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Abstract—Machine learning empowers traffic-analysis attacks
that breach users’ privacy from their encrypted traffic. Recent
advances in deep learning drastically escalate such threats. One
prominent example demonstrated recently is a traffic-analysis
attack against video streaming by using convolutional neural
networks. In this paper, we explore the adaption of techniques
previously used in the domains of adversarial machine learning
and differential privacy to mitigate the machine-learning-powered
analysis of streaming traffic.

Our findings are twofold. First, constructing adversarial
samples effectively confounds an adversary with a predetermined
classifier but is less effective when the adversary can adapt to the
defense by using alternative classifiers or training the classifier
with adversarial samples. Second, differential-privacy guarantees
are very effective against such statistical-inference-based traffic
analysis, while remaining agnostic to the machine learning clas-
sifiers used by the adversary. We propose two mechanisms for
enforcing differential privacy for encrypted streaming traffic, and
evaluate their security and utility. Our empirical implementation
and evaluation suggest that the proposed statistical privacy
approaches are promising solutions in the underlying scenarios.

I. INTRODUCTION

Machine learning (ML) leverages statistical techniques to
enable computer systems to learn from data and act based on
inferences without being explicitly instructed. The application
of ML in security has made possible many broadly adopted
defense techniques, such as intrusion detection, spam filtering,
biometric recognition, and malware detection. However, when
used with malicious intentions, ML also empowers notable
attacks. One such example is the traffic-analysis attack.

Encryption is a widely used approach to protecting the
confidentiality of network traffic. For example, HTTPS traffic
encrypts the HTTP headers and payloads inside the SSL
record protocol, hiding the HTTP semantics (e.g., path of
the requested resources) from external observers. Moreover,
users may choose to use VPN or Tor to further hide (through
encryption) the destinations of the web traffic. Traffic analysis,
or more specifically website fingerprinting, aims to breach
users’ privacy by inferring the HTTP semantics (in the case of
SSL) or visited websites (in the cases of VPN and Tor) from
the encrypted traffic. What enables such attacks is machine
learning. By learning from patterns of encrypted traffic to/from
known web pages, the ML algorithm can classify unidentified
traffic with reasonable accuracy. With the recent development

of deep learning, such traffic analysis has become more power-
ful, invalidating many previously established defenses against
traditional machine learning [60].

A recent study by Schuster et al. [55] further extended
traffic analysis to SSL or QUIC encrypted video streaming
services. They demonstrated that due to the uniqueness of
the packet burst patterns of the encrypted video streams, the
adversary is able to classify the encrypted video streaming
with very high accuracy (e.g., 99% for Youtube videos).
Consequently, online video streaming is no longer private from
a network observer, regardless of the encryption technology
used in the protocols.

Relationship to side-channel attacks. Traffic analysis is a
type of side-channel attack, i.e., a method to leverage uncon-
ventional means to infer sensitive information in a computer
system. Generally speaking, in side-channel attacks, the ad-
versary may learn secrets of a system or an application that
are otherwise well protected, by observing traces (e.g., timing,
power, or resource usage) of its execution. Although not all
side-channel attacks rely on ML, this technology does enable
some attacks that are otherwise impossible [13], [16], [36],
[48], [73], [74].

With increasing learning capacity, the security threats un-
leashed by these techniques grow rapidly, which calls for
more effective defenses. In this paper, we use streaming traffic
analysis as a motivating example and explore generic solutions
to these ML-powered attacks.

Learning from adversarial machine learning. Inspired by
the recent advances in adversarial machine learning, we first
explore the use of adversarial samples to defeat ML adver-
saries. Unlike the common use of adversarial ML, where the
attacker crafts samples deliberately aiming to defeat ML-based
defenders, we consider the inverse use of such techniques. We
exploit adversarial ML techniques to construct noised samples
to thwart ML adversaries. In particular, we utilize the Fast
Gradient Sign Method (FGSM) to generate adversarial samples
to confuse a convolutional neural network (CNN) classifier,
and successfully reduce the accuracy of the classification.
However, our results show that adversarial ML techniques are
not robust: by choosing a different ML algorithm or training
the CNN classifier with adversarial samples, the adversary who
aims to perform traffic analysis on encrypted streaming packets
to extract sensitive information can still do so, as indicated by
the high classification accuracy after making these changes.

Adapting differential privacy as security defenses. The
failure in the adoption of adversarial samples to defeat stream-
ing traffic analysis motivated us to seek more principled
solutions to counter such a powerful adversary. Inspired by
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Xiao et al. [72], who exploit d∗-privacy—a variant of dif-
ferential privacy—to insert random noise to disturb storage
side channels in procfs, we seek to apply a similar prin-
ciple as a defense against traffic-analysis attacks. However,
compared with differentially private procfs proposed by
Xiao et al., applying differential privacy on network traffic is
fundamentally different as traffic analysis is non-interactive. In
contrast, attacks leveraging procfs are interactive, because
the statistical database is constructed as the attacker queries
procfs. Thus the Laplacian noise can be inserted in the
return values of the procfs queries. Differentially private
streaming traffic needs to be applied proactively to the entire
data streams. The approach to do so and its effectiveness
with regard to security guarantees and utility loss (i.e., low
bandwidth overhead and small amount of lags) is uncertain.

To enforce differential privacy on streaming traffic, we
adapt two mechanisms: FPAk and d∗. Fourier Perturbation
Algorithm (FPAk) [52] is a differentially private mechanism
that answers long query sequences over correlated time series
data in a differentially private manner based on the Discrete
Fourier Transform (DFT). The d∗-private mechanism extends
the mechanism from Chan et al. [11] and applies Laplacian
noise on time series data. We evaluate both mechanisms in re-
gards to security and utility. Our evaluation results suggest that
with proper choice of parameters, both mechanisms defeat—in
a sense that it reduces the classification accuracy to the baseline
accuracy of random guessing—all types of classifiers that are
trained with either the original data or the noised data. With the
same parameters, we also show that the utility metrics, defined
as waste and deficit, are moderate. We further compare FPAk
with a baseline defense mechanism. The result suggests that
the waste induced by FPAk is at least one order of magnitude
lower than the baseline approach.

To demonstrate the practicality, we implement the FPAk
privacy mechanism in a Chrome extension that proxies the
Youtube streaming between the browser and the server. The
implementation makes use of the Xhook [25] framework,
which intercepts and modifies XMLHttpRequest(XHR) re-
quests and responses. It also utilizes the numjs [44] library
and the Random library in SIM.JS [42] for noise injection.
Our evaluation suggests that the extension completely renders
the attacks proposed by Schuster et al. [55] ineffective.

Contributions. This paper makes the following contributions:

• We demonstrate the first attempt to use adversarial ML
for defeating streaming traffic analysis, and explore its
limitations.

• We develop two mechanisms for enforcing differential
privacy for time-series data, and apply them to protect
streaming traffic.

• We perform an extensive evaluation on the two differen-
tially private mechanisms, in terms of both security and
utility.

• We develop a browser extension which integrates one of the
defense mechanisms, and the evaluation shows promising
results.

Besides defeating streaming traffic analysis, the techniques
proposed in this paper also shed light on defenses against

website fingerprinting attacks and generic side-channel attacks
that rely on ML. Our study has provided an important piece of
evidence suggesting that the differential privacy is a promising
solution to ML-enabled inference attacks.

Roadmap. The rest of the paper is organized as follows.
Sec. II summarizes the background knowledge needed in the
paper. Sec. III presents a motivating example of identifying
video streams. Sec. IV describes an approach of generating
adversarial samples to defeat traffic analysis, demonstrat-
ing its effectiveness and limitations. Sec. V proposes two
differentially-private mechanisms for streaming traffic, and
provides the basic attack model assumed in the paper. The
two methods are evaluated in Sec. VI in regards to security
and utility. Sec. VII demonstrates the implementation of a
real-world Chrome extension and how it can effectively defeat
the traffic analysis attacks. Sec. VIII discusses limitations and
practical issues of our approaches. Sec. IX summarizes related
work. We conclude the paper in Sec. X.

