for medium-range high-bandwidth ones. The API
provides two different connection strategies (P2P_STAR and
P2P_CLUSTER), that allows clients (discoverers) and servers
(advertisers) to be connected using different topologies.

The Nearby Connections API is implemented as part of
Google Play Services. Google Play Services is a proprietary,

closed-source and obfuscated library that allows Google to
provide the same services to any Android and Android Things
application, regardless of the version of the operating systems.
The API is compatible with any Android device, version 4.0 or
greater, and it is updated by Google without user interaction [1].
An attacker who can exploit this API can target (at least)
any application using Nearby Connections in any Android
mobile and IoT device. This implies a large attacker surface
and represents a critical threat with severe consequences such as
data loss, automatic spread of malware, and distributed denial
of service.

The design specifications and implementation details of the
Nearby Connections API are not publicly available. The only
public source of information about the library is a few blog posts
detailing sporadic security guarantees [18], [16]. According to
these sources, the API uses encryption by default, but it does not
mandate user authentication. The API automatically manages
and uses multiple physical layers and this does not sound
trivial. The API uses a custom application layer connection
mechanism. A device can simultaneously be a client and a
server, and can connect to different applications at the same
time. A Nearby Connections application is uniquely identified
by a string named serviceId and clients and servers with
different serviceId (or connection strategies) will not be
able to connect.

Proximity-based services similar to the Nearby Connections
API have been investigated in the context of wireless sensor
networks for a long time, together with related security
challenges [28], [32], [27]. In particular, eavesdropping and
wormhole attacks are often discussed, which would allow
the attacker to read or manipulate the traffic exchanged by
nearby devices. Typically, such attacks are considered on link or
network layer, i.e., on the routing or path finding protocols. As
Nearby Connections is providing an application-layer service,
the setting is different to most established work in the field,
although similar security challenges does apply. In addition to
attacks on routing, authentication of (mobile) users is known
to be challenging, together with key exchange to establish a
secure channel [10], [29].

In this work, we assess the security of the Nearby Con-
nections API. We analyze the API by reverse-engineering
its closed-source and obfuscated implementation. To perform
this task we use advanced techniques such as dynamic binary
instrumentation and manipulations of raw packets. We develop
compatible implementations of Nearby Connections client
and server. Based on the knowledge gained, we identify

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA
ISBN 1-891562-55-X
https://dx.doi.org/10.14722/ndss.2019.23367
www.ndss-symposium.org



and implement several attacks. The impact of these attacks
ranges from intercepting and decrypting application-layer data
(using man-in-the-middle or impersonation), to forcing the
establishment of TCP connections between the victim and
arbitrary (non-nearby) devices. In addition, the attacker is able
to introduce system wide default network routes on the victims’
devices. As a result, the attacker is able to redirect a victim to
an access point under his control and gains access to all the
Wi-Fi traffic of the victim, including the traffic generated by
applications that are not using the Nearby Connections API.

We summarize our main contributions as follows:

• We reverse engineer and perform the first security
analysis of the closed-source and obfuscated Nearby
Connections API.

• We identify and perform several attacks grouped
into two families: connection manipulation and range
extension attacks. The attacks can be performed by
very weak adversaries and have severe consequences
such as remote connection manipulation and data loss.

• We design and implement REarby, a toolkit that
enables reverse engineering and attacking the Nearby
Connections API. We released parts of the toolkit as
open source in our proof of concept code1.

Our work is organized as follows: in Section II, we introduce
the Nearby Connections API. We present a security analysis
of the API based on our reverse engineering in Section III.
In Section IV, we describe the connection manipulation and
range extension attacks. The implementation details of REarby
are discussed in Section V. We present the related work in
Section VI. We conclude the paper in Section VII.

II. BACKGROUND

A. Introduction to the Nearby Connections API

The Nearby Connections API is used to develop proximity-
based applications. These applications provide services to
users within radio range (approx 100m) [17] and consider
these users as “nearby”. Typical use cases of the API are: file
sharing, gaming, and streaming of content. The API enables
proximity-based services using a combination of three wireless
technologies: Bluetooth BR/EDR, Bluetooth LE and Wi-Fi.
Bluetooth BR/EDR stands for basic rate and extended data rate
and it is typically used by high-end mobile devices. Bluetooth
LE stands for low energy and it is typically used by low-end
and high-end mobile devices [8]. In the rest of the paper we
indicate Bluetooth BR/EDR with Bluetooth and Bluetooth LE
with LE. For more information about the differences between
the two refer to [8].

The Nearby Connections API is available on Android and
Android Things. Android Things is a new operating system
based on Android developed by Google that targets IoT devices.
In this work, we focus on the Android implementation of the
API. The latest major release of the API was introduced in
June 2017 in Google Play Services (GPS) version 11.0 [18].
The GPS library is a core proprietary product of Google, and
relies partly on the security through obscurity model. The

1Repository at https://github.com/francozappa/rearby.

Discoverer (client)

D

Advertiser (server)

A

Discover strategy,
serviceId

Advertise strategy,
ncname, serviceId

Discovery

Connection Request

Key Exchange Protocol

Optional Authentication

Connection Establishment

Key Derivation Functions

Optional Physical Layer Switch

Exchange Encrypted Payloads

Disconnect

Fig. 1: The Nearby Connections API has two types of actors:
the Discoverer (client) and the Advertiser (server). It uses
application layer encryption and optional user authentication.

main functional benefit and potential security weakness of the
GPS library is that it allows its services (including Nearby
Connections) to be usable by any application, across different
Android versions from 4.0 onwards. The updates of the GPS
library are pushed by Google and do not require user interaction
to complete [1].

In a nearby connection there are two types of actor: the
discoverer and the advertiser. The former acts as a client,
while the latter acts as a server. Figure 1 describes the actions
performed by these actors while using the Nearby Connections
API. The client attempts to discover a service identified by a
serviceId. The server announces the service (serviceId)
along with a name (ncname), using one of two different
strategies described in a moment. Two actors are allowed to
connect if they use the same strategy and serviceId. A
single device can discover and advertise different services at
the same time. Each serviceId is meant to uniquely identify
an application. Google suggests to set it equal to the package
name of the application [19].

If the client discovers the server then he sends a connection
request to the server and the actors can optionally authenticate
themselves. The actors mutually accept to connect and then the
connection is established. The connection is always requested,
initiated and established over Bluetooth. Once the connection is
established, the actors optionally switch to a different physical

2



layer, e.g., to Wi-Fi, and then they start exchanging (encrypted)
data payloads. The API provides three types of payloads: BYTE,
FILE, and STREAM. The first type is used to transmit chunks
of bytes, the second files and the third streams of data. Each
payload type has a related proximity-based service associated,
e.g., use FILE payloads in a file-sharing application. Each
actor addresses a payload to a receiver with a unique four-digit
string called endpointId. The nearby connection is closed
whenever one of the two actor disconnects.

B. Nearby Connections Strategies

The nearby connection strategy dictates the connection
topology and the physical layer switch. At the time of
writing, the Nearby Connections API provides two strategies:
P2P_STAR and P2P_CLUSTER. There is also a third one
called P2P_POINT_TO_POINT that it is still not public. In
Figure 2 we show three examples of P2P_STAR links and
two P2P_CLUSTER links. These links are established after
the actors already completed all the phases from Figure 1 up
to the optional physical layer switch. The P2P_STAR strategy
has three types of links: (1) the advertiser acts as a soft access
point and the discoverer connects to it; (2) the discoverer is the
master and the advertiser is the slave of a Bluetooth network;
and (3) both actors are connected to the same access point
and they exchange payloads through it. There are only two
options for the P2P_CLUSTER strategy: (3) is the same as for
the P2P_STAR strategy and (4) several actors can connect to
each other using Bluetooth in a mesh-like network.

Hence, P2P_CLUSTER allows the connection of multiple
discoverers and advertisers while P2P_STAR allows only one
advertiser to be connected with multiple discoverers. Google
recommends to use P2P_STAR for higher throughput and
P2P_CLUSTER for more flexible network topologies. In any
case, the actors can exchange payloads without being connected
to the Internet and two discoverers always communicate through
an advertiser (even when using the P2P_CLUSTER strategy).

