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Abstract—We present a differentially private mechanism to
display statistics (e.g., the moving average) of a stream of real
valued observations where the bound on each observation is either
too conservative or unknown in advance. This is particularly
relevant to scenarios of real-time data monitoring and reporting,
e.g., energy data through smart meters. Our focus is on real-world
data streams whose distribution is light-tailed, meaning that the
tail approaches zero at least as fast as the exponential distribution.
For such data streams, individual observations are expected to
be concentrated below an unknown threshold. Estimating this
threshold from the data can potentially violate privacy as it would
reveal particular events tied to individuals [1]. On the other hand
an overly conservative threshold may impact accuracy by adding
more noise than necessary. We construct a utility optimizing
differentially private mechanism to release this threshold based
on the input stream. Our main advantage over the state-of-the-art
algorithms is that the resulting noise added to each observation
of the stream is scaled to the threshold instead of a possibly
much larger bound; resulting in considerable gain in utility when
the difference is significant. Using two real-world datasets, we
demonstrate that our mechanism, on average, improves the utility
by a factor of 3.5 on the first dataset, and 9 on the other. While our
main focus is on continual release of statistics, our mechanism for
releasing the threshold can be used in various other applications
where a (privacy-preserving) measure of the scale of the input
distribution is required.

I. INTRODUCTION

Many services can benefit from real-time monitoring of
statistics from customer data. Examples include electricity
usage in a neighbourhood collected through smart meters,
customers’ expenditure in a supermarket on a given day,
and commute time of residents of a city during peak hours.
Statistics for these applications can be obtained from real-time
data collected through a variety of sensors and refreshed as
new data arrives. These statistics can then be displayed to
analysts and planners who could use them to optimize services.
Privacy concerns, however, preclude release of raw statistics.
For instance, a customer at a pharmacy would not be willing to
disclose the purchase of medicines linked to a peculiar health
condition. Likewise, analysis of smart meter data can likely
reveal the activities of a particular household or even whether

anyone is at home or not. Such privacy violations have been
demonstrated for the case of smart meter data where patterns
such as the number of people in the household as well as
sleeping and eating routines were revealed even without any
prior training [1]. The goal therefore is to enable monitoring
of statistics without compromising individual privacy.

A natural candidate for privacy protection is the rigorous
framework of differential privacy [2], [3]. Informally, any
algorithm satisfying the definition of differential privacy has
the property that its output distribution (based on the coin
tosses of the algorithm) on a given database is close in
probability to the output distribution if any single row in the
dataset is replaced. The closeness is parameterized by the
privacy budget ε. Most of the work on differential privacy has
focused on static (input) datasets, and there has been very little
focus on datasets that are continuously being updated as in our
setting [4], [5]. Despite this, there is a growing need to shift
focus to provide privacy in the dynamic setting which is likely
to be more pervasive in the near future [6].

More precisely, our scenario is concerned with releas-
ing statistics from a sequence of observations arriving in a
streaming fashion each within some public upper bound B.
Our statistic of interest is the continually changing average
as new observations arrive. This can be readily obtained by
summing all the observations seen thus far (since the number
of observations is assumed public). We remark that our focus
is on approaches that provide event level privacy [4] only,
which means that individuals are guaranteed that their peculiar
events remain private but not necessarily the general trend.1
For many use cases this is a suitable guarantee of privacy,
e.g., individuals might be happy to disclose their routine trip
to work while unwilling to share the occasional detour. One
way to release the sum via differential privacy is to add
independent noise generated through the Laplace distribution
scaled to B [2]. However, this results in cumulative error
(absolute difference from the true sum) of O(B

√
n) after n

observations. Two aforementioned works on continual release
of datasets, i.e., [4] and [5], focus on binary streams, where
each observation is either 0 or 1. We can generalize their
algorithm to observations within the bound B which results
in a considerably reduced error of O(B(log2 n)1.5).

While this significantly reduces the error over the basic
approach, the error is still proportional to B. In many real

1The latter is guaranteed through user level privacy, i.e., privacy for all
events from a user. See [3, §12] and [4] for a further discussion on the merits
of event versus user-level privacy.
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world situations, the bound B might not be known in advance,
or known only as the worse case bound resulting in an overly
conservative estimate of the true bound. Likewise, perhaps
most observations are tightly concentrated below an unknown
threshold τ well below B. For instance, returning to our
commute time use case, it is highly unlikely that anyone
would be commuting for the full 24 hours on a given day.
We are interested in a mechanism that allows us to determine
a threshold τ below which majority of the observations are
concentrated. This in turn allows to release statistics with noise
scaled to τ rather than B resulting in error O(τ(log2 n)1.5),
which is a significant improvement depending on B, τ and n.2

However, estimating τ is not straightforward due to a
number of reasons. First, estimating τ beforehand would result
in high or even unbounded cumulative error due to outliers.
Thus, any algorithm needs to observe at least a small subset of
initial observations before determining τ . This time lag needs
to be optimised for accuracy: estimating τ too early will result
in high accumulated error, and too late will only show marginal
improvement over the default case (i.e., when using B as the
estimate). Likewise, again for reasons of accuracy, we need to
ensure that readings outside the threshold are sporadic. Finally
and most importantly, naively estimating τ can result in privacy
violation by leaking information specific to an individual, e.g.,
if we take the maximum of the observations seen so far as τ ,
we display the exact value corresponding to a particular event
from an individual.

In this paper, we propose a mechanism that allows us to
estimate the threshold τ using a subset of observations from
an incoming stream via differential privacy, simultaneously
optimizing utility for releasing the moving average. Although
we optimize utility for the case of moving averages, our
mechanism for releasing the threshold is generic enough to
be used for other statistics and applications. These include
displaying the average with a sliding window [7] or releasing
histogram of the streaming data [8] where in all cases the noise
will be scaled to the most concentrated part of the distribution
of the stream.

In addition to theoretical accuracy guarantees, we provide
empirical evidence of the utility gain of our scheme using
two real world datasets: the first dataset contains about 50
million individual trip times on public trains in the city of
Sydney (Australia) over a period of two weeks, and the second
dataset is composed of individual amount spent over 140,000
transaction by about 1,000 customers in a major Australian
supermarket. Using the two datasets we first verify that real
world data has the property that most readings are concentrated
tightly well below a conceivable conservative bound B. Using
the same datasets we then show that our improved algorithm
displays the average statistic (commute time or amount spent)
with a utility many orders of magnitude (≈ 3.5 and 9 resp.,
on the two datasets) better than applying (generalized versions
of) the state of the art algorithms [4], [5]. Our utility gain is

2For instance, assume n = 1, 000, 000 and the known bound is B =
10, 000, and we are interested in the average. Assume further that almost
all observations are within τ = 100 with an average of 30. Then, through
the original mechanism we get the (noisy) average as 30 ± 1. Through the
mechanism that scales noise according to τ , we get the noisy average as
30±0.01, an improvement by a factor of B/τ = 100. This can be significant
if the average is required with high precision.

for data streams that obey a light-tailed distribution, namely a
distribution whose tail lies below the exponential distribution
(beyond the above mentioned threshold; see Section II-C for
a precise definition). We argue and show that many real-world
datasets are expected to satisfy this property.3

II. BACKGROUND

In this section we formally describe our problem, associ-
ated definitions and overview of the algorithm from [4] and [5]
referred to as the binary tree (BT) algorithm which will serve
both as a benchmark and a sub-module of our technique.