II. BACKGROUND

A. Side-Channel Attacks and Traffic Analysis

Side-channel attacks have been studied for more than two
decades. Conventional side-channel attacks usually involve
analysis of externally observable characteristics of a computer
system to extract sensitive information (e.g., cryptographic
keys). Some side-channel attacks extract such information
through a single run of the victim program; in other cases,
multiple side-channel traces must be collected and used to
perform statistical analysis to infer useful information. Traffic
analysis attacks are examples of the latter case, by observing
the meta-data of the encrypted network traffic to classify the
traffic [23], [47], [69].

For our purposes here, a side channel arises from an
attacker’s observation of a feature x, which may itself consist
of multiple components. We let X denote the space of all
possible such x values. Often, the attacker will collect feature
vectors x and their associated labels in a training phase,
to build a machine learning model to which it will apply
observations x seen during his attack.

B. Machine Learning

In the past, various ML techniques have been employed
in statistical side-channel attacks. For example, support vector
machines (SVM) have been used to perform website finger-
printing in the Tor network [48] and infer foreground apps
on Android [16]; hidden Markov models (HMM) have been
used to infer Android Activity transitions [13] and extract
cryptographic keys in a cross-VM setting [74]; k nearest neigh-
bors (kNN) have been used to perform keystroke inference
on smartwatch [36] and link Bitcoin addresses to an iOS
device [73].

Deep Learning [33] is an ML approach that uses multiple
layers of non-linear processing units, each of which transforms
the representation at one level into that at a higher, more
abstract level. The most representative deep learning model
is the Deep Neural Network (DNN), which is an artificial
neural network (ANN) with multiple hidden layers between
the input and output layers [2]. DNNs are very effective at
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finding hidden features in high-dimensional data, which is hard
for humans. It has been applied to solve various problems,
producing promising results in different areas such as image
recognition [29], [63], speech recognition [24], [54] , natural
language processing [62] , and malware detection [15].

Researchers have developed various kinds of DNNs. One
of the most popular DNN models is the Convolutional Neural
Network (CNN) [32]. CNN typically applies convolutional
operation at lower levels, and is designed to process data
that has a form of multi-dimensional arrays. CNN takes into
account the spatial structure of data by enforcing a local
connectivity pattern, which gives it an excellent performance
when dealing with data whose local groups of values are highly
correlated, such as 1D signals and 2D images [29]. There are
other popular DNN models as well, such as Recurrent Neural
Networks (RNNs) [53] and Autoencoders [4].

C. Adversarial Machine Learning

Adversarial machine learning is an emerging research field,
which is closely related to both machine learning and computer
security. Here, we briefly introduce two topics in adversarial
ML: adversarial samples and adversarial training.

An adversarial sample x′ is an input that is crafted from a
legitimate (untampered) input to make a classifier misclassify
x′ [64]. More specifically, x′ is created to be within some
distance threshold from some untampered input x, in the
hopes that this will imply that x′ remains in the same class
as x according to some notion of ground truth. However,
x′ is manipulated so that the ML classifier will classify x′

differently from x. Often the distance measure used is l1, l2,
or l∞, and ground truth is as evaluated by a human. (A small
distance in one of these senses does not necessarily imply that
humans will tend to classify x′ and x the same, however [57].)
Methods of generating adversarial samples include Fast Gradi-
ent Sign Method (FGSM) [21], Deepfool [41], Jacobian-based
Saliency Map Attack (JSMA) [50] and the Carlini/Wagner
attack (CW) [10].

In response, defenses have been proposed to make clas-
sifiers more robust against adversarial samples. To date, the
most successful one is adversarial training [21], [64], which
basically retrains the classifier using the adversarial samples
that were generated to fool the classifier, in order to increase
the classification accuracy on these crafted samples. However,
its effectiveness highly depends on whether the classifier can
generate adversarial samples similar to the ones used by the
attacker, which is difficult to guarantee.

D. Privacy

Because an adversarial sample x′ generated from x is
designed to be misclassified, it might be viewed as a more
“privacy preserving” representation of x if correct classifica-
tion constitutes a privacy violation. For this reason, we explore
the generation of adversarial samples as a privacy protection
in a specific domain, in Sec. IV. Despite the possibility that
adversarial samples so generated might suffice to defeat ML
classifiers today, there remains the possibility that future clas-
sifiers, or auxiliary information that might be brought to bear
by the attacker (classifier), would divulge the correct class of
x′.

For this reason, in this paper we also explore a novel
application of differential privacy [17] to this same domain,
which will guarantee that certain classes cannot be distin-
guished by any classifier (that works with the same features).
The original definition of differential privacy is specific to
statistical databases. More specifically, two databases x, x′ are
adjacent if they differ in exactly one element. A randomized
algorithm A : X → Z satisfies ε-differential privacy if for any
adjacent databases x, x′ and all Z ⊆ Z ,

P (A(x) ∈ Z) ≤ exp(ε)× P (A(x′) ∈ Z) .

Chatzikokolakis et al. [12] proposed a generalization of
differential privacy called d-privacy that will be useful here. A
metric d on a set X is a function d : X 2 → [0,∞) satisfying
d(x, x) = 0, d(x, x′) = d(x′, x), and d(x, x′′) ≤ d(x, x′) +
d(x′, x′′) for all x, x′, x′′ ∈ X . A randomized algorithm A :
X → Z satisfies (d, ε)-privacy if for all Z ⊆ Z ,

P (A(x) ∈ Z) ≤ exp(ε× d(x, x′))× P (A(x′) ∈ Z) .

In our context, the application of A to sufficiently close
examples x and x′ (i.e., d(x, x′) is “small”) from different
classes will ensure that any classifier has a similar probability
of classifying A(x) and A(x′) within any subset Z of classes.

III. A MOTIVATING EXAMPLE

Side-channel attacks leverage ML to automatically learn
critical features of side-channel observations and make sta-
tistical inferences to extract secrets. Recent advances in deep
learning [29], [33], [63], [65] further empower side-channel
attackers to conduct more accurate and efficient inference
attacks. One such example is recently demonstrated remote
identification of encrypted MPEG-DASH video streams by
Schuster et al. [55].

A. Remote Identification of Encrypted Video Streams

MPEG-DASH is a video streaming standard that segments
video streams to variable segment sizes due to variable-rate
encoding, and instruments the request of video content at
the granularity of segments. Schuster et al. [55] demonstrated
that packet burst patterns of the encrypted video streams (an
observable side channel that reveals the size of the segments)
can be correlated to the content of the videos that are requested
from the client. They further developed techniques using
convolutional neural networks (CNNs) to fingerprint video
streams from YouTube, Netflix, Amazon, and Vimeo with
very high detection accuracy. For instance, their techniques
identified YouTube videos (from a small dataset of 18 videos)
with 0 false positives and 0.988 recall.

In this paper, we used this MPEG-DASH video-stream
fingerprinting as a motivating example to explore how side
channels using ML can be mitigated. To demonstrate the
capability of the attacks, we extended the idea presented in
Schuster et al. [55] and performed fingerprinting attacks of 40
Youtube videos using a set of five ML classifiers. The attack
was performed in a closed-world setting, in which we assumed
the video to be classified is one of the 40; this closed-world
setting is the most advantageous to the attacker and the least
favorable to the defender.
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Fig. 1: CNN architecture. n denotes the number of elements of one trace, which is the total time divided by the window size.