III. REVERSING AND ANALYZING NEARBY CONNECTIONS

In this section we describe our understanding of the Nearby
Connections API after reverse engineering its implementation
on Android. Our main goal is to perform a security assessment
of the API because of its wide attack surface and complex
interactions between wireless technologies. Unfortunately, the
implementation of the API is proprietary, closed-source, and
obfuscated. To overcome these obstacles we developed REarby
a toolkit to reverse engineer the API, its implementation is
presented Section V. For the remainder of this work, we refer
to the target of our analysis as “the library”. We note that,
without access to the source code or specification of the library,
we cannot claim that our findings are always complete.

The analysis of the library allowed us to identify and
perform several attacks that we present in Section IV. In
particular, we use details of the authentication and interactions
between advertisers and discoverers (Section III-A) to perform
attacks in which we impersonate them and we manipulate
Nearby Connections traffic. Details of the Nearby Connections
keep-alive mechanism (Section III-E) are required for range
extension attacks. The physical layer switch (Section III-F) is
exploited to manipulate system-wide routing tables of victims.

A. Discovery and Connection Request

A nearby connection is always requested using Bluetooth,
regardless of the nearby connection parameters. Discovering
and advertising are done in a deterministic and predictable way
without using encryption. An attacker who posses a clone of the
library can pretend to be any advertiser and discoverer of any
application, and he can use any Bluetooth compatible device
to request a connection. The Bluetooth connection uses Secure
Simple Pairing (SSP) with a link key that is not authenticated
and not persistent. Indeed, an attacker could insert himself as
a man in the middle in the Bluetooth link and he can force the
re-establishment of the link key at any time.

An example of a nearby connection request is shown
in Figure 3. The advertiser (server) advertises a strategy, a
serviceId and a ncname. The discoverer (client) discovers
a strategy and a serviceId. To find each other, both have to
look for the same serviceId, and use the same strategy. The
server to be discovered changes its Bluetooth name (btname)
and sets custom LE extended report. The btname is changed
to a string that depends on the strategy, the endpointId,
the serviceId, and the ncname. btname is computed as
follows:

btname = unpad(b64encode(strategy code ‖ endpointId ‖
SHA256(serviceId)[:3] ‖ separator ‖ ncname))

The strategy code is 0x21 for P2P_STAR and 0x22 for
P2P_CLUSTER. The SHA256(serviceId)[:3] are the first
three bytes of the SHA256 digest of the serviceId. The
unpad function is used to remove the padding characters (=)
from the base64 encoded string. For example, a server with
strategy P2P_CLUSTER, serviceId = sid, endpointId
= aXCV and ncname = name advertises with the following
btname: IjR1ZEE0s2QAAAAAAAAABG5hbWU. The length
of btname depends on ncname, in our experiments we
discovered that the maximum length of the name is 131 bytes.
The btname is easy to spot (by an attacker) because it always
starts with I and contains the AAAAAAAAA separator. On the
LE side, the same parameters are used in a similar way to set
the LE extended report. Some devices (such as the Nexus 5) do
not support LE extended reports and only use Bluetooth while
advertising. The client (while discovering) sends Bluetooth
inquiries and enables LE scanning. The server sends back
Bluetooth inquiry responses containing btname and LE extended
reports. The client discovers the server (endpoint) through these
responses and establishes a Bluetooth connection with it.

After the Bluetooth connection is established, the client
sends a service discovery protocol (SDP) request using a
custom uuid. SDP is a protocol used to discover Blue-
tooth services. The information about each service is ob-
tained by sending a SDP request containing its correspon-
dent universally unique identifier (uuid) [8]. The nearby
connection custom uuid is computed from the MD5 di-
gest of the serviceId and some extra string manipula-
tions. For example, if serviceId = sid then the uuid
is b8c1a306-9167-347e-b503-f0daba6c5723. The
client receives an SDP response containing the following fields:
name = serviceId, host = Bluetooth address of the server
and RFCOMM port = 5. RFCOMM is a serial cable emulation

3



Fig. 2: Nearby Connections connection strategies using Bluetooth and Wi-Fi. On the left, three P2P_STAR topologies; on the
right, two P2P_CLUSTER topologies. In each case, all actors use the same serviceId.

Discoverer (client)

D

Advertiser (server)

A

Discover strategy,
serviceId

Advertise strategy,
ncname, serviceId

BT Inquiry

BT Inquiry Response

LE Scan

LE Extended Report

Discovery

BT Create Connection

BT Connection Complete

SDP Request

SDP Response

BT Secure Simple Pairing

BT Secure Simple Pairing

BT Link Key Calculation

BT Link Key Calculation

BT Enable Encryption

BT Enable Encryption

RFCOMM ch5

RFCOMM ch5

Bluetooth Connection

Fig. 3: Nearby Connections Request. BT is Bluetooth BR/EDR.
Secure Simple Pairing provides link-layer encryption.

transport protocol based on ETSI TS 07.10 providing similar
guarantees of TCP [8].

The client uses Secure Simple Pairing (SSP), with optional
Secure Connections, to share a secret with the server. The
Secure Connections mode is enabled if both radio chips support
it. The client and the server compute the same link key, and
they agree on enabling link-layer encryption. Finally, the client

Discoverer (client)

D

Advertiser (server)

A

Generate skD, pkD
Pick ND

cD = Hash(pkD)

Generate skA, pkA
Pick NA

Kep1: 1, endpointId, ncname, version

Kep2: 2, ND, cD, algo

Kep3: 3, NA, pkA

Kep4: 4, pkD

Verify cD
(Sx, Sy) = skA · pkD
key = kdf(Sx, NA, ND)

(Sx, Sy) = skD · pkA
key = kdf(Sx, NA, ND)

Fig. 4: Nearby Connections Key Exchange Protocol
(KEP) based on ECDH (secp256r1). algo is always
AES_256_CBC-HMAC_SHA256.

establishes a link-layer encrypted RFCOMM connection with
the server, always on port 5.

B. Key Exchange Protocol (KEP)

We found that the library uses a custom key exchange
protocol (KEP) based on elliptic-curve Diffie Hellman (ECDH)
on the secp256r1 (NIST P-256) curve. ECDH is a good choice
for mobile embedded system because it is faster and requires
shorter keys than finite field Diffie-Hellman. The secp256r1
curve is recommended by NIST [5], however some crypto
experts have questioned the security of this curve [6]. The key
exchange protocol consists of four packets that we refer to as:
Kep1, Kep2, Kep3, and Kep4. Table I lists their most relevant
fields. This protocol provides several security guarantees, e.g.,
fresh shared secrets, negotiation of strong crypto primitives for
confidentiality and integrity and usage of sequence numbers
and sanity checks of the elliptic curve points. However, we
identified a number of issues, e.g., lack of a standard key
derivation function (such as HKDF), weird usage of nonces
and commitments, and transferring of useless key material (y
coordinate of the public keys).

4



The key exchange protocol is shown in Figure 4. The client
generates a key pair skD, pkD and the server generates a key
pair skA, pkA. sk is the private (secret) key, and pk is the public
key. Each public key is a point on the secp256r1 curve. The
client and the server generate two 32 byte random nonces ND

and NA. The client builds Kep1 and Kep4. The relevant fields
of Kep1 are: 1 (sequence number), endpointId, ncname
and what we believe is the Nearby Connections version number
(version). In our experiments we observed protocol version
0x2 and 0x4. The relevant field of Kep4 are: 4 (sequence
number) and pkD (the client’s public key).

The client computes an hash of pkD (based on SHA512)
that should be a commitment on his public key. We define
the commitment as cD. Then, the client builds Kep2 that has
the following relevant fields: 2 (sequence number), ND, cD
and a string that we define as algo. The value of algo
is fixed to AES_256_CBC-HMAC_SHA256. This means that
the nearby connection application layer uses encryption and
message authentication codes, and that strong crypto primitives
are used: AES256 in CBC mode, and HMAC with SHA256.
The presence of algo could indicate that the developers are
planning to introduce cipher negotiation as a feature, otherwise
there seems little point in exchanging this information. The
server builds Kep3 that has the following relevant fields: 3
(sequence number), NA, and pkA (the server’s public key). Note
that Kep4 is build before Kep2 because the latter contains cD
(commitment) that is computed over the former.