A. Problem Statement

Let B be a positive real number. We model input streams
(or strings), denoted σ, as the set of finite strings Σ = [0, B]N

of length at most n. The ith element of σ shall be denoted
by σ(i), and shall be called the ith observation or reading.
A generic element or observation from σ shall be denoted by
x. For j ≥ i, σ(i:j) represents the substring (or sub-stream)
σ(i)|| · · · ||σ(j), where || is the concatenation operator. We are
interested in finding the average of the elements of the stream
σ at each time step i ∈ N. This reduces to finding

∑i
j=1 σ(j)

at each step i ∈ [n], since we assume the observation counter
to be public. Our goal is to release a privacy-preserving version
of this sum.

B. Privacy Definitions

Definition 1 (Sum Query). We call the function c : Σ×N→ R
defined for σ ∈ Σ and i ∈ [n] as c(σ, i) =

∑i
j=1 σ(i) as the

sum query.

Definition 2 (Adjacent Streams). Let σ, σ′ ∈ Σ, The Hamming
distance d(σ, σ′) is the number of elements different in the
corresponding positions of the two strings, i.e., d(σ, σ′) = |{i :
σ(i) 6= σ′(i),∀i ∈ N}|. The two streams σ and σ′ are adjacent
if and only if d(σ, σ′) = 1.

Definition 3 ((ε, δ)-Differential Privacy). A summation mech-
anism M is (ε, δ)-differentially private if and only if for any
two adjacent streams σ, σ′ we have ∀n ∈ N and ∀S ⊂ R,

Pr [M(c, σ, n) ∈ S] ≤ Pr [M(c, σ′, n) ∈ S]× eε + δ,

where ε is a small constant and δ is a negligible function in
n. We shall use ĉ to denote the output of M in the following.

Note that the notion of differential privacy for streaming
data is the same as that for static datasets. The difference lies in
how neighboring datasets are defined. In the case of streaming
data, neighboring datasets are defined as streams differing in
one element (one event anywhere in the stream). The privacy
definition does not assume the stream σ to have any specific
distribution, barring the fact that each of its element is within
[0, B]. For utility however we shall assume that the streams
are sampled with some underlying probability distribution with
support over the set [0, B].

Definition 4 (Probability Distribution of Streams). Let B ∈
R+. Denote by FB the probability distribution which satisfies

3Also see our discussion on what real-world datasets are likely to be light-
tailed versus heavy-tailed in Section IX.
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Pr [X ∈ [0, B]] = 1, for any random variable X distributed as
FB . A string σ is said to have distribution FB , if for all i ∈ N,
Xi = σ(i) is sampled from FB . We denote this by σ ←FB Σ.

Definition 5 ((α, β) Utility). The mechanism ĉ is said to be
(α, β)-useful if for all n ∈ N and σ ←FB Σ,

Pr [|ĉ(σ, n)− c(σ, n)| ≤ α] ≥ 1− β,

where the probability is over the coin tosses of ĉ and the
distribution FB .

Note that the above is different from the utility definition
in [5], where the probability is over the coin tosses of ĉ only,
and hence the inequality is satisfied for all strings σ. In our
case, we shall be utilizing the probability that certain strings
are more likely realized in practice; hence the use of the
distribution FB . We stress again that the privacy definition
does not rely on FB .

Consider an arbitrary function c : Σ→ R. The sum query
falls under this definition with an auxiliary parameter n ∈ N.
We first define the global sensitivity of c.

Definition 6 (Global Sensitivity). The global sensitivity of a
function c : Σ→ R, denoted GS, is defined as

GS(c) = max
σ,σ′∈Σ : d(σ,σ′)≤1

|c(σ)− c(σ′)|.

Definition 7 (Laplace Mechanism). Let Lap(b) denote the
probability density function of the Laplace distribution with
mean 0 and scale b given as Lap(b) = 1

2b exp
(
|x|
b

)
. Then the

mechanism ĉ(σ) = c(σ)+Y, where Y is drawn from Lap(GS
ε )

is (ε, 0)-differentially private [2].

A definition of sensitivity that is defined for a particular
input string σ is called local sensitivity.

Definition 8 (Local Sensitivity). The local sensitivity of a
function c : Σ→ R at σ ∈ Σ, denoted LSσ , is defined as

LSσ(c) = max
σ′∈Σ : d(σ,σ′)=1

|c(σ)− c(σ′)|.

The advantage of using local sensitivity is that we only
need to consider neighboring strings of σ which could result
in lower sensitivity of the function c, and consequently lower
noise added to the true answer c. Unfortunately, replacing
the global sensitivity with local sensitivity naively in the
Laplace mechanism (for instance) may not result in differential
privacy [9]. This drawback can be removed by using smooth
sensitivity [10] instead.

Definition 9 (Smooth Upper Bound). For b > 0, an b-smooth
upper bound on LSσ , denoted SS∗σ satisfies:

SS∗σ(c) ≥ LSσ(c), ∀σ ∈ Σ,

SS∗σ(c) ≤ ebSS∗σ′(c), ∀σ, σ′ ∈ Σ : d(σ, σ′) = 1.

Definition 10 (Smooth sensitivity). For b > 0, the b-smooth
sensitivity of c, denoted SSσ,b(c), at σ ∈ Σ is

SSσ,b(c) = max
σ′∈Σ

{
LSσ′(c) · e−bd(σ,σ′)

}
.

Note that smooth sensitivity is the smallest function to
satisfy the definition of a smooth upper bound [10]. Smooth

sensitivity allows us to add noise proportional to SSσ,b
a to the

output of the function c to obtain (ε, δ)-differential privacy.
The choice of a and b depends on the privacy parameters and
the distribution used to generate noise [10].

C. Statistical Definitions

Definition 11 (p-Quantile). Let F be a cumulative distribution
function (CDF) of some continuous random variable X . The
p-quantile of F , denoted xp, is defined as

xp = inf{x ∈ R : F (xp) = Pr(X ≤ xp) ≥ 1− p}.

Fact 1. Let X be an exponentially distributed random vari-
able. Then its CDF is given by

H(x; γ) =

{
1− e−γx, x ≥ 0,

0, x < 0.

Let 0 ≤ p < 1. The quantile function of H is given as

H−1(p; γ) = − ln p

γ
. (1)

Definition 12 (Light-tailed distribution). Let X be a random
variable with CDF F and let Y be an exponentially distributed
random variable with CDF H(·; γ). Let xp be the p-quantile of
F . Let γ = − ln p

xp
, so that the p-quantile of H , i.e., yp, is equal

to xp. We say that X has a light-tailed distribution beyond
xp, or equivalently F is light-tailed beyond xp, if ∀x ≥ xp,
F (x) ≥ H(x; γ).

The choice γ = − ln p
xp

is immediate from Eq. 1.

Proposition 1. Let X be exponentially distributed with CDF
H(·; γ). Let r ≥ 1. Let xp be the p-quantile of H and let xpr
be the pr-quantile of H . Then

xp · r ≥ xpr . (2)

Proof: When r = 1, we trivially have xpr = xp = xp · 1.
So, consider r > 1 and assume to the contrary that xp·r < xpr .
From Eq. 1, this implies that

− ln pr

γ
< − ln(pr)

γ
⇒ − ln pr < − ln(pr)

⇒ −r ln p < − ln(pr) < − ln p,

which implies r < 1, a contradiction.