B. Data Collection

We manually chose 40 Youtube videos related to four
types of sports (basketball, American football, soccer, and
hockey) as our dataset. To find these videos, we typed “NBA”,
“NFL”, “MLS” and “NHL” into Youtube search separately,
filtered out the short videos that are less than 20 minutes
(to make sure the video length is long enough for analysis),
and selected 10 videos from each category. Each of the 40
videos was visited from a Chrome browser 100 times during
trace collection. Thus 100 traces were collected for each video.
Therefore, in total 4000 (i.e., 40× 100) traces with 40 distinct
labels (i.e., the content of the videos) were included in our
dataset. We recorded the timestamps and sizes of all packets
of the first 3 minutes of network traffic after starting to stream
each video. The data collection process was automated using
Selenium [56] and Wireshark’s tshark [71]. All the data
were collected from a desktop running Ubuntu 17.10 connected
to our campus network using 1 Gbps Ethernet. The whole
process of data collection took about 15 days.

C. Classification

Preprocessing. To convert videos in the dataset into feature
vectors of equal length, we aggregated the raw data into 0.25-
second bins. Here, 0.25s is the window size (w). Each 3-minute
video stream was thus abstracted as an array of 720 elements
(i.e., bins). Note that we did not filter out the ad traffic that
occurs at the beginning of the captures.

Classifiers. We implemented five classifiers, including Support
Vector Machine (SVM), Logistic Regression (LR), Random
Forest (RF), Neural Net and Convolutional Neural Network
(CNN), in Python. Specifically, SVM, LR and RF were
implemented using scikit-learn [51], Neural Net and
CNN were implemented using Tensorflow [1] with the
Keras [14] front end. For Neural Net, we used a single
Dense layer with 40 neurons and the Sigmoid function as
the activation function. For CNN, we used the same structure
as that used by Schuster et al. [55]. It consists of three
convolutional layers, 1 max pooling layer, and two dense
layers. The detailed CNN structure is shown in Fig. 1.

Classification results. We applied the 5 classifiers to classify
the 4000 video traces. We used 5-fold cross-validation: each
time, a different 20% of the traces were used for testing while
the remaining 80% were used for training. The features of
the dataset were normalized using the MinMaxScaler()
method provided by scikit-learn. For CNN, we used a
batch size of 32 and the model was trained for 40 epochs1. As
shown in Table I, SVM, LR and RF achieved 0.809, 0.823, and
0.751 classification accuracy, respectively. Neural Net reached
0.831 classification accuracy. CNN had the highest accuracy

1The model converged after 40 epochs. Training for 1000 epochs improved
the accuracy by only 0.024.

of 0.944. The classification results had very small variance
in the 5-fold tests. These experiments validate the attack
demonstrated by Schuster et al. [55]. The results suggest that
machine learning, and particularly deep learning (e.g., CNN),
can empower traffic analysis to easily identify the Youtube
video streams from encrypted traffic.

Model SVM LR RF Neural Net CNN
Average Accuracy 0.809 0.823 0.751 0.831 0.944
Standard Deviation 0.067 0.063 0.046 0.011 0.004

TABLE I: Classification accuracy with one standard deviation.

IV. ADVERSARIAL MACHINE LEARNING

Our first attempt is to fool the machine-learning attackers
with techniques used in adversarial machine learning.

A. Crafting Adversarial Samples

To generate adversarial samples, we followed the Fast
Gradient Sign Method (FGSM) proposed by Goodfellow et
al. [21]. Let x be the input sample, g(x; θ) the classifier param-
eterized by θ, y the true label associated with x, L(g(x; θ), y)
the loss/cost function of the classifier, and η the parameter that
controls the amount of perturbation. For untargeted attacks—
i.e., the classifier misclassifies a sample as any label but the
true label—FGSM generates the following adversarial sample
x∗ from the clean sample x:

x∗ = x+ η sign(∇xL(g(x; θ), y)).

The perturbation x∗ − x is the gradient image ∇x of the
given loss L, which by definition is the direction where the loss
increases the most. The method then takes only the sign values
of the gradient to make it unit l∞-normed, then multiplies
the normalized gradient with the desired perturbation strength
η. When η is large, the perturbation is more effective but is
more detectable to human eyes or machine classifiers. When
η is small it is less effective but is less likely to be detected.
In our experiment, we used the FastGradientMethod()
in the cleverhans [49] Python library. We adjusted the
level of injected noise (dictated by the eps parameter) to
generate adversarial samples corresponding to different noise
levels. The noise level denotes the maximum distortion of the
adversarial sample compared to original input, which is usually
a value between 0 and 1. Suppose the original value is v. With
eps = α, the adversarial value is within the range of v ± αv.

To see how the classifiers perform on adversarial samples,
we targeted the CNN model and generated corresponding
adversarial test samples using FGSM, with the noise level eps
= 0.1. Then, we fed these samples to the CNN classifier trained
using clean samples. The CNN classifier was unable to classify
such samples successfully, with only 0.086 accuracy, which
is significantly lower than the original accuracy (0.944). This
result suggests that the adversarial samples are very effective
against this ML attacker.
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Fig. 2: Test CNN adversarial samples on five classifiers. Each
data point is the result of a 5-fold cross-validation.

B. Limitations of Adversarial Samples

However, the attacker can also take actions to adapt to these
adversarial samples. Here, we study two possible approaches:
using a different classifier and conducting adversarial training.

1) Using a different classifier: The adversarial samples
generated by the FGSM are designed to fool one particular
classifier, which may not be able to deceive other classifiers.
To see how the adversarial samples generated for the CNN
model affect other classifiers, we fed these samples to other
trained models mentioned in Sec. III-C. We adjusted the noise
level (i.e., the eps parameter) in FastGradientMethod()
to gain a better understanding of how it would affect the
classification accuracy. The higher the noise level, the more
distortion in the samples. The result is shown in Fig. 2. Each
data point was generated by conducting a 5-fold validation.
The mean values of the classification results are shown in the
figure, and all standard deviations are below 0.01, which are
too small to be visible. From this figure, we can see that when
the noise level was 0.05, the CNN model achieved only about
0.20 accuracy, but SVM and LR still reached over 0.6 accuracy.
The effectiveness of the adversarial ML techniques against
traffic analysis attacks highly depended on the ML algorithms
and parameters used by the adversary. Although the accuracy
of other ML models also dropped when the noise level was
increased (e.g., eps=0.1), some classifiers still outperformed
CNN significantly (e.g., 0.294 for SVM compared to 0.086
for CNN). Moreover, the attacker could conduct adversarial
training to easily circumvent the defense, as shown shortly.

2) Conducting Adversarial Training: Although the de-
fender can generate adversarial samples to fool the attacker,
the attacker can utilize the adversarial training technique to
reinforce its learning. We used the FGSM method mentioned
above to craft the adversarial samples for our training set with
the noise level eps=0.1, and re-trained the CNN model for 10
epochs. After this process, the new classifier achieved 0.908
accuracy on the adversarial test samples, which is significantly
higher than 0.086, the original accuracy.

Of course, the defender could then regenerate adversarial
samples against the new model to defeat such attacks; however,
the attacker is also capable of adapting accordingly. This arms
race can be repeated for many rounds, until they reach an
equilibrium (if one exists). For instance, with the dataset we
have, we continued the arms race and performed 4 more rounds
of the following experiments: In each round, the defender

regenerated adversarial samples against the model used by the
attacker, and then the attacker trained a new model according
to the adversarial samples. The resulting classification accuracy
(including the first round) was [(0.086, 0.908), (0.156, 0.780),
(0.272, 0.705), (0.245, 0.536), (0.264, 0.410)], where the first
element of each 2-tuple is the classification accuracy after the
defender’s move and the second is the result after the attacker’s
move. Because the dataset is not huge, the results converged
quickly. However, there is no known principled way to find
such an equilibrium [22], and it requires a lot of effort to
do so empirically. Therefore, unlike the majority of works
in adversarial ML where the classifier is the victim and is
assumed to stay unchanged, in our setting the adversary is
assumed to be aware of any defense strategy that is taken
and allowed to adapt accordingly. The defender faces a much
harder situation when applying adversarial ML techniques
under such an assumption.

