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Abstract—Voice interfaces are becoming accepted widely as
input methods for a diverse set of devices. This development
is driven by rapid improvements in automatic speech recogni-
tion (ASR), which now performs on par with human listening in
many tasks. These improvements base on an ongoing evolution
of deep neural networks (DNNs) as the computational core of
ASR. However, recent research results show that DNNs are
vulnerable to adversarial perturbations, which allow attackers
to force the transcription into a malicious output. In this paper,
we introduce a new type of adversarial examples based on
psychoacoustic hiding. Our attack exploits the characteristics
of DNN-based ASR systems, where we extend the original
analysis procedure by an additional backpropagation step. We
use this backpropagation to learn the degrees of freedom for
the adversarial perturbation of the input signal, i.e., we apply a
psychoacoustic model and manipulate the acoustic signal below
the thresholds of human perception. To further minimize the
perceptibility of the perturbations, we use forced alignment to
find the best fitting temporal alignment between the original audio
sample and the malicious target transcription. These extensions
allow us to embed an arbitrary audio input with a malicious
voice command that is then transcribed by the ASR system,
with the audio signal remaining barely distinguishable from the
original signal. In an experimental evaluation, we attack the state-
of-the-art speech recognition system Kaldi and determine the best
performing parameter and analysis setup for different types of
input. Our results show that we are successful in up to 98%
of cases with a computational effort of fewer than two minutes
for a ten-second audio file. Based on user studies, we found that
none of our target transcriptions were audible to human listeners,
who still understand the original speech content with unchanged
accuracy.

I. INTRODUCTION

Hello darkness, my old friend. I’ve come to talk with
you again. Because a vision softly creeping left its seeds
while I was sleeping. And the vision that was planted in
my brain still remains, within the sound of silence.

Simon & Garfunkel, The Sound of Silence

Motivation. Deep neural networks (DNNs) have evolved
into the state-of-the-art approach for many machine learning
tasks, including automatic speech recognition (ASR) sys-
tems [43], [57]. The recent success of DNN-based ASR

systems is due to a number of factors, most importantly their
power to model large vocabularies and their ability to perform
speaker-independent and also highly robust speech recognition.
As a result, they can cope with complex, real-world environ-
ments that are typical for many speech interaction scenarios
such as voice interfaces. In practice, the importance of DNN-
based ASR systems is steadily increasing, e. g., within smart-
phones or stand-alone devices such as Amazon’s Echo/Alexa.

On the downside, their success also comes at a price:
the number of necessary parameters is significantly larger
than that of the previous state-of-the-art Gaussian-Mixture-
Model probability densities within Hidden Markov Models
(so-called GMM-HMM systems) [39]. As a consequence, this
high number of parameters gives an adversary much space
to explore (and potentially exploit) blind spots that enable
her to mislead an ASR system. Possible attack scenarios
include unseen requests to ASR assistant systems, which may
reveal private information. Diao et al. demonstrated that such
attacks are feasible with the help of a malicious app on
a smartphone [14]. Attacks over radio or TV, which could
affect a large number of victims, are another attack scenarios.
This could lead to unwanted online shopping orders, which
has already happened on normally uttered commands over
TV commercials, as Amazon’s devices have reacted to the
purchase command [30]. As ASR systems are also often
included into smart home setups, this may lead to a significant
vulnerability and in a worst-case scenario, an attacker may
be able to take over the entire smart home system, including
security cameras or alarm systems.

Adversarial Examples. The general question if ML-based
systems can be secure has been investigated in the past [5], [6],
[26] and some works have helped to elucidate the phenomenon
of adversarial examples [16], [18], [25], [47]. Much recent
work on this topic focussed on image classification: different
types of adversarial examples have been investigated [9], [15],
[32] and in response, several types of countermeasures have
been proposed [12], [19], [60]. These countermeasures are
focused on only classification-based recognition and some
approaches remain resistant [9]. As the recognition of ASR
systems operates differently due to time dependencies, such
countermeasures will not work equally in the audio domain.

In the audio domain, Vaidya et al. were among the first to
explore adversarial examples against ASR systems [52]. They
showed how an input signal (i. e., audio file) can be modified
to fit the target transcription by considering the features instead
of the output of the DNN. On the downside, the results show
high distortions of the audio signal and a human can easily
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perceive the attack. Carlini et al. introduced so-called hidden
voice commands and demonstrated that targeted attacks against
HMM-only ASR systems are feasible [8]. They use inverse
feature extraction to create adversarial audio samples. Still, the
resulting audio samples are not intelligible by humans (in most
of the cases) and may be considered as noise, but may make
thoughtful listeners suspicious. To overcome this limitation,
Zhang et al. proposed so-called DolphinAttacks: they showed
that it is possible to hide a transcription by utilizing non-
linearities of microphones to modulate the baseband audio
signal with ultrasound higher than 20 kHz [61]. This work
has considered ultrasound only, however, our psychoacoustics-
based approach instead focuses on the human-perceptible
frequency range. The drawback of this and similar ultrasound-
based attacks [42], [48] is that the attack is costly as the
information to manipulate the input features needs to be
retrieved from recordings of audio signals with the specific
microphone, which is used for the attack. Additionally, the
modulation is tailored to a specific microphone, such that the
result may differ if another microphone is used. Recently,
Carlini and Wagner published a technical report in which
they introduce a general targeted attack on ASR systems
using connectionist temporal classification (CTC) loss [10].
Similarly to previous adversarial attacks on image classifiers,
it works with a gradient-descent-based minimization [9], but
it replaces the loss function by the CTC-loss, which is op-
timized for time sequences. On the downside, the constraint
for the minimization of the difference between original and
adversarial sample is also borrowed from adversarial attacks
on images and therefore does not consider the limits and
sensitivities of human auditory perception. Additionally, the
algorithm often does not converge. This is solved by multiple
initializations of the algorithm, which leads to high run-time
requirements—in the order of hours of computing time—to
calculate an adversarial example. Also recently, Yuan et al.
described CommanderSong, which is able to hide transcripts
within music [59]. However, this approach is only shown to
be successful in music and it does not contain a human-
perception-based noise reduction.

Contributions. In this paper, we introduce a novel type
of adversarial examples against ASR systems based on psy-
choacoustic hiding. We utilize psychoacoustic modeling, as
in MP3 encoding, in order to reduce the perceptible noise.
For this purpose, hearing thresholds are calculated based on
psychoacoustic experiments by Zwicker et al. [62]. This limits
the adversarial perturbations to those parts of the original
audio sample, where they are not (or hardly) perceptible by
a human. Furthermore, we use backpropagation as one part
of the algorithm to find adversarial examples with minimal
perturbations. This algorithm has already been successfully
used for adversarial examples in other settings [9], [10]. To
show the general feasibility of psychoacoustic attacks, we feed
the audio signal directly into the recognizer.