Proposition 2. Let X be a random variable with CDF F . Let
xp be the p-quantile of F . The expected number of samples
required to observe at least a constant number of samples
x ∈ X such that x ≥ xp is Ω( 1

p ).

Proof: This follows from the properties of the binomial
distribution. The probability that a sample x ∈ X satisfies
x ≥ xp is given by p. In m samples, we expect mp successes.
Setting mp ≥ c for some constant c gives us m = Ω( 1

p ).
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D. The Binary Tree (BT) Algorithm

To release the private version of the sum c(σ, i) at step
i ∈ [n], we shall use the binary tree algorithm from [4],
[5] as a building block. We call this the BT algorithm. We
briefly outline the algorithm, and discuss what we would like
to improve. Given a string of length n, the BT algorithm first
constructs a complete binary tree: the leaves are labelled by the
integer intervals4 [1..1], [2..2], . . . , [n..n] and each parent node
is the union of intervals of its two child nodes. To output the
noisy count ĉ(σ, i), the algorithm finds at most log2 n nodes
in the binary tree, whose union equal [1..i]. Thus, instead of
adding noise of scale Bn

ε (for ε-differential privacy through
a simple application of the Laplace mechanism), the noise
added to each node is only scaled to B log2 n

ε , resulting in an
ε-differentially private algorithm. For more concrete details,
see [4], [5].

[6..6][5..5][4..4][3..3][1..1] [2..2]

[1..2] [3..4]

[1..4]

[5..6]

[1..8]

[5..8]

[7..8]

[8..8][7..7]

Fig. 1. Example of the binary tree algorithm [4], [5]. To compute the sum
of the first 7 observations, noise is added to only 3 nodes whose union equals
the interval [1..7].

Figure 1 illustrates the algorithm with an example. We have
n = 8, and we wish to find ĉ(σ, 7). This can be done by adding
only three noisy sums corresponding to the nodes [1..4], [5..6]
and [7..7] (shaded in the figure). That is

ĉ(σ, 7) =

4∑
i=1

σ(i) + Lap
(
B log2 8

ε

)
+

6∑
i=5

σ(i)

+ Lap
(
B log2 8

ε

)
+ σ(7) + Lap

(
B log2 8

ε

)
.

E. Goal

If the stream σ has distribution FB (see Definition 4), then
the global sensitivity of the function c is GS = B. For strings
of length n, the BT algorithm has error [5]

α = O

(
GS · 1

ε

√
8 ln

1

β
(log2 n)1.5

)
, (3)

with probability at most β. Since GS = B, we get a linear
term in B. We aim to improve the dependence on B. Our
gain is on input streams σ whose distribution is light-tailed
beyond a threshold τ � B (see Definition 12). In other
words, input streams whose distribution is concentrated below
τ . Then, instead of using global sensitivity, we will use smooth
sensitivity tailored to the threshold τ . This means that the
noise added will be proportional to τ rather than B in the BT
algorithm, resulting in improved utility. In the next section, we

4For real numbers a and b, such that a ≤ b, the notation [a..b] denotes the
set of integers Z ∩ [a, b].

give several examples of real-world datasets which are light-
tailed. Thus, our improved approach has practical utility gains.

III. MOTIVATION AND OVERVIEW OF THE PROPOSED
MECHANISM

A. Motivation

There are many scenarios where an upper bound B on a
generic element of the stream is overly conservative:

• There might not be a natural bound B known in
advance, e.g., a bound on the expenditure during a
trip to the supermarket. Any guess on the bound B
would be taking into account instances of unusually
high spendings. This will result in a very conservative
upper bound.

• In some cases, a natural bound B may exist. For
instance, public transport commute time per day has a
natural bound of B = 24 hours. However, most com-
mute times will be tightly concentrated well below this
B. Once again, we would have an overly conservative
estimate.

Thus, our aim is to obtain a more realistic threshold τ � B
tailored to the input stream.

B. Empirical Validation of Concentration of Data

Here we validate our assumption that in many cases real
data is concentrated well below a conceivable bound B. We
consider two real world datasets:

• Train trips dataset: This consists of commute times
of trips made by passengers through public trains in
the greater region surrounding the city of Sydney in
Australia.5 The aim here is to display the average
commute time in real-time (using the cumulative sum).
Informally, the privacy issue here is to hide the exact
travel time of any single trip of an individual, as it
may lead to inferring the individual’s exact location
at a given time. The total number of train trips in the
dataset is about 50 million (spanning over 4 weeks).

• Supermarket expenditure dataset: A dataset show-
ing the amount of money spent by customers of a
major supermarket retailer in Australia. The goal is
to show real-time average expenditure. Informally,
privacy property here is to hide the exact transaction
amount of a customer on a trip to the supermarket,
which may disclose the type of products bought by the
customer. This dataset is much smaller and contains
about 140,000 transactions (a transaction contains
multiple purchased items) by approximately 1,000
customers over a period of one year.

The distribution of both datasets, when viewed as input
streams, satisfies our definition of a light-tailed distribution
(cf. Definition 12). This is depicted in Figure 2. The left
graph shows the (smoothed) empirical cumulative distribution
function (ECDF) of the time taken by a trip by a passenger

5The commute time per trip also includes any waiting time after and before
a passenger has tapped on and off through the smart ticketing system.
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in the train trips dataset. We can see that the peak is around
20 to 30 mins, and very few customers take more than 150
minutes on a given day. Notice that this is significantly less
than the maximum possible time in a 24 hour period (i.e.,
1,440 minutes). Likewise, we see a similar trend in the total
expenditure during a trip to the supermarket on a given day,
shown in Figure 2 (right). Many other similar datasets are
expected to have a light tailed distribution, e.g., phone-call
durations or smart electricity meter readings. See Section IX
for a detailed discussion on why such datasets are likely to
exhibit a light-tailed distribution.

(Dollars)

Fig. 2. ECDF of journey times (in minutes) from the train trips dataset (left)
and expenditures (in dollars) from the supermarket dataset (right). Both are
concentrated well below any conservative bound.

C. Overview of the Mechanism

Figure 3 shows the pictorial overview of our approach.
We will first (privately) estimate a threshold τ using the first
m < n observations. We then release the sum of the first m
observations, i.e., c(σ,m), at once using an application of the
simple Laplace mechanism with noise scaled to ≈ τ . For each
step after m, we continually release the sum c(σ, i) for m <
i ≤ n using the BT algorithm with Laplace noise once again
scaled to ≈ τ . As a consequence, we withhold releasing the
sum before we have enough data points, quantified by m, from
the stream to estimate τ . We shall call m the time lag. Globally,
there are two sources of error that we seek to minimise. First
is the outlier error (denoted αout): any readings above τ will
be stripped to τ (before adding noise). This error can occur
with probability βout indicated in the figure. The second is the
accumulated error at the last step, i.e., n, due to Laplace noise
whose probability is denoted βLap in the figure.