V. DIFFERENTIALLY PRIVATE STREAMING

The failure in the adoption of adversarial samples to defeat
streaming traffic analysis motivated us to seek more principled
solutions to counter such a powerful adversary. Differential
privacy stands out as a feasible solution. Differential privacy
offers a principled privacy guarantee for statistical databases
that allows users to query aggregate statistics of elements in
the database without leaking individual data elements [17].
It offers strong privacy promises that guarantees statistical
indistinguishability of two databases that are different in only
one element.

In this section, we would like to develop ε-differentially
private mechanisms for streaming traffic, which, by adding
random noise (dictated by ε and a distance threshold t) into
the encrypted video streams, render any two videos within
distance t to be statistically indistinguishable to each other.
In this sense, any two video streams within distance t (which
can be selected by the defender) can be intermingled and made
indistinguishable with respect to ε-differential privacy, though
in extreme cases may require adding substantial noise. In this
section, we explore two mechanisms, FPAk and d∗-privacy,
to enforce differential privacy on streaming traffic.

A. Fourier Perturbation Algorithm (FPAk)

Rastogi et al. [52] proposed the Fourier Perturbation Algo-
rithm (FPAk), which can answer long query sequences over
correlated time-series data in a differentially private manner
by using the Discrete Fourier Transform (DFT). A DFT is a
linear transform of a length-n real or complex-valued sequence
Q = (Q[1], ..., Q[n]) into another length-n complex-valued
sequence F = (F [1], ..., F [n]) where

F [j] =

n∑
i=1

exp(
2π
√
−1

n
ij)Q[i].

The F [j] is called the j-th Fourier coefficient of the DFT(Q).
An Inverse DFT (IDFT) is also a linear transform of a
complex-valued sequence P = (P [1], ..., P [n]) to another
complex-valued sequence R = (R[1], ..., R[n]) where

R[j] =
1

n

n∑
i=1

exp(
2π
√
−1

n
ij)P [i].
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An IDFT has the property IDFT (DFT (Q)) = Q.

Let Lap (λ) denote a random variable drawn from the
Laplace distribution with scale λ and location µ = 0. Suppose
the inputs of the FPAk algorithm are Q, λ, and k. FPAk is
described as follows:

(a) Keep the first k Fourier coefficients F [1], ..., F [k] after
computing DFT(Q).

(b) Compute F̃ [i] = F [i] + Lap (λ) for i = 1, ..., k.
(c) Return Q̃ = IDFT (PADn([F̃ [1], ..., F̃ [k]])), where

PADn([F̃ [1], ..., F̃ [k]]) denotes the sequence of length
n obtained by appending n− k zeros to F̃ [1], ..., F̃ [k].

Rastogi et al. [52] proved that FPAk (Q,λ) is ε-differentially
private for λ =

√
k∆2(Q)/ε, where ∆2(Q) denotes the L2

sensitivity of a set of Qs. Formally, ∆2(Q) is the smallest
number such that for all Q,Q′ ∈ Q, |Q−Q′|2 ≤ ∆2(Q).

B. d∗-private Mechanism

Xiao et al. [72] leveraged d-privacy with a particular
distance metric d∗ on one-dimensional time series. Let x and
x′ denote two time series. The d∗ metric was defined as:

d∗(x, x′) =
∑
i≥1

|(x[i]− x[i− 1])− (x′[i]− x′[i− 1])|

To achieve d∗-privacy, Xiao et al. [72] extended a mech-
anism from Chan et al. [11] to implement a d∗-private mech-
anism as follows: Let N denote the natural numbers and
D(i) ∈ N denote the largest power of two that divides i;
i.e., D(i) = 2j if and only if 2j |i and 2j+1 6 | i. Note that
i = D(i) if and only if i is a power of two. The mechanism
A computes a noised value x̃[i] that is used in place of x[i]
using the recurrence

x̃[i] = x̃[G(i)] + (x[i]− x[G(i)]) + ri (1)

where x[0] = x̃[0] = 0, and

G(i) =


0 if i = 1

i/2 if i = D(i) ≥ 2

i−D(i) if i > D(i)

(2)

ri ∼

 Lap
(
1
ε

)
if i = D(i)

Lap
(
blog2 ic

ε

)
otherwise

(3)

It was proven by Xiao et al. [72] that the algorithm in
Eqns. 1–3 is (d∗, 2ε)-private and (l1, 4ε)-private.

C. Applying Privacy Mechanisms on Streaming Data

The attack scenario in Sec. III motivates the following
scenario. A user who watches a Youtube video in a web
browser wishes to hide the content of the video. An attacker
sitting on the network (e.g., Internet service provider or local
network administrator) aims to infer the content of the video
by observing only side-channel information. The defender is
a network proxy placed between the content provider (i.e.,
Youtube) and the browser, which obfuscates the network
flows from/to the content provider to defeat the fingerprinting
attacks. For example, the defender could be implemented as

a front-end of the Youtube server or as an extension of the
browser. The attacker utilizes features (e.g., bytes per second,
packets per second or burst series) of the request and response
packets of the MPEG-DASH video streams as side-channel
vectors.

Without loss of generality, the problem can be simplified
and abstracted as the following classification problem: An
encrypted video stream can be modeled as a sequence of 2-
tuples {(ti, si)}i≥0, where (ti, si) represents a video segments
of size si that is downloaded at time ti. As ti is a times-
tamp represented in continuous time, the adversary needs to
discretize the sequence of 2-tuples by grouping all 2-tuples
falling in the same time window of length w (e.g., as small
as a microsecond or as large as a second) into a single value.
As such, each video stream is represented as a time series
x = {bj}j≥0, where bj is the total size of the downloaded
video during time slot j. We let X denote the space of all
possible such x values. Often, the attacker will collect feature
vectors x and their associated labels in a training phase,
to build a machine learning model to which it will apply
observations x seen during his attack.

The goal of the defender is to prevent the videos from
being identified by the attacker, which is achieved by adding
random noise. The workflow of defense and attacks is depicted
in Fig. 3. Specifically, the defender takes the following steps
to reduce the information leakage. First, she sets a window
size w to convert the 2-tuples (ti, si) into a fix-length time
series x. Then, she adds random noise, which is dictated
by the differentially private mechanisms, to the time series,
and generates the noised time series x̃. When the noised
time series x̃ is reflected as packets, we assume all packets
are transmitted instantaneously; depending on the maximum
packet size allowed by the physical network layer, it can be
represented as a sequence of 2-tuples (t̃i, s̃i), which are what
the attacker observes. Note that the mapping from the time
series to the sequence of two tuples is only determined by the
network condition which is agnostic to the content of the video.
The attacker then chooses his window size (wA) to generate a
new time series, denoted as ẋ, and performs classification on
ẋ.

As such, when used to obfuscate streaming traffic, both
differentially private mechanisms, FPAk and d∗, require two
parameters, w and ε. Here, w represents the window size,
which also determines the length of x̃. For example, w = 1s
means each element of the noised time series represents the
total size of downloaded video segments within an interval of
1s. Parameter ε specifies the privacy level of the mechanism:
the smaller the ε is, the better the privacy would be.

When wA is different from w, x̃ and ẋ may have different
lengths. As a result, the attacker may need to merge/split
bins in x̃ to create ẋ. Here, we let x̃ be a time series of
n elements and ẋ be a time series of nA elements. Without
loss of generality, we only consider cases where wA mod w
= 0 or w mod wA = 0. The merging and splitting of bins are
performed as follows:

• Merging is required when wA > w. Let r = wA/w. Every
r bins from x̃ will be merged (summed) into one bin in ẋ,
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Fig. 3: Abstraction of data flow with defense.

i.e.,

ẋ[i] =

i×r+(r−1)∑
j=i×r

x̃[j]

For instance, when wA = 2s and w = 1s, r = 2, nA = 1
2n.