A key feature of our approach is the integration of the
preprocessing step into the backpropagation. As a result, it
is possible to change the raw audio signal without further
steps. The preprocessing operates as a feature extraction and
is fundamental to the accuracy of an ASR system. Due to the
differentiability of each single preprocessing step, we are able
to include it in the backpropagation without the necessity to
invert the feature extraction. In addition, ASR highly depends

on temporal alignment as it is a continuous process. We
enhance our attack by computing an optimal alignment with
the forced alignment algorithm, which calculates the best
starting point for the backpropagation. Hence, we make sure
to move the target transcription into parts of the original audio
sample which are the most promising to not be perceivable by
a human. We optimize the algorithm to provide a high success
rate and to minimize the perceptible noise.

We have implemented the proposed attack to demonstrate
the practical feasibility of our approach. We evaluated it against
the state-of-the-art DNN-HMM-based ASR system Kaldi [38],
which is one of the most popular toolchains for ASR among
researchers [17], [27], [28], [40], [41], [50], [51], [53], [59]
and is also used in commercial products such as Amazon’s
Echo/Alexa and by IBM and Microsoft [3], [58]. Note that
commercial ASR systems do not provide information about
their system setup and configuration.

Such information could be extracted via model stealing and
similar attacks (e. g., [20], [34], [37], [49], [54]). However,
such an end-to-end attack would go beyond the contributions
of this work and hence we focus on the general feasibility of
adversarial attacks on state-of-the-art ASR systems in a white-
box setting. More specifically, we show that it is possible
to hide any target transcription in any audio file with a
minimum of perceptible noise in up to 98 % of cases. We
analyze the optimal parameter settings, including different
phone rates, allowed deviations from the hearing thresholds,
and the number of iterations for the backpropagation. We need
less than two minutes on an Intel Core i7 processor to generate
an adversarial example for a ten-second audio file. We also
demonstrate that it is possible to limit the perturbations to
parts of the original audio files, where they are not (or only
barely) perceptible by humans. The experiments show that in
comparison to other targeted attacks [59], the amount of noise
is significantly reduced.

This observation is confirmed during a two-part audibility
study, where test listeners transcribe adversarial examples and
rate the quality of different settings. The results of the first user
study indicate that it is impossible to comprehend the target
transcription of adversarial perturbations and only the original
transcription is recognized by human listeners. The second part
of the listening test is a MUSHRA test [44] in order to rate
the quality of different algorithm setups. The results show that
the psychoacoustic model greatly increases the quality of the
adversarial examples.

In summary, we make the following contributions in this paper:

• Psychoacoustic Hiding. We describe a novel type
of adversarial examples against DNN-HMM-based
ASR systems based on a psychoacoustically designed
attack for hiding transcriptions in arbitrary audio files.
Besides the psychoacoustic modeling, the algorithm
utilizes an optimal temporal alignment and backprop-
agation up to the raw audio file.

• Experimental Evaluation. We evaluate the proposed
attack algorithm in different settings in order to find
adversarial perturbations that lead to the best recogni-
tion result with the least human-perceptible noise.
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Fig. 1: Overview of a state-of-the-art ASR system with the three main components of the ASR system: (1) preprocessing of the
raw audio data, (2) calculating pseudo-posteriors with a DNN, and (3) the decoding, which returns the transcription.

• User Study. To measure the human perception of
adversarial audio samples, we performed a user study.
More specifically, human listeners were asked to tran-
scribe what they understood when presented with ad-
versarial examples and to compare their overall audio
quality compared to original unmodified audio files.

A demonstration of our attack is available online at https:
//adversarial-attacks.net where we present several adversarial
audio files generated for different kinds of attack scenarios.

II. TECHNICAL BACKGROUND

Neural networks have become prevalent in many machine
learning tasks, including modern ASR systems. Formally
speaking, they are just functions y = F (x), mapping some
input x to its corresponding output y. Training these networks
requires the adaptation of hundreds of thousands of free
parameters. The option to train such models by just presenting
input-output pairs during the training process makes deep
neural networks (DNNs) so appealing for many researchers.
At the same time, this represents the Achilles’ heel of these
systems that we are going to exploit for our ASR attack. In
the following, we provide the technical background as far as
it is necessary to understand the details of our approach.

A. Speech Recognition Systems

There is a variety of commercial and non-commercial ASR
systems available. In the research community, Kaldi [38] is
very popular given that it is an open-source toolkit which
provides a wide range of state-of-the-art algorithms for ASR.
The tool was developed at Johns Hopkins University and is
written in C++. We performed a partial reverse engineering of
the firmware of an Amazon Echo and our results indicate that
this device also uses Kaldi internally to process audio inputs.
Given Kaldi’s popularity and its accessibility, this ASR system
hence represents an optimal fit for our experiments. Figure 1
provides an overview of the main system components that we
are going to describe in more detail below.

1) Preprocessing Audio Input: Preprocessing of the audio
input is a synonym for feature extraction: this step transforms
the raw input data into features that should ideally preserve all
relevant information (e. g., phonetic class information, formant
structure, etc.), while discarding the unnecessary remainder
(e. g., properties of the room impulse response, residual noise,
or voice properties like pitch information). For the feature
extraction in this paper, we divide the input waveform into
overlapping frames of fixed length. Each frame is transformed
individually using the discrete Fourier transform (DFT) to
obtain a frequency domain representation. We calculate the
logarithm of the magnitude spectrum, a very common feature

representation for ASR systems. A detailed description is given
in Section III-E, where we explain the necessary integration
of this particular preprocessing into our ASR system.

2) Neural Network: Like many statistical models, an arti-
ficial neural network can learn very general input/output map-
pings from training data. For this purpose, so-called neurons
are arranged in layers and these layers are stacked on top of
each other and are connected by weighted edges to form a
DNN. Their parameters, i. e., the weights, are adapted during
the training of the network. In the context of ASR, DNNs
can be used differently. The most attractive and most difficult
application would be the direct transformation of the spoken
text at the input to a character transcription of the same text at
the output. This is referred to as an end-to-end-system. Kaldi
takes a different route: it uses a more conventional Hidden
Markov Model (HMM) representation in the decoding stage
and uses the DNN to model the probability of all HMM states
(modeling context-dependent phonetic units) given the acoustic
input signal. Therefore, the outputs of the DNN are pseudo-
posteriors, which are used during the decoding step in order
to find the most likely word sequence.

