
ConcurORAM: High-Throughput Stateless Parallel
Multi-Client ORAM

Anrin Chakraborti∗, Radu Sion∗
∗Stony Brook University, {anchakrabort, sion}@cs.stonybrook.edu

Abstract—ConcurORAM is a parallel, multi-client oblivious
RAM (ORAM) that eliminates waiting for concurrent stateless
clients and allows overall throughput to scale gracefully, without
requiring trusted third party components (proxies) or direct
inter-client coordination. A key insight behind ConcurORAM
is the fact that, during multi-client data access, only a subset
of the concurrently-accessed server-hosted data structures re-
quire access privacy guarantees. Everything else can be safely
implemented as oblivious data structures that are later synced
securely and efficiently during an ORAM “eviction”. Further,
since a major contributor to latency is the eviction – in which
client-resident data is reshuffled and reinserted back encrypted
into the main server database – ConcurORAM also enables
multiple concurrent clients to evict asynchronously, in parallel
(without compromising consistency), and in the background
without having to block ongoing queries.

As a result, throughput scales well with increasing number of
concurrent clients and is not significantly impacted by evictions.
For example, about 65 queries per second can be executed in
parallel by 30 concurrent clients, a 2x speedup over the state-of-
the-art [13]. The query access time for individual clients increases
by only 2x when compared to a single-client deployment.

I. INTRODUCTION

As increasing amounts of confidential data are outsourced in
today’s cloud-centric environments, providing confidentiality
and privacy becomes critical. To ensure confidentiality, out-
sourced data and associated metadata can be encrypted client-
side. Data remains encrypted throughout its lifetime on the
server and is decrypted by the client upon retrieval. However,
encryption is simply not enough for ensuring confidentiality
since access patterns may leak significant information [8].

Oblivious RAM (ORAM) allows a client to hide data access
patterns from an untrusted server hosting the data. Informally,
the ORAM adversarial model ensures indistinguishability be-
tween multiple equal-length client query sequences. Since the
original ORAM construction by Goldreich and Ostrovsky [6],
a large volume of literature [12, 14, 15, 16] has been dedicated
to developing more efficient ORAM constructions. Of these,
under an assumption of O(n) client storage with small con-
stants, PathORAM [14] is widely accepted as asymptotically
the most bandwidth efficient ORAM. RingORAM [12] further

optimizes PathORAM for practical deployment by reducing
the bandwidth complexity constants.

Although tree-based ORAM designs [12, 14] have achieved
near-optimal bandwidth for single-client scenarios, one critical
challenge remains un-addressed, namely the ability to accom-
modate multiple concurrent clients efficiently. It is straight-
forward to deploy existing schemes to support multiple clients
by sharing ORAM credentials and storing data structures that
would normally be maintained client-side (e.g., the stash and
the position map in the case of a tree-based ORAM) on
the server to ensure state consistency across multiple clients.
However, in such a setup, to maintain access privacy, only
one client can be allowed to access the server-hosted data
structures at any one time. This reduces the overall throughput
and significantly increases the query response time. A client
may need to wait for all other clients to finish before retrieving
a data item. Since ORAMs often have non-trivial query
latencies, this usually results in significant access latency for
a client before being able to proceed with the query.

An existing line of work on parallel ORAM constructions
[1, 3, 5, 7, 11] achieve parallelism at no additional bandwidth
cost under the assumption of constant inter-client awareness
and communication. Although a step forward, this poses
barriers that are often times difficult to handle in real scenarios.
Without inter-client communication, Taostore [13] assumes
a trusted close-to-server (proxy) to achieve parallelism. All
client requests are routed to the proxy, which deploys multiple
threads to fetch one (or more) paths from a PathORAM [14]
data tree and satisfy numerous client requests at once. The
need for a trusted third-party however deviates from the
standard ORAM model, where trust is only placed on the
clients at most. Moreover, a trusted proxy may be difficult
to deploy in reality as well as presenting a single point of
failure/compromise.
Motivation. This paper addresses these shortcomings by elim-
inating the need for trusted proxies and inter-client communi-
cation, and allowing client queries to proceed independently
in the presence of other ongoing queries. Thus, ConcurORAM
is the first to achieve parallelism for stateless ORAM clients
in the standard trust model without the need for direct inter-
client communication.

A. Challenges and Key Insights

Asynchronous Accesses. Tree-based ORAMs feature two
different classes of accesses to the server: (i) queries (reading

Network and Distributed Systems Security (NDSS) Symposium 2019 
24-27 February 2019, San Diego, CA, USA
ISBN 1-891562-55-X
https://dx.doi.org/10.14722/ndss.2019.23411
www.ndss-symposium.org



a root-to-leaf path) and evictions (writing back some of the
previously read data items to the root-to-leaf path). A com-
mon strategy for reducing overall bandwidth/round-trips is to
couple queries and evictions [14] . Even if a multi-client design
can be envisioned in which metadata is stored on the server
for consistency, this coupling forces a synchronous design in
which only one client is in charge at any given time.

One approach for decoupling accesses is to maintain and
update a locally-cached subtree and smartly sync with on-
server data structures without blocking queries [13]. Since,
the local subtree essentially performs the role of a write-
back cache, the construction does not immediately scale to
a multi-client setting. This can be resolved by having a
designated trusted client (a close-to-server proxy) maintain the
subtree locally and route queries to the server. However, the
assumption of a trusted proxy introduces several performance
and security drawbacks. The most important of these is that
the system’s overall performance now entirely depends on
the proxy’s resources e.g., available network bandwidth. An
under-provisioned proxy or a system failure/compromise will
adversely affect all clients in the system. Also, this design does
not support stateless clients (or storage-limited clients) – the
proxy carefully synchronizes accesses based on (potentially
large amount of) metadata stored locally. Outsourcing this
metadata naively may lead to privacy leaks.

To eliminate this security/performance bottleneck and al-
low practical interactions with asynchronous decoupled multi-
client operations, ConcurORAM adopts a different approach.
Queries only perform non-blocking read-only accesses. Fur-
ther, evictions write back changes with access privacy in the
background to additional server-hosted oblivious data struc-
tures (ODS) (append-only logs, write-only tree etc.). These
data structures are designed to be synchronized with the main
ORAM tree periodically and efficiently. The synchronization
mainly involves copying contents between server-hosted data
structures, reference swaps etc. which can be performed se-
curely and efficiently with limited client interaction, optimiz-
ing both bandwidth and round-trips.
Parallel Queries. Asynchronous accesses alone cannot fa-
cilitate parallel query execution. The query protocols for
tree-based ORAMs are fairly complex and involve multiple
read/write-back steps. Without careful synchronization, over-
lapping accesses will violate consistency and privacy.

Possible solutions are parallel query abstractions such as in
PrivateFS [16], which protects inter-client query privacy for
any multi-client “non-simultaneous” ORAM. As we will see,
in ConcurORAM, this forms the basis of a parallel sub-query
mechanism, suitably modified to support parallel evictions.
Parallel Evictions. While parallel query execution is a good
starting point, evictions are at least as expensive as the queries.
Thus, even with parallel queries, serialized evictions will be
the de facto bottleneck and limit overall throughput gains.

ConcurORAM overcomes this limitation by allowing multi-
ple evictions to execute in parallel. In essence, this is possible
because we observe that when evictions are performed accord-
ing to a deterministic eviction schedule [12], and the number of

parallel evictions is fixed, access patterns to the server-hosted
data structures can be clearly and deterministically defined.

This allows identifying the critical sections of the eviction
protocol where synchronization is necessary, and the design
of associated fine-grained locks. The remainder of the pro-
tocol can be performed in parallel using additional server-
hosted data structures designed to maintain state and enforce
minimally-sufficient global synchronization.
Evaluation. As we will see, because the critical sections
are small, this results in an overall throughput that scales
gracefully with increasing number of concurrent clients and is
not significantly impacted by evictions. For example, about 65
queries per second can be executed in parallel by 30 concurrent
clients with only a 2x increase in query access time over a
single-client deployment. Importantly, this is a 2x speedup
over the state-of-the art [13], which operates under stronger
assumptions of a trusted proxy.

II. RELATED WORK

ORAMs have been well-researched since the seminal work
by Goldreich and Ostrovsky [6]. We specifically discuss
existing parallel ORAM constructions here and refer to the
vast amount of existing literature for further details on general
ORAM construction [6, 12, 14, 15, 16].
Oblivious Parallel RAM (OPRAM). Boyle et al. [1] first
introduced an oblivious parallel RAM (OPRAM) construc-
tion assuming inter-client communication for synchronization.
Clients coordinate with each other through an oblivious ag-
gregation operation and prevent simultaneous clients from
querying for the same block. For colliding client accesses, only
one representative client queries for the required item while
all other clients query for dummy items. The representative
client then communicates the read item to all other colliding
clients through an oblivious multi-cast operation. Subsequent
works [3, 4, 5, 7, 11] have optimized Parallel RAMs matching
the overhead of a sequential ORAM construction.
TaoStore [13]. Another interesting parallel ORAM construc-
tion is TaoStore which achieves parallelism for PathORAM.
through a trusted proxy. All client queries are redirected to
the trusted proxy which then queries for the corresponding
paths from the PathORAM data tree. Further, the proxy runs
a secure scheduler to ensure that the multiple path reads do
not overlap and leak correlations in the underlying queries.
TaoStore achieves a significant increase in throughput but can
support only a limited number of parallel clients before the
throughput plateaus due to the proxy’s bandwidth constraints.
PD-ORAM [16]. Williams et al. provided a parallel ORAM
construction that does not require trusted proxies and inter-
client communication. However, the construction is derived
from a hierarchical ORAM construction, with higher access
complexity than standard tree-based ORAMs. Hence, the
overall throughput gain is limited.