ẋ[i] = x̃[2i] + x̃[2i+ 1].

• Splitting is required when wA < w. Let r = wA/w. Here
we assume that the volume of each bin follows uniform
distribution. Therefore, every bin from x̃ will be split
(divided) evenly into 1/r bins in ẋ, i.e.,

ẋ[j] = r × x̃[i], j =
i

r
, · · · , i+ 1

r
− 1

For instance, when wA = 1s and w = 2s, r = 1
2 , nA = 2n.

ẋ[2i] = ẋ[2i+ 1] = 1
2 x̃[i].

VI. EVALUATION

In this section, we evaluate the security and utility of FPAk
and d∗. We implemented both mechanisms in Python. For
FPAk, k was set to 10, so during the Fourier transformation,
only the first 10 Fourier coefficients were kept. FPAk took
a sequence of 2-tuples and parameter w and ε as input, dis-
cretized it into a time series x with window size w, calculated
λ =

√
10∆2(Q)/ε (where ∆2(Q) denoted the L2 sensitivity

of the set of 40 videos collected in Sec. III), and returned
another time series x̃ of the same size after adding noise by
following the steps mentioned in Sec. V-A. Similarly, in our
implementation of d∗, it took a sequence of 2-tuples, w and ε
as input, discretized it into a time series x with window size
w, and outputted another time series x̃ after adding noise.

The two methods were applied on the 40 × 100 traces
collected in Sec. III. In our experiment, we used ε ={5×10−8,
5 × 10−7, · · · , 50}, w = {0.05s, 0.25s, 0.5s, 1s, 2s}, so
there were 50 pairs in total. Each element of the noised time
series was truncated by a clip bound of [0, 1GB] to avoid
negative volume or enormous volume, because the download
size cannot be negative and it is not realistic to complete
downloading a large chunk of data within a small window
size. Therefore, values less than 0 were changed to 0, and
values larger than 1GB were truncated to 1GB.
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Fig. 4: Classification accuracy of 5-fold cross validation when
trained with original traces and tested with noised traces.

A. Security Evaluation

The security of the differentially private mechanisms are
evaluated by classification accuracy. We used the same method
mentioned in Sec. III-C to preprocess the data and train the
classifiers. According to the dataset used for training and
testing, we consider the following cases:

1) Trained with x (clean data), tested with x̃ (noised data):
To compare with the defense mechanism of using adversarial
samples described in Sec. IV-B, we first used the same 5
classifiers trained with original traces to classify the noised
data generated by the two mechanisms with different choices
of ε, when w = 0.25s. The classification accuracy and standard
deviation of a 5-fold cross validation are shown in Fig. 4.
For all the data points, the standard deviation is quite small
(<0.01), hardly visible in the figures. For FPAk (Fig. 4a), since
it involved the Fourier transformation, the new traces were
totally different from the originals, so the classifier could not
recognize them for all ε values. For d∗, since the noise was
added upon the original trace, ε played an important role.
As shown in Fig. 4b, for ε ≤ 5 × 10−6, d∗ was effective.
When ε ≥ 5 × 10−5, the noise added was not enough to
deceive the classifiers. These results suggest that with properly
selected noise level, both mechanisms can effectively defeat
traffic analysis attacks. In the following, we consider a more
powerful adversary that could adapt by training the classifiers
also with noised data.

2) Trained with x̃ (noised data), tested with x̃ (noised
data): We evaluated how the two parameters, w and ε, would
affect the security of the defense mechanisms by using the
CNN classifier mentioned in Sec. III-C as the adversary and
measuring the accuracy of the classification. We specifically
consider two scenarios: wA = w and wA 6= w.

• wA = w. First, we consider the scenario where the attacker
and the defender use the same w, which means that x̃ = ẋ. We
altered w to see how it would affect the classification accuracy.
The results of the classification accuracy and standard devia-
tion of a 5-fold cross validation when ε = [0.05, 0.5, 5, 50]
are shown in Fig. 5. The classification accuracy with FPAk
protected data is shown in Fig. 5a. When ε was small (e.g.,
ε = 0.05 and ε = 0.5), more noise was added during the
transformation. The classification accuracy remained low as
w increased. However, when ε was larger (e.g., ε = 5 and
ε = 50), the noise level was low and w played a more
significant role—when w = 2s, the classification accuracy
went down by about 15%. This is because larger window
sizes (used by the adversary during discretization) erased some
important features in the data traces, making the classification
harder. The classification accuracy with d∗ protected data is
shown in Fig. 5b. With smaller ε values (e.g., ε = 5 × 10−8

and ε = 5 × 10−7), w still had no impact on the classifi-
cation accuracy at all. A different trend was observed when
ε = 5 × 10−6: w = 2s would increase the accuracy to
about 25%. We conjecture it was related to the mechanism by
which d∗ added noise: The amount of noise added had a linear
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Fig. 5: wA = w: effect of w
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Fig. 6: wA = w: effect of ε

relationship with the length of the time series. When w was
large, with the video length remaining the same, the time series
had fewer elements. Therefore, the noise added was less, which
was not enough to confuse the classifier. When ε = 5× 10−5,
the classification accuracy fluctuated as w increases from 0.05
to 2. We believe this was the combined result of two causes: the
larger window size reduced the noise level, but also eliminated
some of the useful information used by the classifiers. For both
methods, the standard deviation of each data point was very
small (less than 0.01).

Next, we study the effect of ε. The result is shown in
Fig. 6. The x axis is log10(ε/5) (e.g., x = −3 means that
ε = 5 × 10−3). We only show the cases of w = 0.05s
and w = 2s, since they were the smallest and largest w
values we experimented with; result of other w values were
similar. Similar to Fig. 5, the standard deviations in Fig. 6 were
negligible. From Fig. 6, we can see that in order to keep a low
classification accuracy, d∗ method required a much smaller ε.

For example, when w = 0.05s, to make sure the classifier had a
baseline accuracy (i.e., 2.5%, given 40 videos with 100 traces
each), d∗ needed ε ≤ 5 × 10−6, while FPAk only required
ε ≤ 0.5. This is because the definitions of ε in the two methods
are different. We also provide a proof to bridge the two ε values
in Appendix A.

• wA 6= w. Next, we consider the scenario where the attacker
and the defender chose different w. To perform the experiment,
first, we set ε ={5 × 10−8, 5 × 10−7, · · · , 50}, respectively.
Then, we let w = {0.05s, 0.25s, 0.5s, 1s, 2s}, and tested the
classification accuracy when wA = {0.05s, 0.25s, 0.5s, 1s, 2s}.
We only show the results when w = 0.05s and w = 2s
in Fig. 7. We can see from the figure that with the same
w, when wA increased, the classification accuracy for both
methods decreased. The amount of decrease with d∗ was more
significant than FPAk. From this result, it can be inferred that
choosing a smaller wA would benefit the adversary. This is
because the larger window size used by the adversary during
discretization erased some important features in the data traces.

From the defender’s perspective, the choice of w made
a difference in the effectiveness of the defense. For FPAk,
w = 0.05s and w = 2s did not differ much (Fig. 7a and
Fig. 7b). But for d∗, w mattered: for w = 0.05s (Fig. 7c),
ε = 5 × 10−6 was good enough to fool the classifier; but for
w = 2s (Fig. 7d), ε = 5 × 10−6, the classifier can achieve
an accuracy of 40% when wA ≤ 0.5s. Therefore, from the
defender’s perspective, if the d∗ method is chosen, it is better
to choose a smaller w to achieve better privacy.