3) Decoding: Decoding in ASR systems, in general, uti-
lizes some form of graph search for the inference of the most
probable word sequence from the acoustic signal. In Kaldi,
a static decoding graph is constructed as a composition of
individual transducers (i. e., graphs with input/output symbol
mappings attached to the edges). These individual transducers
describe for example the grammar, the lexicon, context depen-
dency of context-dependent phonetic units, and the transition
and output probability functions of these phonetic units. The
transducers and the pseudo-posteriors (i. e., the output of the
DNN) are then used to find an optimal path through the word
graph.

B. Adversarial Machine Learning

Adversarial attacks can, in general, be applied to any
kind of machine learning system [5], [6], [26], but they are
successful especially for DNNs [18], [35].

As noted above, a trained DNN maps an input x to an
output y = F (x). In the case of a trained ASR system, this
is a mapping of the features into estimated pseudo-posteriors.
Unfortunately, this mapping is not well defined in all cases due
to the high number of parameters in the DNN, which leads
to a very complex function F (x). Insufficient generalization
of F (x) can lead to blind spots, which may not be obvious
to humans. We exploit this weakness by using a manipulated
input x′ that closely resembles the original input x, but leads
to a different mapping:

x′ = x+ δ, such that F (x) 6= F (x′),
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where we minimize any additional noise δ such that it stays
close to the hearing threshold. For the minimization, we use
a model of human audio signal perception. This is easy for
cases where no specific target y′ is defined. In the following,
we show that adversarial examples can even be created very
reliably for targeted attacks, where the output y′ is defined.

C. Backpropagation

Backpropagation is an optimization algorithm for computa-
tional graphs (like those of neural networks) based on gradient
descent. It is normally used during the training of DNNs to
learn the optimal weights. With only minor changes, it is pos-
sible to use the same algorithm to create adversarial examples
from arbitrary inputs. For this purpose, the parameters of the
DNN are kept unchanged and only the input vector is updated.

For backpropagation, three components are necessary:

1) Measure loss. The difference between the actual out-
put yi = F (xi) and the target output y′ is measured
with a loss function L(yi, y

′). The index i denotes
the current iteration step, as backpropagation is an
iterative algorithm. The cross-entropy, a commonly
used loss function for DNNs with classification tasks,
is employed here S

L(yi, y
′) = −

∑
yi log(y′).

2) Calculate gradient. The loss is back-propagated to
the input xi of the neural network. For this purpose,
the gradient ∇xi is calculated by partial derivatives
and the chain rule

∇xi =
∂L(yi, y

′)
∂xi

=
∂L(yi, y

′)
∂F (xi)

· ∂F (xi)

∂xi
. (1)

The derivative of F (xi) depends on the topology of
the neural network and is also calculated via the chain
rule, going backward through the different layers.

3) Update. The input is updated according to the back-
propagated gradient and a learning rate α via

xi+1 = xi −∇xi · α.

These steps are repeated until convergence or until an
upper limit for the number of iterations is reached. With this
algorithm, it is possible to approximately solve problems iter-
atively, which cannot be solved analytically. Backpropagation
is guaranteed to find a minimum, but not necessarily the global
minimum. As there is not only one solution for a specific target
transcription, it is sufficient for us to find any solution for a
valid adversarial example.

D. Psychoacoustic Modeling

Psychoacoustic hearing thresholds describe how the depen-
dencies between frequencies lead to masking effects in the
human perception. Probably the best-known example for this
is MP3 compression [21], where the compression algorithm
applies a set of empirical hearing thresholds to the input
signal. By removing those parts of the input signal that are
inaudible by human perception, the original input signal can
be transformed into a smaller but lossy representation.
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Fig. 2: Hearing threshold of test tone (dashed line) masked
by a LCB = 60dB tone at 1 kHz [62]. In green, the hearing
threshold in quiet is shown.

1) Hearing Thresholds: MP3 compression depends on an
empirical set of hearing thresholds that define how depen-
dencies between certain frequencies can mask, i. e., make
inaudible, other parts of an audio signal. The thresholds derived
from the audio do not depend on the audio type, e.g., whether
music or speech was used. When applied to the frequency
domain representation of an input signal, the thresholds indi-
cate which parts of the signal can be altered in the following
quantization step, and hence, help to compress the input. We
utilize this psychoacoustic model for our manipulations of
the signal, i. e., we apply it as a rule set to add inaudible
noise. We derive the respective set of thresholds for an audio
input from the psychoacoustic model of MP3 compression.
In Figure 2 an example for a single tone masker is shown.
Here, the green line represents the human hearing thresholds
in quiet over the complete human-perceptible frequency range.
In case of a masking tone, this threshold increases, reflecting
the decrease in sensitivity in the frequencies around the test
tone. In Figure 2 this is shown for 1 kHz and 60 dB.

2) MP3 Compression: We receive the original input data
in buffers of 1024 samples length that consist of two 576
sample granule windows. One of these windows is the current
granule, the other is the previous granule that we use for
comparison. We use the fast Fourier transform to derive 32
frequency bands from both granules and break this spec-
trum into MPEG ISO [21] specified scale factor bands. This
segmentation of frequency bands helps to analyze the input
signal according to its acoustic characteristics, as the hearing
thresholds and masking effects directly relate to the individual
bands. We measure this segmentation of bands in bark, a
subjective measurement of frequency. Using this bark scale, we
estimate the relevance of each band and compute its energy.

In the following steps of the MP3 compression, the thresh-
olds for each band indicate which parts of the frequency do-
main can be removed while maintaining a certain audio quality
during quantization. In the context of our work, we use the
hearing thresholds as a guideline for acceptable manipulations
of the input signal. They describe the amount of energy that can
be added to the input in each individual window of the signal.
An example of such a matrix is visualized in Figure 5d. The
matrices are always normalized in such a way that the largest
time-frequency-bin energy is limited to 95 dB.

III. ATTACKING ASR VIA PSYCHOACOUSTIC HIDING

In the following, we show how the audible noise can be
limited by applying hearing thresholds during the creation of
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Fig. 3: The creation of adversarial examples can be divided
into three components: (1) forced alignment to find an optimal
target for the (2) backpropagation and the integration of (3) the
hearing thresholds.

adversarial examples. As an additional challenge, we need to
find the optimal temporal alignment, which gives us the best
starting point for the insertion of malicious perturbations. Note
that our attack integrates well into the DNN-based speech
recognition process: we use the trained ASR system and
apply backpropagation to update the input, eventually resulting
in adversarial examples. A demonstration of our attack is
available at https://adversarial-attacks.net.