2



III. BACKGROUND

A. Oblivious RAM

Oblivious RAM (ORAM) is a cryptographic primitive that
allows a client/CPU to hide its data access patterns from an
untrusted server/RAM hosting the accessed data. Informally,
the ORAM adversarial model prevents an adversary from
distinguishing between equal length sequences of queries
made by the client to the server. This usually also includes
indistinguishability between reads and writes. We refer to prior
works for more formal definitions [12, 14, 15, 16].

B. PathORAM

PathORAM is an efficient ORAM construction with an over-
all query asymptotic access complexity of O(logN) blocks,
matching the known lower bound [6]. PathORAM organizes
data as a binary tree. Each node of the tree is a bucket with
multiple (constant number of) blocks. A block is randomly
mapped to a unique path in the tree.

Invariant: A block mapped to a path resides either in
any one of the buckets on the path from the root to the
corresponding leaf, or in a stash that is stored locally

Position Map. PathORAM use a “position map” data struc-
ture to map logical data item addresses to identifiers of tree
leafs defining a corresponding path from the root, “within”
which the data items are placed. Specifically, a data item
“mapped” to leaf ID l can reside in any of the nodes along the
path from the root to leaf l. The position map is either stored
on the client (O(N) client storage) or recursively in smaller
ORAMs on the server.
Access. To access a particular block, the client downloads all
the contents along the root-to-leaf path to which the block is
mapped. Once the block has been read, it is remapped to a new
leaf and evicted back to the tree. Various eviction procedures
have been proposed in literature [12, 14]. We specifically
describe the RingORAM [12] protocol as a building block.

C. RingORAM

RingORAM [12] is derivative of PathORAM [14] that
optimizes practical bandwidth requirements. This is the result
of two optimizations: i) de-coupling the queries from the
expensive eviction procedure, and ii) fetching only one block
from each bucket in the tree during queries.

Unlike PathORAM [14], where a query needs to fetch
all buckets along a path from the root to a particular leaf,
RingORAM query cost is independent of the bucket size. This
is achieved by storing additional dummy blocks in each bucket.
Bucket-specific metadata tracks the locations of blocks (and
dummy blocks) within buckets. Each query first reads this
metadata and determines whether the required block is present
in a particular bucket. A dummy block is fetched from the
buckets that do not contain the required data block.

The additional dummy blocks makes the RingORAM buck-
ets larger than PathORAM buckets. This makes evictions
expensive. To overcome this, RingORAM delays evictions by
de-coupling queries and evictions – an eviction is performed

after a fixed number of queries. To make evictions more
effective, Ring ORAM uses a deterministic eviction schedule
based on the reverse-lexicographical ordering of leaf IDs to
select eviction paths.
Query. The query protocol in RingORAM is as follows

1) Determine the path to which the block is mapped using
the position map.

2) For each bucket on the path
• Use the bucket-specific metadata to determine if the

required block is in that bucket.
• If the block is in the bucket, read the block. Otherwise,

read a dummy block.
3) Download the entire stash (if stored on the server). Add

the queried block to the stash (if not already present).
4) Remap the block to a new randomly selected path, update

position map accordingly.
Evictions. After a fixed number of queries, an eviction is
performed as follows

1) Download the contents of an entire path from the tree
determined by the reverse-lexicographical ordering of the
leaf IDs. Place the contents in the stash.

2) Write back as many blocks as possible from the stash
(re-encrypted) to a new locally created path.

3) Write back the contents of the new path to the tree
Deterministic Selection of Eviction Paths. RingORAM
selects eviction paths by ordering the leaf identifiers in the
reverse-lexicographical order. Specifically, the reverse lexico-
graphical representation denotes each path of the data tree as
a unique binary string. The least significant bit (LSB) of the
string assigned for a path is 0 if the target leaf corresponding
to the path is in the left subtree of the root and 1 otherwise.
The process is continued recursively for the next bits, up to
the leaf, with the next bit(s) being assigned based on whether
the leaf is in the left or right subtree of the children nodes.

Intuitively this results in better evictions by spreading out
blocks uniformly across the tree since consecutive eviction
paths have minimum overlaps, and N paths of the tree are
selected once before the same path is selected again.
Access Complexity. ORAMs are typically evaluated in
terms of bandwidth – the number of data blocks that are
downloaded/uploaded in order to complete one logical request.
RingORAM features an overall bandwidth of O(logN) data
blocks, where N is the total number of blocks in the ORAM.
This asymptotic bound holds only under the large block size
assumption when the data blocks size is Ω(log2 N) bits.

ConcurORAM has the same large block size assumption
and all access complexities reported in this paper indicate
the number of physical blocks that are accessed overall for
a fulfilling a particular logical request.

IV. OVERVIEW

A. Preliminaries

Trust Model. There are two types of parties: the ORAM
clients (with limited local storage) and the ORAM server (a
remote storage hosting client data).

3



• Honest-but-curious server: The server can observe all
requests and attempts to correlate them by saving and
comparing snapshots. The server does not deviate from
the ConcurORAM protocol.

• Trusted clients: Clients are honest and share secrets
(credentials, keys, hashes etc.) required for accessing the
ORAM. Clients do not need to interact with each other,
but can observe and track other client accesses through
the server-hosted data structures.

Server Storage. As with most tree-based ORAMs, the main
server-side data structure is a binary tree storing fixed-sized
data blocks. Specifically, a database with N logical blocks
requires a binary tree with N leaves.
Node Structure. ConcurORAM follows the same node
structure as Ring ORAM [12]. Specifically, each node of the
tree contains a fixed number of data blocks (denoted by Z)
and dummy blocks (denoted by S), collectively referred to
as a bucket. Note that (Z + S) ∈ O(logN) blocks. Blocks
in a bucket are encrypted with semantic security (e.g., using
randomized encryption) and randomly shuffled. Buckets also
store relevant metadata for retrieving specific data blocks,
identifying dummy blocks etc.
Stateless Clients. In addition to the main data tree, tree-
based ORAMs require several auxiliary data structures for
maintaining state. This includes a position map to track the
locations of logical blocks in the ORAM data tree and a stash
to hold blocks that could not be immediately placed back on
the tree (due to randomized placement). Typically, these are
stored client-side to speed-up accesses. However, in a multi-
client setting, this metadata needs to be stored persistently on
the server, in order to present a consistent view for all clients.
Temporary Client Storage. Clients require a small amount of
temporary storage to perform several operations locally before
uploading updates to the server. This storage is bounded by
O(logN) block for a database with N blocks.
Building Blocks. For illustration purposes, we will consider
the RingORAM query and eviction protocols (described in
Section III-C) as a (non-parallel) starting point for some of
the ConcurORAM protocols.

We note however that this is not necessary – the techniques
presented here can be generalized for other tree-based ORAMs
provided the following two conditions are satisfied

• The ORAM supports dummy queries (where only dummy
blocks are fetched from the tree), and the dummy queries
are indistinguishable from real queries.

• Eviction paths are selected using the reverse-
lexicographical ordering of leaf identifiers.

Position Map Design. For a concurrent ORAM design,
the position map itself needs to allow concurrent access to
position map entries. In ConcurORAM, this can be realized by
storing the position map recursively in smaller ConcurORAM
instances. However, this introduces several implementation
challenges due to concurrent recursive data structure accesses.

To avoid recursion, a simpler alternative is to store the
entire position map in a parallel hierarchical ORAM e.g. PD-
ORAM [16], which does not require its own position map.

Fig. 1: Parallel query overview. Accesses to the stash, the position map and
the data tree can proceed concurrently. Queries access the query log after
acquiring a mutex (the query lock) for a short period of time. Synchronizing
accesses to the DRL ensures that queries are completed in the order in which
they start execution, a necessary condition to prevent security leaks.

In the current design and implementation of ConcurORAM,
the position map is stored in a PD-ORAM instance shared
by the clients. Since PD-ORAM supports parallel multi-client
accesses, the position map is treated as a secure black box.

We specifically note that this approach does not affect
overall complexity. Position map entries for N blocks are
typically O(logN) bits in size. The overall PD-ORAM access
complexity is O(log2 N) items. Thus, accessing a position
map entry from PD-ORAM has an access complexity of
O(log3 N) bits, or O(logN) blocks of size Ω(log2 N) bits.
This is equivalent to a data access for tree-based ORAMs.
Server Functionalities. Without the aid of explicit inter-
client communication or trusted proxies, achieving a notion
of global synchronization in ConcurORAM requires server-
managed mechanisms and APIs for fine-grained locking, all
while guaranteeing access privacy and obliviousness.