B. Utility Evaluation

We define two metrics, waste and deficit, to evaluate
the utility of the mechanisms. Let the original time series be
x and noised time series be x̃. Consider the cumulative traces
A =

∑n
1 x and B =

∑n
1 x̃. waste and deficit are defined

as follows:

• We define waste as the maximum difference between
traces A and B when the noised trace B is above the
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Fig. 7: wA 6= w

0 1 2 3 4 5 6 7 8
Time(s)

0.0

0.5

1.0

1.5

2.0

2.5

V
o
lu
m
e
 (
B
y
te
s)

1e6

Waste

Deficit

original

noised

Fig. 8: An example of waste and deficit.

original trace A.

waste = max
1≤i≤n

{max(B[i]−A[i], 0)} (4)

• We define deficit as the maximum difference between
A and B when the noised trace B is below the original
trace A.

deficit = max
1≤i≤n

{max(A[i]−B[i], 0)} (5)

waste means the maximum amount of data that have been
downloaded in advance during a time period, and deficit
means the maximum amount of data that needs to be down-
loaded to keep streaming during a time period. An example
of waste and deficit is illustrated in Fig. 8. The red line
represents the cumulative volume of the original trace A, and
the blue line is that of the noised trace B. The orange area
means that the noised trace is behind the original one, while
the blue area means that the noised trace is ahead of it. The
deficit is the max difference between the two lines in the
orange area, while the waste is that in the blue area.

The utility of the two mechanisms was evaluated using
the same set of w and ε values as in Fig. 5. The waste
and deficit of each noised trace were computed first,
and the average waste and deficit over all traces were
calculated and shown in Fig. 9 and Fig. 10. According to
Fig. 9a, parameter w did not affect the waste of FPAk much.

But when ε increased, waste would decrease, since there was
less noise added. Similarly, for d∗, ε was the major factor that
affected the waste (see Fig. 9b). However, w also had an
influence: When ε was fixed, larger w indicated fewer waste
for d∗. We conjecture it was again related to the mechanism
by which d∗ added noise. The amount of noise added had a
linear relationship with the length of the series. When w was
larger, the time series was shorter for the same video length.
Therefore, less noise was added, which resulted in smaller
waste.

As shown in Fig. 10a, however, the deficit metric of
the FPAk and d∗ mechanisms followed a different trend. In
FPAk, deficit was less fluctuated when w and ε changed
(Fig. 10a). For different (w,ε) pairs, the average deficit
stayed within [1.5MB, 3MB]. However, for d∗, changes in ei-
ther w or ε affected the deficit significantly. From Fig. 10b,
it was clear that when the w was small (e.g., 0.05s), there was
no deficit at all for all ε values; when the w was large
(e.g., 2s), the deficit could be as large as 0.8MB.

Note that it is possible to take measures to lower the
waste and deficit. For example, one can choose an ε
value to ensure privacy while keeping a reasonable waste
and deficit. The clip bounds can also be adjusted to limit
the maximum/minimum download rate for each bin while
maintaining differential privacy. Lowering the upper bound
can reduce the waste, while increasing the lower bound
can remove the deficit. Also, the deficit can be easily
eliminated if buffering the video content upfront for a few
seconds.

C. FPAk vs. d∗

To compare FPAk and d∗, we chose the best parameters
for each method, with the baseline accuracy (i.e., 2.5%) and
lowest waste. For FPAk, the best parameters were w = 2s, ε
= 0.5; for d∗, w = 0.5s, ε = 5×10−6 were chosen. The waste
and deficit distribution of the 4000 traces after applying
the two methods are shown in Fig. 11. From Fig. 11a, it is
clear that with the best parameters, FPAk traces had a median
waste of about 200%, while that of d∗ traces was even higher
(600%). For deficit (Fig. 11b), however, d∗ performed a
lot better. More than 80% of d∗ traces had a deficit less
than 1%, while the majority of FPAk traces (> 50%) had at
least 5% deficit.

From Fig. 11, we find that FPAk tended to induce less
waste (about 200% of the original video size). To achieve
similar security protection, d∗ had to download 3 times more
volume. To achieve differential privacy, some utility loss has
to be allowed in either case. Moreover, it is clear that with
the same security level (in regards to classification accuracy),
if the primary objective is minimize the waste, FPAk is the
best choice; if the main goal is to reduce the deficit, d∗
would be the better option.

D. Comparison with Baseline Defense

In a baseline defense mechanism, the defender could sim-
ply download at a constant rate for all videos in the dataset.
To make videos with different total data size indistinguish-
able, smaller videos need to be padded with dummy data
to obfuscate the traffic analysis. We designed the following
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Fig. 9: waste experiment.
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Fig. 10: deficit experiment.

mechanism to avoid introducing deficit in the resulting
streams: With a bin size of w, we divided each time series
into multiple bins, and identified the maximum value of
downloaded data (denoted as C) for all bins of these 4000
original time series. Then as a baseline defense mechanism,
all videos were downloaded at a constant rate of C bytes per
w. As such, from the attacker’s perspective, all video streams
were identical, and no deficit would be incurred for the
noised video. We evaluated this baseline method with w =
[0.05s, 0.25s, 0.5s, 1s, 2s], and the corresponding waste are
[15.7GB, 14.9GB, 11.5GB, 8.1GB, 4.1GB], which represent
the extra data downloaded for a 3-minute video.

We note that it is only fair to compare this baseline
approach with FPAk, because both of them require knowledge
of the download profiles of all videos in a dataset (i.e., the set
of videos the defender would like to render indistinguishable).
By contrast, d∗ can be used to add noise on-the-fly. As
shown in Fig. 9a, the waste induced by FPAk is at least
one order of magnitude lower than the baseline approach.
With a tunable privacy level ε, i.e., by enforcing statistical
indistinguishability rather than absolute indistinguishability,
FPAk can be much more practical (e.g., with less than 10MB
waste when ε = 5).

E. An Optimal Attacker

In the previous subsections, we have evaluated the two
differentially private mechanisms with an adversary that could
both train and test with noised data. Now we consider a
even more powerful attacker who is not only able to train
his classifier with noised data, but also has the knowledge
of distribution of both clean data and noised data (but not
the mapping between the two). With such knowledge, the

adversary could first try to remove the noise from the noised
time series, and then perform classification (e.g., CNN) to
classify the resulting time series. The method to do so is
proposed by Naldi et al. [43]. Essentially, it requires the
attacker to estimate the clean time series by calculating the
conditional expectation of each clean data point conditioned
on the observed, noised data points.

To evaluate the effectiveness of this optimal attacker
method, we first calculated the estimated clean dataset from
the noised dataset, and then chose 80% of the estimated clean
dataset to train the classifier and the rest 20% as the test
set to perform classification. The classification accuracy is
shown in Table II. Compared with Fig. 5, it appears that the
optimal attacker performs slightly better in some cases, but
the improvement of the accuracy is no more than 2%. The
experiments suggest that even with knowledge of distribution
of both clean data and noised data, an optimal attacker cannot
significantly improve his attack.

FPAk d∗

aaaaa
w(s)

ε 0.05 0.5 5 50 5e-8 5e-7 5e-6 5e-5

0.05 0.03 0.03 0.25 0.89 0.03 0.03 0.03 0.72
0.25 0.03 0.03 0.30 0.89 0.03 0.03 0.03 0.89
0.5 0.03 0.03 0.27 0.87 0.02 0.02 0.03 0.86
1 0.03 0.03 0.27 0.80 0.02 0.02 0.11 0.89
2 0.03 0.03 0.17 0.65 0.03 0.03 0.10 0.75

TABLE II: Classification results of the optimal attacker.

VII. REAL-WORLD IMPLEMENTATION

To demonstrate the practicality of our approach, we imple-
mented the FPAk privacy mechanism in a Chrome extension
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Fig. 11: FPAk (w = 2s, ε = 0.5) vs. d∗ (w = 0.5s, ε = 5e-6)

Fig. 12: Workflow of the Chrome extension.

that proxies Youtube streaming. The workflow of the extension
is illustrated in Fig. 12. First, the Youtube client running inside
the Chrome browser sends a request to the Youtube server,
which is intercepted by the extension. Instead of relaying the
request immediately, the proxy sends requests on behalf of
the client at a constant rate (e.g., once per second), which is
specified by the w parameter of the extension. After receiving
the responses from the server, the proxy caches the video
chunks locally. If there is a pending request from the Youtube
client, the extension returns the requested portion to the
client directly from local storage. In this way, the Youtube
requests/responses as seen by an external observer are fully
controlled by the extension. Since the request pattern from the
proxy is differentially private, traffic analysis is thwarted.

