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Abstract—Industrial Control Systems (ICS) consisting of inte-
grated hardware and software components designed to monitor
and control a variety of industrial processes, are typically de-
ployed in critical infrastructures such as water treatment plants,
power grids and gas pipelines. Unlike conventional IT systems,
the consequences of deviations from normal operation in ICS have
the potential to cause significant physical damage to equipment,
the environment and even human life. The active monitoring of
invariant rules that define the physical conditions that must be
maintained for the normal operation of ICS provides a means to
improve the security and dependability of such systems by which
early detection of anomalous system states may be achieved,
allowing for timely mitigating actions — such as fault checking,
system shutdown — to be taken. Generally, invariant rules are pre-
defined by system engineers during the design phase of a given
ICS build. However, this manually intensive process is costly,
error-prone and, in typically complex systems, sub-optimal. In
this paper we propose a novel framework that is designed to sys-
tematically generate invariant rules from information contained
within ICS operational data logs, using a combination of several
machine learning and data mining techniques. The effectiveness of
our approach is demonstrated by experiments on two real world
ICS testbeds: a water distribution system and a water treatment
plant. We show that sets of invariant rules, far larger than those
defined manually, can be successfully derived by our framework
and that they may be used to deliver significant improvements in
anomaly detection compared with the invariant rules defined by
system engineers as well as the commonly used residual error-
based anomaly detection model for ICS.

Keywords—industrial control systems, anomaly detection, in-
variant rules, machine learning.

I. INTRODUCTION

NDUSTRIAL Control systems (ICS) are used for the
monitoring and controlling of various industrial processes.
Typically, these systems are found in critical infrastructure
assets such as chemical plants, water treatment and distribution
systems, power generation, transmission and distribution facil-
ities, etc. Though ICS have been used for many years, they
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were primarily designed as isolated from other systems and
networks in an “air gapped” environment. However, recently,
in the pursuit of numerous operational gains, modern Infor-
mation and Communication Technologies (ICT) have been
widely integrated into ICS, leading to their transformation from
standalone systems to highly interconnected cyber-physical
systems. Viewed through a security lens, many of these gains
have been achieved at a cost of increased security risk. As
an example, the advantages of remote access to ICS for
monitoring and control are clear for day-to-day operations,
but these may be countered by the significant increase in
the system’s exposure to cyber security threats present on the
wider Internet. Unlike conventional IT systems, compromised
operation or a failure in ICS has the potential to cause signif-
icant physical damage to national infrastructure and possible
cascading failures, resulting in impacts that can include large
scale power outages, disruption to health-service operations,
compromised public transport safety, environmental damage
and even direct loss of life.

The Industrial Control Systems Cyber Emergency Re-
sponse Team (ICS-CERT) provides evidence of the security
risks posed to ICS. In 2014 ICS-CERT reported 245 incidents
of cyber attacks from its trusted industrial partner network
[1], a level which increased to 295 [2] and 290 [3] in 2015
and 2016 respectively. Furthermore, one of the most notorious
cyber security attacks to date took place in 2009/10 against
the ICS of a nuclear facility situated in Natanz, Iran. In
this incident a computer worm known as Stuxnet [4] was
used to infect and manipulate Programmable Logic Controllers
(PLCs), resulting in significant physical damage to centrifuges
at the plant and instigating international debate on the cyber
security offensive capabilities of nation states. Similarly, a
following ICS cyber security incident in late 2014 resulted in
significant physical damage to a blast furnace in a German steel
mill [5] and, more recently still, Ukrainian’s capital city Kiev
lost approximately one-fifth of its required power capacity as
a result of an ICS cyber attack in 2016, causing a massive
blackout that affected 225,000 citizens [6].

Due to the increasing number of reported cyber attacks and
the serious consequences of their malfunction, much research
work has been done to develop anomaly detection mechanisms
to improve the resilience of ICS to both cyber attacks and
physical faults in the recent years. Such mechanisms often



exploit a definition of the normal behavior of the ICS and
an alert is raised when significant deviations that do not
match with the definitions are observed. To date, there exist
several types of ICS-specific anomaly detection methods, such
as device-based, program-based, network-based and process-
based detection. Specifically, device-based detection often uses
the idea of fingerprinting for detecting intrusive devices. For
instance, in [7] the authors proposed two approaches for cre-
ating fingerprints tailored for devices in the ICS context based
on message response time and operation time measurements,
respectively. Program-based methods discover anomalous be-
haviour by checking the control or data flow in the con-
trol programs on programmable controllers. For example, the
Trusted Safety Verifier (TSV) is presented for the verification
of safety-critical code executed on PLCs using a combination
of symbolic execution and model checking [8], [9]. Another
framework called Orpheus is developed in [10] which utilises
event-aware finite-state automaton (eFSA) model to detect
anomalous control program behaviors particularly caused by
data-oriented attacks. Network-based detection methods reveal
anomalies by investigating the network traffic flow such as
the header, payload, timing and sequence of messages in
the ICS network, but are less sensitive to anomalies only
exhibited in the physical properties of the system [11], [12],
[7]. Furthermore, such methods are less general because they
are often designed for specific protocols such as Modbus [13],
[14], [15] and DNP3 [16].

The focus of this paper is the process-based detection
methods which look directly at the physical process variables
such as sensor readings and actuator states, and the mathemat-
ical relationships among them controlled by the corresponding
PLCs to identify anomalies. At present, most process-based
anomaly detection methods rely on a predictive model such
as the autoregressive model [17], the linear dynamic state-
space model [18], [19] and neutral network-based regression
models [20], where future sensor measurements predictions
are generated based on historical process values and then
compared with real measurements to generate a residual er-
ror. An anomaly is observed if the residual error exceeds
a predefined threshold. However, due to the fact that there
exist various sources of noise in industrial processes, a strict
threshold between normal and abnormal sensor measurements
is normally not definable. Recent studies have shown that
attackers may utilize this ambiguous decision boundary to
inject malicious measurements (so-called stealthy attacks) that
both achieve an attacker’s objectives and avoid detection
by current methods [21], [22], [23]. A proposed alternative
approach to using residual errors is the invariant rule-based
method [24], [25]. Invariant rule-based methods make use of
physical conditions that are known a-priori must hold for
all ICS states. Any observed physical process values that
break these rules are classified as anomalies. Typically, these
invariant rules are defined by system engineers during the
design stages of an ICS. This manual process is not only
costly but also error-prone as the implementation and design
of ICS cannot perfectly match. Furthermore, there exist many
hidden invariant rules that are extremely difficult to discover
by human-beings, especially those which are across several
subsystems. As a result, the performance of existing invariant
rule-based anomaly detection methods is often limited by both
the inaccuracy and inadequacy of the design-based rules. This

motivates a new method for discovering invariant rules in such
systems.

In this paper, we pursue a purely data-driven approach to
derive invariant rules for anomaly detection in ICS. Specif-
ically, we propose a novel framework which utilizes the
general control dynamics of ICS and combines several machine
learning and data mining techniques to systematically generate
invariant rules from data logs capturing the physical process
variables at discrete time steps during a period of normal
operation of the ICS. By applying our approach on two real
world ICS testbeds, we show that a significantly larger number
of meaningful invariant rules can be derived compared with
a manual design-based process and that anomaly detection
models based on our data-driven invariant rules are far more
capable than standard implementations. The data-driven in-
variant rules also proves to be more accurate and results
in significant reduction to false positive rates. In addition,
we also compare the anomaly detection performance of our
newly established method with a residual error-based detection
model. The experimental results show that under the same false
positive rate, the ability of using the invariant rules generated
by our framework to detect anomalies outperforms the residual
error-based detection model by a clear margin. We summarize
the main contributions of this work as follows: (1) a novel
framework is proposed to systematically generate invariant
rules from ICS data logs, (2) the concept of meaningful
invariant rules is introduced to guarantee that the generated
invariant rules are suitable for anomaly detection usage, (3) a
parameter tuning method is proposed to guide the generation
of meaningful invariant rules, (4) we present case studies on
two real world ICS testbeds (a water distribution system and
a water treatment plant) to demonstrate the effectiveness of
our framework for invariant rule generation, and the anomaly
detection performance of using the generated invariant rules
are compared with two baseline anomaly detection models.