This is different from prior work [13] where inter-client
synchronization is handled by the proxy and the server is
treated basically as a storage device, only providing APIs for
downloading, uploading, copying and deleting data.

B. Parallel Queries

Supporting parallel queries is the first step towards achiev-
ing full parallelism. On observation, it may be evident that if
two clients concurrently query for the same block, according
to the query protocol in Section III-C, they will access the
same path from the tree, thereby leaking inter-client query
privacy. Prior work solves this by either assuming direct inter-
client communication and synchronization [1, 5] or by routing
queries through a common proxy [13] which executes only the
non-overlapping queries.

Without requiring these assumptions, ConcurORAM pro-
vides inter-client awareness through server-hosted data struc-
tures. The techniques presented here are similar to the parallel
query abstraction described in [16] – the goal is to convert an
ORAM that is secure for non-parallel queries into an ORAM
with parallel queries (Figure 1), augmented with judiciously
designed server-hosted data structures.

4



Query Log. To support concurrent queries without leaking
inter-client privacy, information about all ongoing transactions
is written to an encrypted query log, not unlike a transaction
log. Prior to executing a query, clients first download the entire
log (to check for overlapping accesses) and then append to the
log the encrypted logical address of the data block they are
querying for. This ensures that all clients have a consistent
view of ongoing transactions. In case of an overlapping query
– when there is a previous entry for the same block in the
query log – the client proceeds with a dummy query by simply
reading dummy blocks from a random path in the tree.
Data Result Log (DRL). For overlapping queries, the above
ensures that only one client can access the target block at
any time. The other clients must wait for an eviction to re-
randomize the location of the block in the tree before they will
access the block. However, this may result in indefinite wait
times and possibly leak privacy under a timing channel [13].

To mitigate, ConcurORAM caches previously accessed
blocks in a data result log until periodic ORAM evictions
can place them back to random locations on the data tree.

At the end of an access, the block queried by a client is re-
encrypted and appended to the DRL. Other clients that queried
for the same block (but ended up performing a dummy query
instead) can then access the block by reading the entire DRL.
Request Order-based Synchronization. Since clients do not
communicate, it is not possible for a particular client to learn
when its target block is in the DRL. Further, if clients accessed
the DRL only in case of dummy queries, the server will be
able to distinguish overlapping queries for the same block. The
following DRL access protocol resolves all these concerns

1) Clients executing a query read the DRL after all “previ-
ous” clients finish their queries. Specifically, queries that
started execution earlier by registering an entry in the
query log, must complete all steps of the query protocol
before the current client can read the DRL. The client
checks this by comparing the size of the current DRL
and the ordering of entries in the query log. If the client
registered the ith entry to the query log, it can proceed
only after there are i− 1 blocks in the DRL. Note that if
a client executed a dummy query, then it will necessarily
find the target block in the DRL after all previous queries
have finished execution.

2) After reading the entire DRL, a client always appends the
(updated and re-encrytped) target block to the DRL.

Query Round & Log Size. To bound the log sizes, ConcurO-
RAM introduces the notion of a query round. Specifically,
only up to c (a constant) queries are allowed to execute in
parallel, while requests that arrive later have to wait until all
executing queries finish – this includes appending their results
to the data result log. A round of c parallel queries constitutes
a query round in ConcurORAM. Queries arrive and execute
individually after registering an entry in the query log, but
belong to the same query round as long as the current query
log contains less than c entries. Once all queries in the current
query round finish execution, the contents of the DRL (which
now contains c blocks) are evicted back to the data tree and

the DRL and the query log are cleared. This ensures that the
query log and DRL size never exceed c entries.

C. Non-blocking Evictions

Parallelizing the query step alone is not sufficient to achieve
good scalability. Evictions are often expensive and can block
clients for possibly impractical amounts of time. Instead,
to scale, ConcurORAM performs evictions continuously in
the background ensuring that queries are blocked for very
short upper-bound periods of time. Achieving this is not
straightforward. We need to introduce several key insights.

First, note that in the non-parallel case, queries and evictions
(Section III-C) include the following client-side steps

• Eviction
1) Fetch buckets from a path of the data tree.
2) Evict contents of the stash to new path locally.
3) Write back the new path and stash.
4) Update the position map and clear the logs.

• Query
1) Update the query log.
2) Read the stash and position map query.
3) Fetch the query path from the data tree.
4) Read and update the data result log.

Observe that eviction Steps 1 and 2 perform only read
accesses and do not conflict with the query protocol. Eviction
Step 3 however updates the data tree and the stash and requires
synchronization to avoid inconsistencies.
Insight 1: Separate Trees for Queries and Evictions. One
way to to synchronize this is to perform queries on a read-
only copy of these data structures while the data tree and
stash updates during evictions happen on a writable copy
never accessed by the actual queries. Once eviction completes
updating the writable copies, their contents can be (efficiently
and securely) copied (by the server) to the read-only data tree
and stash version, and made available for future queries. This
is aided by two server-hosted data structures:

• Write-only tree: A write-only tree (“W/O tree”) is initial-
ized with the same contents as the read-only data tree.
The W/O tree is updated during evictions while the data
tree is used to satisfy queries in the background. This is
possible because queries do not update the data tree and
queried blocks that are updated with new data make it
back to the data tree only during evictions.

• Temporary stash: During the eviction of blocks along a
specific path of the write-only tree (eviction path), blocks
that cannot be accommodated are placed in a “temporary
stash” (not accessible to queries) on the server.
Once the entire eviction path is updated, the eviction
path is copied from the write-only tree to the data tree,
and the temporary stash is made available for queries by
efficiently replacing (e.g., by a simple reference swap)
the main stash with the temporary stash. Note that at this
stage the contents of the main stash have already been
evicted to the data tree and the temporary stash, and thus
can be replaced without losing track of data.

5



Insight 2: Multi-phase Evictions. To execute evictions
without blocking queries, ConcurORAM splits evictions into

• Processing Phase
1) Fetch eviction path buckets from the write-only tree
2) Fetch current stash
3) Evict contents of the stash and the eviction path
4) Create a new path and temporary stash locally
5) Write back the updated path to the write-only tree
6) Write back the temporary stash to the server

• Commit Phase
1) Update the position map for the blocks that have been

evicted to the write-only tree
2) Copy the eviction path from the write-only tree to the

data tree (server-side copy)
3) Swap reference of the main stash (previously used to

satisfy queries) with the temporary stash
4) Clear the query log
5) Clear the data result log

An eviction can perform the processing phase in its entirety
before performing the commit. Eviction processing – which
is significantly more expensive than the commit – can be
executed in parallel with queries. This allows ConcurORAM
to block queries only while an eviction commits.
Insight 3: An Oblivious Data Structure for Storing and
Privately Accessing Query Results. Since queries do not
need to wait for evictions, multiple query rounds may run
by the time one eviction completes. Blocks accessed in these
query rounds need to be stored somewhere until an eviction
subsequently replaces them on the tree. Each round of parallel
queries that is executed in the background while an eviction
takes place, generates a data result log (DRL) containing the
blocks that have been accessed by its queries.

These DRLs need to be maintained separately on the server
until their contents can be evicted back into the data tree
(which can then be accessed by future queries). Further,
reading all such DRLs in their entirety in the query protocol
(Step 5 in Figure 1) may be too expensive. Instead we propose
a mechanism to efficiently query for particular items from the
DRLs without leaking their identity to the server.

To this end, DRLs that are pending evictions are stored in an
oblivious data structure, namely the DR-LogSet. This allows
clients to efficiently query for particular blocks from the DRLs
without leaking to the server: (i) the identity of the block, and
(ii) the block’s last access time.

D. Parallel Evictions

One challenge here is that if blocks are evicted to the data
tree from a single DRL at a time, the DR-LogSet may grow
uncontrollably – by the time a DRL is cleared, several new
DRLs will have been created.

To ensure that the DR-LogSet remains bounded to an
acceptable size, evictions must start as soon as a DRL has been
added, even if a previous eviction has not finished. Effectively,
evictions must execute in parallel. One obvious roadblock
here is that multiple evictions cannot commit simultaneously

Fig. 2: Eviction subtree (EST) defined by 4 parallel eviction clients evicting
to paths in reverse lexicographical order of their leaf IDs.

Fig. 3: Eviction processing is divided into three stages. Fixing the maximum
number of evictions that can be executed in parallel at initialization allows
ConcurORAM to define a maximal sub-tree outside of which all ongoing
evictions cannot overlap, namely the EST. Stages 1 and 3 read and write back
the non-EST buckets from eviction path, respectively. An eviction executing
Stage 1 does not overlap with evictions in Stage 3. Stage 2 is the critical
section which updates the EST and is accessed after acquiring the processing
lock. The execution of the critical section defines an ordering of evictions,
which is used later to serialize commits.

because during the commit phase, the same data structures
need to be updated. As we will see next, a viable, efficient
approach is to perform the (expensive) processing phases in
parallel while serializing the commits.
Insight 4: Identifying Critical Sections for Parallel Eviction
Processing. Facilitating parallel eviction processing is chal-
lenging due to overlapping accesses to the write-only tree in
Step 5 of the processing phase: two independent paths being
evicted to in parallel will invariably intersect at some level
of the write-only tree. Updates to any buckets residing on the
paths’ intersection need to be synchronized. A key insight here
is that we can precisely predict the overlaps! This is because
evictions are performed to deterministically selected paths.