Privacy

The overall mechanism is outlined in Algorithm 1. The
mechanism is (ε, δ)-differentially private, where ε = ε1 + ε2.
Steps 1 and 2 are altogether (ε1 + ε2, δ + 0) = (ε, δ)-
differentially private due to the basic composition property of
differential privacy [3]. Steps 3 to 6 are (ε, 0)-differentially
private due to the properties of the BT algorithm. Since the two
sub-streams σ(1:m) and σ(m + 1:n) are disjoint, overall we
have (ε, δ)-differential privacy due to the parallel composition
property of differential privacy [11]. Notice that while we
release the sum of the first m observations in one step, the
mechanism can be modified to release the sum of each of

x

Pr

c(σ, i)
•

τ
•

B
•

distribution of σ
Laplace noise distribution (βLap)

Outlier error
probability (βout)

Fig. 3. Conceptual diagram of our approach. Once the threshold τ has been
determined, there are two sources of errors: error due to outliers and error due
to the Laplace noise added to the sum c(σ).

the first m observations through the BT algorithm, if required
(with noise scaled as ≈ τ log2(m)/ε1).

Mechanism 1: Proposed Global Mechanism
input: Input stream σ, stream length n, time lag

m ≤ n, privacy parameters ε (split between ε1
and ε2) and δ.

1 Estimate τ < B based on the first m values of σ
through the mechanism described in Section IV giving
us an (ε1, δ)-differentially private algorithm.

2 Release ĉ(σ,m) with the Laplace mechanism with noise
scaled to τ

ε2
.

3 for i = m+ 1 to n do
4 if σ(i) > τ then
5 Set σ(i)← τ .
6 Use the BT algorithm with noise scaled to

≈ τ log2(n−m)/ε to release ĉ(σ, i).

IV. PRIVATELY ESTIMATING THE THRESHOLD τ

In this section, we will find how to estimate and then
privately release the threshold τ . Ideally, τ should simulta-
neously minimize the time lag m and the outlier error αout
(characterized by the probability βout). We discarded several
straightforward ways of privately computing τ . For instance,

• The most obvious choice is the maximum of the m
values. To make this differentially private, we need
to scale noise according to the sensitivity of the max
function. If we use global sensitivity, the estimated
threshold τ will be approximately B, resulting in no
utility gain. We could instead use smooth sensitiv-
ity [10], but since a possible neighbour of the target
stream σ may have any value between 0 and B, this
would again result in sensitivity close to B.

• Another alternative is to use the standard deviation of
the underlying input distribution FB of σ. However,
this requires knowing the distribution in advance. We
are interested in a more general problem where only
a few simple assumptions about the distribution FB
hold true and are known beforehand.

Our statistic of choice is the p-quantile (cf. Definition 11).
This can be privately computed using an algorithm similar to

5



the algorithm for computing the median of a sequence using
smooth sensitivity [10]. Analogous to Definition 11, the p-
quantile of a stream σ →FB Σ of n elements is defined as

xp = min
i<n
{σ(i) : |{j < n : σ(j) < σ(i)}| ≥ (1− p)n} .

That is, the minimum element of σ such that at least a (1 −
p) fraction of elements in σ are below it. Since the CDF of
the input distribution FB is unknown in advance, we need to
obtain an empirical estimate x̂p of the p-quantile. We shall do
so using the first m readings of σ. For differential privacy, the
estimate x̂p needs to be stable.6 From Proposition 2, this means
that we require m = Ω( 1

p ) readings. On the other hand, for a
continual release application, m should be small compared to
n. More specifically, the time lag m should satisfy

n� m� 1

p
. (4)

Additionally, to minimise outlier error, i.e., to minimise βout,
p needs to be small.

A. Informal Roadmap

Since the empirical p-quantile, i.e., x̂p, reaches xp in
expectation, it is not possible to upper bound the probability
Pr[x̂p < xp] arbitrarily to minimise errors due to truncation
(step 5 of Mechanism 1). We therefore introduce another
parameter λ < 1, and seek to estimate the λp-quantile
(instead). This allows us to bound Pr[x̂λp < xp] by adjusting
the parameter λ, since xλp > xp if λ < 1. We denote this
probability bound by βqt, shown in Figure 4. To make the
estimate differentially private, and consequently to use it as
the threshold τ , we may use additive Laplace noise. Due
to the properties of the Laplace distribution, Pr[τ < xp] is
non-zero. We seek to bound this within βlt. Finally, to fix
τ below a bound τmax, we set the upper bound βrt on the
probability that t > τmax. The ability to bound these three
error probabilities is important for our utility analysis. In the
following, we will formally introduce these sources of errors
and will subsequently try to minimise them for utility.

x

Pr

xp
•

xλp
•

x̂λp
•

τ
•

τmax
•

distribution of σ
distribution of x̂λp

distribution of τ

Pr[x̂λp < xp] ≤ βqt

Pr[τ < xp] ≤ βlt

Pr[τ > τmax] ≤ βrt

Fig. 4. Possible sources of error when estimating the threshold τ using the
p-quantile.

6A real-valued function f of σ is said to be k-stable if adding or removing
any k elements from σ does not change the value of f . See [3, §7].

B. Error due to Underestimating the λp-Quantile

As mentioned above, since the expected value of x̂p is xp,
we cannot bound Pr[x̂p < xp] below and arbitrary bound βqt.
Thus, instead of estimating the p-quantile, we shall estimate
the λp-quantile with 1

pm < λ < 1. Now the probability of
having x̂λp < xp is given by:

g(λ, p,m) = Pr[x̂λp < xp]

= Pr[< λpm values of σ are ≥ xp]

=

λpm∑
i=0

(
m

i

)
pi(1− p)m−i. (5)

We denote by βqt the bound on the error probability function
g.

C. Privately Obtaining the λp-Quantile

For this section we assume that xp ≤ x̂λp holds. As
discussed before, setting the threshold τ to x̂λp is not private.
To obtain a differentially private estimate, we utilize smooth
sensitivity. As shown in [10], smooth sensitivity can be used
to display the median in a differentially private manner. We
modify the median algorithm described therein to privately re-
lease the λp-quantile. First we compute the smooth sensitivity
of the empirical λp-quantile, i.e., x̂λp, as

SSσ,b(x̂λp) = max
k=0,1,...,m+1

{e−bkLSσ′(x̂λp) : d(σ, σ′) ≤ k},

where

LSσ′(x̂λp) = max
t=0,1,...,k+1

|σ̈(P + t)− σ̈(P + t− k − 1)|.

Here, σ̈ is the sorted string of the first m values of σ in
ascending order with 0 added as a prepend and B as an
appendix; and P is the rank of x̂λp. This can be done in O(m2)
time [10, §3.1].

Warm: After computing the smooth sensitivity, we can set
the threshold τ as

τ = x̂λp +
SSσ,b(x̂λp)

a
· noise,

where noise is either the Laplace or standard Gaussian noise.
For both, we can set b ≤ ε

−2 log(δ) as the smoothing parameter
(Definition 10. If we use the Laplace distribution with scale 1,
a = ε

2 results in (ε, δ)-differential privacy. When the noise is
standard Gaussian, then a = ε√

− ln δ
gives us (ε, δ)-differential

privacy [10]. However, as discussed in Section IV-A, we
require Pr[τ < xp] to be bounded by an arbitrary βlt (see
Figure 4). Unfortunately, the only way to bound this probabil-
ity is by adjusting the privacy parameter ε, which cannot be
arbitrarily chosen (without compromising privacy). Thus, we
need to slightly change the above estimate.