The remainder of this paper is organized as follows. We
give a brief introduction of the general ICS architecture and
process-based anomaly detection mechanisms in the next sec-
tion. This is followed by the problem statement section which
describes the formal definition of invariant rules. Then, we
present our systematic framework for invariant rule generation
in Section IV. The two case studies are given in Sections V
and VL. Section VII gives a further discussion on results in
our case studies. Finally, Sections VIII and IX discuss related
work, future research and draw final conclusions.

II. BACKGROUND

In this section, we give a brief introduction of the general
ICS architecture, and the commonly used anomaly detection
mechanisms for securing the physical processes in ICS.

A. General Architecture of ICS

A typical ICS consists of devices and subsystems such
as sensors and actuators, Programmable Logic Controllers
(PLCs), Distributed Control Systems (DCS), Remote Termi-
nal Units (RTUs), Supervisory Control and Data Acquisition
Systems (SCADA) and Human Machine Interfaces (HMIs).
Figure 1 represents the architecture of a general ICS, which
includes physical, control, and supervisory control layers. The



so-called field devices such as sensors and actuators in the
physical layer report and modify physical process states via
signals transmitted and received from PLCs and RTUs, which
are situated in the control layer. For example, in a water
distribution system, the control layer obtains data from the
field devices such as water-level sensors, flow meters and
water quality sensors. Based on the received data from these
sensors, the control layer issues commands to actuators to
perform specific actions such as turning pumps on or off and
opening or closing valves. Finally, the supervisory control layer
contains SCADA, HMIs, engineering work stations and data
historian components. These directly communicate with the
control layer to provide higher level supervisory monitoring
and control functions and may also interface with wider corpo-
rate systems and networks through a demilitarized zone, which
is not shown in the figure. Anomaly detection mechanisms are
often deployed in this layer, where the sensor measurements
and actuator states are continuously checked to secure the
physical processes under control.

Supervisory Control Layer

SCADA, HMI, Engineering Workstation
A

A
Control Layer

PLCs, RTUs

Y
Actuators

Sensors

Physical Layer

Fig. 1. The architecture of a typical ICS.

B. Residual Error-based Anomaly Detection

To protect ICS from physical faults and cyber attacks,
anomaly detection mechanisms are often deployed by mon-
itoring the sensor measurements and actuator states in the
system at discrete time steps. To date, most process-based
anomaly detection mechanisms rely on a predictive model
which predicts the sensor readings at each time step based
on previous sensor measurements and actuator states, and an

alarm is triggered if the residual error between the predicted
measurements and their observation exceeds a specific thresh-
old. The underlying predictive model can take many different
forms, examples include Auto-Regressive (AR) models [17],
Linear Dynamic State-space (LDS) models [18], [19] and other
regression models, e.g., based on deep neural networks [20].
Nevertheless, all the predictive models can be denoted as a
high level function:

&(t) — f(x{tfp:tfl}’ u{tfp:tfl}; 0)

where x1=P*#=1} and ul*=P*=1} are the model inputs which
represent the sensor measurements and actuator states at pre-
vious p time steps, respectively (clarify: an exception is the
AR model, which usually only takes sensor measurements at
previous time steps as its input); x(*) is the model output
which represents the predicted sensor measurements at the
current time step; @ is parameters to be estimated, e.g., by
minimizing the mean square error between predicted sensor
measurements and their real values given a time-series data log
consisting of the sensor measurements and actuator states in
the ICS. Based on the prediction by the models, an alarm will
be raised when the Euclidean distance between the predicted
sensor measurements and their observations exceeds a specific
threshold: [|x) — x®|| > 7, where ||x®) — x®)|| is called
the residual error at time point ¢t. A common problem for
such residual error-based methods is the absence of a specific
value for 7 to accurately separate anomalous and normal
measurements. Recently, it has been shown that attackers many
exploit this ambiguous boundary to cause significant deviation
of sensor measurements by the accumulated injection of false
data that is designed not cross the residual error threshold [21],
[22], [23].

C. Invariant Rule-based Anomaly Detection

An invariant rule is defined as a physical condition that
must be satisfied for any given state of an ICS [24], [25].
Such conditions may include properties such as PH, pressure,
temperature readings, liquid levels etc and the dependencies
between them. For an ICS state at any given time, monitoring
the physical state of the system against such rules can act as
the basis for detecting deviations from operational normality.

Invariant rules are generally derived based on the design
of the ICS. As an illustrative example, we consider the simple
ICS in Figure 2, which shows a design graph for a portion
of a water distribution system. In the figure, MV101 and
MV201 are valve actuators, P101 is a pump actuator, LIT101
and LIT301 are sensors and T1 is a water tank. The states
of the level sensors (LIT) are defined as L(ow) and H(igh)
and the states of actuators (MV* and P101) are defined as
OPEN/CLOSE or ON/OFF. The flow of water is indicated
by the labeled connections between the pairs MV101, T1 and
P101, T1. Explicitly, the flow rate of water into T1 is denoted
by W_in(t) and is decided by the state of the valve MV101,
whilst the out-flow rate of water from T1, W_out(t), depends
on the state of P101. The water level in T1, h(t), is measured
by sensor LIT101 and made available to a PLC that controls
the systems’ actuators. LIT301 measures the water level in a
tank of another part of the system which is not shown in this
graph. The graph indicates that P101 should be in the ON state
when sensors LIT101 and LIT301 indicate water level to be
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Fig. 2. The design graph for one stage of a water distribution system.

H(igh) and L(ow) in their respective tanks, and valve MV201
is OPEN. Similarly, valve MV 101 should be open when LI101
indicates water level in T1 is L(ow). In this way, the pair of
invariant rules now derived from the design graph may be
summarized as:

LIT101-H = MV101=0OPEN
LIT301-L, LIT101-H, MV201=0OPEN = P101=0ON

Based on the above discussion, the question to ask is
whether the set of invariant rules derived from such design
graphs is complete and correct. An important point to note
is that typical ICS consist of a very large set of actuators
and sensors, making the manual derivation of invariant rules
extremely expensive with the likelihood that only a small
subset of the complete rules-set is captured. To address this
problem directly, we define a framework by which invariant
rules may be derived from a purely data-driven perspective in
the following sections.

III. PROBLEM STATEMENT

We consider an ICS with m sensors and n actuators. Let
DT — {d',d?,...,d"} be a time-series data log in which
each signal d* = {x’,u'} consists of two vectors such that
x' € R™ where each element z* € x' is a real value capturing
the reading of a sensor, u’ € K™ where each element u’ € u’
is a categorical value representing the state of an actuator in
the system recorded at discrete time steps ¢ € [1,2,...,T]. A

C ) A satsifies
A B condition C
A __Q_b B Function C of B

affected by A

Property C of B
is sensed by A

C
N

Tank T1

MV: Motorized vlave

LIT: Level Indicator Transmitter (L: Low, H: High)
P: Pump (On, OFF)

H(t): Level of water in Tank

W_in(t): Rate of water flow into the tank

W_out(t): Rate of water flow out of the tank

point to note is that we assume there is no anomalous signal
in the data log DT}, In practice, DT can be collected
by operating the ICS in an “air-gapped" separation (no access
from corporate network) for a period of time which captures
the normal profile of system operation.