First, recall from Sections IV-A and IV-D that evictions
are performed to data tree paths in reverse lexicographical
order of their corresponding leaf IDs. Since each path is
represented by a unique lexicographical representation, any
k consecutive eviction paths are deterministic. Further, if

6



Fig. 4: Eviction commit includes updating the position map, updating the
data tree path and adding the temporary stash to the StashSet. Only one
eviction can commit at a time, while also blocking queries during commit.

only these k (determined based on system load) evictions are
allowed to execute in parallel, then the overlaps between the
paths can be predicted precisely. As a result, we can define a
maximal subtree outside of which any k consecutive eviction
paths will never overlap.

• The eviction subtree (EST) is a subtree of the write-
only tree containing the root and the buckets overlapping
between any k paths corresponding to consecutive evic-
tions allowed to execute in parallel. For k consecutive
evictions executing in parallel, the height of the EST is
h = log k + 1 (Section V-B). Figure 2 shows an example
EST with 4 parallel evictions.

• Fine-grained locking for eviction subtree access. Ac-
cesses to the eviction subtree constitute the critical section
of the processing phase and is protected by a mutex,
namely the processing lock. These accesses must be
performed atomically by a single eviction client at a time.
Multiple evictions can execute the rest of the steps of the
processing phase in parallel.

Insight 5: Asynchronous Commits. Updates performed in
the critical section of the processing phase determine the
behavior of future evictions and queries. An eviction that
enters the critical section uses results generated by previous
evictions. Thus, if commits are serialized based on the order
in which evictions enter the critical section, additional syn-
chronization is not necessary to ensure consistency of data
structures. However such fully serialized commits may result
in unnecessary and prolonged waits.

To further increase parallelism, ConcurORAM allow asyn-
chronous eviction commits. Concurrent evictions can commit
in any order. To enable this, information from each eviction
is securely persisted server-side and reconciled later when all
preceding clients in the serial order also finish their commits.
This is facilitated using an oblivious data structure:

• The StashSet is similar in design and functionality to
the DR-LogSet. In particular, the StashSet stores the
temporary stashes for out-of-order commits. Critically,
the StashSet also allows oblivious queries – clients can
efficiently query for particular blocks in the StashSet
without leaking to the server: (i) the identity of the block,
and (ii) the last access time of the block..

V. TECHNICAL DESCRIPTION

Notation. The server stores N blocks of data, with logical
address in [0, N−1]. A real data block with logical address id
is denoted by bid. Dummy blocks are assigned addresses (just
for reference) outside the address space of real data blocks.
A dummy block with address i is denoted as di. Once a data
block is retrieved from the server, it is uploaded back only
after re-encryption with fresh randomness.
Temporary Identifiers. Prior to execution, both queries
and evictions are assigned temporary identifiers, which are
extensively used for synchronization without inter-client com-
munication (as will be discussed later). Specifically

• Query identifier: Each query in a round is logically
identified by a unique query identifier 0 ≤ i ≤ c − 1.
The query identifier reflects the order in which the
queries start execution by appending an entry to the query
log. Clients learn their query identifiers prior to query
execution from the query log.

• Eviction identifier. ConcurORAM synchronizes evictions
based on the critical section. Specifically, the order in
which evictions execute the critical section, is also used
for ordering the commits, for the sake of consistency.
For this, a processing counter, is stored server-side to
track the number of evictions that have executed the
critical section since initialization, . While in the critical
section, an eviction reads the value of this processing
counter, which becomes its temporary eviction identifier.
Before exiting the critical section, the processing counter
is incremented.

A. DR-LogSet

The DR-LogSet is used to store and privately query DRLs
generated by previous query rounds until an eviction can write
back contents to the data tree. The DR-LogSet includes the
current DRL (of size c), and k ≤ c DRLs generated by rounds
of queries that finished execution while an eviction was being
performed in the background.

• Bigentry logs. Except for the current DRL, all other
previously generated DRLs are stored in the DR-LogSet
as “bigentry logs” of size 2 · c – each bigentry log is
composed of a random permutation of the (re-encrypted)
blocks of a previously generated DRL combined with an
additional c random dummy blocks. Dummy blocks are
assigned identifiers from 0 to c− 1.

• Temporal ordering & log identifiers. Bigentry logs are
ordered by ascending insertion time and assigned identi-
fiers, l0, l1, . . . , lk−1, with lk−1 being the ID of the log
inserted most recently.

7



Algorithm 1 readLogSet(id)

1: Read current DRL
2: i← Current DRL size
3: for j ∈ [k, k − 1, . . . , 1] do
4: index blk ← Read search index for lj
5: if id ∈ index blk then
6: if id /∈ DRL then
7: Read bid from lj
8: Remove id from index blk
9: else

10: Read dummy block di from lj
11: Remove bid from index blk

12: else
13: Read the di dummy block from lj

14: Reencrypt and write back index blk

Algorithm 2 writeLogSet(blk, i)

1: blk ← Queried block to be appended to DRL
2: Append encrypted blk to current DRL
3: Read li from DR-LogSet
4: li.reshuffle(rand)
5: Write back li to temporary workspace
6: if i = c− 1 then
7: if less than c bigentry logs in DR-LogSet then

(Create new bigentry log)
8: j ← Number of logs in the DR-LogSet
9: Initialize lj+1 with size 2c blocks

10: lj+1 = blk + drlcurr + dummy
11: lj+1.reshuffle(rand)
12: Append search index to lj+1

13: Reencrypt and write back lj+1 to the DR-LogSet
14: Initialize empty DRL for new round of queries
15: else

(Wait until next eviction commit)

• Search index: A search index is appended to each bi-
gentry log to allow retrieval of specific blocks efficiently.
This is simply an encrypted list of block IDs ordered
by their corresponding positions in the bigentry logs.
Due to small-sized entries, the list is small and can be
downloaded entirely per access to determine the location
of real/dummy blocks in a particular bigentry log.

Querying the DR-LogSet. The readLogSet(id) (Algorithm
1) protocol takes as input the logical ID id of the block being
queried and performs the following steps

1) Read the current DRL.
2) Privately query bigentry logs: Read one block each from

the bigentry logs in descending order of log ID – recent
logs before old ones.

a) If the queried block ID id is present in a bigentry log
as determined from the corresponding search index.
and the block is not present in the current DRL, it is
retrieved from the bigentry log and ID id is removed
from its search index..

b) If the block is also present in the current DRL, a
dummy block di is read from the bigentry log and id
is removed from the search index.

c) If the queried block is not in the bigentry log, a dummy
block di is read.

Periodic Shuffling. The intuition behind the query protocol
is to ensure that the server does not learn the identity of the

block being queried. Since each of the bigentry logs contains c
dummy blocks, they need to be shuffled once every c accesses
thus ensuring that it does not run out of unique dummy blocks.
This is performed efficiently in the background as part of an
update which reshuffles and writes-back a bigentry log to a
temporary write-only workspace on the server. The reshuffled
bigentry logs in the workspace replace the old versions in the
DR-LogSet after a round of c queries (as part of the query
protocol, Section V-G).
Updating the DR-LogSet. The writeLogSet(blk) (Algorithm
2) protocol takes as input: i) the block blk that needs to be
appended to the current DRL, and ii) the client query identifier
i, and performs the following steps

1) Append blk to the current DRL
2) Reshuffle specific bigentry log: Each bigentry log is

uniquely identified by its ID li, 0 ≤ i < c. Each
client registering a new query in the query log is also
uniquely identified in the current query round by its query
identifier. The client with query identifier i reshuffles the
bigentry log identified by ID li

3) Create new bigentry log: If this update is performed as
the last query in a round of c queries, the client initializes
a new “bigentry log” with 2 · c blocks. The block queried
by the client and the up-to-date blocks from the current
DRL are added to the newly created bigentry log while
filling up the remaining part with dummy blocks.

Data blocks of the DR-LogSet bigentry logs are eventually
evicted to the data tree by future evictions. Specifically, once
the current eviction completes, the next eviction will evict
blocks from the “oldest” bigentry log. Therefore, if the DR-
LogSet already contains c bigentry logs, a new log cannot be
added until at least one eviction is completed.
Obliviousness. The DR-LogSet query protocol (Algorithm
1) ensures that the server does not learn: i) the identity of the
block being queried, and ii) the last access time of the block.

• A block is read from each of the bigentry logs, in a
specific order, regardless of the bigentry log that actually
contains the block. Due to the random permutation of
blocks in each bigentry log, the block read from each log
appears random to the server.