A. Adversary Model

Throughout the rest of this paper, we assume the following
adversary model. First, we assume a white-box attack, where
the adversary knows the ASR mechanism of the attacked
system. Using this knowledge, the attacker generates audio
samples containing malicious perturbations before the actual
attack takes place, i. e., the attacker exploits the ASR system
to obtain an audio file that produces the desired recognition
result. Second, we assume the ASR system to be configured in
such a way that it gives the best possible recognition rate. In
addition, the trained ASR system, including the DNN, remains
unchanged over time. Finally, we assume a perfect transmis-
sion channel for replaying the manipulated audio samples,
hence, we do not take perturbations through audio codecs,
compression, hardware, etc. into account by feeding the audio
file directly into the recognizer. Note that we only consider
targeted attacks, where the target transcription is predefined
(i. e., the adversary chooses the target sentence).

B. High-Level Overview

The algorithm for the calculation of adversarial examples
can be divided into three parts, which are sketched in Figure 3.
The main difference between original audio and raw audio is
that the original audio does not change during the run-time
of the algorithm, but the raw audio is updated iteratively in
order to result in an adversarial example. Before the backprop-
agation, the best possible temporal alignment is calculated via
so-called forced alignment. The algorithm uses the original
audio signal and the target transcription as inputs in order to

find the best target pseudo-posteriors. The forced alignment is
performed once at the beginning of the algorithm.

With the resulting target, we are able to apply backpropa-
gation to manipulate our input signal in such a way that the
speech recognition system transcribes the desired output. The
backpropagation is an iterative process and will, therefore, be
repeated until it converges or a fixed upper limit for the number
of iterations is reached.

The hearing thresholds are applied during the backpropa-
gation in order to limit the changes that are perceptible by a
human. The hearing thresholds are also calculated once and
stored for the backpropagation. A detailed description of the
integration is provided in Section III-F.

C. Forced Alignment

One major problem of attacks against ASR systems is
that they require the recognition to pass through a certain
sequence of HMM states in such a way that it leads to
the target transcription. However, due to the decoding step—
which includes a graph search—for a given transcription, many
valid pseudo-posterior combinations exist. For example, when
the same text is spoken at different speeds, the sequence of
the HMM states is correspondingly faster or slower. We can
benefit from this fact by using that version of pseudo-posteriors
which best fits the given audio signal and the desired target
transcription.

We use forced alignment as an algorithm for finding the
best possible temporal alignment between the acoustic signal
that we manipulate and the transcription that we wish to obtain.
This algorithm is provided by the Kaldi toolkit. Note that it is
not always possible to find an alignment that fits an audio file
to any target transcription. In this case, we set the alignment
by dividing the audio sample equally into the number of states
and set the target according to this division.

D. Integrating Preprocessing

We integrate the preprocessing step and the DNN step into
one joint DNN. This approach is sketched in Figure 4. The
input for the preprocessing is the same as in Figure 1, and
the pseudo-posteriors are also unchanged. For presentation
purposes, this is only a sketch of the DNN, the used DNN
contains far more neurons.

This design choice does not affect the accuracy of the ASR
system, but it allows for manipulating the raw audio data by
applying backpropagation to the preprocessing steps, directly
giving us the optimally adversarial audio signal as result.

E. Backpropagation

Due to this integration of preprocessing into the DNN,
Equation (1) has to be extended to

∇x =
∂L(y, y′)
∂F (χ)

· ∂F (χ)

∂FP (x)
· ∂FP (x)

∂x
,

where we ignore the iteration index i for simplicity. All
preprocessing steps are included in χ = FP (x) and return the
input features χ for the DNN. In order to calculate ∂FP (x)

∂x ,
it is necessary to know the derivatives of each of the four
preprocessing steps. We will introduce these preprocessing
steps and the corresponding derivatives in the following.
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1) Framing and Window Function: In the first step, the
raw audio data is divided into T frames of length N and a
window function is applied to each frame. A window function
is a simple, element-wise multiplication with fixed values w(n)

xw(t, n) = x(t, n) · w(n), n = 0, . . . , N − 1,

with t = 0, . . . , T − 1. Thus, the derivative is just

∂xw(t, n)

∂x(t, n)
= w(n).

2) Discrete Fourier Transform: For transforming the audio
signal into the frequency domain, we apply a DFT to each
frame xw. This transformation is a common choice for audio
features. The DFT is defined as

X(t, k) =

N−1∑
n=0

xw(t, n)e−i2π
kn
N , k = 0, . . . , N − 1.

Since the DFT is a weighted sum with fixed coeffi-
cients e−i2π

kn
N , the derivative for the backpropagation is

simply the corresponding coefficient

∂X(t, k)

∂xw(t, n)
= e−i2π

kn
N , k, n = 0, . . . , N − 1.

3) Magnitude: The output of the DFT is complex valued,
but as the phase is not relevant for speech recognition, we just
use the magnitude of the spectrum, which is defined as

|X(t, k)|2 = Re(X(t, k))2 + Im(X(t, k))2,

with Re(X(t, k)) and Im(X(t, k)) as the real and imaginary
part of X(t, k). For the backpropagation, we need the deriva-
tive of the magnitude. In general, this is not well defined and
allows two solutions,

∂|X(t, k)|2
∂X(t, k)

=

{
2 · Re(X(t, k))

2 · Im(X(t, k))
.

We circumvent this problem by considering the real and
imaginary parts separately and calculate the derivatives for
both cases

∇X(t, k) =

(
∂|X(t,k)|2
∂ Re(X(t,k))
∂|X(t,k)|2
∂ Im(X(t,k))

)
=

(
2 · Re(X(t, k))
2 · Im(X(t, k))

)
. (2)

This is possible, as real and imaginary parts are stored sep-
arately during the calculation of the DNN, which is also
sketched in Figure 4, where pairs of nodes from layer 2
are connected with only one corresponding node in layer 3.
Layer 3 represents the calculation of the magnitude and
therefore halves the data size.

4) Logarithm: The last step is to form the logarithm of the
squared magnitude χ = log(|X(t, k)|2), which is the common
feature representation in speech recognition systems. It is easy
to find its derivative as

∂χ

∂|X(t, k)|2 =
1

|X(t, k)|2 .

1. preprocessing 2. DNN

raw audio

pseudo-
posteriors

4321

x(1)

x(2)

. . .

x(N)

χ = FP (x) y = F (χ)

Fig. 4: For the creation of adversarial samples, we use an ASR
system where the preprocessing is integrated into the DNN.
Layers 1–4 represent the separate preprocessing steps. Note
that this is only a sketch of the used DNN and that the used
DNN contains far more neurons.

F. Hearing Thresholds

Psychoacoustic hearing thresholds allow us to limit audible
distortions from all signal manipulations. More specifically,
we use the hearing thresholds during the manipulation of the
input signal in order to limit audible distortions. For this
purpose, we use the original audio signal to calculate the
hearing thresholds H as described in Section II-D. We limit
the differences D between the original signal spectrum S and
the modified signal spectrum M to the threshold of human
perception for all times t and frequencies k

D(t, f) ≤ H(t, k), ∀t, k,

with D(t, k) = 20 · log10
|S(t, k)−M(t, k)|

maxt,k(|S|) .