Let Z = {i1,42,...,ik} be a set of k predicates called
items, and each signal d* € DI:T} satisfies a subset of
predicates in Z, thus can be denoted by an itemset [ tC T.
Let 0(X) denote the support of an itemset X, representing
the fraction of time steps at which the itemset X is contained
by I?, calculated as follows:

YL X cr
- T

where 1(-) is an indicator function which yields one only if
its condition is true, and outputs zero otherwise.

o(X)

Formally, we define an invariant rule as follows:

o(XUY)

X =Y where X,2 YCIAXNY =0A
o(X)

=1
where we call X the antecedent itemset, ¥ the consequent
itemset. The rule means whenever a signal contains the an-
tecedent X, it must also contains the consequent Y; and
the antecedent and consequent itemsets must be mutually
exclusive. As an illustration, the following invariant rule:

{2} > azl +b,ul = ON} = {2} < ¢,ul = OFF}



implicates that if predicates f > ax} + b and uf = ON are
satisfied at any given time step ¢, predicates x% < c¢ and
ub, = OFF must also be satisfied at ¢, where a, b, ¢ € R denote
some constants.

IV. A SYSTEMATIC FRAMEWORK FOR INVARIANT
GENERATION

In this section, we present our framework to systematically
generate invariant rules from ICS data logs. Specifically, given
an arbitrary ICS data log D7}, we decompose the process
of invariant rule generation into two steps:

e Predicate Generation: this step is to generate a set of
meaningful predicates from the data log for the construc-
tion of the predicate set Z.

e Invariant Rule Mining: with the predicate set Z, we
can transform the data log D'T} into a database of
itemsets T{:TH = {11 12,... I”} where each element
I represents the itemset consisting of the predicates in
T which are satisfied by d’. Then, we mine meaningful
invariant rules from the database I1%”} which can be
used for anomaly detection in the ICS.

A. Predicate Generation

Here, we describe how to generate the set of meaningful
predicates from the ICS data log.

First of all, generating predicates for categorical variables
capturing actuator states is rather straightforward. Specifically,
let {v1,va,...,v;} be all the states for an actuator u appearing
in the data log, then we generate predicates {u! = vy, u! =
va,...,ut = wv;}. Intuitively, suppose u is a pump, then
predicates {u’ = ON, u* = OFF} are generated.

In the case of continuous variables representing sensor
readings, their value domain is infinite and so setting all
possible values as predicates is not only meaningless but will
also cause the invariant rule mining step to be prohibitively
expensive. Therefore, we propose two strategies to generate
meaningful predicates here: the distribution-driven strategy and
the event-driven strategy, where both strategies are based on
the control dynamics of general ICS.

1) The Distribution-driven Strategy: The distribution-
driven strategy utilizes the fact that the update of sensor
readings at each time step are generally decided by the current
control state of the ICS. Specifically, let Azt = z*+! — 2t be
the update on a sensor reading from time step ¢ to ¢t + 1, we
assume there are K hidden control states to decide the value
of Ax! at all time steps. Thus, let k € (1,2,...,K) be the
hidden state at time step ¢, we can represent:

Azt = Ui + €k

where p;, € R captures the expected update of the sensor
reading in hidden state k; e, ~ N(0,03) is the sensor noise
which is assumed to be a random process normally distributed
with zero mean. That is to say, all the updates of the sensor
reading, denoted as AX 17— = [Azl Az? ... AzT1}
in the data log, are generated from K different Gaussian
distributions with unknown parameters. Therefore, once we

can infer to which distribution each sensor reading update
belongs, we can generate the following predicates:

{Azt ~ Ny, .. Azt ~ N, 6))

in which the predicate Ax? ~ A/, means that the update of
the sensor reading at time step ¢ is generated from the kth
distribution.

In order to generate the above predicates for each sensor,
we first need to infer the K Gaussian distributions which
generates the data AX{1T—1} Specifically, we conduct this
inference by fitting Gaussian Mixture Models (GMMs) with
different number of components (distributions) to AX {1:7-1}
using an Expectation-Maximization (EM) algorithm [26]. Con-
cretely, a GMM with K components in our case is defined by
three vectors of parameters: the means g = {p1, ..., ux } and
standard deviations o = {o1,...,0K} of the sensor updates
under the K different control states, and the mixture weight
vector for the K components w = {m,..., 7k} (which indi-
cates the prior probability of a sensor update belongs to each
component). Then, with a set of fitted candidate GMMs with
different number of components, the one which minimizes the
BIC (Bayesian information criterion) score [27] is selected for
predicate generation. Specifically, the BIC score is a criterion
commonly used for model selection among a finite set of
models by achieving a balance between the likelihood function
of the model and the model complexity. The corresponding
BIC score for a candidate GMM in our context is defined by
the following equation:

BIC(Mg) = —2log p(AXTET=1 | Mp) + klog(n)  (2)

where My is the model with K  components,
log p(AX{ET=1} | M) is the log likelihood of AX {1:T—1}
given My, k is the number of parameters in My, and
n =T — 1 is the number of data points in AX {:T—1} After
getting the GMM M g with the lowest BIC score, we can
generate predicates as in Equation 1 accordingly. Furthermore,
a predicate Ax? ~ N}, is satisfied at time ¢ if and only if:

rh. = max(rt,...rk)

where 7}, is the membership probability of the kth distribution
to the sensor update Ax’ as calculated by the following
equation:

e N(Ax? | pg, ox)

t
T = K
23:1 T N(Azt | pj,05)
in which
1 (A’ —u)?
N(Az | o) = e

The satisfaction of predicate Ax! ~ N indicates that we
believe sensor update Ax? is generated from the kth Gaussian
distribution, thus is ogcurred under the kth hidden control state.
Furthermore, let Az? be a sensor update during the detection
phase, we also define Azt ~ N if

rt < min(r, ... i)

Vk e (1,...,K)

which means that Az* is an anomalous sensor update which
should not occur under any control state in the system, thus it
is treated as an outlier.



The detailed algorithm of using our distribution-driven
strategy to generate predicates for sensor updates is given in
Algorithm 1, where we fit candidate GMMs with component
numbers (1,2,..., N) each using the EM algorithm given in
steps 3-5. Finally, the same process is applied for each sensor
in the system to generate distribution-driven predicates for all
the m sensors.

Algorithm 1 The algorithm for generating distribution-driven
predicates from the data log

Require: AX {171} the updates on the reading of a sensor
in the data log
I: for K=1,2,...,N do
2. Cluster all the data in AX{7T=1} into K clusters by
K-Means algorithm for an initial guess of p, o and 7
for iter =1,2,..., M do
E-step: calculate the membership probability (also
called as responsibility) of each Gaussian to each data
point as follows:

e N(Az' | pk, ok)
S T N(Axt | py,0)

s w

y tEL T

t
Tk = ke((l,...,K)

5: M-step: let N, = Z;T:_ll 7, calculate the new mean
and standard deviation of each Gaussian by

T-1

Z ri Azt Vk e (1,

t=1

1

L R
T )

He =

T-1

rt(Axt —pp)? Yk e(1,...,K)

O =

M

t=1
Calculate new 7 by

Ni,
T—-1

T = Vke(1,...,K)
end for
Calculate BIC'(M ) according to Equation 2.
end for
: Select Mg where K < argmin BIC’(MK)

. Generate predicates {Az! ~ N7,..., Azt ~ Nk}

@Y ® 3D

2) The Event-driven Strategy: The event-driven strategy
utilizes the fact that in the ICS context, the updates of actuator
states are generally triggered by critical values of sensor
readings. Thus, we generate predicates for sensor readings
based on those critical values which trigger the updates of
actuator states.