• Blocks that have been read once from a bigentry log,
have their corresponding entries removed from the search
index. Indices are updated client-side and encrypted with
semantic security, preventing the server from learning
which entry has been removed. As a result, the same
block is not read from the same bigentry log ever again.

• Due to the round robin reshuffling,, a bigentry log is
accessed c times before it is replaced by an independently
reshuffled version of the log (unless the bigentry log is
cleared by an eviction before). As each log contains c
dummy blocks, a different dummy block can be read for
each of the c accesses before the next reshuffle.

Theorem 1. The accesses to the DR-LogSet produce tran-
scripts that are indistinguishable and independent of the block
that is being queried.

8



Proof available in full version [2].

B. Eviction Subtree

Reverse Lexicographical Ordering of Leaf Identifiers. Re-
call from Section IV that evictions are performed to paths
in the data tree in reverse lexicographical order of their
corresponding leaf IDs. Intuitively this results in all N paths
of the tree being selected once before the same path is selected
again for eviction. ConcurORAM stores a global counter, ctr,
tracking the number of evictions that have been executed since
initialization, and the next k successive evictions are to paths
that have reverse lexicographical representations matching the
binary representations of v = (ctr + 1) mod N, . . . (ctr +
k) mod N respectively. Let these paths be p1, p2, . . . , pk.

Since each path is represented by a unique lexicographical
representation, any k consecutive eviction paths are deter-
ministic. Further, if only these k evictions are allowed to
execute in parallel, then the overlaps between the paths can be
predicted precisely. As we show next, if the maximum number
of consecutive evictions that can be executed in parallel is fixed
at initialization, to say k, we can define a maximal subtree
outside of which the k successive eviction paths will never
overlap in the write-only tree. We first present a related result.

Theorem 2. The length of the longest common suffix between
the binary representations of any k ≤ N/2 consecutive
integers selected from the integer modulo group of N , i.e.
{0, 1, . . . , N − 1}, is bounded by log k.

Proof available in full version [2].
By Theorem 2, given any two values within the next k con-

secutive values of v, say v1 and v2, the binary representations
of v1 and v2 cannot have a common suffix of length greater
than log k. On further introspection, it can be observed that the
length of the longest common suffix between v1, v2, . . . , vk,
corresponds to the levels of the tree where the correspondingly
chosen k eviction paths, p1, p2, . . . pk can possibly intersect.

In effect, k parallel evictions to paths determined by the
reverse-lexicographical ordering of leaf IDs that started in
succession, can overlap with each other on at most the first
log k + 1 levels of the tree.

Definition 1. The eviction subtree (EST) is a full binary tree
of height h = log k + 1, where k is the maximum number of
consecutive evictions that are allowed to execute in parallel
at any given time, such that the root of the write-only tree is
also the root of the eviction subtree

Critical section: Importantly, while writing back to the write-
only tree, updating the EST and uploading the temporary stash
is the critical section and is performed atomically by only one
eviction at a time, enforced by a mutex (processing lock). The
rest of the path can be updated asynchronously.
Fixing the Number of Parallel Evictions. ConcurORAM
fixes the maximum number of consecutive parallel evictions
that can be executed at a time, k ≤ N/2, during initialization.
For e.g., if e1, e2, . . . , ek are the k consecutive evictions
that are executing currently, then, eviction ek+1 cannot start

Algorithm 3 Evict.Process

1: ctr ← eviction counter
// Update eviction log

2: Read eviction log
3: if (ctr − k) /∈ eviction log then
4: EvictionLock.lock
5: Append ctr to eviction log
6: EvictionLock.Unlock
7: else
8: Wait for eviction ctr − k to finish

// Processing Stage 1
9: path←WriteOnlyTree.readPath(ctr)

// Processing Stage 2 (Critical section)
10: ProcessingLock.lock
11: i← Temporary eviction ID
12: Read TempStashi−1

13: BucketsFromEST ← Read Buckets from EST that intersect with
path

14: path.UpdateBuckets(BucketsFromEST )
15: union = TempStashi−1 +DRL+ path
16: path = union.EvictToPath
17: TempStashi ← Blocks left in union+ dummy
18: Write back TempStashi

19: for bkt ∈ path.Buckets do
20: if bkt ∈ EST then
21: Write bkt to write-only tree
22: ProcessingLock.Unlock

// Processing Stage 3
23: WriteOnlyTree.write(path, ctr)

Algorithm 4 Evict.SyncCommit(i)

1: QueryLock.lock
2: Update position map and metadata on data tree path
3: Copy EST buckets from client-side cache to data tree
4: Copy remaining buckets on eviction path from write-only tree to data tree
5: Stash = TempStashi

6: Clear query log
7: Clear bigentry log from DR-LogSet
8: QueryLock.Unlock

execution until eviction e1 completes The value of k will
usually be determined by the system load and in general can
be set equal to the query log/DRL size (c). Without inter-client
communication, one way to achieve this is by maintaining a
server-side log of all ongoing evictions. Specifically,

• Eviction log. The eviction log stores information about
all currently ongoing evictions. Prior to execution, an
eviction client reads the eviction log and appends an
entry, only if its eviction path does not overlap outside the
write-only tree with any of the ongoing evictions. When
an eviction commits, the entry from the eviction log is
removed. Accesses to the log are synchronized using a
mutex, namely the eviction lock. It may be evident that
the eviction log performs the same role as the query log.

C. Parallel Eviction Processing

Processing Protocol. The parallel eviction processing proto-
col (Algorithm 3) includes the following steps

1) Stage 1 – Read the non-EST buckets on the eviction path
from the write-only tree.

2) Stage 2 – A critical section which requires acquiring the
processing lock. It includes the following substeps

9



a) Read the temporary stash uploaded by the evic-
tion that last executed the critical section, denoted
TempStashi−1, separately maintained on the server.

b) Read buckets in the EST along the eviction path from
the write-only tree.

c) Write back updated EST buckets along the eviction
path, and the new temporary stash, TempStashi.

3) Stage 3 – Write back non-EST buckets on the eviction
path to the write-only tree.

Processing Cost.
• Non-blocking stages: Stage 1 and Stage 3 read and write

back O(logN) buckets along the eviction path (excluding
the small number of EST buckets) on the write-only tree.
As discussed in Section IV-A, buckets contain O(logN)
blocks. Thus, Stage 1 and 3 both feature an asymptotic
access complexity of O(log2 N) blocks. Note that these
steps can be performed in parallel without blocking
queries and other ongoing evictions.

• Critical section: Only one eviction can execute in stage 2
at a time. This includes reading and writing back buckets
along a path from the eviction subtree. The height of the
eviction subtree is log k + 1 (Section V-B). The overall
asymptotic access complexity of this stage is O((log k +
1)·logN) blocks. This is significantly less expensive than
Stage 1 and 2 for realistic deployment scenarios. In fact,
stage 2 becomes expensive only when N parallel eviction
are allowed to execute in parallel!

D. Synchronous Commits

Before describing the more complex asynchronous com-
mit mechanism, we present a relatively simple design for
synchronous commits – evictions commit in the order in
which they execute the critical section. The challenge here
is to persist eviction-specific changes to the eviction subtree.
Specifically after an eviction writes to the eviction subtree,
subsequent evictions that execute in the critical section can
overwrite these contents before the eviction commits. If the
contents of the eviction subtree are directly copied to the data
tree as part of the commit, this may lead to inconsistencies.

One possible solution is to locally cache the changes to the
eviction subtree in a client-side cache, and use this to update
the contents of the data tree during commits. Specifically, the
client-side cache includes: i) buckets in the eviction subtree
written in Stage 2 of the processing protocol, and (ii) the
temporary stash created during eviction.
Synchronous Commit Protocol. The synchronous commit
protocol (Algorithm 4) uses the temporary eviction identifier,
i, of the eviction and performs the following ordered steps

1) Update the position map and eviction path metadata.
2) Copy contents of the eviction subtree buckets from the

client-side cache to the data tree.
3) Copy remaining eviction path from the write-only tree to

the data tree.
4) Set the temporary stash from the client-side cache as the

stash of the data tree.

5) Clear the query log and the bigentry log corresponding
to the eviction from DR-LogSet.

Updating Bucket Metadata. Metadata on the data tree path
is updated during a commit, while accounting for the current
state of the bigentry logs in the DR-LogSet. Specifically,
as blocks from a bigentry log are evicted to the write-only
tree during eviction processing, some blocks in the log may
be accessed by queries executing in the background. Since,
there are more recent copies of these blocks in other bigentry
logs, the old copies should not be made available for queries.
Subsequent queries for these blocks can access the upto-to-
date copies from the more recently created bigentry logs.

Observe that these blocks will already be on the eviction
path in the write-only tree by the time an eviction commits. As
a result, these blocks will also be included when the contents
of the eviction path are copied from the write-only tree to the
data tree during the commit.

Instead of explicitly removing these blocks by re-scanning
the entire eviction path, which will certainly be expensive,
ConcurORAM indirectly invalidates these blocks by not updat-
ing their corresponding metadata and position map entries on
the data tree path. Consequently, old copies are inaccessible
to queries (which reads the position map first to locate a
particular block) and are removed from the eviction path
during later evictions (using the metadata entries on the path).