The maximum value of the power spectrum |S| defines the
reference value for each utterance, which is necessary to
calculate the difference in dB. Examples for |S|, |M|, |D|,
and H in dB are plotted in Figure 5, where the power spectra
are plotted for one utterance.

We calculate the amount of distortion that is still accept-
able via

Φ = H−D. (3)

The resulting matrix Φ contains the difference in dB to the
calculated hearing thresholds.

In the following step, we use the matrix Φ to derive scaling
factors. First, because the thresholds are tight, an additional
variable λ is added, to allow the algorithm to differ from the
hearing thresholds by small amounts

Φ∗ = Φ + λ. (4)

In general, a negative value for Φ∗(t, k) indicates that we
crossed the threshold. As we want to avoid more noise for
these time-frequency-bins, we set all Φ∗(t, k) < 0 to zero.
We then obtain a time-frequency matrix of scale factors Φ̂ by
normalizing Φ∗ to values between zero and one, via

Φ̂(t, k) =
Φ∗(t, k)−mint,k(Φ∗)

maxt,k(Φ∗)−mint,k(Φ∗)
, ∀t, k.

The scaling factors are applied during each backpropagation
iteration. Using the resulting scaling factors Φ̂(t, k) typically
leads to good results, but especially in the cases where only
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(a) Original audio signal power spectrum |S| with transcription:
“SPECIFICALLY THE UNION SAID IT WAS PROPOSING TO PURCHASE ALL OF THE
ASSETS OF THE OF UNITED AIRLINES INCLUDING PLANES GATES FACILITIES
AND LANDING RIGHTS”
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(b) Adversarial audio signal power spectrum |M| with transcription:
“DEACTIVATE SECURITY CAMERA AND UNLOCK FRONT DOOR”
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(c) The power spectrum of the difference between original and
adversarial |D|.
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(d) Hearing thresholds H.

Fig. 5: Original audio sample (5a) in comparison to the adversarial audio sample (5b). The difference of both signals is shown
in Figure 5c. Figure 5d visualizes the hearing thresholds of the original sample, which are used for the attack algorithm.

very small changes are acceptable, this scaling factor alone
is not enough to satisfy the hearing thresholds. Therefore, we
use another, fixed scaling factor, which only depends on the
hearing thresholds H. For this purpose, H is also scaled to
values between zero and one, denoted by Ĥ.

Therefore, the gradient ∇X(t, k) calculated via Equa-
tion (2) between the DFT and the magnitude step is scaled
by both scaling factors

∇X∗(t, k) = ∇X(t, k) · Φ̂(t, k) · Ĥ(t, k), ∀t, k.

IV. EXPERIMENTS AND RESULTS

With the help of the following experiments, we verify and
assess the proposed attack. We target the ASR system Kaldi
and use it for our speech recognition experiments. We also
compare the influence of the suggested improvements to the
algorithm and assess the influence of significant parameter
settings on the success of the adversarial attack.

A. Experimental Setup

To verify the feasibility of targeted adversarial attacks on
state-of-the-art ASR systems, we have used the default settings
for the Wall Street Journal (WSJ) training recipe of the Kaldi
toolkit [38]. Only the preprocessing step was adapted for the
integration into the DNN. The WSJ data set is well suited for
large vocabulary ASR: it is phone-based and contains more
than 80 hours of training data, composed of read sentences of

the Wall Street Journal recorded under mostly clean conditions.
Due to the large dictionary with more than 100, 000 words, this
setup is suitable to show the feasibility of targeted adversarial
attacks for arbitrary transcriptions.

For the evaluation, we embedded the hidden voice com-
mands (i. e., target transcription) in two types of audio data:
speech and music. We collect and compare results with and
without the application of hearing thresholds, and with and
without the use of forced alignment. All computations were
performed on a 6-core Intel Core i7-4960X processor.

B. Metrics

In the following, we describe the metrics that we used to
measure recognition accuracy and to assess to which degree
the perturbations of the adversarial attacks needed to exceed
hearing thresholds in each of our algorithm’s variants.

1) Word Error Rate: As the adversarial examples are pri-
marily designed to fool an ASR system, a natural metric for our
success is the accuracy with which the target transcription was
actually recognized. For this purpose, we use the Levenshtein
distance [31] to calculate the word error rate (WER). A
dynamic-programming algorithm is employed to count the
number of deleted D, inserted I , and substituted S words in
comparison to the total number of words N in the sentence,
which together allows for determining the word error rate via

WER =
D + I + S

N
. (5)
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Fig. 6: Comparison of the algorithm with and without forced
alignment, evaluated for different values of λ.

When the adversarial example is based on audio samples with
speech, it is possible that the original text is transcribed instead
of—or in addition to—the target transcription. Therefore, it
can happen that many words are inserted, possibly even more
words than contained in the target text. This can lead to WERs
larger than 100 %, which can also be observed in Table I,
and which is not uncommon when testing ASR systems under
highly unfavorable conditions.

2) Difference Measure: To determine the amount of per-
ceptible noise, measures like the signal-to-noise-ratio (SNR)
are not sufficient given that they do not represent the subjec-
tive, perceptible noise. Hence, we have used Φ of Equation (3)
to obtain a comparable measure of audible noise. For this
purpose, we only consider values > 0, as only these are in
excess of the hearing thresholds. This may happen when λ
is set to values larger than zero, or where changes in one
frequency bin also affect adjacent bins.

We sum all values Φ(t, k) > 0 for t = 0, . . . , T − 1
and k = 0, . . . , N − 1 and divide the sum by T · N for
normalization. This value is denoted by φ. It constitutes our
measure of the degree of perceptibility of noise.

C. Improving the Attack

As a baseline, we used a simplified version of the algo-
rithm, forgoing both the hearing thresholds and the forced
alignment stage. In the second scenario, we included the
proposed hearing thresholds. This minimizes the amount of
added noise but also decreases the chance of a valid adversarial
example. In the final scenario, we added the forced alignment
step, which results in the full version of the suggested algo-
rithm, with a clearly improved WER.

For the experiments, a subset of 70 utterances for 10
different speakers from one of the WSJ test sets was used.

1) Backpropagation: First, the adversarial attack algorithm
was applied without the hearing thresholds or the forced

alignment. Hence, for the alignment, the audio sample was
divided equally into the states of the target transcription.
We used 500 iterations of backpropagation. This gives robust
results and requires a reasonable time for computation. We
chose a learning rate of 0.05, as it gave the best results during
preliminary experiments. This learning rate was also used for
all following experiments.