After that, the network traffic takes place (over link layer
encrypted RFCOMM). The client sends Kep1 and Kep2 to
the server, the server answers with Kep3, and the client sends
Kep4. In our experiments these packets are always exchanged
in this order. Sometimes, Kep1 is split and transmitted using
two sequential RFCOMM packets. The server verifies the
client’s commitment using cD and Kep4. Afterwards, both
nodes compute the (same) secret point in the curve, defined as
(Sx, Sy), by multiplying their own private key with the public
key of the other. The x coordinate of the secret point is used
as key (shared secret). We refer to this as Sx. The library does
not use any (recommended) ECDH key derivation functions
such as HKDF or NIST-800-56-Concatenation-KDF [5]. The
details about how we managed to discover it are presented in

TABLE I: Main Fields of the Key Exchange Protocol packets.
(Gx, Gy) is the generator point for the ECDH curve.

Packet Field Description Default value(s)

Kep1 sn Sequence number 1
endpointId Discoverer id None
ncname Discoverer name None
version Protocol version 0x02, 0x04

Kep2 sn Sequence number 2
ND Nonce Random
cD Commitment SHA512(Kep4[4:])
algo Negotiated ciphers AES_256_CBC-HMAC_SHA256

Kep3 sn Sequence number 3
NA Nonce Random
xA x-coord of pkA x-coord from (Gx, Gy) · skA

yA y-coord of pkA y-coord from (Gx, Gy) · skA

Kep4 sn Sequence number 4
xD x-coord of pkD x-coord from (Gx, Gy) · skD

yD y-coord of pkD y-coord from (Gx, Gy) · skD

Fig. 5: Computation of the authentication token.

Section V. After the client and the server completed the KEP,
the nearby connection is initiated (but not yet established).

C. Optional Authentication and Connection Establishment

Before establishing a nearby connection, the client and
the server can optionally authenticate each other. The Nearby
Connections authentication is based on a five-digit token,
containing uppercase alphabetic characters, numbers, and
special characters from the base64 alphabet (search space of
size 385). The token is generated by the library, it depends on
Sx (the shared key), and it is computed by the client and the
server even if it is not used. It is up to the Nearby Connections
application developer to decide whether and how to utilize it.
At the time of writing, the nearby connection sample code
from Google ignores the authentication tokens [23]. In a proper
application, the users would have to visually authenticate each
other, e.g., they must confirm that they are seeing the same
token on both screens.

The reversed procedure to generate the authentication
token consists of five sequential steps. These steps are
described with the help of Figure 5. First, a SHA256 hash
of Sx is computed. Second, this hash is used as the key for
a SHA256 HMAC, from now on HMAC, of the UKEY2 v1
auth string. This string reveals that the generation procedure
of the token is versioned (v1), and it is labeled as auth. Third,
the output of the first HMAC is used as a key in a second
HMAC. The input of the second HMAC is the concatenation
(‖) of a subset of Kep2, a subset of Kep3 and the integer
0x01. This means that the entropy used in the computation of
token is fresh and comes both from the client (Kep2) and
the server (Kep3). This choice provides security guarantees
such as protection against replay attacks. In the fourth step, the
output of the second HMAC is base64 encoded and truncated
to its first five characters (bytes). Finally, token is generated
by converting these five characters to uppercase. An example
of token is ABC12.

In the connection establishment both devices have to accept
the connection, and it does not matter who accepts it first. In
our experiments, we observed that the devices always use the
same payloads:

• 0x000000080801120408053200 to keep the pre-
connection alive

• 0x0000000a0801120608021a020800 to accept
a connection

• 0x0000000b0801120708021a0308c43e to re-
ject a connection

5



Fig. 6: Computation of kD2A and kA2D.

As in the connection request phase, Wi-Fi and Bluetooth LE
are not used to establish a nearby connection. We discovered
that devices with the same ncname are allowed to connect,
this means that in a nearby connection only the endpointId
uniquely identifies a node. While testing the connection
establishment phase we discovered interesting things about the
serviceId. Any advertiser leaks its serviceId if queried
with a generic SDP request, e.g., using sdptool browse
adv_btaddress. Moreover, two devices from different
applications can use the same serviceId to establish a
connection. This means that it is possible to predict the
serviceId of any application . We also discovered that
the library is still using an undocumented serviceId named
__LEGACY_SERVICE_ID__.

D. Key Derivation Functions (KDFs)

We were able to reverse the key derivation functions
responsible for the creation of the session, encryption, and
message authentication code keys. When a nearby connection
is established then the client and server compute two symmetric
session keys that we define as kD2A and kA2D. The former is
used to secure communications from the client to the server, and
the latter from the server to the client. The reversed computation
of these keys is shown in Figure 6. The description of the steps
is similar to the one presented in Section III-C: it starts with
SHA256 hashing and then it uses a chain of HMACs. We omit
the detailed description of the steps, as it is similar to the one
of Figure 5.

However, it is important to note four points from Figure 6.
First, from the UKEY2 v1 next string we deduce that the
library uses the same version number of the auth phase (see
Figure 5), and it labels this phase as next. Second, the only
thing that differentiates kD2A from kA2D is their last HMAC
step: the former uses client as part of the input and the latter
uses server. Third, kD2A and kA2D depend on Kep2, Kep3 and
Sx, indeed they enjoy the same security benefits of token.
Finally, the library uses one session key for each direction of
communication, this is a good practice in protocol design, e.g.,
it prevents reflection attacks.

The session keys are used to derive the encryption and the
message authentication code (MAC) keys. In other words, kD2A

and kA2D generate respectively the keys to encrypt, decrypt,
sign and verify packets from the client to the server and from
the server to the client. The generation of the AES key from a
session key is a two step process (involving HMAC), which is
shown in Figure 7. The string ENC:2 indicates that this process

Fig. 7: Computation of the AES (symmetric) key.

Fig. 8: Computation of the MAC key and the MAC.

is computing an encryption key, but it is not clear yet what
does 2 refer to.

The computation of the MAC key is similar to the AES
key computation and it is shown in Figure 8. In this case, we
find the SIG:1 string. Again, the string indicates that a signing
key is computed, but it is not clear what does the 1 refers to.
Figure 8 describes also how the library does compute a MAC.
Nearby Connections uses encrypt-then-mac with HMAC using
SHA256. The MAC is computed using the MAC key and as
input a subset of a payload containing the ciphertext (ct), an
initialization vector (iv) and some constant fields.

Using dynamic binary instrumentation (discussed in Sec-
tion V), we see that the library for each application layer
packet re-derives the same AES and MAC keys from the session
keys. In particular, every time a node wants to transmit a packet,
the library performs the following: it (re)computes the AES
key, encrypts the payload, (re)computes the MAC key, signs
the payload and then builds the packet. Similarly, when it is
time to receive a packet, the library (re)computes the MAC key,
verifies the MAC, (re)computes the AES key and decrypts the
packet’s payload. In our opinion, these repeated computations
are not very efficient. It is possible that the library’s developers
intend to use a key evolution mechanism where the AES and
MAC keys could change over time according to some logic.
However, in our experiments the library recomputes always the
same keys. Another reason to use these procedures may relate
to key storage in memory. It is true that—if you recompute a
key and discard it when you do not need it—the key stays in
memory for a shorter time. But the library needs the session
keys kD2A and kA2D to be able to compute the AES and the
MAC keys and these are stored in memory in any case.

E. Exchange Encrypted Payloads

Once a nearby connection is established and the session
keys are derived, the protocol can be considered symmetric,
e.g., it does not matter who is the discoverer (client) and the
advertiser (server). To emphasize this, we rename the discoverer
to Dennis and the advertiser to Alice. Dennis uses kD2A

6



Dennis

D

Alice

A

Eka: cD2A = 1

t = 0 s

5 s

30 s

Eka: cD2A = 2

Eka: cD2A = 3

Eka: cD2A = 4

Eka: cD2A = 5

Eka: cD2A = 6

Disconnect

Fig. 9: Nearby Connections Encrypted Keep-Alive. The period
is 5 seconds, the timeout is 30 seconds.

and Alice uses kA2D and their communications are encrypted
(AES256 in CBC) and authenticated (HMAC with SHA256)
at the application layer, and encrypted at the link-layer (SSP).