Finally, recall that once a block has been accessed from
a bigentry log, its corresponding entry is removed from
the search index. The search index allows ConcurORAM to
identify blocks that have been accessed from the bigentry log
while the eviction was executing.

E. StashSet

Storing and Privately Querying Temporary Stashes. With
synchronous commits (Section V-D), the temporary stash
created by an eviction can straightforwardly replace the main
stash and satisfy future queries after the commit. However,
this is not the case when evictions commit asynchronously.

For example, consider an ordering of evictions established
by the execution of the critical section, ei−1 < ei < ei+1.
Also, let ei+1 commit when ei−1 has committed but ei is yet
to commit. In this case, contents that are evicted to a path, pi
by ei from the temporary stash created by ei−1 (denoted by
TempStashi−1), will not be available for queries until pi is
updated in the data tree. Thus, replacing TempStashi−1 with
TempStashi+1 as the main stash will lead to data loss.
StashSet. To overcome this, instead of storing a single
stash, ConcurORAM stores a set of temporary stashes which
were created and uploaded by evictions that have committed
asynchronously before previous evictions could be completed.
The StashSet is structurally similar to the DR-LogSet and
contains k ≤ c temporary stashes, organized as follows

• Temporary stashes: Each temporary stash contains upto
MaxStashSize real blocks and at least c dummy blocks,
where MaxStashSize is the stash size determined accord-
ing to [12]. Blocks are encrypted and randomly shuffled.

10



• Search index: A search index (list of block IDs) tracks
the location of real and dummy blocks. The entire (small-
sized) search index is downloaded per access.

• Temporary stash identifier: The temporary stashes in the
StashSet are identified by the temporary eviction identi-
fiers of evictions that created the stashes. For example, if
the eviction with temporary eviction identifier k created
a temporary stash currently in the StashSet, then the
temporary stash is identified as TempStashk

Each temporary stash is periodically reshuffled (exactly
once every c accesses) to ensure that unique dummy blocks
are available for each access. As in case of the DR-LogSet,
the reshuffled versions of the temporary stashes are written to
a temporary write-only workspace. The reshuffled temporary
stashes in the workspace replace the old versions in the
StashSet after c queries (as part of queries, Section V-G).

Algorithm 5 readStashSet(id, i)

1: Read Stash
2: for TempStashj ∈ StashSet do
3: index blk ← Read index for TempStashj

4: if id ∈ index blk and id not already found then
5: Read bid from TempStashj

6: else
7: Read di from TempStashj

8: TempStashi ← Read ith temporary stash
9: TempStashi.reshuffle(rand)

10: Write-back TempStashi to temporary workspace

Querying the StashSet. readStashSet (Algorithm 5) takes
as input: i) the logical address id of the block to query, and
ii) the client query identifier i and performs the following

1) Read current Stash.
2) Privately query temporary stashes: Read one block each

from the temporary stashes in descending order of tem-
porary stash identifiers
• Determine if id ∈ index block of TempStashj

• If bid ∈ TempStashj , then read bid
• Otherwise, read dummy di.

3) Reshuffle temporary stash, TempStashi.

Obliviousness. readStashSet ensures that the server does not
learn: i) the identity of the block being queried, and ii) the
last access time of the block.

• One block is read each from each of the temporary stashes
in a specific order, regardless of the temporary stash that
actually contains the required block. This prevents the
server from learning when the block was added to the
StashSet. Due to the random permutation of blocks, the
(encrypted) block read from a temporary stash appears
random to the server.

• Within a single round of c queries, there can be only one
query for a particular block b since if two parallel clients
want to access the same block, only one client issues a
real query while the other client issues a dummy query.

• Each stash contains at least c dummy blocks, therefore
unique dummy blocks can be read for each of the c

accesses in a single query round from a temporary stash
before a random reshuffle breaks correlations.

Theorem 3. The accesses to the StashSet produce transcripts
that are indistinguishable and independent of the block that is
being queried.

Proof available in full version [2].

F. Asynchronous Eviction Commits

Algorithm 6 Evict.AsyncCommit(i)

1: QueryLock.lock
2: Update position map and metadata on data tree path
3: for bkt ∈ EST do
4: if bk.timeStamp < i then
5: Copy bkt from client-side cache to data tree
6: Copy remaining buckets on eviction path from write-only tree to data tree
7: Add TempStashi to StashSet
8: Clear query log
9: Clear bigentry log from DR-LogSet

// Replace main stash with the temporary stash if this eviction executed
the critical section earliest

10: if i < j,∀j ∈ StashSet then
11: Stash = TempStashi

12: QueryLock.Unlock

The asynchronous commit protocol (Algorithm 6) uses the
temporary eviction identifier, i, and performs the following

1) Update the position map and metadata on data tree path.
2) Sync data tree:

• Copy contents of EST buckets from client-side cache
to data tree – One critical difference here from the
synchronous protocol (Algorithm 4) is that instead
of copying all the EST buckets from the client-side
cache to the data tree, only a part of the path may
need to be updated based on the state of commits.
This is because a subset of the EST buckets may
have been already updated by more recent evictions
that accessed the critical section later, but committed
earlier. These buckets are in their most recent state and
need not be updated during the commit. Buckets can be
identified by storing the temporary eviction identifier
of the eviction that last updated the bucket as part of
the bucket metadata.

• Copy remaining eviction path from write-only tree to
data tree.

3) Add temporary stash to the StashSet.
4) Clear the query log and the bigentry log corresponding

to the eviction from the DR-LogSet.
5) If required, set the temporary stash as the main stash:

If this eviction executed the critical section before all
other ongoing evictions, then set the temporary stash as
the main stash. This ensures synchronous updates to the
main stash – evictions update the main stash in the order
in which they execute the critical section.

Commit Cost.
• Updating metadata: Due to the small metadata size

(O(log2 N) bits [12]), updating metadata along the evic-

11



Algorithm 7 query(id)

1: QueryLock.lock
2: Read query log
3: if id ∈ query log then
4: Append dummy entry to query log. // Dummy accesses in next steps
5: else
6: Append id to query log.
7: QueryLock.Unlock
8: i← QueryLog.length%c // query identifier
9: stash← readStashSet(id, i)

10: leafID ← PM.read(id)
11: path← DataTree.readBlocksFromPath(leafID)

// Request order based synchronization
12: BlocksFromLogSet← readLogSet(id)
13: blk ∈ BlocksFromLogSet ∪ path ∪ stash // Required block
14: Update blk for writes
15: writeLogSet(blk, i)
16: if i = c− 1 then
17: // Replace all bigentry logs in the DR-LogSet with their reshuffled

versions in the temporary workspace
18: // Replace all temporary stashes in the StashSet with their reshuffled

versions in the temporary workspace
19: Initialize new query log for future queries.

tion path in the data tree has an overall asymptotic access
complexity of O(logN) blocks.

• Upadating position map: With the position map stored in
a PD-ORAM [16], an update has an overall asymptotic
access complexity of O(logN) blocks.

• Committing changes to EST: Committing changes to the
eviction subtree from the client-side cache has an overall
access complexity O((log k+1)·logN) blocks. A simple
optimization here is to store the contents of the client-side
cache on a designated server-side cache. In that case,
committing these changes will only include server-side
copies, independent of the network bandwidth.

• Server-side operations: The commit also copies data and
swaps references for several server-side data structures –
this adds negligible bandwidth overhead.

G. Query Protocol

The parallel query protocol (Algorithm 7) includes:
1) Read and append entry to the query log.
2) Query position map.
3) Query StashSet (Algorithm 5).
4) Read path from data tree.
5) Request order based synchronization: The client waits for

previous clients (that registered their query before in the
current query round) to finish their queries.

6) Query and update DR-LogSet. (Algorithm 1, 2)

Theorem 4 (Correctness). The most up-to-date version of a
block is found by queries either on the path indicated by the
position map, in the StashSet or in the DR-LogSet.

Theorem 5 (Query Privacy). The query protocol (Algorithm
7) produces indistinguishable access transcripts that are in-
dependent of the item being accessed.

Proofs available in full version [2].
Resolving Conflict Between Queries and Commits. Note
that both the asynchronous commit protocol (Algorithm V-F)

and the query protocol (Algorithm V-G) must first acquire the
query lock in Step 1. Without explicit synchronization between
the clients, this can lead to race conditions and indefinite waits.
To resolve this, ConcurORAM enforces two simple policies

• Commits do not preempt queries. Once a query starts
execution by registering an entry in the query log in Step
2, it completes all the steps before an eviction commit
can acquire the query lock. Specifically, when an eviction
wants to commit, it checks the number of queries that
have started execution (size of the query log) and the
number of queries that have completed (size of the current
data result log). If there are pending queries, the eviction
waits for them to finish before acquiring the query lock.

• Queries wait for commits to bound the DR-LogSet. As a
result of the above condition, eviction commits may have
to wait indefinitely. To prevent this, before a query begins
execution it checks the number of bigentry logs pending
eviction in the DR-LogSet. If the the DR-LogSet is full
(already contains c bigentry logs), it waits for a commit.