For the baseline test, we achieved a WER of 1.43 %, but
with perceptible noise. This can be seen in the average φ,
which was 11.62 dB for this scenario. This value indicates that
the difference is clearly perceptible. However, the small WER
shows that targeted attacks on ASR systems are possible and
that our approach of backpropagation into the time domain can
very reliably produce valid adversarial audio samples.

2) Hearing Thresholds: Since the main goal of the algo-
rithm is the reduction of the perceptible noise, we included
the hearing thresholds as described in Section III-F. For this
setting, we ran the same test as before.

In this case, the WER increases to 64.29 %, but it is still
possible to create valid adversarial samples. On the positive
side, the perceptible noise is clearly reduced. This is also
indicated by the much smaller value of φ of only 7.04 dB.

We chose λ = 20 in this scenario, which has been shown
to be a good trade-off. The choice of λ highly influences the
WER, a more detailed analysis can be found in Table I.

3) Forced Alignment: To evaluate the complete system,
we replaced the equal alignment by forced alignment. Again,
the same test set and the same settings as in the previous
scenarios were used. Figure 6 shows a comparison of the
algorithm’s performance with and without forced alignment for
different values of λ, shown on the x-axis. The parameter λ
is defined in Equation (4) and describes the amount the result
can differ from the thresholds in dB. As the thresholds are
tight, this parameter can influence the success rate but does not
necessarily increase the amount of noise. In all relevant cases,
the WER and φ show better results with forced alignment. The
only exception is the one case of λ = 0, where the WER is
very high in all scenarios.

In the specific case of λ = 20, set as in Section IV-C2, a
WER of 36.43 % was achieved. This result shows the signifi-
cant advantage of the forced alignment step. At the same time,
the noise was again noticeably reduced, with φ = 5.49 dB.
This demonstrates that the best temporal alignment noticeably
increases the success rate in the sense of the WER, while at
the same time reducing the amount of noise—a rare win-win
situation in the highly optimized domain of ASR. In Figure 5,
an example of an original spectrum of an audio sample is
compared with the corresponding adversarial audio sample.
One can see the negligible differences between both signals.
The added noise is plotted in Figure 5c. Figure 5d depicts the
hearing thresholds of the same utterance, which were used in
the attack algorithm.

D. Evaluation

In the next steps, the optimal settings are evaluated, con-
sidering the success rate, the amount of noise, and the time
required to generate valid adversarial examples.
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TABLE I: WER in % for different values for λ in the range of
0 dB to 50 dB, comparing speech and music as audio inputs.

Iter. None 50 dB 40 dB 30 dB 20 dB 10 dB 0 dB

Speech 500 2.14 6.96 11.07 16.43 36.43 92.69 138.21
1000 1.79 3.93 5.00 7.50 22.32 76.96 128.93

Music 500 1.04 8.16 13.89 22.74 31.77 60.07 77.08
1000 1.22 10.07 9.55 15.10 31.60 56.42 77.60

1) Evaluation of Hearing Thresholds: In Table I, the results
for speech and music samples are shown for 500 and for 1000
iterations of backpropagation, respectively. The value in the
first row shows the setting of λ. For comparison, the case
without the use of hearing thresholds is shown in the column
‘None.’ We applied all combinations of settings on a test set of
speech containing 72 samples and a test set of music containing
70 samples. The test set of speech was the same as for the
previous evaluations and the target text was the same for all
audio samples.

The results in Table I show the dependence on the number
of iterations and on λ. The higher the number of iterations and
the higher λ, the lower the WER becomes. The experiments
with music show some exceptions to this rule, as a higher
number of iterations slightly increases the WER in some cases.
However, this is only true where no thresholds were employed
or for λ = 50.

As is to be expected, the best WER results were achieved
when the hearing thresholds were not applied. However, the
results with applied thresholds show that it is indeed feasible
to find a valid adversarial example very reliably even when
minimizing human perceptibility. Even for the last column,
where the WER increases to more than 100 %, it was still
possible to create valid adversarial examples, as we will show
in the following evaluations.

In Table II, the corresponding values for the mean per-
ceptibility φ are shown. In contrast to the WER, the value
φ decreases with λ, which shows the general success of the
thresholds, as smaller values indicate a smaller perceptibility.
Especially when no thresholds are used, φ is significantly
higher than in all other cases. The evaluation of music samples
shows smaller values of φ in all cases, which indicates that it
is much easier to conceal adversarial examples in music. This
was also confirmed by the listening tests (cf. Section V).

2) Phone Rate Evaluation: For the attack, timing changes
are not relevant as long as the target text is recognized
correctly. Therefore, we have tested different combinations of
audio input and target text, measuring the number of phones
that we could hide per second of audio, to find an optimum
phone rate for our ASR system. For this purpose, different
target utterances were used to create adversarial examples from
audio samples of different lengths. The results are plotted in
Figure 7. For the evaluations, 500 iterations and λ = 20 were
used. Each point of the graph was computed based on 200
adversarial examples with changing targets and different audio
samples, all of them speech.

Figure 7 shows that the WER increases clearly with an
increasing phone rate. We observe a minimum for 4 phones
per second, which does not change significantly at a smaller
rate. As the time to calculate an adversarial sample increases

TABLE II: The perceptibility φ over all samples in the test
sets in dB.

Iter. None 50 dB 40 dB 30 dB 20 dB 10 dB 0 dB

Speech 500 10.11 6.67 6.53 5.88 5.49 4.70 3.05
1000 10.80 7.42 7.54 6.85 6.46 5.72 3.61

Music 500 4.92 3.92 3.56 3.53 3.39 2.98 2.02
1000 5.03 3.91 3.68 3.40 3.49 3.20 2.30
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Fig. 7: Accuracy for different phone rates. To create the
examples, 500 iterations of backpropagation and λ = 20 are
used. The vertical lines represent the variances.

with the length of the audio sample, 4 phones per second is a
reasonable choice.

3) Number of Required Repetitions: We also analyzed the
number of iterations needed to obtain a successful adversarial
example for a randomly chosen audio input and target text.
The results are shown in Figure 8. We tested our approach
for speech and music, setting λ = 0, λ = 20, and λ = 40,
respectively. For the experiments, we randomly chose speech
files from 150 samples and music files from 72 samples. For
each sample, a target text was chosen randomly from 120
predefined texts. The only constraint was that we used only
audio-text-pairs with a phone rate of 6 phones per second or
less, based on the previous phone rate evaluation. In the case of
a higher phone rate, we chose a new audio file. We repeated the
experiment 100 times for speech and for music and used these
sets for each value of λ. For each round, we ran 100 iterations
and checked the transcription. If the target transcription was
not recognized successfully, we started the next 100 iterations
and re-checked, repeating until either the maximum number
of 5000 iterations was reached or the target transcription was
successfully recognized. An adversarial example was only
counted as a success if it had a WER of 0 %. There were
also cases were no success was achieved after 5000 iterations.
This varied from only 2 cases for speech audio samples with
λ = 40 up to 9 cases for music audio samples with λ = 0.