Concretely, we define events as actions which happen
instantaneously and trigger discrete changes on actuator states,
e.g., a pump is switched from ON to OFF. Then, let us define
an event set F/, where each element ¢ € E denotes a distinct
event representing the update of an actuator from a specific
state to another specific state. Furthermore, let T, denote the
set of time steps at which the event e occurs. Thus, to find the
trigger of an event e, we fit a linear regression model for the
values of sensor readings at the time steps in 7,. Specifically,
for each sensor ¢ € (1,...,m), the model as follows is fitted

for an event e:

m
Z ajx; + «p VYt € Te
J=1ING#i
Importantly, the above model is trained to minimize the L1

loss [28] for only the time steps at which the event e occurs,
such that:

ZI—I

teT,

+A Z || 3)

‘T | J=1Nj#4

where the first part in the right hand side of the above equation
is the mean square error between the predicted sensor readings
and the real sensor readings at the time steps that event e
occurs; the second part is the L1 regularization loss to avoid
overfitting. Moreover, since minimizing £ will automatically
drive the parameters for unrelated variables to zero [28], we
can finally get a regression model with a few or even zero
related variables, such that:

Z ozjxé- +ay VteT,
JERI(e)

where R'(e) denotes the set of related sensors with sensor
i that co-trigger event e (note that R'(e) can potentially
be an empty set which means the sensor i triggers event e
individually). Then, we say a trigger for event e is found if

|3t — a2t <e VteT,

where € is small threshold value close to zero. Based on an
event trigger, we generate two predicates:

t

r;, < Z asz-—i—ao—e
JERi(e)

xf > Z OéjI§~+Oéo+€
JER(e)

which represent the expected conditions for sensor readings
before and after the event is triggered.

The detailed procedure for generating all the event-driven
predicates from the data log is given in Algorithm 2. An
important point to note is that, the set R(e) in the algorithm
is used to guarantee no duplicated predicates are generated for
the same event because when an event trigger is found for a
sensor i, it is certain that we can find a duplicated trigger for
the event for all sensors in R(e).

B. Invariant Mining

After the predicate generation step, we get a predicate set 7
which consists of all the generated predicates for actuator states
and sensor readings for the ICS. Then each signal d* € D117}
can be transformed to an itemset I capturing the predicates
in Z that d? satisfies. Now, the goal is to find all meaningful
invariant rules from the itemset database I{'7} which can
be used for anomaly detection in the system. Before giving
the rule mining algorithm, we first introduce the concept of
meaningful invariant rules in our context.



Algorithm 2 The algorithm for generating event-driven pred-
icates from the data log

Require: the event set F, the readings of all sensors in the

data log {x!,x2,...,xT}
1: for all e € E' do
2: Set R(e) = 0
33 fori=1,2,...,mdo
4: if i ¢ R(e) then
5: Fit a regression model for z! V¢ € T, with the L1
loss as in Equation 3 minimized:
‘if = Z OLJ‘T‘? + oo
JER' (e)
6: if |2t — z!| <e Vte T, then
7 Generate two predicates:
ot < Z ol + o —€
JER(e)
b > Z ozl 4+ ap + €
JER' (e)
8: Set R(e) = R(e) U R(e)
9: end if
10: end if
11:  end for
12: end for

1) Concept of Meaningful Invariant Rules: Here we define
the concept of meaning invariant rules with respect to the
anomaly detection usage.

Specifically, an invariant rule is meaningful only if it
satisfies two conditions: the minimum support condition and
the non-redundant condition. Intuitively, the first condition
guarantees that the invariant rule achieves a required statistical
significance, thus is not merely satisfied in the data log by
coincidence which will cause many false alarms when using it
for anomaly detection. The second condition is also important
because deriving a large number of redundant invariant rules
will not improve the performance of the anomaly detection
model, but can significantly increase the time cost of the
anomaly detection process.

Before presenting the formal definition of the two con-
ditions, we first introduce two properties that will be used
extensively in the remaining part of this section:

Property 1. X CY — o(Y) < 0(X)

Property 2. Let t(X) denote the set of time steps at which
X el thenif X CY and o(X) = o(Y), t(X) must overlap
with t(Y").

Specifically, the first property is called the anti-monotone
property, which indicates that if itemset X is a subset of ¥
, then o(Y") must not exceed o(X). It is also straightforward
to see the second property must hold because V¢ if Y C I?,
then it is certain that X C It since X C Y, furthermore as
o(X) =o(Y), t¢(X) must overlap with ¢(Y").

Then, the formal definition of the minimum support con-
dition is given as follows:

Minimum Support Condition. An invariant rule X =Y is
meaningful, then:

0(Z) > max(ymin(o(iz,),0(iz), .-, 0(iz,)),0) 4

where Z = X UY, {iy,is,..
Z.

., i, } denotes all the items in

Specifically, according to the anti-monotone property, we
can see that the support of an invariant rule is bounded by the
support of the least frequent item in it:

o(Z) <min(o(iz ), 0(izy)s -, 0(iz,)).

Then, since the support of different items can vary significantly
in the ICS data log, e.g., a pump can be in the ON state at only
5% time steps, but be in the OFF state at 95% time steps in the
data log, it is unfair to set a unique minimum support threshold
for all invariant rules. Thus, we require the support of an invari-
ant rule to be larger than the product of ~ and its specific upper
bound, where v € (0, 1). Furthermore, 6 € (0,~) is another
threshold which controls the minimum fraction of samples in
the data log that a meaningful invariant rule needs to capture,
which guarantees that those rare items (e.g., an item that only
appears twice in the itemset database) are excluded for any
meaningful invariant rules. Note that the value of # should be
less than ~, otherwise ymin(o (i, ),0(is,),...,0(iz,)) Wil
always be smaller than 6, leading to a unique minimum support
threshold for all rules.

The non-redundant condition is formally defined below:

Non-redundant Condition. An invariant rule X = Y is
meaningful, then there must not exist another invariant rule
U= W, such that X C U, Y C W, and c(X UY) =
ao(UUW).

Specifically, a rule does not satisfy the above condition is
redundant because if XUY C UUW and ¢(XUY) =0o(UU
W), then ¢(X UY') must overlap with ¢(U U W) according
to Property 2. That means if X = Y is violated at any given
time step, then U = W must also be violated. Thus the rule
X =Y will not have any extra contribution beyond the rule
U = W in the anomaly detection process.

2) Invariant Mining Algorithm: Generating meaningful in-
variant rules from the itemset database 717} can be treated as
an association rule mining problem which has been a classic
topic in data mining that is initially aimed to find interesting
relations between products in large transaction databases for
market basket analysis [29], [30]. Specifically, following the
common strategy of association rule mining, we split the
invariant rule mining algorithm into two steps: (i) Candidate
Itemset Mining: whose objective in our context is to find all
the closed frequent itemsets with multiple minimum support
thresholds in the itemset database 13T} (ii) Invariant Rule
Generation: whose objective is to extract all the invariant rules
from the candidate itemsets found in the previous step.

Specifically, the definition of closed frequent itemset is
given as follows:

Definition 1. An itemset Z is a closed frequent itemset if its
support is larger than the minimum support threshold, and
meanwhile none of its immediate supersets has exactly the
same support as Z.