The size of the video chunks to be requested is specified as
a parameter (i.e., range) of the HTTP request header. Youtube
video streaming implements a variant of MPEG-DASH [40],
which allows the client to specify a chunk of video to be
downloaded by setting the range parameter to the desired
offsets in bytes. The YouTube client adaptively changes this
parameter to adjust the requested video chunk size, based on
the content of the video and the network condition. To enforce
the privacy guarantee, the range parameters in the proxy’s
requests are decoupled from those in the client’s requests.
The requests sent by the Chrome extension use a range
parameter dictated by the FPAk mechanism. To properly
watch a Youtube video, both its video stream and its audio
stream needs to be downloaded. We applied the differentially
private mechanism on both streams.

Implementation. In our implementation, we made use of the
Xhook [25] framework, which allows us to intercept and
modify the XMLHttpRequest requests and responses. In our
implementation of FPAk, k = 10, w = 1s, ε = 0.5. We used
the numjs [44] library, which is similar to Python’s numpy, to
implement numeric computation, and used the Random library
in SIM.JS [42] to implement the Laplace distribution. The
extension has about 700 lines of Javascript code in total. Note
that the use of FPAk requires the original trace of the video
to be known to the proxy beforehand.

Data collection. We used the same methods described in
Sec. III to collect traces for 10 videos, and 100 traces for
each video, with our extension enabled. Therefore, the net-
work traffic observed is only the communication between the
extension and the Youtube server. The traces were collected
when the w parameter of the extension was set to 1s, which
means that it would send a video request and an audio request
to the Youtube server every 1 second.

Effectiveness. To demonstrate that the extension can indeed
defeat ML-based traffic analysis, we extracted 12 features
which were also time series from the stream and performed
classification one by one. The features were: the number bytes
per bin (BPBup , BPBdown , BPB ), the number of packets per
bin (PPBup , PPBdown , PPB ), the average packet length per
bin (LPBup , LPBdown , LPB ), the size of bursts2 (BURST up ,
BURST down , BURST ). The subscription “up” means packets
from client to server; “down” means packets from server to
client; no subscription means the sum of “up” and “down”. We
also evaluated the classification accuracy with all 12 features
combined, labeled as ALL.

The dataset (1000 traces) was split into a training set
(80%, 800 traces) and a test set (20%, 200 traces). We set
wA = {0.05s, 0.25s, 0.5s, 1s, 2s} to bin the traces, then
trained the CNN model in Sec. III for 40 epochs with a batch
size of 32 using the training set. After that, the classification
was performed on the test set. The results are shown in
Table III. As expected, the CNN model can hardly classify
these obfuscated traces. For most cases, the classifier only
achieved an accuracy of about 15%. Using certain features may
increase the classification accuracy (e.g., 23% with BURST up

for wA = 0.25s), which were still significantly lower than the
values in Table I. This result suggests that differential privacy
is effective in defeating machine learning adversaries. Accord-
ing to the Post-processing Lemma [18], the composition of
differentially private mechanisms is still differentially private.
Therefore, combining the features does not benefit the attacker.
As shown in the “ALL” column in Table III, the 12-feature
combined classification accuracy remained on the same level
as individual features.

Usability. While we cannot directly quantify the user expe-
rience, in our evaluation, the video streaming went smoothly
without pausing after buffering for roughly 3 seconds at the

2A burst is the total size of all packets whose timestamps are no farther
apart than a threshold. Here the threshold is set to 0.5s.

11



wA (s) BPBup BPBdown BPB PPBup PPBdown PPB LPBup LPBdown LPB BURSTup BURSTdown BURST ALL

0.05 0.16 0.12 0.16 0.12 0.16 0.14 0.14 0.13 0.16 0.14 0.15 0.16 0.13
0.25 0.20 0.16 0.22 0.18 0.16 0.20 0.12 0.08 0.16 0.23 0.14 0.19 0.21
0.5 0.19 0.12 0.22 0.14 0.16 0.20 0.14 0.08 0.10 0.19 0.14 0.15 0.20
1 0.16 0.14 0.18 0.14 0.19 0.13 0.10 0.10 0.11 0.16 0.14 0.12 0.18
2 0.14 0.12 0.16 0.13 0.14 0.16 0.10 0.10 0.09 0.16 0.16 0.19 0.17

TABLE III: Classification result when the Chrome extension is enabled. Each column represents the accuracy when trained with
the specified feature. The features are up/down/total bytes per bin (BPB ), up/down/total packets per bin (PPB ), up/down/total
average packet length per bin (LPB ), up/down/total bursts (BURST ), and the combination of all 12 features (ALL).

very beginning. We leave a comprehensive user study on the
usability as future work.

Nevertheless, an optimal implementation of our statistical
privacy mechanisms would enforce the privacy on both the
client side and the server side. The browser extension can only
control the request rate of the Youtube video streaming, but
cannot directly control the response rate from the server. If the
server chooses to respond to a request with a packet pattern that
is specific to the downloaded video, privacy of the streaming
traffic can not be protected by the extension alone. Fortunately,
as shown in our experiment, it is not the case—packet patterns
in the video download are not content-specific. Therefore, the
packet patterns do not leak additional information.

VIII. DISCUSSION

In this section, we discuss the limitation and extension of
the statistical privacy approaches.

Leakage through video length. Neither of the two statistically
private mechanisms prevents leakage through the length of the
videos. Intuitively, to make an 1-minute video indistinguish-
able from an 1-hour video, considerable amount of noise must
be added to hide the difference of the video length, as the
L2 sensitivity in this case is prohibitively high. As a result,
the utility of the solution will drop significantly. Therefore, in
practice, it is more desirable to only make videos with similar
length indistinguishable from one another. To do so, grouping
the videos by length and padding them to the longest length in
each group might be a good solution. For example, all videos
of the length between 50 minutes to 1 hour could be considered
in one group and padded so that all of them appear to be a
1-hour video.

Comparing FPAk with d∗. In Sec. VI-C, we compared the
utility of the two differentially private mechanisms with certain
w and ε parameters selected to render the CNN classifier
ineffective. However, CNN classification accuracy does not
translate directly to security guarantees. As these mechanisms
offer different theoretical privacy guarantees, directly compar-
ing them is less meaningful. However, it is worth mentioning
that FPAk mechanism additionally requires the knowledge of
the entire time series x before transforming it into the noised
version x̃. This additional requirement may be less desirable
in scenarios where such information is not available.

Applying differential privacy to website fingerprinting. Al-
though we have shown that differentially private mechanisms
are promising countermeasures to streaming traffic analysis
attacks, directly applying the same approach to prevent website
fingerprinting requires some modifications. Unlike streaming
traffic, HTTP traffic is more interactive. For example, an

HTML web page may embed a number of objects (e.g.,
JavaScript files or images) that will be downloaded after the
HTML file is parsed by the browser. While streaming allows
us to proactively request video contents beforehand and cache
data locally, the download of some HTML resources can only
start after finishing the download of a previous resource. We
plan to address this type of interactive web traffic and expand
our approach to WF attacks in future work.

Reducing waste. As shown in Fig. 11a, the median waste
of FPAk and d∗ are 200% and 600%, respectively, compared
to the original traces. To be practical, measures must be taken
to lower the waste. For example, one can lower the security
guarantee by increasing the ε, so that the amount of noise
added is reduced. Another possible approach is to make the
upper clip bound smaller. In Fig. 11a, the upper clip bound is
set to 1GB, which is far from realistic scenarios, since it is
impossible for the server to send 1GB in a single time frame
for all the ws we tested. It would be more reasonable to find
an empirical clip bound based on real-world statistics.