In general, we can not recommend using very small values
of λ with too many iterations, as some noise is added during
each iteration step and the algorithm becomes slower. Even
though the results in Figure 8 show that it is indeed possible
to successfully create adversarial samples with λ set to zero,
but 500 or 1000 iterations may be required. Instead, to achieve
a higher success rate, it is more promising to switch to a higher
value of λ, which often leads to fewer distortions overall than
using λ = 0 for more iterations. This will also be confirmed by
the results of the user study, which are presented in Section V.

The algorithm is easy to parallelize and for a ten-second
audio file, it takes less than two minutes to calculate the
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Fig. 8: Success rate as a function of the number of iterations.
The upper plot shows the result for speech audio samples and
the bottom plot the results for music audio samples. Both sets
were tested for different settings of λ.

adversarial perturbations with 500 backpropagation steps on
a 6-core (12 threads) Intel Core i7-4960X processor.

E. Comparison

We compare the amount of noise with Commander-
Song [59], as their approach is also able to create targeted
attacks using Kaldi and therefore the same DNN-HMM-based
ASR system. Additionally, is the only recent approach, which
reported she signal-to-noise-ratio (SNR) of their results.

The SNR measures the amount of noise σ, added to the
original signal x, computed via

SNR(dB) = 10 · log10
Px
Pσ
,

where Px and Pσ are the energies of the original signal and
the noise. This means, the higher the SNR, the less noise was
added.

Table III shows the SNR for successful adversarial sam-
ples, where no hearing thresholds are used (None) and for
different values of λ (40 dB, 20 dB, and 0 dB) in comparison
to CommanderSong. Note, that the SNR does not measure the
perceptible noise and therefore, the resulting values are not
always consistent with the previously reported φ. Nevertheless,
the results show, that in all cases, even if no hearing thresholds
are used, we achieve higher SNRs, meaning, less noise was
added to create a successful adversarial example.

V. USER STUDY

We have evaluated the human perception of our audio
manipulations through a two-part user study. In the transcrip-
tion test, we verified that it is impossible to understand the

TABLE III: Comparison of SNR with CommanderSong [59],
best result shown in bold print.

None 40 dB 20 dB 0 dB CommanderSong [59]

SNR 15.88 17.93 21.76 19.38 15.32

voice command hidden in an audio sample. The MUSHRA
test provides an estimate of the perceived audio quality of
adversarial examples, where we tested different parameter
setups of the hiding process.

A. Transcription Test

While the original text of a speech audio sample should
still be understandable by human listeners, we aim for a result
where the hidden command cannot be transcribed or even
identified as speech. Therefore, we performed the transcription
test, in which test listeners were asked to transcribe the
utterances of original and adversarial audio samples.

1) Study Setup: Each test listener was asked to transcribe
21 audio samples. The utterances were the same for everyone,
but with randomly chosen conditions: 9 original utterances,
3 adversarial examples with λ = 0, λ = 20, and λ = 40
respectively and 3 difference signals of the original and
the adversarial example, one for each value of λ. For the
adversarial utterances, we made sure that all samples were
valid, such that the target text was successfully hidden within
the original utterance. We only included adversarial examples
which required ≤ 500 iterations.

We conducted the tests in a soundproofed chamber and
asked the participants to listen to the samples via headphones.
The task was to type all words of the audio sample into
a blank text field without any provision of auto-completion,
grammar, or spell checking. Participants were allowed to repeat
each audio sample as often as needed and enter whatever
they understood. In a post-processing phase, we performed
manual corrections on minor errors in the documented answers
to address typos, misspelled proper nouns, and numbers.
After revising the answers in the post-processing step, we
calculated the WER using the same algorithms as introduced
in Section IV-B1.

2) Results: For the evaluation, we have collected data from
22 listeners during an internal study at our university. None
of the listeners were native speakers, but all had sufficient
English skills to understand and transcribe English utterances.
As we wanted to compare the WER of the original utterances
with the adversarial ones, the average WER of 12.52 % overall
test listeners was sufficient. This number seems high, but the
texts of the WSJ are quite challenging. For the evaluation, we
ignored all cases where only the difference of the original and
adversarial sample was played. For all of these cases, none of
the test listeners was able to recognize any kind of speech and
therefore no text was transcribed.

For the original utterances and the adversarial utterances,
an average WER of 12.59 % and 12.61 % was calculated. The
marginal difference shows that the difference in the audio does
not influence the intelligibility of the utterances. Additionally,
we have tested the distributions of the original utterances and
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Fig. 9: WER for all 21 utterances over all test listeners of the
original utterances and the adversarial utterances.

the adversarial utterances with a two-sided t-test to verify
whether both distributions have the same mean and variance.
The test with a significance level of 1 % shows no difference
for the distributions of original and adversarial utterances.

In the second step, we have also compared the text from the
test listeners with the text which was hidden in the adversarial
examples. For this, we have measured a WER far above 100 %,
which shows that the hidden text is not intelligible. Also, there
are only correct words which were in the original text, too, and
in all cases these were frequent, short words like is, in, or the.

B. MUSHRA Test

In the second part of the study, we have conducted a Mul-
tiple Stimuli with Hidden Reference and Anchor (MUSHRA)
test, which is commonly used to rate the quality of audio
signals [44].

1) Study Setup: The participants were asked to rate the
quality of a set of audio signals with respect to the original
signal. The set contains different versions of the original audio
signal under varying conditions. As the acronym shows, the
set includes a hidden reference and an anchor. The former
is the sample with the best and the latter the one with the
worst quality. In our case, we have used the original audio
signal as the hidden reference and the adversarial example,
which was derived without considering the hearing thresholds,
as anchor. Both the hidden reference and the anchor are
used to exclude participants, who were not able to identify
either the hidden reference or the anchor. As a general rule,
the results of participants who rate the hidden reference with
less than 90 MUSRHA-points more than 15 % of the time
are not considered. Similarly, all results of listeners who rate
the anchor with more than 90 MUSRHA-points more than
15 % of the time are excluded. We used the webMUSHRA
implementation, which is available online and was developed
by AudioLabs [45].