Importantly, the minimum support threshold in the above
definition is not an unique value in our case, instead it is
defined itemset-wise as given in Equation 4. Moreover, it can
be proved that all the meaningful invariant rules can be derived
from those closed frequent itemsets, and all the invariant rules
derived from the closed frequent itemsets are meaningful:

Proof: If arule X = Y is meaningful, then Z = {XUY}
must satisfy the minimum support condition. Moreover, there
must not exist an immediate superset W = {Z, i} which has
exactly the same support count as Z, because if o(W) = o(2)
and Z C W, then t(Z) must overlap with ¢(1¥) according to
Property 2, which means there must also exists an invariant
rule X = {Y,i} which violates the non-redundant condition
of X = Y. As aresult, Z = {X UY} must be a closed
frequent itemset.

If arule X = Y is derived from a closed frequent
itemset X UY’, then the minimum support condition must hold.
Meanwhile, if there exists a rule U = W such that X C U,
Y CW,and o(X UY) = o(U UW), then there must also
exist an itemset U’ U W’ which is an immediate superset of
XUY,suchthat X CU CUandY C W C W and
o(XUY)=0(U'UW') =o(UUW) according to the anti-
monotone property. However, as X UY is a closed itemset,
the above cannot happen. As a result, X = Y must be a
meaningful invariant rule. ]

To date, there are many algorithms for mining closed
frequent itemsets in transaction databases, examples are the
AprioriClose algorithm [31], the LCM algorithm [32], the
CHARM algorithm [33] and the FPClose algorithm [34], etc.
However, all the above algorithms rely on the downward
closure property, which is “all non-empty subsets of a frequent
itemset must also be frequent", to reduce the search space of
frequent itemsets. As a result, none of them can deal with the
candidate itemset mining problem in our context because of
the multiple minimum support thresholds for selecting frequent
itemsets defined in Equation 4, which breaks the downward
closure property. Nevertheless, there are available algorithms
for mining frequent itemsets with multiple minimum support
thresholds, such as the Apriori-based algorithm known as
Multiple Support Apriori (MSApriori) [35], two FP-growth
based algorithms, Conditional Frequent Pattern-growth (CFP-
growth) [36] and CFP-growth++ [37]. Specifically, the CFP-
growth algorithm is more efficient than MSApriori by using
a MIS-tree to store the crucial information about frequent
itemsets to largely reduce the search space of frequent itemsets.
The CFP-growth++ algorithm is the improved version of CFP-
growth, which introduced several pruning techniques to further
reduce the search space of the algorithm. In this work, we
first apply the CFP-growth++ algorithm to find all the frequent
itemsets in the itemset database 7117}, Due to lack of space,
we refer to [37] for the details of the CFP-growth++ algorithm.
After that, a filtering step is conducted to select all the closed
itemsets among the discovered frequent itemsets according to
Definition 1.

After getting all the closed frequent itemsets in 7117}, we
extract invariant rules from any given closed frequent itemset
Y by partitioning the itemset Y into two non-empty subsets,
X and Y — X, then a meaningful invariant rule X =Y — X

is generated if ZEQ =1

C. Parameter Tuning

In the invariant rule mining step, the number of meaningful
invariant rules to be generated is influenced by the value of
two important parameters, namely v and 6 in Equation 4,
which defines the rule-wise and the global minimum support
threshold for the generated rules, respectively. Specifically,
with smaller values of v and 6, more meaningful invariant
rules will be generated, thus the potential chance for using
the rules to reveal anomalies is also increased. However, the
statistical significance of the derived rules is also decreased
which will potentially lead to more false positives when using
the rules for anomaly detection. Furthermore, the processing
time cost for checking the invariant rules on each data point
will also be increased. Thus, we also propose a method to
decide the optimal values of ~ and € based on a validation
step.

Concretely, let us have a training data log as well as a val-
idation data log (both contain no anomalies), and we generate
invariant rules from the training data log with different values
of v and 6. Then the generated invariant rules are used to
detect anomalies in the validation data log. Let T}, be the total
number of data points in the validation data log, A(~y, #) be the
number of detected anomalies in the validation data log using
the invariant rules generated with v and 6, since any detected
anomaly in the validation data log is a misclassification, we
can calculate the validation error as follows:

Errory(v,0) = A(v,0)/T,,

which is an estimate of the expected false positive rate by
using the generated invariant rules for anomaly detection in
the system.

Furthermore, let ¢(,0) be the time cost for checking
the invariant rules on each data point for anomaly detection,
N(v,6) be number of meaningful invariant rules generated
with « and 6, 7 and 7. be the user-defined thresholds for the
acceptable time cost for processing each data point and the
acceptable validation error, the optimal values for v and 6 can
be found by:

argmax N(v,0) 5)
~,0

subject to  t(v,0) <7, Error,(v,0) < 1

which maximizes the number of generated meaningful invari-
ant rules under acceptable time cost for processing each data
point and validation error.

V. WADI CASE STUDY

In this section, we present a case study in which we
generate invariant rules from the data log of a Water Dis-
tribution System (WADI) testbed, and then conduct anomaly
detection using the generated rules. Furthermore, we compare
our anomaly detection result with two baseline models, namely
the model consisting of the design-based invariant rules of
system, and a residual error-based model.

A. WADI Testbed

The WADI testbed is a fully operational physical testbed
that represents a scaled-down version of a real urban water
distribution ICS with the capacity to provide a distribution



output of 10 gallons/minute. As shown in Figure 3, the testbed
is comprised of three stages: a primary grid (P1), a secondary
grid (P2) containing an elevated reservoir (ER); and a return
water grid (P3). P1 is comprised of two 2500 litre capacity
raw water tanks that are fed by two sources; a raw water inlet
valve and P3. Chemical dosing pumps are installed to maintain
a consistent water quality input to these tanks and a water level
sensor is installed in each tank. Water quality is monitored by
sensors in all three stages with measurements being made on
water conductivity, turbidity, PH and Oxidation Reduction Po-
tential (ORP). In addition, two contaminant sampling stations,
P2A and P2B, are installed in the testbed to measure water
quality parameters prior to its delivery to the consumer tanks.
The P2 stage consists of two elevated tanks and six consumer
tanks and it should be noted that the dynamics of the whole
system is driven by the preset demand settings of the consumer
tanks. Based on these presets, water flows from the elevated
tanks into the consumer tanks at a certain rate and once the
consumer tanks are filled, water drains into the return grid
(P3), which in turn supplies the primary grid (P1).

B. Data Collection and Experiment Setup

The data collection process is conducted as follows: Ini-
tially, the demand pattern is generated over 24 hours of a
day. The demand profile on each day consists of low to high
peak demand scenarios. The data is collected every second by
running WADI non-stop for a total of 16 days. Each data point
consists of 103 attributes, among which 67 are continuous
sensor readings and the remaining are discrete actuator states.

The system is operated under normal conditions (without
any attacks) for a period of 14 days. During the remaining two
days, 15 different types of attacks are launched on the testbed.
Note that in our experiments, the attacker profile is considered
as an insider and he/she has the process, communication
knowledge, and access to the communication channels. All the
attacks were designed based on the intents of an attacker. The
intent of an attacker is specified as a statement: for example,
reducing the production capacity of a water treatment plant and
cut-off water supply to consumers in a water distribution sys-
tem, etc. In order to achieve his/her goal, an attacker performs
strategic manipulation of sensor measurements and strategic
control of actuators. By doing so, an attacker can maintain
the system requirements, for example, material balance, but
cause the process to move into an abnormal state without a
controller knowing that this has happened. The specific types
of attacks include overflow of tank, water leakage and stealthy
attacks, etc. The attack targets and detailed attack description
are shown in Table L

In our experiments, we split the WADI data log into three
parts. The first part which contains the first 12 days of the
data is used as the training data log to generate meaningful
invariant rules. The second part which contains the 13th and
14th days’ data is used as the validation data log for parameter
tuning. The last two days’ data is used as the test data log on
which we use the generated invariant rules to detect anomalies.