Dennis and Alice keep the connection alive by using the
encrypted keep-alive protocol (EKA) shown in Figure 9. From
our experiments we discovered that a nearby connection has a
connection timeout of 30 seconds. In Section IV, we discuss
how that can be exploited to extend the range of our attacks.
The EKA protocol uses a custom type of packet that we define
as Eka. These packets have a constant header and contains a
directional counter.

As we can see from Figure 9, Dennis initializes a directional
counter, that we define as cD2A, to 1. cD2A counts the number
of packets sent from Dennis to Alice. Dennis builds an Eka
packet and send it to Alice. Alice maintains her local cD2A

counter and checks that her local values match with the ones
that she gets in the packets. Dennis sends an Eka packet every
5 seconds incrementing each time cD2A. Alice may answer
with either an Eka packet (that counts the packets in the other
direction) or a packet containing a nearby connection payload.
Dennis closes the nearby connection after sending six sequential
unanswered Eka packets. This means that the EKA timeout is
30 seconds. The same encrypted keep alive protocol happens
asynchronously from Alice to Dennis using cA2D to count the
packets sent from Alice to Dennis and Dennis maintains its
local cA2D counter.

While the nearby connection is alive, Dennis and Alice are
able to exchange payloads. There are three types of payloads:
BYTE, FILE, and STREAM. The payloads are sent either using
Bluetooth (over RFCOMM) or Wi-Fi (over TCP) and they
are encoded using custom application layer packets. Each
payload generates at least two packets and each one contains
the appropriate directional counter value (either cD2A or cA2D).
The packets are sent sequentially without application layer
acknowledgments. A node can send and receive payloads
asynchronously. A payload packet contributes to keep the
connection alive in the EKA protocol.

Algorithm 1 Nearby Connections Physical Layer Switch.

Require: D = discoverer, A = advertiser
Result: Bluetooth uses RFCOMM, Wi-Fi uses TCP, no secrets

shared between Wi-Fi and Bluetooth
if A is connected to an hotspot then

A tells D how to switch to a shared WLAN
D contacts A over TCP

else if strategy is P2P_STAR then
if D and A support Wi-Fi Direct then

A tells D how to switch to Wi-Fi Direct
else

A tells D how to switch to hostapd
end if
D connects to A’s soft AP
D contacts A over TCP

else
A and D continue to use Bluetooth

end if

F. Optional Physical Layer Switch

Once a nearby connection is established, the client and
the server might switch from Bluetooth to Wi-Fi. From our
experiments, we see that the physical layer switch can be
predicted and manipulated. We misuse this mechanism to
perform a connection manipulation attacks (CMA) presented in
Section IV. The switch always happens from Bluetooth to one
of the three Wi-Fi modes supported by the library. We define
these modes as: shared WLAN, hostapd, and Wi-Fi Direct. In
the shared WLAN case the devices use a common access point:
see (3) and (4) in Figure 2. In the hostapd and Wi-Fi Direct
cases the advertiser acts as a soft AP, see (1) in Figure 2. The
nearby connection documentation tells us that the library uses
a real-time heuristic to determine when and how to switch.

Algorithm 1 describes the result of our reversing of the
physical layer switch. The advertiser is always in charge of
the switch and there is no negotiation with the discoverer.
In order to bind the Wi-Fi and the Bluetooth connections
we would expect the library sharing secret material between
Bluetooth (that is encrypted at the link and application layers)
and Wi-Fi. If this material exists it should be exchanged
before switching to Wi-Fi. However, in our experiments we
observed that this is not the case because the devices after the
switch only use application layer encryption over TCP. Hence,
the shared WLAN link is cryptographically weaker than the
Bluetooth link because it uses only one layer of encryption.
We believe that the automatic Wi-Fi switch is enforced by
autoUpgradeBandwidth=true (a private parameter of
the library that we reversed).

From Algorithm 1 we note that the shared WLAN mode has
the highest priority regardless of the nearby connection strategy.
If shared WLAN is used we expect to see the exchange of
network parameters over the Bluetooth link before the Wi-Fi
switch. In our experiments we observed such exchange (and
show how to leverage this as an attacker in Section IV). Wi-Fi
Direct and hostapd are used only if the strategy is P2P_STAR.
Both modes allow the advertiser to act as a soft access point
without an Internet connection. The discoverer should be able
to find its essid and connect to the it. When any of these
modes is in use we expect to see an exchange of information

7



about the soft AP over Bluetooth before the Wi-Fi switch. In
our experiments we observed this information, and we leverage
this mechanism in our attacks. Wi-Fi Direct uses a constant
essid (22 Bytes, always starts with DIRECT-) and a WPA2
password (8 Bytes). hostapd uses a randomized base64-encoded
essid (28 Bytes) and a WPA password (12 Bytes). In both
cases, the advertiser sends the essid and the password to the
discoverer. When the connection is terminated, the library does
not restore the original hotspot configuration of the device.

The capability of the Nearby Connections library to switch
from Bluetooth to Wi-Fi has side effects that are valuable for
an attacker. In Section IV, we show how to abuse this capability
to to switch on the Bluetoothand Wi-Fi (hotspot) antenna of
the victims without user interaction. Another side effect of
the switch is that the library can be misused to interrupt any
active Wi-Fi connection of any node by forcing a physical
layer switch to either hostapd or Wi-Fi Direct. In both cases
the victim loses Internet connectivity.

IV. ATTACKING NEARBY CONNECTIONS

In this section we present the attacks that we on the Nearby
Connections library, based on our reverse engineering presented
in Section III. To perform the attacks we developed several
tools that are presented in Section V. We classify our attacks in
two families: connection manipulation attack (CMA), and range
extension attack (REA). The attack families are orthogonal,
and can be combined. We remark that our attacks manipulate
application layer packets to reach some goal and indeed are
effective regardless the specific Android application that is
using Nearby Connections as a service. In general, if an attack
is effective regardless whether the attacker is the discoverer or
the advertiser, we indicate the victim and the attacker as nodes.

A. Threat Model

Our attack scenario includes the victims (discoverer and
advertiser) and an attacker who posses at least one device
in range with the victims. The legitimate discoverer and
the advertiser establish nearby connections as described in
Section II and Section III. The attacker has two main goals. He
wants to tamper with nearby connections nodes from remote
locations, e.g., establish a nearby connection between two
countries. This violates the basic assumption that only devices
within radio range can establish nearby connections. In addition,
he wants to manipulate these connections in arbitrary ways,
e.g., install himself as man-in-the-middle, take over existing
connection, manipulate the Bluetooth and Wi-Fi radio of the
victims, and break or weaken the security mechanisms of the
nearby connection library.

The attacker has the same knowledge of the library that
we describe in Section III. He is capable of using custom
advertiser and discoverer and to craft raw packets conforming
to the nearby connection protocol using tools similar to the
ones developed (REarby). An extensive discussion of the tools
is presented in Section V. The attacker can create his own
Wi-Fi access point, and jam the wireless links. He does not
have access to the victims devices e.g., he is not able to install
rootkits or malicious applications. The applications and libraries
used by the victims are considered safe. The attacker does not
require advanced and potentially expensive instrumentation

such as software-defined radio, directional antennas, rooted
devices and commercial wireless sniffers.

B. Connection Manipulation Attacks

In principle, a node should establish nearby connections
only with trusted nodes. However, the library presents several
authentication issues that allows an attacker to manipulate
a connection. In particular, the library does do not perform
any of the following: authenticate the Bluetooth link key,
bind the Bluetooth and the Wi-Fi physical layers, mandate
user authentication, and authenticate the application that is
requesting the nearby connection service. The documentation
suggests that “encryption without authentication is essentially
meaningless” [20] and we argue that this is the case here.

Advertiser and discoverer impersonation. The library uses
only the strategy and the serviceId to uniquely identify
a nearby connection, and both are predicable. We can learn
the serviceId of an application by using a Bluetooth SDP
request and we can guess the strategy (only 2 options). As
a result, we can impersonate both an advertiser advertising
a proper serviceId and a discoverer trying to connect to
a legitimate advertiser. This capability is a stepping stone to
perform more elaborate attacks that we present in this section.