Warmer: Let Gns denote the CDF of the noise distribution.
Then instead of the above we can set τ to

τ = x̂λp +
SSσ,b(x̂λp)

a
· (noise + offset)

= x̂λp +
SSσ,b(x̂λp)

a
· offset +

SSσ,b(x̂p)

a
· noise.

where offset = G−1
ns (1 − βlt). That is, we offset the noise to

the right of xp to ensure that the probability of the threshold
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τ falling below xp is bounded by βlt. Unfortunately, this is
no longer differentially private, since the offset itself may leak
information.

Solution: Informally, to solve this problem we will mul-
tiplicatively increase SSσ,b(x̂λp) by a factor κ such that it
“hides” the offset as well.7 First define τ ′ to be

τ ′ = x̂λp +
κSSσ,b(x̂λp)

a
·G−1

ns (1− βlt), (6)

where κ is a positive real number to be determined. Then, we
finally set

τ = τ ′ +
SSσ,b(τ

′)

a
· noise. (7)

We seek the smallest κ such that the probability of having
τ < xp is bounded by βlt. Now, to bound this probability a
little algebraic manipulation using Eqs. 6 and 7, together with
our assumption x̂λp ≥ xp (beginning of this section), shows
that having

Pr

[
noise < −κSSσ,b(x̂λp)G

−1
ns (1− βlt)

SSσ,b(τ ′)

]
≤ βlt,

suffices. This is equivalent to

Gns

(
−κSSσ,b(x̂λp)G

−1
ns (1− βlt)

SSσ,b(τ ′)

)
≤ βlt

⇔ −κSSσ,b(x̂λp)G
−1
ns (1− βlt)

SSσ,b(τ ′)
≤ G−1

ns (βlt)

⇔ κSSσ,b(x̂λp)G
−1
ns (1− βlt)

SSσ,b(τ ′)
≥ G−1

ns (1− βlt)

⇔ κSSσ,b(x̂λp) ≥ SSσ,b(τ
′). (8)

Also, from Eq. 6, using the triangle inequality and homogene-
ity property of smooth sensitivity [10], we get

SSσ,b(τ
′) ≤ SSσ,b(x̂λp) +

κG−1
ns (1− βlt)

a
· SSσ,b(SSσ,b(x̂λp))

(9)
From the definition of smooth sensitivity we see that ∀σ, σ′
such that d(σ, σ′) = 1, we have

SSσ′,b(c) ≤ ebSSσ,b(c).

This also allows us to write, ∀σ′ such that d(σ, σ′) = 1

LSσ′(SSσ,b(c)) ≤ (eb − 1)SSσ′,b(c).

Now similar to the computation of smooth sensitivity of the
median in [10], we have

SSσ,b(SSσ,b(x̂λp))

≤ max
k∈N
{e−bkLSσ′(SSσ,b(x̂λp)) : d(σ, σ′) ≤ k}

≤ max
k∈N
{e−bk(eb − 1)SSσ′,b(x̂λp) : d(σ, σ′) ≤ k}

≤ max
k∈N
{e−bk(eb − 1)ebkSSσ,b(x̂λp) : d(σ, σ′) ≤ k}

≤ max
k∈N
{(eb − 1)SSσ,b(x̂λp) : d(σ, σ′) ≤ k}

≤ (eb − 1)SSσ,b(x̂λp). (10)

7Thus aiming for a smooth upper bound on smooth sensitivity, rather than
smooth sensitivity itself.

Equating Eqs. 8, 9 and 10 gives us the required κ as

κ =

(
1− (eb − 1)G−1

ns (1− βlt)

a

)−1

. (11)

Now, putting Eq. 7 into Eq. 6, and using Eq. 8 we have

τ = x̂λp +
κSSσ,b(x̂λp)

a
·G−1

ns (1− β2) +
SSσ,b(τ

′)

a
· noise

≤ x̂λp +
κSSσ,b(x̂λp)

a
·G−1

ns (1− β2)

+
κSSσ,b(x̂λp)

a
· noise

= x̂λp +
κSSσ,b(x̂λp)

a
· (noise +G−1

ns (1− βlt)), (12)

where κ is given by Eq. 11. The threshold τ released via the
above mechanism is differentially private since κSSσ,b(x̂λp) is
a smooth upper bound of x̂λp and κ only depends on public
parameters.

D. Upper Bound on the Threshold

For our utility analysis in the next section, we require an
upper bound on the random variable τ from Eq. 12. We see
that with probability at least 1− βrt, we have

τ ≤ τmax = x̂λp+
κSSσ,b(x̂λp)

a
·(G−1

ns (1−βlt)+G−1
ns (1−βrt))

(13)

V. UTILITY ANALYSIS

For this section, we assume that the λp-quantile has been
obtained after m steps and satisfies the constraint xp ≤ x̂λp.
Furthermore, a threshold τ has been obtained via Eq. 12 sat-
isfying Eq. 13. As described in Section III-C, our mechanism
(Mechanism 1) then releases c on every new observation from
m+ 1 to n. For the ith observation x = σ(i) where i > m, if
x ≤ τ then we release c(σ, i) through the BT algorithm with
noise Lap( τ log2(n−m)

ε ). This causes an additive error αLap in
the computation of c with an associated error probability βLap.
On the other hand, if x > τ , we instead assume that the new
observation is exactly τ and then again add noise as before.
This induces an additional error term, which we have called
outlier error, denoted αout. We denote the probability of the
outlier error by βout. In the following, we bound these two
errors by first assuming the (unrealistic) worst case scenario,
i.e., every new observation after the time lag m steps is
exactly B with probability p. We then use the more realistic
assumption that the distribution of the stream is light-tailed,
and show that based on real-world datasets we are expected to
gain significant utility in practice.

A. Worst Case Error

Let ξ denote the PDF of the outlier error and Ξ its CDF. Let
E be a random variable denoting the outlier error and let Ei =
σ(i)−min{σ(i), τ} denote the outlier error of observation i,
which is bounded by B − τ . Assuming each element of σ is
distributed as X ∼ FB (cf. Definition 4), we have Ξ(x) ≥
F (x−xp) for strictly positive x ∈ X . The worst case is when
the PDF is given as

ξ(x) = ∆(x)(1− p) + ∆(x− (B − τ))p,

7



where ∆ is the Dirac delta function. This means that beyond
the p-quantile, all the values are equal to B. With this as-
sumption we can estimate the (αout, βout)-utility (Definition 5)
as follows:

Pr

[
n∑
i=1

Ei ≥ αout

]
= Pr

[
h

n∑
i=1

Ei ≥ hαout

]

= Pr

[
exp

(
h

n∑
i=1

Ei

)
≥ exp(hαout)

]

≤
E[exp(h

∑n
i=1Ei)]

exp(hαout)

=

∏n
i=1 E[exp(hEi)]

exp(hαout)

=
E[exp(hE)]n

exp(hαout)

=
(1− p+ peh(B−τ))n

ehαout
= βout.

Solving for αout, we get

αout =
n ln(1− p+ peh(B−τ)) + ln 1

βout

h
.