C. Experiments on Invariant Rule Generation

In our first experiment, we systematically generate invariant
rules from the first 12 days’ data log according to our data-
driven framework. Specifically, after the predicate generation

step, 440 predicates are generated in total, among which 96 are
for actuator states, 344 are for sensor readings. Furthermore,
among the 344 predicates for sensor readings, 228 are gener-
ated by our distribution-driven strategy, the remaining 116 are
generated by our event-driven strategy.

In the invariant rule mining step, since the data is collected
and processed every second in WADI testbed, as a real time
application, we set 7; the acceptable processing time for each
data point to one second. Assuming the acceptable validation
error 7, is set to 1 x 107 and 1 x 1073, we perform a grid
search to find the maximum number of meaningful invariant
rules can be generated in both conditions according to Equation
5, with candidate parameter values v = (0.1,...,0.9), § =
(0.01,0.02,0.04,0.08,0.16,0.32,0.64) and v > 6. Table II
shows the optimal value for the parameters, the corresponding
number of meaningful invariant rules generated, and the time
cost for checking all the generated rules per data point in
our experiments in each condition. As can be seen from
the table, even with 7. = 1 x 10~*, we still obtain 3259
meaningful invariant rules from the data log. The number is
rather significant considering the testbed only has 67 sensors
and 36 actuators. With larger acceptable validation error, more
invariant rules are generated as expected. Furthermore, the
time cost for checking the invariant rules is also rather small
comparing with the one second acceptable processing time
cost threshold, which means the anomaly detection model with
our generated invariant rules is sufficiently fast for real time
application.

D. Experiments on Anomaly Detection

In our second experiment, we use the generated meaningful
invariant rules to detect anomalies in the last two days’
data log. Moreover, to demonstrate the effectiveness of our
approach, we also compare our results with two baseline
models.

1) Baseline Models: For comparison, we first use the
design-based approach to derive invariant rules from the design
graphs of the WADI testbed. In total, 22 invariant rules (which
is significantly less than the number of invariant rules derived
by our data-driven approach) can be derived from the graphs by
the help of system operators. Thus, the model which consists of
the 22 design-based invariant rules is used as our first baseline
anomaly detection model.

The second baseline anomaly detection model is a residual
error-based model in which we use a Long Short Term
Memory (LSTM) network [38] for sensor readings prediction.
Specifically, LSTM network is a class of recurrent neural
network which has shown state-of-the-art performance on
numerous temporal processing tasks [39], [20]. Here, we use a
stacked two layer LSTM network which has 256 hidden units
in both hidden layers. Our LSTM network takes the sensor
and actuator values at the previous 60 time steps (seconds)
as its input, and outputs the sensor readings at the next time
step for prediction. All the sensor values are normalised into
range [0,1], and all the actuator values are one-hot encoded,
e.g., ON, OFF of pump states are encoded into vectors of [1,0]
and [0,1], respectively, before feeding into the neural network
model. The model is trained to minimize the mean squared
error between predicted sensor readings and their real values
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Fig. 3.

Three stages of the WADI testbed P1, P2 and P3. Solid arrows indicate flow of water and sequence of processes. S and A represent,

respectively, sets of sensors and actuators. Sensors: LT-Level Transmitter, AIT-Analyzer Indication Transmitter, FIT-Flow Indication Transmitter,
PIT-Pressure Indication Transmitter, LS-Level Switch. Actuators: P-Pump, MV-Motorized valve, MCV-Modulating Control Valve, SV-Solenoid
Valve. Tag name of the instrument is indicated as XXX_YYY_ZZZ, Where XXX, YYY and YYY represent stage number, instrument type

and instrument index respectively. For example,

TABLE 1.

1_LT _001 can be read as stage-P1, level transmitter and the index of level transmitter.

ATTACK TARGETS AND ATTACKER INTENTIONS IN THE WADI CASE STUDY

Attack target(s)

Attacker intention

1_MV_001 Overflow of the raw water tank

1_FIT_001 High dosage of chemical injection in the raw water tank
2_LT 002 Stealthy attack: drain elevated reservoir tank

1_AIT_001 Manipulate raw water conductivity set points

2_MCV_101, 2_MCV_201,
2_MCV_301, 2_MCV_401
2_MCV_501 and 2_MCV_601

Cut-off water supply to consumer tanks

1_AIT_002 Change turbidity set points

2_MV_003 Supply contaminated water to elevated reservoir tank
2_MCV_007 Water leakage from the main pipe line

1_P_005, 1_P_006 Pipe bursts

2_LT_002, 2_LIT_001 and 1_MV_001 | Damage 1_MV_001, raw water pump and drain the elevated raw water tank
2_MCV_007 Intermittent water supply to consumer tanks
2_PIC_003 Control of booster pump

1_P_001 and 1_P_003 Chemical dosing stop to the inlet raw water

2 _LIT 002 Stealthy attack: Overflow of elevated tank

2 _MCV_007 Water wastage

2_MCV_101, 2_MCV_201 Overflow of consumer tanks

TABLE II.
CORRESPONDING NUMBER OF MEANINGFUL IN

GENERATED, AND THE TIME COST FOR CHECKING ALL THE GENERATED
RULES PER DATA POINT IN THE WADI CASE STUDY UNDER DIFFERENT

THE OPTIMAL VALUE FOR THE PARAMETERS, THE

VARIANT RULES

1x10"%and 1 x 1073.

data log to make sure the validation error (the expected false
positive rate of detected anomalies) of the model is also below

ACCEPTABLE VALIDATION ERROR THRESHOLDS

v | 0 | N9 | t(v,0)
7.,=1x10"%210.9]0.16 | 3259 | 0.02 sec
T,=1x10"3|0.7]0.04 | 45847 | 0.23 sec

on the first 12 days’ data log using the Adam optimizer [40].
Then the residual error threshold is tuned by the validation

Note that we choose to use the LSTM network as the
predictive model because the trained LSTM network model
achieves the best prediction accuracy (lowest average residual
error) on the validation data log in our experiments compared
with the AR model as well as the LDS model. Specifically,
the parameters of the AR model is also fitted using the first 12
days’ data log, and the value of p (see Section II-B) is tuned to
have the lowest residual error on the validation data log. For
the LDS model, its parameters are defined either by system
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TABLE III.

THE PERFORMANCE METRICS OF USING OUR DATA-DRIVEN INVARIANT RULES FOR ANOMALY DETECTION COMPARED WITH TWO

BASELINE MODELS IN THE WADI CASE STUDY.

Model TPR | EPR | NTPR | P(1) | P(3) | P(5)
Design-based | 645 | 0.0060 | 0.5086 | 14/15 | 13/15 | 11/15
invariant rules
Residual error | 0.1208 | 0.0003 | 0.0989 | 2/15 | 2/15 | 2/15 | 7o = 1 x 107
“based model | 0.4302 | 0.0012 | 0.3545 | 8/15 | 7/15 | 7/15 | 7. =1 x 10~3
Data-driven | 0.4114 | 0.0002 | 0.5384 | 14/15 | 14/15 | 14/15 | 7o = 1 x 102
invariant rules | 0.4744 | 0.0021 | 0.5552 | 15/15 | 15/15 | 15/15 | 7. = 1 x 103

knowledge or by constructing an Autoregressive Integrated
Moving Average Model (ARIMA) model based on the first
12 days’ data log.