Application layer MitMs. The lack of proper authentication
of the library allows us (the attacker) to man-in-the-middle
two victims at the application layer. We accomplish this attack
using a malicious advertiser and a malicious discoverer at the
same time. The malicious advertiser gets discovered by the first
victim discoverer, and the malicious discoverer connects to the
second victim advertiser (the two malicious devices forward
traffic between each other). Then, we can complete two parallel
Bluetooth pairings with the victims, we perform the application
layer phases of Figure 1, and we compute the shared secrets
and the keys (session, encryption and mac) for each victim.
As a result we are able to decrypt, observe, manipulate and
encrypt the application layer packets.

If the advertiser requests a physical layer switch we launch
a parallel man-in-the-middle attack on the Wi-Fi link. We
know the credentials of the Wi-Fi network because they are
transmitted by the victim advertiser on the Bluetooth link from
which we are eavesdropping. The Wi-Fi MitM is accomplished
using a simple ARP spoofing attack. Wi-Fiis not encrypted at
the ink layer, thus we can continue to observe and manipulate
the application layer traffic also in the Wi-Fi link. We note
that the MitM works even between a victim discoverer and a
victim advertiser using different Android applications (different
serviceId).

Shared WLAN manipulation. The attacker can also manip-
ulate the physical layer switch phase, regardless the nearby
connection strategy. As shown in Algorithm 1, the advertiser
dictates when and how to switch (from Bluetooth to Wi-Fi)
and the discoverer “blindly” follows him. For example, if the
advertiser is connected to an hotspot it will tell the discoverer its
IP address and TCP port (shared WLAN Wi-Fi mode). However,
we are able to redirect a discoverer to an arbitrary IP and TCP
port by intercepting and crafting the legitimate physical layer
switch packet sent by the advertiser before the switch. The
details about how we craft this and other types of packets are

8



Fig. 10: Soft AP manipulation attack. On the left, before the attack the victim is connected to the Internet through a benign AP.
On the right, after the attack the adversary has forced the victim to connect to a malicious access point, and inserted a new
default route in the victim’s routing table. The adversary is able to intercept and manipulate any Internet-bound traffic sent by
any application on the victim’s phone that is using Internet.

presented in Section V-F. As result of this attack, the victim
activates her Wi-Fi interface, associates to a legitimate AP
and establishes a TCP session with a target determined by the
attacker. Note that, this attack work regardless the connection
strategy because the shared WLAN mode is picked as first
choice in both, and the IP spoofed by the attacker can be
outside of the local area network of the victim.

Soft AP manipulation. If the target nearby connection uses
the P2P_STAR strategy, the advertiser might act as a soft
access point without an Internet connection, and provide the
AP credentials to the discoverers. We take advantage of this
feature to redirect discoverers to an access point controlled
by the attacker that is connected to the Internet. Figure 10
shows the victim connection status before (left side) and after
the attack. Initially, the victim (discoverer) is connected to a
legitimate AP. The victim connects to an advertiser using the
P2P_STAR strategy. The attacker either is the advertiser or
performs the application layer MitM attack presented earlier.
The attacker also controls a rogue access point.

Once the nearby connection is established the attacker
manipulates either the hostapd or Wi-Fi Direct switch packets
to redirect the victim to the rogue access point i.e., he provides
the victim valid essid and password. Then, the victim associates
to the malicious AP (see Figure 10), and configures her Wi-Fi
interface with values supplied by the attacker over DHCP. That
enables the attacker to install a new default route (along with
suitable IP configurations), which redirects all the victim’s
traffic to the rogue AP. Indeed, the attacker is able to monitor
and tamper with all the Wi-Fi traffic coming from the victim.
The traffic includes the packets generated by other applications
(not using the library) requiring Internet access such as email
clients, web browsers, and cloud services. We understand that
most of such traffic is secured with TLS, but we still believe
that this attack is novel and it has serious consequences. In
particular, the attacker can target a single application using
Nearby Connections to get access to all Wi-Fi network traffic
of the victim. The attacker then can perform traffic analysis
even on encrypted packets [36].

DoS Internet connections. The library does not care about
the connection status of the devices before using hostapd
and Wi-Fi Direct. We leverage this fact to launch a denial
of service (DoS) attack on several discoverers at the same

time. The attack assumes that one ore multiple discoverers
are connected to a legitimate Wi-Fi network and they want
to use Nearby Connections. The attacker uses a malicious
advertiser to connect to the victims and tell them to use either
hostapd or Wi-Fi Directand to connect to a non-existent AP.
The victims try to connect to the AP, and as a result they
lose their Internet connectivity. This issue indirectly affects all
the applications running on the victim’s device that need an
Internet connection [21].

Alter network configurations and radios. The library does
not backup and restore the original wireless network config-
uration. In particular, the original soft AP (Wi-Fi hotspot)
configuration is overwritten by the library and the newly created
network is appended to the list of known ones. This allows an
attacker to append and overwrite arbitrary essid-password pairs
in the network configuration files of the victim. The attack
technique is the same presented in the DoS attack paragraph.

The library is able to switch on the Bluetooth and Wi-Fi
antenna of device that is using it, and it does not switch them
off after a disconnection. We use this feature manipulate the
antennas of a victim device, regardless of the nearby connection
strategy. We are able to switch on the Bluetooth antenna
of the victim by establishing a nearby connectionand then
disconnecting. We can switch on the Wi-Fi antenna of any
discoverer by using our custom advertiser to connect with
the victim and by telling the him to switch to Wi-Fi and to
disconnect.

C. Range Extension Attacks (REA)

The Nearby Connections API is supposed to be used by
devices that are effectively nearby. The documentation suggests
that they have to be within radio range (approx 100m) [17].
However, at the time of writing, the library does not enforce
strict time requirements between connected nodes and does
not check the geo-location of the nodes. The library uses an
encrypted keep alive protocol with a generous timeout of 30
seconds, which is more than enough to forward traffic across
continents without aborting the nearby connection [13], [30].
This allows an attacker to violate the fundamental assumption
that nearby-connected devices are in proximity by extending
the range of any nearby connection.

9



The attacker can extend the range of any attack presented
in Section IV-B. In our experiment we implement a wormhole-
attack to extend the range of the application layer MitM attack.
We are able to let two non-nearby victims talk between each
other, i.e., the two victims might be advertising and discovering
nearby connection in different continents. The attacker uses
two devices, each one in range with a victim, to perform the
MitM attack and then forwards the traffic over the Internet
creating a wormhole. The attacker has 30 seconds to forward
the packets in each direction (to keep the connection alive)
and he could even answer to the keep alive requests himself,
effectively allowing arbitrary delays. This attack technique
takes inspiration from [25], [38], [13]. Range extension is not
advisable because a victim perceives a false sense of security
given by the fact that a nearby connection is supposed to be
within radio range and it is expected not to use Internet. In other
words, a victim might better trust a proximity-based secure
service than a secure cloud service.

V. REARBY TOOLKIT IMPLEMENTATION

To implement the attacks presented in Section IV, we
require several capabilities based on our analysis of the Nearby
Connections library presented in Section III. These capabilities
includes: establishment of wireless connections using Bluetooth
and Wi-Fi, ad-hoc usage of cryptographic primitives, creation
and manipulation manipulation of raw network packets, and
usage of custom (security) protocols. For these purposes, we
develop a set of tools and we group them in a project that we
call REarby.

REarby includes custom discoverer and advertiser capable
to perform all the nearby connection phases from Figure 1.
It includes a dynamic binary instrumenter to analyze the
library at runtime and a packet dissector usable to decode
and manipulate application layer packets. REarbyalso contains
a custom Android application that we developed for testing.
Out toolkit makes use of three programming languages: Python,
Java, and JavaScript and contains approximately 2000 lines of
code. It requires a minimal setup, e.g., a laptop running Linux.
In the rest of this section we explain how we implement all
the phases of a nearby connection.

A. Discovery and Connection Request

We manage all the Bluetooth operations with the
bluetooth Python module. The discovery phase begins
using the discover_bt function. This function returns
the Bluetooth’s name (btname) of all the discoverable de-
vices that are in range. The custom discoverer detects the
presence of any advertiser by looking at btnames. It ex-
tracts the strategy, endpointId and ncname using in
reverse the btname formula of Section III-A. The cus-
tom advertiser starts an RFCOMM server on port 5 using
BluetoothSocket(RFCOMM). Then it computes the cus-
tom uuid based on the serviceId and it starts an SDP
server advertising the uuid using serviceId as the name of
the SDP service. The custom advertiser waits for the discoverers
and manages each of them with separate sockets. All the
Bluetooth connections are encrypted at the link layer using the
shared secret computed from the secure simple pairing (SSP).