The value of h ≈ 1
(B−τ)pn minimizes αout. Recall that

according to Eq. 4, we want m � 1
p , which implies that

h� 1. The above then becomes

αout = pn(B − τ)

(
ln

1

βout
+ 1

)
+ o(1).

Adding this to the utility term αLap from the BT algorithm
(Eq. 3) [5] we see that the overall error α is

α ≤ 1

ε
(log2(n−m))1.5τ

√
8 ln

1

βLap

+ (B − τ)pn

(
ln

1

βout
+ 1

)
, (14)

with probability at most β, where β is a bound on the sum
of the five error probabilities.8 If the error is dominated by
the first summand, then this leads to an improvement factor of
B
τ in utility over the application of the BT algorithm without
our mechanism (see Eq. 3). However, looking at the second
summand, we see that the outlier error is proportional to pn.
To make this into a constant error term, we need p ≈ 1

n .
But recall from Eq. 4 that we require m � 1

p . Thus, it is
not possible to bound this error term. Hence, if the input
stream has the worst-case distribution, our mechanism does
not improve utility. However, arguably, real-world data streams
are not distributed in this way.

B. Error on Light-Tailed Distributions

As shown in Section III-B, many real-world data distribu-
tions are expected to be light-tailed (cf. Definition 12), thus
behaving significantly differently than the worst case. More
precisely, we focus on distributions that are light-tailed be-
yond their pmax-quantile, a quantity to be determined shortly.

8i.e., βqt, βlt, βLap, βout and βrt.

Clearly, this holds true for any p ≤ pmax as well. Figure 5
shows that this assumption holds for the train trips dataset for
p = 0.005-quantile. The figure shows the ECDF of travel times
against the CDF of the exponential distribution with parameter
γ = − ln p

xp
= − ln 0.005

x0.005
(cf. Fact 1). The assumption also holds

for the supermarket dataset with the same p-quantile. We omit
the graph due to repetition.

50 100 150 200
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Exponential Distibution

Fig. 5. The distribution of the train trips dataset compared to an exponential
distribution with the same p = 0.005-quantile. The real distribution is above
the exponential distribution, indicating that it is light-tailed.

Since the distribution is light-tailed, we can use Proposi-
tion 1 and the assumption xp ≤ x̂λp to conclude that for all
p ≤ pmax,

x̂λp · r ≥ xpr ,∀r ≥ 1. (15)

Thus, instead of using the threshold τ directly from Eq. 7, we
multiply it by r and set it as the threshold. According to the
above equation, this results in reduced outlier error whenever
r > 1.

Determining pmax: To determine the value of pmax, we
perform a series of experiments on the train trips and the
supermarket dataset. We seek a value of pmax that ensures the
light-tailed property on both datasets. We vary pr beginning
from a value of 0.1 to increasingly small values. Against each
value of pr we obtain the empirical pr-quantile, i.e., x̂pr . We
then use different values of p, e.g., 0.1, 0.01, and so on. From
each pair of values of p and pr, we obtain r and multiply it
with the empirical pr-quantile to obtain rx̂p. The aim is to
find a value of pmax such that for all p ≤ pmax, rx̂p ≈ x̂pr .
Since x̂λp ≥ x̂p, this implies that Eq. 15 would be satisfied.
The results are shown in Figure 6a for the train trips dataset
and Figure 6b for the supermarket dataset. The results suggest
that pmax ≈ 0.005 suffices.

Error Bound: Now, assuming that the input stream is light-
tailed we see that the outlier error is bounded by the properties
of the exponential distribution. That is, PDF ξ of the outlier
error can be written as

ξ(x) = ∆(x)(1− pr) + pr · γe−γx,

where γ = − ln p
xp

. Thus,

Pr

[
n∑
i=1

Ei ≥ αout

]
≤ E[exp(hE)]n

exp(hαout)
≤

(1 + h
γ−h )n

ehαout
= βout.
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(a) Train trips dataset
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Fig. 6. Error in estimating the empirical pr-quantile through empirical p-quantile with different choices of p. We see that below pmax ≈ 0.005, the input
datasets satisfy x̂p · r ≈ xpr .

This gives us,

αout =
n ln(1 + h

γ−h ) + ln( 1
βout

)

h

We can choose the h that minimises αout as

h = γ

(√
pr · n
ln 1

βout

+ 1

)−1

,

which leads to

αout ≤
−xp
ln p

(√
pr · n+

√
ln

1

βout

)2

.

Adding this to the error term αLap from the BT algorithm
(Eq. 3) and using the assumption xp ≤ x̂λp, we see that the
overall error α is

α ≤ 1

ε
(log2(n−m))1.5τr

√
8 ln

1

βLap

+
−x̂λp
ln p

(√
pr · n+

√
ln

1

βout

)2

, (16)

with probability at least 1−β, where β is once again a bound
on the five error probabilities. Now, to bound the second error
term (the second summand) by a constant, we require pr ≈ 1

n .
Thus an r logarithmic in n suffices. With this value of r we
see that the overall error is bounded by O(τ(log2 n)1.5/ε).
Thus, we obtain an improvement factor of B/τ over the BT
algorithm, which was the aim of our mechanism. In the next
section, we will show how to optimize the parameters for
utility.

VI. OPTIMIZING UTILITY

A. Optimized Parameters

To optimize α given by Eq. 16, we ran a series of exper-
iments on the two datasets using the Python library SciPy.9
Specifically, we used a truncated Newton method [12] (TNC)
implemented by the scipy.optimize.minimize method
to optimize α. We fix n = 25,000,000 for the train trips dataset

9https://www.scipy.org/

and n = 150,000 for the supermarket dataset. The parameter
β, i.e., overall probability of exceeding an error of α, was
fixed to 0.02, and δ was fixed to 2−20.10 For both datasets, we
analyze the influence of local and global parameters separately.

Effect of Local Parameters: We fixed ε = 1 for this series
of experiments. Then, for different values of the time lag m, we
ran the optimizer on the objective function α given by Eq. 16,
with the constraints: p ≤ pmax = 0.005, λ ≤ 1, r ≥ 1, and
κ > 0. Note that the optimization algorithm is deterministic:
given fixed global parameters, we obtain the same value of the
local parameters each time. We also define the improvement
factor (IF), as the ratio of error obtained from the BT algorithm
to the error obtained through our mechanism. The results are
shown in Tables I and II.