2) Evaluation Metrics: For each model, to evaluate its
effectiveness on detecting anomalies, we first compute three
metrics, which are the TPR (True Positive Rate), FPR (False
Positive Rate) and NTPR (Normalized True Positive Rate) of
the detection result. Specifically, let TP denote the true posi-
tives (anomalous data points correctly identified), TN denote
true negatives (normal data points correctly identified), FP
denote false positives (normal data points incorrectly classified
as anomalies), and FN denote false negatives (anomalous data
points incorrectly classified as normal packages). The TPR is
calculated as TP/(TP + FN), which reflects the fraction
of anomalies that are successfully identified. The FPR is
computed as F'P/(FP + TN), which measures the fraction
of normal data points that are misclassified as anomalous by
the model. Since the number of attack points for different
attack types varies significantly in the dataset, we also calculate

N
NTPR = w for the measurement of the normalized
fraction of anomalies that are successfully identified, where
TPR; is the TPR for the attack type ¢, IV is the total number
of attack types in the dataset.

Furthermore, for any given attack type ¢, we consider this
attack type is detectable by a model if TPR; > k X FPR,
where k > 1, and £ x F'PR is a threshold value above which
we believe that the attacks of this type are not detected by
coincidence. Then, to measure the ability of a model to detect
different types of attacks, we also calculate metrics:

N
1(TPR; > k x FPR)
Pty =Y & ,
i=1
which captures the fraction of attack types that are detectable

by the model. In the experiments, we evaluate P(1), P(3) and
P(5).

3) Result and Evaluation: The results of using our gener-
ated meaningful invariant rules for detecting anomalies in the
the last two days’ WADI data log, as well as the results of the
two baseline models are given in Table III.

From the table, we can see that our parameter tuning
method works well because the distance between the FPR and
the validation error (which reflects the expected FPR) is small
in both cases. From a learning perspective this means that our
anomaly detection model based on data-driven invariant rules
can be effectively trained without the need for an anomaly
tagged dataset. This unsupervised learning capability is of
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significant practical significance as such tagged anomaly data
is not generally available and is difficult to generate. Moreover,
we observe that compared with design-based invariant rules,
using our data-driven invariant rules to detect anomalies can
achieve higher NTPR, but with much smaller FPR when
7. = 1 x 10~%. Importantly, when setting 7. = 1 x 1073, the
data-driven invariant rules can detect all the attack types in
this case study. However, the design-based rules cannot detect
one attack type when using P(1) to measure its ability to
detect anomalies, and the number of undetected attack types
increase to two when P(3) is used, and to four if P(5) is
used. Furthermore, we can also see that using our data-driven
invariant rules can also achieve significantly better anomaly
detection performance than the residual error-based model
under similar FPR constraints.

VI. SWAT CASE STUDY

In this section, we present another case study in which
we conduct invariant rule generation and anomaly detection
experiments on a public ICS data log that is collected from a
Secure Water Treatment (SWaT) testbed [41].

A. SWaT Testbed and Data Log

The SWaT testbed is a scaled down water treatment plant
which has a six-stage filtration process to purify raw water
[24]. Figure 4 represents the six stages of the testbed. Six
PLCs working in concert with 24 sensors and 27 actuators are
deployed to control the entire treatment process. Specifically,
in the first stage, raw water is taken in and stored in a tank. It is
then passed to the second stage for pretreatment process, where
the conductivity, pH, and Oxidation Reduction Potential (ORP)
are measured to determine whether chemical dosing is per-
formed to maintain the water quality within acceptable limits.
In the third stage, the Ultra Filtration (UF) system will remove
undesirable materials by using fine filtration membranes. This
is followed by the fourth stage, where the remaining chlorines
are destroyed in the Dechlorinization process using Ultraviolet
lamps. Subsequently, the water is pumped into the Reverse
Osmosis (RO) system to reduce inorganic impurities in the fifth
stage. In the last stage, the clean water from the RO system is
stored and ready for distribution.

The SWaT data log is collected by running SWaT non-
stop from its empty state to a fully operational state for a
total of 11-days, and is originally reported in [41]. During the
first 7 days, the plant is operated under normal conditions,
i.e. without any attacks. During the remaining four days, 36
different types of attacks which include single stage single
point attacks, single stage multi point attacks, multi stage



TABLE IV. THE OPTIMAL VALUE FOR THE PARAMETERS, THE
CORRESPONDING NUMBER OF MEANINGFUL INVARIANT RULES
GENERATED, AND THE TIME COST FOR CHECKING ALL THE GENERATED
RULES PER DATA POINT IN THE SWAT CASE STUDY UNDER DIFFERENT
ACCEPTABLE VALIDATION ERROR THRESHOLDS

Y| 0 | N(v.0) | t(r,0)
7. =1x10"%]09032| 5805 | 0.02sec
7. =1x107310.9|0.08 | 17737 | 0.05 sec

single point attacks, and multi stage multi point attacks on
the water treatment process are launched on the SWaT testbed
while data collection continued. We refer to [41] for the
detailed description of the attack types. The dataset contains all
the sensor and actuator values collected every second during
the said duration. Each data point consists of 53 attributes,
among which 24 are continuous sensor readings and 27 are
discrete actuator states.

B. Experiments

In our experiments, we also split the SWaT data log into
three parts. The first part which contains the first five days of
the data is used as the training data log. The second part which
contains the 6th and 7th days’ data is used as the validation
data log. The last four days’ data is used as the test data log on
which we use the generated invariant rules to detect anomalies.

1) Experiments on Invariant Rule Generation: In the in-
variant rule generation experiments, after the predicate gener-
ation step, totally 195 predicates are generated, among which
48 are for actuator states, 77 are generated by the distribution-
driven strategy, 70 are generated by the event-driven strategy.
Furthermore, in the invariant rule mining step, by setting 7; to
one second, we show the optimal value for the parameters (v
and #), the corresponding number of meaningful invariant rules
learned, and the time cost for checking all the learned rules per
data point in our experiments in Table IV. All the experiments
here are under the same acceptable validation error thresholds
and parameter searching space in the previous case study. As
can be seen from table, a large number of meaningful invariant
rules can be learned from the SWaT data log, and the time costs
of checking all the data-driven invariant rules are still rather
acceptable for real time anomaly detection in our experiments.

2) Experiments on Anomaly Detection: Regarding to the
anomaly detection experiments, we use the same baseline
models for comparison. Specifically, 38 design-based invariant
rules are available in the SWaT system, and they are used as
our first baseline model. The second baseline model is also
a residual error-based detection model in which an LSTM
network model is used for sensor reading prediction. Table V
shows the results of using our generated meaningful invariant
rules for detecting anomalies in the last four days’ SWaT data
log, as well as the results of the two baseline models.

From Table V, we notice that the FPR of using our data-
driven invariant rules is still close to their estimation based on
the validation error. Furthermore, we observe that the ability
of our data-driven invariant rules for detecting anomalies is
much better than the design-based invariant rules in this case
study. The evidence is the higher TPR and NTPR, lower
FPR and the large difference on the metrics P(1), P(3) and
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P(5) when 7. = 1 x 1073, Even with much lower FPR
(when 7, 1 x 10™%), the data-driven invariant rules can
still achieve better detection ability compared with the design-
based rules. Furthermore, we can also see that using our data-
driven invariant rules can again achieve much higher detection
rate of anomalies than the residual error-based model under
comparable FPRs (e.g., the TPR of the data-driven invariant
rules is about 10 times as high as the residual error-based
model when 7. = 1 x 10™%).