Query cost. In addition to a position map query (O(logN)
blocks) and reading a block from each bucket along a path in
the data tree (O(logN) blocks), queries also read

1) The current stash of size MaxStashSize blocks.
2) The current DRL of size c blocks.
3) One block from each DR-LogSet bigentry log.
4) One block from each StashSet temporary stash.
5) One bigentry log to reshuffle.
6) One temporary stash to reshuffle.
MaxStashSize ∈ O(logN) blocks [12] and as both the DR-

LogSet and StashSet can contain a maximum of c bigentry
logs/temporary stashes, 2 · c blocks are read in total for steps
3 and 4. Each bigentry log contains 2 · c blocks and each
temporary stash has MaxStashSize+c blocks. Thus, Step 5 and
6 have an overall access complexity of O(logN + c) blocks.
The overall query access complexity is O(logN + c) blocks.

VI. EXPERIMENTS

Implementation. ConcurORAM has been implemented in
Java. We thank the authors of TaoStore [13] and PrivateFS
[16] for providing their implementations for comparison.
Experimental Setup. For all experiments, the server runs
on a storage optimized i3.4xlarge Amazon EC2 instance (16
vCPUs and 4x800 GB SSD storage). Clients/proxy run on:

• Bandwidth-constrained scenario: 4 Linux machines on
the local network, with Intel Core i7-3520M CPU running
at 2.90GHz, 16GB DRAM. The server-client bandwidth
is measured as 7MB/s using iperf [9].

• High-bandwidth scenario: Clients run on run on t2.xlarge
instance with 4 vCPUs and 16GB of RAM, within the
same VPC as the server. In this case, the link bandwidth
is measured to be 115MB/s.

A. Asynchronous Accesses for Stateless Client

To better understand the benefits of asynchronous accesses
in a stateless client setting, we first implemented a version

12



0 200 400 600 800

0

20

40

60

80

100

Query Response Time > x ms

Pe
rc

en
ta

ge
of

Q
ue

ri
es

Baseline
Background Evictions

(a) Query response time distribution. Evictions
after 8 queries (c = 8)

0 200 400 600 800

0

20

40

60

80

100

Query Response Time > x ms

Pe
rc

en
ta

ge
of

Q
ue

ri
es

Baseline
Background Evictions

(b) Query response time distribution. Evictions
after 32 queries (c = 32)

Fig. 5: (a) The baseline implementation with serial queries and evictions has higher query response times as queries are blocked during evictions. Background
evictions bound query response time better. (b) Background evictions remain largely unaffected by the frequency of eviction and help to upper-bound query
response times better as evictions become more expensive to support higher eviction frequency

0 5 10 15 20 25 30

0

20

40

60

Number of Parallel Clients

Q
ue

ry
T

hr
ou

gh
pu

t

ConcurORAM TaoStore PD-ORAM

(a) Query Througput (ops/s). Higher is better. B/W
= 7MB/s. DB size = 20GB.

0 5 10 15 20 25 30

400

600

800

1,000

1,200

1,400

1,600

Number of Parallel Clients

Q
ue

ry
R

es
po

ns
e

Ti
m

e

ConcurORAM TaoStore PD-ORAM

(b) Query Response Time (in ms). Lower is better.
B/W = 7MB/s. DB size = 20GB.

0 20 40 60

0

100

200

300

Number of Parallel Clients

Q
ue

ry
T

hr
ou

gh
pu

t

ConcurORAM TaoStore

(c) Query Throughput (ops/s). Higher is better.
B/W = 115MB/s. DB size = 20GB.

Fig. 6: (a) TaoStore query throughput plateaus at 10 clients due to proxy bandwidth limitations. ConcurORAM overall throughput scales gracefully up to
30 clients achieving a max. query throughput of 65 ops/s. (b) Query response time for TaoStore increases almost linearly with increasing clients as queries
contend for fixed number of proxy threads. Queries from different clients in ConcurORAM and PD-ORAM are independent and thus the query response time
remains unaffected by increasing number of clients. (c) With higher bandwidth ConcurORAM can achieve higher overall throughput and plateau only when
reaching the server-side limits.

of ConcurORAM with serial queries but equipped with the
parallel background eviction support, and compared against
a baseline implementation with no background evictions. All
metadata (position map, stash etc.) are outsourced to the server.

The parameter of interest is the distribution of query re-
sponse times. With serial queries, periodic evictions block
queries for significant periods of time. In fact, less frequent
evictions are not helpful, since this results in a proportional
increase in bandwidth due to enlarged buckets.

Figure 5(a) and 5(b) compare the distribution of query
response times for ConcurORAM with parallel evictions,
against the baseline where evictions are performed serially,
blocking the queries. Background evictions bound the query
response times better while performance is severely affected
by intermittent blocking evictions for the baseline.

B. Parallel Queries with Multiple Clients

We compare parallel query throughput and latency with
prior work [13, 16]. Although TaoStore [13] operates in a
different trust model, we compare nonetheless to demonstrate
the limitations of having a centralized proxy.

If the proxy is over-provisioned, or close to the server (such
as within the same Amazon VPC), TaoStore is capable of
achieving a high query throughput. But this is seldom the case
– an enterprise deploying a (trusted) proxy to route queries will
be more likely to place the proxy within its own protected
network, rather than deploying it in the same network as the
untrusted server, which will at least require trusted execution
guarantees etc. Further, placing the proxy near the server will
improve proxy performance, but will not necessarily translate
to better query throughput for the clients, which will now be
constrained by their own link bandwidths with the proxy.
Query Throughput. Our experiments clearly demonstrate
this phenomenon. Figure 6(a) shows the overall throughput
and the Figure 6(b) shows the average query access times
for up to 30 parallel clients for ConcurORAM, TaoStore and
PD-ORAM. Clients/proxy are run within our local network,
and are thus subject to realistic bandwidth constraints while
interfacing with the EC2 server. To conduct experiments with
a reasonable number of physical machines, we deploy up to 8
client threads from each of the aforementioned local machines.

Both TaoStore and ConcurORAM outperform PD-ORAM

13



due to an asymptotically more efficient (by a factor of
O(logN)) base ORAM. Due to the bandwidth limitations of
the TaoStore proxy, the throughput for TaoStore plateaus at 10
clients. Expectedly, ConcurORAM can support upto 30 clients
without throttling the throughput. At this stage, each of the
client machines runs an approximate 8 threads, utilizing the
full link bandwidth. Clearly, with independent machines, an
even greater number of clients can be supported.
Query Response Time. The query response time for both
PD-ORAM and ConcurORAM remain almost constant as
clients can query independently. On the other hand, the query
response time for TaoStore increases almost linearly with
increasing clients as multiple client queries need to contend for
the fixed number of query threads deployed by the proxy. At
20 clients, the query response time for TaoStore surpasses the
query response time for ConcurORAM. Note that the higher
initial query response time for ConcurORAM is because of
the stateless design – clients must fetch all metadata including
the position map entries and the stash from the server, while
TaoStore benefits from storing all metadata on the proxy.
High Bandwidth Scenario. With higher available bandwidth,
e.g., when clients and server are within the same network,
both ConcurORAM and TaoStore benefit from appreciable
overall throughput increase. (Figure 6(c)). Even in this setting,
ConcurORAM supports a larger number of clients with a
higher overall throughput compared to TaoStore. In fact, as
we measure, the plateau observed at around 60 clients, is
primarily because the large number of client threads throttle
the server-side compute (CPU utilization at 100%) instead
of the bandwidth. With a more compute-optimized server,
ConcurORAM can support a higher number of parallel clients.
Choice of Parameters. In the experiments above, we set
the query round size c = number of parallel clients. Further,
we set the number of consecutive eviction that can execute in
parallel, k = c. This ensures that all bigentry logs in the DR-
LogSet can be evicted to the tree in parallel. Since the value of
c impacts query access complexity (Section V-G), the overall
through plateaus when increasing c (as shown by Figure 6).

In general, c should be determined experimentally based on
network conditions to achieve maximum throughput. With a
large number of parallel clients, it is possible that maximum
throughput is achieved when c < number of parallel clients.
In this case, some parallel queries may need to wait for the
completion of one (or more) query rounds.

VII. EXTENSIONS

A. Fault Tolerance

In the following, we detail how ConcurORAM can proceed
gracefully in the event of system crashes, network failures etc.
Crashes During Queries.

1) Updating the query log (Algorithm 7, Steps 1 - 4): If the
client fails while updating the query log, it will do so
while holding the query lock. After a specified timeout,
other clients can simply proceed with their queries.

2) Prior to adding queried block to DRL (Algorithm 7, Steps
5 - 12): In this case, the client has not yet updated

the current data result log with the result of its query.
Recall that clients that started execution later wait for this
result. After a specified timeout, the next client waiting
for access to the data result log can repeat the query on
behalf of the failed client.
Observe that this does not leak privacy – if a query fails,
the next client (public information), always repeats the
same query after a specified time, resulting in exactly the
same access pattern.