Listing 1 Kep3 scapy dissection class for Kep3.
1 class Kep3(Packet):
2 name = "Kep3: adv -> dsc"
3 fields_desc = [
4 IntField("len1", None),
5 XByteField("sep1", 0x08),
6 ByteField("sn", 3),
7 XByteField("NC_SEP", NC_SEP),
8 ByteField("len2", None),
9 StrFixedLenField("NC_HEAD2", NC_HEAD2,

length=3),↪→

10 BitFieldLenField("nA_len", None, size=8,
length_of="nA"),↪→

11 StrLenField("nA", "", length_from=lambda
pkt:pkt.nA_len),↪→

12 StrFixedLenField("NC_KEP3_HEAD",
NC_KEP3_HEAD, length=3),↪→

13 ByteField("len3", None),
14 StrFixedLenField("NC_HEAD2", NC_HEAD2,

length=3),↪→

15 ByteField("len4", None),
16 XByteField("NEWLINE", NEWLINE),
17 BitFieldLenField("xA_len", None, size=8,

length_of="xA"),↪→

18 StrLenField("xA", "", length_from=lambda
pkt:pkt.xA_len),↪→

19 XByteField("NC_SEP", NC_SEP),
20 BitFieldLenField("yA_len", None, size=8,

length_of="yA"),↪→

21 StrLenField("yA", "", length_from=lambda
pkt:pkt.yA_len),↪→

B. Key Exchange Protocol (KEP)

To initiate a connection the custom discoverer computes
the custom uuid (based on the serviceId) and performs
an SDP request using that uuid. The response contains the
serviceId and the Bluetooth address of the advertiser.
The custom discoverer uses an RFCOMM socket to connect
the advertiser on port 5. The bluetooth’s Python module
manages the low level details of the RFCOMM socket.

Once connected, the custom advertiser and the custom
discoverer respectively complete the Nearby Connections key
exchange protocol as in Figure 4. To be able to send meaningful
KEP packets we perform several steps. We develop a custom
Android application based on [22] and we use it to generate
samples of KEP packets. We capture the unencrypted packets
using the HCI snoop log functionality of Android. HCI is
the host controller interface protocol spoken by the Bluetooth
host (the OS) and the Bluetooth controller (the radio chip) [8].
We analyze the packets using scapy [7], a network analysis
tool. We discover that the plaintext is serialized using custom
serialization mixing variable and fixed length fields. This is
confirmed by the fact that the library uses the Serializable
Java class.

Listing 1 shows the Kep3 Scapy dissection class that we
use to decode the serialized data in the Kep3 packets. Kep3 is
sent from the advertiser to the discoverer and it contains four
relevant fields: the sequence number (sn), a nonce (nA), the
coordinates of the public key of the advertiser (xA, yA). These
values are serialized using variable length fields. A variable
length field has a leading Byte containing the length of the
field in Bytes concatenated with the actual Bytes containing
the value of the field. For example, nA_len indicates that nA
is a 32 Byte nonce and its value is referenced by nA. The same

10



Listing 2 Frida (JavaScript API) function to overload
android.util.Base64.encodeToString.
1 // input is a byte[], return value is a String
2 function Base64_encodeToString() {
3 Java.perform(function () {
4 var target = Java.use("android.util.Base64");
5 target.encodeToString.overload('[B',

'int').implementation = function(inp,
flags) {

↪→

↪→

6 B64ENC_COUNT += 1
7

8 print_backtrace();
9

10 var inp_str = JSON.stringify(inp)
11 console.warn("B64ENC " + B64ENC_COUNT + "

inp: " + inp_str)↪→

12

13 var retval = this.encodeToString(inp,
flags);↪→

14 console.warn("B64ENC " + B64ENC_COUNT + "
out: " + retval)↪→

15

16 return retval
17 };
18 });
19 }

holds for xA and yA. We use similar classes to decode Kep1
Kep2, and Kep4. From the decoded KEP packets we realize
that the library uses ECDH on the secp256r1 curve, by testing
the public keys contained in Kep3 and Kep4 against standard
elliptic curves.

The next task is to correctly compute the shared
secret (Sx). To understand how to compute it we use
dynamic binary instrumentation (DBI), a technique
that allows to monitor a target application (process)
in real-time by attaching a monitoring process to it.
To implement our DBI we use Frida [33] a reverse-
engineering toolkit that has native compatibility with
Android. After observing our Android application generating
ECDH shared secrets we find out that the cryptographic
operations are managed by a separate Android process called
com.google.android.gms.nearby.connection
that we indicate with ncproc.

Using Frida we list all the Java classes and shared
libraries of ncproc and isolate all the security re-
lated classes, methods and functions By monitoring the
OpenSSLECDHKeyAgreement class we discover that the
library is only using the x coordinate of Sx as the key, i.e., it is
not using a standard key derivation function. These information
enables us to initiate a nearby connection by implementing
the Nearby Connections KEP protocol from Figure 4. We
use the Python cryptography module to implement all the
cryptographic procedures. Note that, our setup allows us to
tamper with and fuzz every field of the KEP packets such
as the public keys, algo, version, endpointId and the
nonces.

C. Optional Authentication and Connection Establishment

After the nearby connection is initiated we compute token
to perform the optional user authentication phase. Listing 2
shows how we monitor and overload the encodeToString
method of the android.util.Base64 class [11] using

Frida. This method is called in the last step of the token
computation from Figure 5. encodeToString takes an array
of bytes as input and returns its base64 encoding representation
as a string. The most important lines of code are from line
6 to 16. In line 6, we use B64ENC_COUNT to count how
many times this method is called at runtime. In line 8 we
use print_backtrace to (recursively) see who called the
method using which parameters. In line 10-11 we save the
original input of the method as a string in inp_str, and we
print it on our console. The original method is called in line
13 with its original inputs (inp, flags) and its return value
is saved into retval. In line 14-16, we print the return value
and return the control to the ncproc process.

We use functions similar to Listing 2 to reconstruct the
computation of token from Figure 5. We implement its
computation in our custom advertiser and discoverer using
standard Python modules. To establish the connection we
implement the pre-connection keep alive, the connection accep-
tance and rejection reusing the constant payloads mentioned in
Section III-C.

D. Key Derivation Functions

Our dynamic binary instrumentation setup is quite powerful.
It allows us to observe, tamper with, and reimplement every
method call used by any Android process, such as ncproc.
All of this without having access to the implementation of the
Nearby Connections library. Using our DBI we reconstruct
all the key derivation functions presented in Section III-D,
and we implement them using standard Python modules. This
enables our custom discoverer and advertiser to establish a
nearby connection and compute the correct session (Figure 6),
encryption (Figure 7), and MAC keys (Figure 8).

E. Encrypted Keep-Alive and Payloads

An established nearby connection is kept alive using the
encrypted keep-alive (EKA) protocol from Figure 9. The EKA
protocol requires the knowledge of the cryptographic stack
used to encrypt-then-mac the application layer packets and the
capability to build meaningful application layer packets. For
example, we have to maintain the directional counters (cA2D,
cD2A) as explained in Section III-E. Implementing the EKA
protocol is a key requirement to perform the attacks presented
in Section IV.

We reverse the cryptographic stack of the library by looking
at the backtrace of its lowest level cryptographic methods such
as NativeCrypto_EVP_CipherFinal_ex(). Listing 3
shows the backtrace with its nineteen (19) stack frames
(truncated lines are terminated with three dots). Starting from
the top we see that the low level crypto functions are managed
by conscrypt (line 1-5). Conscrypt is an open-source Java
security providers developed by Google [15]. Conscrypt in
turns uses BoringSSL [14], Google’s open-source fork of
OpenSSL. Note that BoringSSL is native code. Going down the
backtrace we see the use of javax.crypto module (line 6). This
module provides high level interfaces for Java cryptographic
operations. The next 9 stack frames (line 7-15) are created
by the Nearby Connections library and the names of the
classes and the methods are obfuscated, most probably using
ProGuard [24]. The lowest part of the backtrace contains calls
to thread methods.