VII. DISCUSSION

We analyze the reasons why using the data-driven invariant
rules can achieve better anomaly detection performance than
the design-based invariant rules as follows: 1) The noise on
the sensor measurements is hard to be captured by the design-
based invariant rules, however it is automatically covered by
our data-driven approach, thus can reduce the FPR of the data-
driven invariant rules; For example, the following design-based
invariant rule:

1 LT 001 < 60 = 1_MV_004 = OFF

causes 55 false positives in the anomaly detection experiment
on the WADI testbed. However, there is a corresponding data-
driven invariant rule as follows:

1_LT_001 < 59.0399179104 = 1_MV_004 = OFF

which causes zero false positives instead. 2) Our data-driven
approach can generate a significantly larger invariant rule set,
thus it has more chance to detect anomalies. For example,
there is no design-based invariant rule that can reveal attacks
targeting on 1_P_005 and 1_P_006 in the WADI case study.
However, the following data-driven invariant rule:

1 P 002 = OFF = 1_P_004 = OFF,1_P_006 = OFF

can reveal 95.46% attacks points of this type without causing
any false positives. 3) The design-based approach only captures
the invariant rules between the sensors and actuators within the
same or neighboring stages, however, the data-driven approach
can capture invariant rules which span several stages, thus
is capable to detect anomalies that can only be revealed by
looking at the global behavior of the system. Specifically, about
65% of the data-driven invariant rules generated in SWaT case
study span non-neighboring stages. As a result, we can see the
difference on the anomaly detection performance by using the
data-driven invariant rules and the design-based rules is larger
in the second case study, where the SWaT testbed has six
stages.

The residual error-based model has lower anomaly de-
tection performance in both case studies. This is mainly
because there is not a clear boundary between anomalous
and normal sensor measurements based on residual error for
many attack points in both case studies due to the existence of
various sources of sensor noise. In addition, the residual error-
based model is rather ineffective for detecting stealthy attacks
(attacks which only modify the sensor readings slightly at each
time step). However, our invariant rule-based model is able to
detect such attacks because the accumulated sensor deviation
is highly likely to violate some invariant rules at some specific
time point.
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Fig. 4. Six stages of the SWAT testbed.

TABLE V. THE PERFORMANCE METRICS OF USING OUR DATA-DRIVEN INVARIANT RULES FOR ANOMALY DETECTION COMPARED WITH TWO BASELINE
MODELS IN THE SWAT CASES STUDY.
Model TPR | FPR | NTPR | P(1) | P(3) | P(5)
Design-based |, 7589 | 00051 | 0.3043 | 18/36 | 15/36 | 15/36
invariant rules
Residual error | 0.0730 | 0.0004 | 0.0592 6/36 6/36 6/36 Te=1X 10~4
“based model | 0.6208 | 0.0057 | 0.1029 | 11/36 | 10/36 | 9/36 | 7. =1 x 10~3
Data-driven 0.7087 | 0.0003 | 0.296 19/36 15/36 15/36 Te =1X 10~4
invariant rules | 0.7881 | 0.0012 | 0.4911 | 33/36 | 31/36 | 31/36 | 7. =1 x 1073

We are also aware of that there are still some limitations
in our method. For example, we find that there are several
actuator state changes for which no event-driven predicates
are derived using our current method in the experiments.
This is mainly due to the nonlinearity of the corresponding
event triggers. Using a more powerful model such as kernel
regression can reveal more event-driven predicates, however,
this will also result in problems with too many event-driven
predicates being generated, and the false positive rate being
increased in our experiments. Furthermore, our method also
requires a large dataset which covers the operation profile of
the ICS to allow the invariant rules to be properly learned. A
dataset which only covers a partial profile of the system can
potentially lead to a high false positive rate in the detection
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phase. A potential extension of our work is the methodology
of reducing the false positives by filtering generated predicates
whilst adding nonlinearity into our model to increase its
detection ability.

VIII. RELATED WORK

Log-based anomaly detection via statistical methods has
been widely applied to ICS in the recent years [42], [43].
However, most of these approaches either are only applicable
to a specific type of systems or require prior domain-specific
knowledge about the system to construct the detection model.
Nevertheless, our work attempts to construct an anomaly detec-
tion model systematically using a purely data-driven approach,



and is potentially generalizable to a wide class of ICS.

The idea of using association rule mining to develop
anomaly detection models has been explored in the networked
system community. For instance, Mahoney and Chan [44]
propose an algorithm known as LERAD that learns rules via
an Apriori-like algorithm for finding anomalies in network
packets over TCP sessions. Entisar and Zulaiha [45] inves-
tigated three association rule mining techniques to develop
an intrusion detection system in an information technology
center’s network traffic. The difficulties to apply association
rule mining for detecting anomalies are often the generation
of too many rules and their false positives. The problems
are firstly largely mitigated in our work where we only
generate meaningful invariant rules which are non-redundant
and meanwhile reach a rule-wise statistical significance. Then,
a parameter tuning method is proposed to control the trade-off
between number of generated rules and false positives.

Analyzing physical invariants for anomaly detection has
been applied to a number of cyber-physical systems [46],
[47], [48]. However, all of these invariants are either manually
defined or require a large amount of human effort, e.g., to
transform sensor values to discrete ranges such as High,
Low according to domain knowledge. There has been some
work to use machine learning-based methods for discovering
physical invariants in cyber-physical systems. For example,
Momtazpour et al. [49] conduct anomaly detection by using
an ARX (Auto Regression with eXogenous input) model with
pre-discovered latent variables to find invariants between wire-
less sensor data within multiple time steps at Intel Berkeley
Research lab. Chen et al. [50] use code mutation programs to
generate abnormal data traces, and then use a SVM classifier
and statistical model checking to find invariants between sensor
data in the SWaT testbed. Nevertheless, the invariant rules
generated in our work are more comprehensive than [49], [50]
as actuator states which are an important part of the control
dynamics in ICS are also included.

IX. CONCLUSION

In this paper, we have proposed and demonstrated a novel
data-driven framework for systematically generating invariant
rules from ICS data logs. We have then shown, that such a set
of generated invariant rules can be successfully used to detect
anomalies in a system to protect the industrial processes under
control. We summarize the merits of our approach as follows:
(1) It combines several machine learning and data mining
techniques, and thus can generate a significant number of in-
variant rules with very low human effort/input; (ii) It is able to
successfully discover invariant rules across several subsystems,
largely increasing the difficulty of successful stealthy attack
injection; (iii) The false positive rate of using the invariant
rules generated by our framework can be effectively controlled
by a parameter tuning method based on a validation data
log that is free from anomalies; (iv) The generated invariant
rules can achieve high anomaly detection performance, which
is demonstrated on two real world ICS case studies, and
our results outperform standard baseline models including a
commonly used residual error-based anomaly detection model;
(v) It can be applied to various ICS scenarios as it is dependent
only on general control dynamics of ICS.
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Furthermore, and perhaps most importantly, we have set
out an approach that is highly generalizable to the wider class
of cyber-physical systems — of which ICS are instances. As
cyber-physical systems become more ubiquitous and com-
moditized through trends such as IoT (Internet of Things),
we see potential for modification, refinement and application
of this approach to a range of non-industrial use-cases which
may include health-systems, autonomous vehicles and building
management systems. We will be examining the feasibility of
doing so in future work.
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