TABLE I. OPTIMIZED PARAMETERS FOR THE TRAIN TRIPS DATASET

m IF r λ p
ε1
ε

βqt
β

βlt
β

βLap
β

βout
β

βrt
β

40000 1 1 1 0.005 0 0.00 0.00 1 0.00 0.00
50000 2.32 1.63 0.85 0.005 0.8 0.09 0.3 0.41 0.09 0.09
60000 2.8 1.49 0.83 0.0049 0.9 0.13 0.23 0.37 0.13 0.13
100000 3.69 1.76 0.87 0.0048 0.9 0.07 0.1 0.68 0.07 0.07
300000 4.34 1.91 0.87 0.005 0.79 0.11 0.11 0.57 0.11 0.11

TABLE II. OPTIMIZED PARAMETERS FOR THE SUPERMARKET
DATASET

m IF r λ p
ε1
ε

βqt
β

βlt
β

βLap
β

βout
β

βrt
β

40000 1 1 1 0.005 0 0.00 0.00 1 0.00 0.00
50000 4.23 1 0.81 0.005 0.82 0.23 0.19 0.19 0.19 0.19
60000 4.86 1.08 0.82 0.0049 0.88 0.15 0.27 0.27 0.15 0.15
100000 6.67 1.11 0.85 0.0046 0.81 0.07 0.07 0.71 0.07 0.07

We see that as the time lag m grows, IF is less impacted by
Laplace noise added to the sum as indicated by the decreasing
ratio βLap/β. The improvement factor grows with increasing
m, but this is essentially a trade-off between releasing or
withholding the sum. The rest of the parameters are relatively
stable, with higher values of r indicating that the threshold can
be set higher than the estimated experimental λp-quantile. For
smaller m, we do not see any improvement in utility over the
basic BT algorithm. Note that in such a case our mechanism

10While this value of δ is higher than recommended (i.e., negligible in
1/n [3, §2.3, p. 18]), lower values, say 2−30 [13, §3, p. 5], have a minor
impact on utility in our experiments.
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simply releases the sum using the BT algorithm with noise
scaled to B. Thus, we do not incur any extra cost in utility.

Effect of Global Parameters: The parameters ε, δ, β, and m
are global parameters specified to the optimization algorithm.
The parameters β and δ are fixed as before. Thus, we look at
the evolution of IF with different values of ε and m. For each
value, we run the optimizer to output a set of local parameters
that maximize utility. For this, we only use the train trips
dataset with n = 25,000,000.

ε: Smooth sensitivity is roughly proportional to 1
ε21

, so
smaller values of ε (and consequently ε1) will not
result in a high IF. On the other hand, if ε is too
large, the error caused by truncation (step 5 of Mech-
anism 1) will overwhelm the noise due to the Laplace
mechanism, and hence the IF will be low. Figure 7
(left) shows this trend, where we plot the improvement
factor of our algorithm over the BT algorithm by
fixing m = 50,000.

m: The impact of the time lag m is data dependent.
We do not see much improvement when m is small,
say around 10,000. With m around 50,000 we see
noticeable increase in IF. This is indicated by Figure 7
(right), where we have fixed ε = 1.

Fig. 7. Influence of global parameters on the improvement factor.

B. Private Choice of Parameters

The parameters required as input in Mechanism 1 are ε1,
ε2, δ, m and r. For reasons of privacy, the choice of these
parameters cannot be based on optimization on a particular
input dataset. We therefore discuss some heuristic choices
for these parameters based on our experiments above. The
parameters ε = ε1 + ε2 and δ can be chosen in the standard
way. For instance, ε = 1 and δ = n−2. From Tables I and II,
a value in the range 0.8 to 0.9 is a reasonable choice for ε1.
Note that ε2 is readily determined by ε and ε1. From the same
tables, we see that an r between 1 and 2 suffices. We therefore
discuss heuristics for choosing m.

Heuristics for Selecting the Time Lag m: We specify two
criteria that should be satisfied by the time lag. By assigning
reasonably conservative (with respect to utility guarantees)
values to the free parameters in the two criteria, we obtain a
value of m that is expected to provide good utility in practice.

The overall value of m can be obtained as the maximum of
the two values returned by the criteria.

a) First Criterion: This is the probability of having
x̂λp < xp given by the function g in Eq. 5. We set
g(λ, p,m) = g(0.5, pmax,m) < β. All our optimization
experiments returned a value of λ close to 1. Thus, setting
λ = 0.5 is a reasonably conservative choice.

b) Second Criterion: This is related to the (approxi-
mate) scale of smooth sensitivity:11

κSSσ,b(x̂λp)

a
·G−1

ns (1− β) ≈ B

10
. (17)

The term B/10 is arbitrarily chosen to ensure that the scale is
a few orders of magnitude less than B. With the Laplace noise
distribution, we can take a = ε√

− ln δ
and b = min(1, ε

−2 ln δ ).
This readily gives us κ through Eq. 11. Now, to get a conserva-
tive bound on SSσ,b(x̂λp), we first assume that the exponential
distribution has its pmax-quantile close to B. In other words,
xpmax

≈ B. This means that the upper bound on the smooth
sensitivity is conservative. Now at B, the probability density
function of the exponential distribution is −pmax ln pmax

B . With
m observations, the inverse of the average distance between
two observations is therefore roughly

d =
−mpmax ln pmax

B
. (18)

Now, assuming that the density is approximately constant in
the neighbourhood of B, smooth sensitivity is given by

max
k∈N
{dk exp(−bk)}.

We can bound the above if we replace natural numbers with
real numbers, resulting in

SSσ,b(x̂λp) <
d exp(−1)

b
. (19)

Now, combining Eqs. 17, 18 and 19 and solving for m, we
get our second criterion on m as

m >
20κ(− ln δ)1.5 exp(−1)G−1

ns (1− β)

−ε2pmax ln pmax
.

With β = 0.02, δ = 2−20, ε = 1 and pmax = 0.005, we
find that m should be at least 20,000 in order to satisfy the first
criterion. The second criterion imposes m > 80, 000 for good
utility. From Tables I and II we see that with m > 80, 000 we
indeed obtain good utility. Of course, the higher the time lag
m, the better the utility gain, with the trade-off that there is a
longer time lag before we output the sum.

VII. EXPERIMENTAL EVALUATION

A. Accumulated Error on the Sum

We now show the improvement factor in computing the
moving average (sum) through our mechanism. Since the error
is maximized at step n, i.e., the last observation of the stream,
we compare the value of ĉ(σ, n) through our mechanism
against its counterpart via the BT algorithm. For both datasets,
we run the two mechanisms a total of 20,000 times and display
the empirical probability density function (PDF) of error.

11If the time lag is small, the observations will be sparsely distributed
implying a large scale of smooth sensitivity.
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1) Train Trips Dataset: We fixed ε = 1, δ = 2−20, β =
0.02, m = 50, 000 and n = 25, 000, 000, and obtained the
values of the local parameters after optimization, shown in
Table I. We set B = 1440 minutes, which is the maximum
possible commute time in a 24 hour period. Figure 8 shows
the PDF of the resulting error (normalized by the maximum
value B) of our mechanism and the BT algorithm. We see that
the error in our case is more tightly concentrated around 0. On
average, we obtain an improvement factor of 3.5.

Fig. 8. PDF of the error on the train trips dataset through our mechanism
and the BT algorithm.

We are also interested in knowing whether our estimation
of the outlier error (i.e., the second summand in Eq. 16), is
close to the actual outlier error. This will validate whether our
assumption that the distribution of the dataset is light-tailed.
To verify this we re-ran our mechanism 20,000 times on the
same dataset and obtained the ratio real error

estimated error with the same
parameters as above. Figure 9 shows that we have erred on the
precautionary side with our estimation of outlier error being
well within the actual error.

Fig. 9. Distribution of the outlier error ratio: (real error)/(estimated error)
on the train trips dataset. Our estimated outlier error is well below the real
outlier error.

2) Supermarket Dataset: For the supermarket dataset, we
use the same set of parameters except that we have n =
150, 000 (due to less data points) and B = 3, 000 dollars (a
conservative guess on the amount spent). Figure 10 shows the
PDF of the error from our mechanism and the BT algorithm.
Once again the error through our mechanism is more tightly
concentrated around 0. For this dataset, we perform much

better than the BT algorithm, with an improvement factor of
9 on average.