IX. RELATED WORK

A. Defenses against Side-Channel Attacks

Our work has been influenced by prior studies that insert
noise to obfuscate side-channel observations. Many research
projects have tried to perturb timers to mitigate timing side-
channel attacks [34], [35], [39], [68]. Researchers have also
shown that adding noise to shared resources can be an effective
defense [5], [28], [59], [75]. Particularly relevant to our work
is Xiao et al.’s [72], which introduced the d∗ algorithm to
mitigate storage side channels resulting from procfs in the
Linux OS, so that statistics reporting through procfs satisfies
d-privacy for a meaningful distance metric d∗. Their work
considered interactive statistical data release, i.e., in which the
defender knows exactly when and how the adversary observes
the data. In our case, the adversary does not have to interact
with the defense system; he only needs to passively observe
the streaming traffic, which requires this defense to be more
pervasively applied. This, in turn, underscores the importance
of measuring its utility impact, as we have done here.

B. Privacy of Time-Series Data

Our work is built upon a number of previous studies
that apply differential privacy to time-series data. Rastogi et
al. [52] proposed the Fourier Perturbation Algorithm (FPAk)
algorithm to ensure differential privacy for time-series data. To
avoid relying on a trusted central server, the work also pro-
posed the Distributed Laplace Perturbation Algorithm (DLPA)
for distributed time-series data. Shi et al. [58] proposed
aggregator-oblivious encryption to ensure differential privacy
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for distributed time-series data. Benhamouda et al. [3] ex-
tended this work to introduce a general framework for con-
structing privacy-preserving aggregator-oblivious encryption
schemes. Fan et al. [20] presented a framework, FAST, to
release real-time aggregate statistics under differential privacy
based on filtering and adaptive sampling. Cao et al. [9]
proposed two methods to answer a subset of representative
sliding window queries with differential privacy. Kellaris et
al. [27] introduced ω-event privacy over infinite streams,
which protects any event sequence occurring in ω successive
timestamps. None of these works has considered applying
differential privacy to defeat traffic analysis, however.

C. Website Fingerprinting Defenses

One important branch of traffic analysis is website finger-
printing (WF) on encrypted channels or anonymity networks
(e.g., Tor). In a typical WF attack, the adversary utilizes su-
pervised machine learning techniques to train a classifier with
encrypted network traffic to/from a set of websites of interest
and then classify unknown traffic captured from the victim.
Prior works have shown effectiveness of such attacks [8], [23],
[47], [48], [60], [61], [69].

Accordingly, many research projects have explored mech-
anisms to address this security threat. Panchenko et al. [48]
proposed a defense called Decoy, which loads two webpages
at the same time so that the adversary is confused. Luo et
al. [37] published HTTPOS (HTTP Obfuscation). The defense
was implemented on the client side by splitting the traffic
into packets with random size using the HTTP range header.
Dyer et al. [19] provide a comprehensive study of countermea-
sures of traffic analysis and proposes a mechanism dubbed
BuFLO that modifies the traffic to enforce a constant rate.
Two follow-up works by Tamaraw et al. [7] and Cai et al. [6]
aimed to reduce the overhead of BuFLO by grouping websites
with similar traffic patterns and padding them according to
the one with greatest size in each group. This grouping-and-
padding method was used by other papers as well [45], [69].
Juarez et al. [26] proposed a system called WTF-PAD. It
deploys adaptive padding for WF defense in Tor, which only
adds padding when the usage of the channel is low, so that
the bursts of traffic are eliminated. Recently, a defense called
Walkie-Talkie was proposed by Wang et al. [70], which uses
half-duplex communication to ensure one way communication
at a time and adds dummy packets and inserts delays to
make the traffic of different websites look alike. The major
difference between these work and ours is that our method
is designed with a theoretical privacy guarantee. We believe
our solution can be applied to WF attacks as well. However,
unlike streaming traffic, which is essentially non-interactive,
additional care must be taken to eliminate leakage through
interactive traffic patterns. We plan to expand our approach to
WF attacks in future work.

D. Private Messaging Systems

Prior works have applied differential privacy techniques
in private messaging systems. One of the first systems is
Vuvuzela [67], which is a large-scale private messaging sys-
tem that protects against both passive and active adversaries
with differential privacy guarantee. Alpenhorn [31] extends
Vuvuzela by providing strong privacy and forward secrecy

guarantees for metadata. Alpenhorn uses the mixnet design
provided by Vuvuzela, which guarantees its differential pri-
vacy. A recently published system, called Stadium [66], ex-
tends Vuvuzela horizontally by providing point-to-point data
privacy while maintaining a low latency. Similar to Vuvuzela,
Stadium has a security guarantee of differential privacy by veri-
fiable shuffling and adding dummy messages. Another private
messaging system, Atom [30], also employs the differential
privacy technique proposed by Vuvuzela to hide the number
of dialing calls a user receives. Moreover, Atom guarantees the
users can have anonymity among honest users besides differ-
ential privacy. Although these works also applied differential
privacy to prevent traffic analysis, however, their scenarios
are completely different. In these private messaging systems,
the information they are trying to hide is the participants of
communications, i.e., who is talking to whom in the system. In
our scenario, the two parties involved are obviously known—
the client and the server; however, we strive to prevent traffic
analysis from divulging the content that is being streamed from
the server to the client.

E. Privacy Using Adversarial ML

The possibility that adversarial ML might be leveraged to
improve privacy by interfering with automated classification
of observations is a relatively new idea, and one that has
been explored only in the context of image classification. Oh
et al. [46] specifically considered methods to interfere with
automated person recognition in an image. Marohn et al. [38]
similarly explored the effectiveness of an image-obfuscation
technique dubbed “thumbnail preserving encryption” against
ML classifiers. To our knowledge, our work is the first to
explore adversarial ML as a privacy protection in the domain
of traffic analysis.

X. CONCLUSION

In this paper, we borrowed techniques from adversarial
machine learning and differential privacy to address privacy
concerns of streaming traffic. Our findings suggest that con-
structing adversarial samples effectively confounds an ad-
versary with a predetermined classifier but is less effective
when the adversary can adapt to the defense, either by using
alternative classifiers or training the classifier with adversarial
samples. On the other hand, differential privacy effectively
defeats statistical-inference-based traffic analysis, while re-
mains agnostic to the machine learning classifiers used by the
adversary. Our evaluation suggests that the two differentially
private mechanisms used in the paper offer good security
protection with moderate utility loss.
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APPENDIX

Theorem 1. Suppose for database D, we have method A that
is ε-private, and method B that is (d∗, ε)-private. We denote
the maximum and minimum d∗ distance in D as dmax and
dmin. Then we have:

(1) If B is (d∗, ε)-private, then B is (εdmax)-private.

(2) If A is ε-private, then A is (d∗, ε
dmin

)-private.

PROOF. According to the definitions, we have:

A : P(A(x) ∈ Z) ≤ exp(εA)× P(A(x′) ∈ Z) (6)

B : P(A(x) ∈ Z) ≤ exp(εB×d∗(x, x′))×P(A(x′) ∈ Z) (7)

For B, we have:

εB × dmin ≤ εB × d∗(x, x′) ≤ εB × dmax (8)

If B is (d∗, ε)-private,

P(A(x) ∈ Z)

P(A(x′) ∈ Z)
= exp(ε× d∗(x, x′)) ≤ exp(ε× dmax) (9)

So B is at least (εdmax)-private. Similarly, if A is ε-private,
let ε = ε′ × d∗(x, x′), we have:

ε′ =
ε

d∗(x, x′)
≤ ε

dmin
(10)

So A is at least (d∗, ε
dmin

)-private.
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