11



Listing 3 Backtrace of the ncproc crypto stack. Long lines are
truncated with three dots (. . . ). The library is using javax.crypto
that calls conscrypt that calls BoringSSL.
1 at com.google.android.gms.org.conscrypt...
2 at com.google.android.gms.org.conscrypt...
3 at com.google.android.gms.org.conscrypt...
4 at com.google.android.gms.org.conscrypt...
5 at com.google.android.gms.org.conscrypt...
6 at javax.crypto.Cipher.doFinal(Cipher.java:1502)
7 at blah.a(:com.google.android.gms...
8 at blam.a(:com.google.android.gms...
9 at blam.a(:com.google.android.gms...

10 at bkyj.a(:com.google.android.gms...
11 at bkyg.b(:com.google.android.gms...
12 at acxt.c(:com.google.android.gms...
13 at acyg.a(:com.google.android.gms...
14 at acyd.run(:com.google.android.gms...
15 at pmz.run(:com.google.android.gms...
16 at java.util.concurrent.ThreadPoolExecutor...
17 at java.util.concurrent.ThreadPoolExecutor...
18 at ptb.run(:com.google.android.gms...
19 at java.lang.Thread.run(Thread.java:818)

Overall, the cryptographic stack of the library uses standard
implementations that we are able to replicate using the Python
cryptography module. Using our crypto stack we create
valid ciphertext using the symmetric key computed as in
Figure 7 and valid message authentication code using the key
as in Figure 8. We use scapy to build properly formatted
application layer packets that include the length fields, the
ciphertext, the mac and the appropriate directional counter
(either cA2D or cD2A).

F. Optional Physical Layer Switch

The correct implementation of the physical layer switch is
paramount to perform the attack presented in Section IV. There
are two packets of interests that the advertiser has to send to the
discoverer to tell him when and how to switch from Bluetooth
to Wi-Fi. We use two scapy dissection classes, that we call
WL and HA, to manage these packets. Their relevant fields are
shown in Table II. WL is used with the shared WLAN mode,
our custom advertiser (the attacker) sends it to the discoverer
to redirect him to arbitrary ip and tcp_port. This packet
is usually sent just after the start of the EKA protocol. HA is
used with the Wi-Fi Direct and the hostapd. By spoofing the
essid and password fields in of this packet our custom
advertiser redirects the victim (discoverer) to an arbitrary soft
AP. Usually, this packet is sent by the advertiser after three
Eka packets.

G. Summary

Our REarby toolkit allows to analyze and attack the
Nearby Connections library. It includes several components
such a custom discoverer and advertiser, dynamic binary
instrumentation based on Frida, and packet dissector based
on scapy. Our custom discoverer and advertiser are able to
discover, advertise, request, initiate, authenticate, accept/reject,
establish a connection and tell when and how to switch to a
different physical layer. They maintain the connection alive
by speaking the EKA protocol. They send BYTE and FILE
payloads. They allow the attacker to specify the strategy,
serviceId, ncname and endpointId and to modify and
fuzz any dissected packets.

TABLE II: scapy dissection classes used to reverse the Nearby
Connections library. The count field contains the application
layer directional counter.

ClassName Relevant Fields Usage Direction

Kep1 sn, eid, ncname, version ECDH D −→ A
Kep2 sn, ND , cD , algo ECDH D −→ A
Kep3 sn, NA, xA, yA ECDH D ←− A
Kep4 sn, xD, yD ECDH D −→ A
Eka iv, ct, mac App Layer D ←→ A
KA count App Layer D ←→ A
Pay iv, ct, mac App Layer D ←→ A
Pt pid, ptype, pay len, pay, count App Layer D ←→ A
Pt2 pid, ptype, pay len, pt len, count App Layer D ←→ A
WL ip, tcp port, count Wi-Fi D ←− A
HA essid, password, count Wi-Fi D ←− A
Error emsg Misc D ←→ A

TABLE III: List of the security related classes and methods
used by ncproc.

ClassName MethodName Usage

OpenSSLCipher engineDoFinal() AES256 in CBC
engineInit() HMAC with SHA256
engineUpdate() HMAC with SHA256
engineDoFinal() HMAC with SHA256

OpenSSLMessageDigestJDK engineUpdate() SHA1, SHA2
engineDigest() SHA1, SHA2

OpenSSLECDHKeyAgreement engineInit() ECDH
engineDoPhase() ECDH
engineGenerateSecret() ECDH

NativeCrypto RAND bytes() RNG

Base64 encodeToString() Encode base64
decode() Decode base64

Table II summarizes the most important scapy dissection
classes that are in use. Table III lists the Java classes and
methods that we monitored while reversing ncproc. Table IV
lists the device that we use for our analysis and attacks.

VI. RELATED WORK

We are not aware of related work on the Nearby Connections
API (for Android devices, or others). In general, a large
amount of academic work has investigated security issues
in wireless standards, such as cryptographic weaknesses in
early versions of Bluetooth [26], and practical sniffing attacks
on Bluetooth [35]. Similarly, cryptographic attacks have been
found on the confidentiality of Bluetooth LE [34] and early
versions of IEEE 802.11/Wi-Fi [9], and later improvements
such as WPA [37]. Lately, additional key reinstallation attacks
were discovered for WPA2 [39], which compromise key
freshness. The impact of physical layer features (such as
MIMO and beamforming in recent standard amendments) on
practical eavesdropping on 802.11 was discussed in [2]. In
addition to analysis of standards, libraries that implement the
standards have also been investigated. For example, a number
of vulnerabilities in Apple and Android devices’ Bluetooth
stack were identified in 2017, dubbed “BlueBorne” [3].

In this paper our focus is not on attacking any design
or implementation aspect of Bluetooth and Wi-Fi standards.
Instead, we point out that introduction of libraries such as
Nearby Connections can lead to unexpected side effects for

12



TABLE IV: Devices used in our Nearby Connections experi-
ments and attacks. GPS is Google Play Services. SSP stands
for Secure Simple Pairing and SC for Secure Connections.

Name Library Bluetooth Soft AP

Android 6.0.1
Motorola G3 (x2) GPS 12.8.74 4.1 SSP with SC Wi-Fi Direct, hostapd
Nexus 5 (x2) GPS 12.8.74 4.1 SSP hostapd

Linux 4.4
Thinkpad x1 Bluez 5.49-4 4.2 SSP hostapd, airbase-ng

traffic of all applications on the victim, e.g., by disconnecting
hosts, redirecting traffic via and attacker, and can lead to effects
such as resource exhaustion (due to attackers manipulating radio
states). Usage of third-party libraries has already been studied
for the Android ecosystem, e.g., in [4]. However, our paper
investigates a library developed directly by Google through its
Google Play Services service, pushed to end users. The misuse
of cryptographic primitives on Android is also well-known [12].
While in the case of Nearby Connections, the developer (or user)
is not responsible for choosing the cryptographic primitives,
he (or she) has to trust the library to be securely designed.

In [31], the authors investigated security issues arising from
interactions of malicious apps with paired mobile devices, e.g.,
via Bluetooth, essentially related to lack of access controls. We
argue that Nearby Connections poses an even bigger threat, as
it is ubiquitously supported and optimized to require no user
interactions.

A rich set of literature about attacks on routing schemes in
the context of wireless sensor networks is available [25]. We
argue that in this work, the system attacked is not a (multi-hop)
routing scheme, as it is intended for direct communication
between nearby hosts. Practical wormhole attacks that extend
communication range from nearby hosts to remote hosts have
been demonstrated in the context of car keys [13] and NFC
communication [30].

VII. CONCLUSION

In this work, we present the first security analysis of the pro-
prietary, closed-source and obfuscated Nearby Connections API
by Google. The API is installed and available to applications
on any Android device from version 4.0 onwards. It is also
available on Android Things, an OS developed by Google for
IoT devices. The API connects nearby devices using multiple
physical layers. In order to perform our analysis, we studied
its public API, and reverse engineered its implementation on
Android. We found and implemented several attacks (classified
as connection manipulation and range extension attacks).

For example, in the Soft AP manipulation attack, we
trick the victim (discoverer) to disconnect from its currently
associated access point, and connect to an access point
controlled by the attacker. Consequently, the attacker is able to
push a default route in the victim’s network configuration (via
DHCP) and to redirect all his Wi-Fi traffic (not only from the
Nearby Connections application) to him. This is a novel attack,
in which a vulnerability in the Nearby Connections API, is
impacting all the network communication of the victim.