Fig. 10. PDF of the error on the supermarket dataset through our mechanism
and the BT algorithm.

For this dataset as well we are interested in knowing
whether the estimated error due to outliers is well below the
actual error. Figure 11 shows that the dataset does indeed have
a light-tailed distribution with the actual error being almost
always below the estimated value.

Fig. 11. Distribution of the outlier error ratio: (real error)/(estimated error)
on the supermarket dataset. Once again our estimated outlier error is close to
the real outlier error.

B. Does the Distribution Remain Light-Tailed across Time?

Recall that our mechanism promises improved utility based
on the premise that data distribution is light-tailed. Since
the input stream is time dependent, the estimated threshold
(using the λp-quantile) through m observations with a given
time period may be drastically different from its estimate
via a different time period. To ensure that this is not the
case, we analyzed the distribution of the train trips dataset
across different hours and different days of the week. The
distributions are shown in Figures 12 and 13, respectively.
While the beginning of the distributions show variation based
on the time period, the tails are similar and light-tailed. Thus,
our estimated threshold is likely to improve utility independent
of the time period in real datasets.

VIII. RELATED WORK

As previously noted, the privacy-preserving algorithms for
continual release of statistics from binary streams proposed
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Fig. 12. Train commute time distribution from different hours of the day.
Again all are light-tailed.

Fig. 13. Train commute time distribution from different days of the week.
All are light-tailed.

in [4], [5] can be generalized to the scenario addressed in
this paper, i.e., release of statistics from a stream whose
values are from the real interval [0, B]. Indeed, we have used
the algorithm from [5] as one of the components of our
method. However, the focus of the two works in [4] and [5]
is on improving the error for binary strings which do not
have the added factor of B. The two algorithms are based
on event-level privacy. As such, if the aim of privacy is to
protect all events from an individual (e.g., all trips made by
an individual over the course of the whole year), then the
privacy provided by these algorithms is insufficient. The work
from [14] attempts to improve this by offering privacy for up
to w successive events. Noting that any w successive events
might not contain multiple events originating from a single
individual, the authors from [15] introduce l-trajectory privacy,
where any successive l events from a user are targeted for
privacy. These works essentially propose privacy mechanisms
for variants of the definition of differential privacy where
neighbouring streams are defined differently from the standard
definition of Hamming distance. We note that our method can
be easily used in conjunction with these algorithms, as we only
use the BT algorithm from [5] in a modular way. However, to
find a utility maximizing threshold in a differentially private
manner for any variation in the definition of neighbouring
streams requires tweaking our mechanism. Likewise, these
algorithms also target infinite streams as opposed to bounded
streams (as is done in our paper). Application of our approach
to these settings is an interesting area for future work.

As argued before, privacy-preserving continual release of
the sum is only one example of functions that can be released
with improved utility through our mechanism. As long as the
target function remains a function of the stream, has reduced
sensitivity based on tighter concentration of input data, and
the error due to outliers can be bounded and related to the
p-quantile, we can adapt all the steps of our method to the
given function. This allows us to estimate the threshold from
the data, thus finding the optimum balance between the error
due to symmetric noise and the error due to outliers. Examples
of such functions include the sliding window average or the
decaying sum where either past observations are completely
discarded or are given progressively less weights [7]. Another
example is continually releasing histogram of the input stream
where we would like to completely discard bins above the
main concentration of the data.

Our work on estimating the threshold using the p-quantile
can be thought of as an exercise in finding “robust” statis-
tics [16] with differential privacy, a line of work that was
discussed in [17] and [18]. These works estimate the scale
of the input data with the help of the interquartile range using
the Propose-Test-Release approach [17]. Briefly, this approach
checks whether a given analysis uses a function that is robust
or stable [9] on a given dataset or not. If the answer is no,
the analysis is abandoned. In other words, the interquartile
range may not even be released if it is not stable for the
given dataset. Our approach is different as we use the p-
quantile as the estimate of the scale of the input dataset,
and use smooth sensitivity to release it. Unlike the Propose-
Test-Release approach which may not release the p-quantile
depending on input data, we have the advantage that we
always obtain an estimate. This allows us to optimize utility
by bounding errors introduced by the estimation of the scale of
the dataset. We note that the problem of finding differentially
private quantiles is also tackled in [19], but the main ingredient
there is the exponential mechanism [20], and the context is
static datasets rather than continual release of data.

The main idea of our work is to reduce the sensitivity of
the query (in our case, the moving sum), by relying on some
initial knowledge of the input data. If we succeed in reducing
sensitivity, we significantly reduce the scale of noise added
to the query, thus improving accuracy of the query answer. A
similar approach has also been used in some other works for
other query types or applications. In [21], the authors use prior
knowledge of the dataset to release time-series data with better
accuracy. The aforementioned approach is also used in [8]
where the aim is to display a differentially private histogram
by altering the size of the bins in order to artificially reduce
sensitivity.

IX. DISCUSSION

An interesting question to ponder is what kind of data
distributions are likely to have a light-tailed distribution. Look-
ing at the two datasets evaluated in this paper, we see that
one common characteristic is that they emerge from short-
lived, time-constrained events. Thus, more generally, streaming
data with short-lived events is likely to exhibit light-tailed
distributions. In addition to the two datasets used in this paper,
other examples of data exhibiting a light-tailed distribution
include smart meter-based energy readings data (e.g. electricity
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usage), phone call durations data, length of posts/comments on
online social networks (e.g., on the website Reddit), average
time spent on a given location, or daily average inter-arrivals
of check-in times (location-based networks). Consequently, the
resulting readings are bounded, even though the bound B
might be unknown in advance or only loosely known. These
are in contrast to heavy-tailed distributions where (underlying)
events are not short-lived or time-constrained, e.g., income
distribution, file sizes in computer systems, and network traffic
over a long period of time.

We would like to stress that in case the input distribution
is not light-tailed, our estimated threshold τ would be closer
to the global bound B. Thus, in the worst case we would
be able to provide utility similar to the BT algorithm (with
the disadvantage that we add a time lag m). An example of
this is a uniform distribution over [0, B], where the threshold
τ would be close to B (estimated via the first m readings).
Similar argument applies to other heavy-tailed distributions.
Also, importantly, our privacy definition is not dependent
on the light-tailed distribution assumption. Thus, the privacy
guarantee remains the same regardless of the nature of the
input distribution.

X. CONCLUSION

We have presented a privacy-preserving mechanism to
continually display the moving average of a stream of ob-
servations where the bound on each observation is either too
conservative or not known a priori. We have relied on justified
assumptions on real-world datasets to obtain a better bound
on observations of the stream. Moreover, we have shown how
to obtain this bound in a differentially private manner while
optimizing utility. Our mechanism can be applied to many real-
world applications where continuous monitoring and reporting
of statistics is required, e.g., smart meter data and commute
times. Our techniques can be improved in several ways. We
have relied on the quantile to estimate the bound on the
streaming data based on smooth sensitivity. There may be other
ways to display the quantile using other robust statistics. Our
mechanism can be adapted to compute functions other than
the moving average. Likewise, our method can be used in
conjunction with algorithms that provide privacy for multiple
events instead of single events as is done in this paper. Overall,
we see our work as an instance of applying differential privacy
in practice.
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