3) Reshuffling the bigentry log and temporary stashes: In
this case, the failed client will not write back to the
temporary workspace. The client that replaces the old
versions with the reshuffled version at the end of a query
round, can perform the required reshuffles.

Crashes During Evictions. Evictions can fail at various
stages, and although specified timeouts will allow the protocol
to proceed, it is important to know whether to roll back
changes and start afresh, or to roll through and continue with
the protocol for the sake of consistency.

• Stage 1: If the eviction fails in stage 1, which only in-
cludes read-only access to the write-only tree, a different
client can takeover and start afresh.

• Stage 2 (critical section): In stage 2, the eviction will fail
while holding the processing lock. As a result, subsequent
evictions waiting for results from the critical section will
not proceed. In case of a crash, the eviction can be
restarted by another client after rolling back the changes
performed in the critical section. Effectively this means
disregarding any changes made in the critical section (to
the EST buckets and temporary stash) by the failed client
and starting afresh.

• Stage 3: At this stage, results generated in the critical
section by the failed evictions may have been used by
subsequent evictions entering the critical section. Thus,
the changes cannot be rolled back. Instead, a different
client can continue with the eviction process. This re-
quires one critical piece of information – the pseudo-
random mapping used by the failed eviction for mapping
blocks in the bigentry logs to new paths in the data tree.
While in the critical section, this information is added
to the eviction log, and can be used later by a different
client for completing the eviction.

• Commits: Another client can perform the commit on be-
half of the failed client with some additional information
– Server-side cache: Firstly, all contents of the client-

side cache which include the temporary stash and
the eviction sub-tree buckets needs to be stored on
the server. This can be used by a different client for
committing updates, in case of a crash.

– Eviction metadata: The client that performs the evic-
tion on behalf of the failed client has to perform several
other tasks. This includes updating the position map for
blocks evicted, updating metadata on data tree path,
and clearing query and data result logs.
To perform these tasks, the client requires the follow-

14



ing additional metadata, which can be stored in the
eviction log while in the critical section: i) the eviction
identifier, ii) the eviction path identifier, iii) the logical
identifiers of the evicted blocks and the paths to which
they are mapped in the data tree, and iv) the identifiers
for the query log and the data result log.

B. Security Against Malicious Server

As a first step, integrity of the server-side data structures
can be ensured using existing techniques e.g., embedding a
Merkle tree in the ORAM tree [14], storing HMACs over the
DR-LogSet, StashSet etc. In a single client settings, the root
of the Merkle tree and the HMACs can be cached client side
and verified for each access. Unfortunately, in a multi-client
setting, these variables need to be stored on the server for
consistency, leaving open the possibility of replay attacks.

Specifically, as pointed out by previous work [16], the
server could simply replay the query log, presenting different
views of ongoing transactions to concurrent clients. As a
result, clients querying for the same block will have the same
resulting access pattern to the server data structures, leaking
inter-client privacy. The server could also replay contents of
the server-side data structure along with the Merkle tree root
hashes, HMACs etc. Without inter-client communication, the
best we can do to prevent this is fork consistency [10] – if
the server selectively replays the states of server-side data
structures and presents different (possibly conflicting) views
of the system to different clients, then these views cannot be
undetectably unified later.
Protecting Against Query Log Replays. Similar to previous
work [16], the key idea here is to store a hash tree over all
previous queries on the server. Specifically, for each query, a
client updates the hash tree with a new leaf record, which
includes: i) the clients’ own unique identifier, and ii) the
logical address of the block queried.

This record (and the updated root hash) is stored client side
and as part of its next query, the client verifies that the record
exists in the hash tree. Since hashes are unforgeable, the server
cannot add a new record to the hash tree and forge the root
hash value in case of forking attacks. Further, the clients’
unique identifiers being included in the record ensures that
even if two clients query for the same block, or update the
same data structure contents (as a result of a forking attack),
the hash records they generate will be different with very high
probability, when using a collision resistant hash function.
Protecting Against Data Structure Replays. Similarly, to
protect against replay of data structure states, a server-hosted
hash tree can record updates to the data structure integrity
variables. This specifically includes the Merkle tree root hash
for the data tree, and HMACs for the DR-LogSet and StashSet.

The client performing updates to the corresponding data
structure stores the record (and root hash) locally and verifies
that the record exists in the hash tree for subsequent accesses.
Using the hash tree, a client can verify the integrity of the
data structures. If the server replays states, the client which
performed the last update will have a different view of the

data structures (root hashes, HMAC values) from the other
clients in the system. These views cannot be merged later on
by the server without being detected.

VIII. CONCLUSION

ConcurORAM is a multi-client ORAM that eliminates
waiting for concurrent clients and allows overall through-
put to scale gracefully with an increase in the number of
clients, without requiring trusted proxies or direct inter-client
coordination. A major insight behind ConcurORAM is the
fact that during data access, only a subset of the server-
hosted data structures require parallel access with privacy
guarantees. Everything else can be implemented as efficient
oblivious data structures that are merged later obliviously
during an ORAM eviction. ConcurORAM benefits from a
novel eviction protocol that enables multiple concurrent clients
to evict asynchronously, in parallel, and in the background
without blocking queries.

IX. ACKNOWLEDGEMENTS
This work is supported by the National Science Foundation

under awards 1526707, 1526102 and by the Office of Naval
Research. We thank our shepherd, Marina Blanton and the
anonymous reviewers for their valuable suggestions.

REFERENCES
[1] E. Boyle, K.-M. Chung, and R. Pass, “Oblivious parallel ram and applications,” in

Theory of Cryptography, E. Kushilevitz and T. Malkin, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2016, pp. 175–204.

[2] A. Chakraborti and R. Sion, “ConcurORAM: High-Throughput Stateless Parallel
Multi-Client ORAM,” ArXiv e-prints, Nov. 2018.

[3] T.-H. H. Chan, K.-M. Chung, and E. Shi, “On the depth of oblivious parallel ram,”
in Advances in Cryptology – ASIACRYPT 2017, T. Takagi and T. Peyrin, Eds.
Cham: Springer International Publishing, 2017, pp. 567–597.

[4] T.-H. H. Chan, Y. Guo, W.-K. Lin, and E. Shi, “Oblivious hashing revisited, and
applications to asymptotically efficient oram and opram,” in Advances in Cryptology
– ASIACRYPT 2017. Cham: Springer International Publishing, 2017, pp. 660–690.

[5] B. Chen, H. Lin, and S. Tessaro, “Oblivious parallel ram: Improved efficiency and
generic constructions,” in Theory of Cryptography, E. Kushilevitz and T. Malkin,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 205–234.

[6] O. Goldreich and R. Ostrovsky, “Software protection and simulation on oblivious
rams,” Journal of the ACM, vol. 43, pp. 431–473, 1996.

[7] T.-H. Hubert Chan and E. Shi, “Circuit opram: Unifying statistically and com-
putationally secure orams and oprams,” in Theory of Cryptography, Y. Kalai and
L. Reyzin, Eds. Cham: Springer International Publishing, 2017, pp. 72–107.

[8] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure on
searchable encryption: Ramification, attack and mitigation,” in in Network and
Distributed System Security Symposium (NDSS), 2012.

[9] E. . L. B. N. Laboratory, Iperf, ”https://iperf.fr/”.
[10] D. Mazières and D. Shasha, “Building secure file systems out of byzantine storage,”

in Proceedings of the Twenty-first Annual Symposium on Principles of Distributed
Computing, ser. PODC ’02. New York, NY, USA: ACM, 2002, pp. 108–117.

[11] K. Nayak and J. Katz, “An oblivious parallel ram with o(log2 n) parallel runtime
blowup,” IACR Cryptology ePrint Archive, vol. 2016, p. 1141.

[12] L. Ren, C. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. van Dijk, and S. Devadas,
“Constants count: Practical improvements to oblivious RAM,” in 24th USENIX
Security Symposium (USENIX Security 15). Washington, D.C.: USENIX Associ-
ation, 2015, pp. 415–430.

[13] C. Sahin, V. Zakhary, A. E. Abbadi, H. Lin, and S. Tessaro, “Taostore: Overcoming
asynchronicity in oblivious data storage,” in 2016 IEEE Symposium on Security and
Privacy (SP), May 2016, pp. 198–217.

[14] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas, “Path
oram: An extremely simple oblivious ram protocol,” in Proceedings of the 2013
ACM SIGSAC Conference on Computer &#38; Communications Security, ser. CCS
’13. New York, NY, USA: ACM, 2013, pp. 299–310.

[15] P. Williams, R. Sion, and B. Carbunar, “Building castles out of mud: Practical
access pattern privacy and correctness on untrusted storage,” in Proceedings of the
15th ACM Conference on Computer and Communications Security, ser. CCS ’08.
New York, NY, USA: ACM, 2008, pp. 139–148.

[16] P. Williams, R. Sion, and A. Tomescu, “Privatefs: A parallel oblivious file system,”
in Proceedings of the 2012 ACM Conference on Computer and Communications
Security, ser. CCS ’12. New York, NY, USA: ACM, 2012, pp. 977–988.

15