Our implementation of the attacks is based on REarby,
a toolkit we developed to reverse engineer and analyze the

Nearby Connections API. REarby includes custom discoverer
and advertiser capable of performing the nearby connection
phases. It also includes a dynamic binary instrumenter, a packet
dissector and a custom Android application. Our findings were
acknowledged by Google in a responsible disclosure process,
and we released a proof of concept of the Soft AP attack as open
source at https://github.com/francozappa/rearby. Our findings
show that in the current state, Google’s Nearby Connections
API is not only open to attack, but actively posing a threat to
all Android applications using it (the library is automatically
installed and updated without user interaction) and even to
Android applications that do not use it.

REFERENCES

[1] Android Developers, “Overview of google play services,” https://
developers.google.com/android/guides/overview, Accessed: 2018-01-26.

[2] D. Antonioli, S. Siby, and N. O. Tippenhauer, “Practical evaluation of
passive COTS eavesdropping in 802.11b/n/ac WLAN,” in Proceedings
of Conference on Cryptology And Network Security (CANS), November
2017.

[3] Armis, “The Attack Vector BlueBorne Exposes Almost Every Connected
Device,” https://armis.com/blueborne/, Accessed: 2018-01-26.

[4] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library detection
in android and its security applications,” in Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security (CCS).
ACM, 2016, pp. 356–367.

[5] E. Barker, L. Chen, and e. a. Roginsky A, “Recommendation for
Pair-Wise Key-Establishment Schemes Using Discrete Logarithm Cryp-
tography,” https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.
800-56Ar3.pdf, 2018, Recommendations of the NIST.

[6] D. J. Bernstein and T. Lange, “Safecurves: choosing safe curves for
elliptic-curve cryptography,” https://safecurves.cr.yp.to, Accessed: 2018-
07-16.

[7] P. Biondi, “Scapy: Packet crafting for python2 and python3,” https:
//scapy.net/, Accessed: 2018-01-26.

[8] Bluetooth SIG, “Bluetooth Core Specification v5.0,” https://www.
bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc id=421043, Ac-
cessed: 2018-10-28, 2016.

[9] N. Borisov, I. Goldberg, and D. Wagner, “Intercepting mobile com-
munications: the insecurity of 802.11,” in Proceedings of the Annual
international Conference on Mobile computing and networking (Mobi-
Com). ACM, 2001, pp. 180–189.

[10] H. Chan, A. Perrig, and D. Song, “Random key predistribution schemes
for sensor networks,” in Proceedings of Symposium on Security and
Privacy. IEEE, 2003, pp. 197–213.

[11] A. Developers, “Utilities for encoding and decoding the base64 represen-
tation of binary data,” https://developer.android.com/reference/android/
util/Base64, Accessed: 2018-01-26.

[12] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical
study of cryptographic misuse in android applications,” in Proceedings of
the ACM SIGSAC Conference on Computer & Communications Security
(CCS). New York, NY, USA: ACM, 2013, pp. 73–84.

[13] A. Francillon, B. Danev, and S. Capkun, “Relay attacks on passive
keyless entry and start systems in modern cars,” in Proceedings of
the Network and Distributed System Security Symposium (NDSS).
Eidgenössische Technische Hochschule Zürich, Department of Computer
Science, 2011.

[14] Google, “Boringssl is a fork of openssl that is designed to meet google’s
needs.” https://boringssl.googlesource.com/boringssl/, Accessed: 2018-
01-26.

[15] ——, “Conscrypt is a java security provider,” https://www.conscrypt.org/,
Accessed: 2018-01-26.

[16] ——, “Nearby connections: Get started,” https://developers.google.com/
nearby/connections/android/get-started, Accessed: 2018-07-17, 2017.

[17] ——, “Nearby connections: Strategies,” https://developers.google.com/
nearby/connections/strategies, Accessed: 2018-07-17, 2017.

13



[18] ——, “Nearby connections: v11 update,” https://developers.google.com/
nearby/connections/v11-update, Accessed: 2018-07-17, 2017.

[19] ——, “Nearby connections: Advertise and discover,” https://
developers.google.com/nearby/connections/android/discover-devices, Ac-
cessed: 2018-07-17, 2018.

[20] ——, “Nearby connections: Manage connections,” https://developers.
google.com/nearby/connections/android/manage-connections, Accessed:
2018-07-17, 2018.

[21] ——, “Nearby connections: Wi-fi issues,” ttps://stackoverflow.com/
questions/49401461, Accessed: 2018-07-17, 2018.

[22] ——, “Rockpaperscissors sample app for nearby apis on an-
droid,” https://github.com/googlesamples/android-nearby/tree/master/
connections/rockpaperscissors, Accessed: 2018-07-17, 2018.

[23] ——, “Samples for nearby apis on android,” https://github.com/
googlesamples/android-nearby/tree/master/connections, Accessed: 2018-
07-17, 2018.

[24] Guardsquare, “ProGuard: The open source optimizer for Java bytecode,”
https://www.guardsquare.com/en/products/proguard, Accessed: 2018-07-
17, 2018.

[25] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Wormhole attacks in wireless
networks,” IEEE journal on selected areas in communications, vol. 24,
no. 2, pp. 370–380, 2006.

[26] M. Jakobsson and S. Wetzel, “Security weaknesses in Bluetooth,” in
Cryptographers’ Track at the RSA Conference. Springer, 2001, pp.
176–191.

[27] B. Kannhavong, H. Nakayama, Y. Nemoto, N. Kato, and A. Jamalipour,
“A survey of routing attacks in mobile ad hoc networks,” IEEE Wireless
communications, vol. 14, no. 5, 2007.

[28] C. Karlof and D. Wagner, “Secure routing in wireless sensor networks:
Attacks and countermeasures,” in Proceedings of the Workshop on Sensor
Network Protocols and Applications. IEEE, 2003, pp. 113–127.

[29] D. Liu, P. Ning, and R. Li, “Establishing pairwise keys in distributed
sensor networks,” ACM Transactions on Information and System Security
(TISSEC), vol. 8, no. 1, pp. 41–77, 2005.

[30] K. Markantonakis, L. Francis, G. Hancke, and K. Mayes, “Practical
relay attack on contactless transactions by using NFC mobile phones,”
Proceedings of Workshop on Radio Frequency Identification System
Security (RFIDsec), vol. 12, p. 21, 2012.

[31] M. Naveed, X.-y. Zhou, S. Demetriou, X. Wang, and C. A. Gunter,
“Inside job: Understanding and mitigating the threat of external device
mis-binding on android.” in Proceedings of the Network and Distributed
System Security Symposium (NDSS), 2014.

[32] A. Perrig, J. Stankovic, and D. Wagner, “Security in wireless sensor
networks,” Communications of the ACM, vol. 47, no. 6, pp. 53–57, 2004.

[33] O. A. V. Ravnås, “Frida: Dynamic instrumentation toolkit for develop-
ers, reverse-engineers, and security researchers,” https://www.frida.re/,
Accessed: 2018-01-26.

[34] M. Ryan, “Bluetooth: With low energy comes low security,” in
Proceedings of USENIX Workshop on Offensive Technologies (WOOT),
vol. 13, 2013, pp. 4–4.

[35] D. Spill and A. Bittau, “BlueSniff: Eve Meets Alice and Bluetooth,” in
Proceedings of USENIX Workshop on Offensive Technologies (WOOT),
vol. 7, 2007, pp. 1–10.

[36] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “Robust
smartphone app identification via encrypted network traffic analysis,”
IEEE Transactions on Information Forensics and Security, vol. 13, no. 1,
pp. 63–78, Jan 2018.

[37] E. Tews and M. Beck, “Practical attacks against WEP and WPA,” in
Proceedings of the second ACM conference on Wireless network security.
ACM, 2009, pp. 79–86.

[38] N. O. Tippenhauer, C. Pöpper, K. B. Rasmussen, and S. Capkun, “On
the requirements for successful GPS spoofing attacks,” in Proceedings of
the ACM conference on Computer and communications security (CCS).
ACM, 2011, pp. 75–86.

[39] M. Vanhoef and F. Piessens, “Key reinstallation attacks: Forcing nonce
reuse in WPA2,” in Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS). ACM, 2017, pp. 1313–
1328.

14