We have prepared a MUSHRA test with nine different
audio samples, three for speech, three for music, and three
for recorded twittering birds. For all these cases, we have
created adversarial examples for λ = 0, λ = 20, λ = 40,
and without hearing thresholds. Within one set, the target text
remained the same for all conditions, and in all cases, all
adversarial examples were successful with ≤ 500 iterations.
The participants were asked to rate all audio signals in the set
on a scale between 0 and 100 (0–20: Bad, 21–40: Poor, 41–60:
Fair, 61–80: Good, 81–100: Excellent). Again, the listening test
was conducted in a soundproofed chamber and via headphones.

(a) Speech

(b) Music

(c) Birds

Fig. 10: Ratings of all test listeners in the MUSHRA test. We
tested three audio samples for speech, music, and twittering
birds. The left box plot of all nine cases shows the rating of
the original signal and therefore shows very high values. The
anchor is an adversarial example of the audio signal that had
been created without considering hearing thresholds.

2) Results: We have collected data from 30 test listeners,
3 of whom were discarded due to the MUSHRA exclusion
criteria. The results of the remaining test listeners are shown
in Figure 10 for all nine MUSHRA tests. In almost all cases,
the reference is rated with 100 MUSHRA-points. Also, the
anchors are rated with the lowest values in all cases.

We tested the distributions of the anchor and the other
adversarial utterances in one-sided t-tests. For this, we used
all values for one condition overall nine MUSHRA tests. The
tests with a significance level of 1 % show that in all cases,
the anchor distribution without the use of hearing thresholds
has a significantly lower average rating than the adversarial
examples where the hearing thresholds are used. Hence, there
is a clear perceptible difference between adversarial examples
with hearing thresholds and adversarial examples without
hearing thresholds.

During the test, the original signal was normally rated
higher than the adversarial examples. However, it has to be
considered that the test listeners directly compared the original
signal with the adversarial ones. In an attack scenario, this
would not be the case, as the original audio signal is normally
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unknown to the listeners. Despite the direct comparison, there
is one MUSRHA test where the adversarial examples with
hearing thresholds are very frequently rated with a similar
value as the reference and more than 80 MUSHRA-points.
This is the case for the second test with twittering birds, which
shows that there is a barely perceptible difference between the
adversarial samples and the original audio signal.

Additionally, we observed that there is no clear preference
for a specific value of λ. The samples with λ = 0 received a
slightly higher average rating in comparison to λ = 20 and λ =
40, but there is only a significant difference for the distributions
of λ = 0 and λ = 40. This can be explained with the different
number of iterations, since, as shown in Section IV-D3, for
a higher value of λ, fewer iterations are necessary and each
iteration can add noise to the audio signal.

VI. RELATED WORK

Adversarial machine learning techniques have seen a rapid
development in the past years, in which they were shown to be
highly successful for image classifiers. Adversarial examples
have also been used to attack ASR systems, however, there,
the modifications of the signals are usually quite perceptible
(and sometimes even understandable) for human listeners. In
the following, we review existing literature in this area and
discuss the novel contributions of our approach.

A. Adversarial Machine Learning Attacks

There are many examples of successful adversarial attacks
on image files in the recent past and hence we only discuss
selected papers. In most cases, the attacks were aimed at
classification only, either on computer images or real-world
attacks. For example, Evtimov et al. showed one of the
first real-world adversarial attacks [15]. They created and
printed stickers, which can be used to obfuscate traffic signs.
For humans, the stickers are visible. However, they seem
very inconspicuous and could possibly fool autonomous cars.
Athalye and Sutskever presented another real-world adversarial
perturbation on a 3D-printed turtle, which is recognized as a
rifle from almost every point of view [2]. The algorithm to
create this 3D object not only minimizes the distortion for
one image, but for all possible projections of a 3D object
into a 2D image. A similar attack on a universal adversarial
perturbation was presented by Brown et al. [7]. They have
created a patch which works universally and can be printed
with any color printer. The resulting image will be recognized
as a toaster without covering the real content even partially.
An approach which works for tasks other than classification is
presented by Cisse et al. [11]. The authors used a probabilistic
method to change the input signal and also showed results
for different tasks but were not successful in implementing
a robust targeted attack for an ASR system. Carlini et al.
introduced an approach with a minimum of distortions where
the resulting images only differ in a few pixels from the
original files [9]. Additionally, they are robust against common
distillation defense techniques [36].

Compared to attacks against audio signals, attacks against
image files are easier, as they do not have temporal depen-
dencies. Note that the underlying techniques for our attack are
similar, but we had to refine them for the audio domain.

B. Adversarial Voice Commands

Adversarial attacks on ASR systems focus either on hiding
a target transcription [8] or on obfuscating the original tran-
scription [11]. Almost all previous works on attacks against
ASR systems were not DNN-based and therefore use other
techniques [8], [52], [61]. Furthermore, none of the existing
attacks used psychoacoustics to hide a target transcription in
another audio signal.

Carlini et al. have shown that targeted attacks against
HMM-only ASR systems are possible [8]. They use an inverse
feature extraction to create adversarial audio samples. How-
ever, the resulting audio samples are not intelligible by humans
in most of the cases and may be considered as noise, but may
make thoughtful listeners suspicious. A different approach was
shown by Vaidya et al. [52], where the authors changed an
input signal to fit the target transcription by considering the
features instead of the output of the DNN. Nevertheless, the
results show high distortions of the audio signal and can easily
be detected by a human.

An approach to overcome this limitation was proposed by
Zhang et al. They have shown that an adversary can hide
a transcription by utilizing non-linearities of microphones to
modulate the baseband audio signals with ultrasound above
20 kHz [61]. The main downside of the attack is the fact that
the information of the necessary features needs to be retrieved
from audio signal, recorded with the specific microphone,
which is costly in practice. Furthermore, the modulation is
tailored to a specific microphone an adversary wants to attack.
As a result, the result may differ if another microphone is used.
Song and Mittael [48] and Roy et al. [42] introduced similar
ultrasound-based attacks that are not adversarial examples, but
rather interact with the ASR system in a frequency range
inaudible to humans.

Recently, Carlini and Wagner published a technical re-
port in which they introduce a general targeted attack on
ASR systems using CTC-loss [10]. The attack is based on a
gradient-descent-based minimization [9] (as used in previous
image classification adversarial attacks), but the loss function
is represented via CTC-loss, which is optimized for time
sequences. Compared to our approach, the perceptible noise
level is higher and the attack is less effective, given that
the algorithm needs a lot of time to calculate an adversarial
example since it is based on a grid search.

CommanderSong [59] is also evaluated against Kaldi and
uses backpropagation to find an adversarial example. However,
in order to minimize the noise, approaches from the image do-
main are borrowed. Therefore, the algorithm does not consider
human perception. Additionally, the attack is only shown for
music and the very limited over-the-air attack highly depends
on the speakers and recording devices as the attack parameters
have to be adjusted especially for these components.

Our approach is different from all previous studies on
adversarial perturbations for ASR, as we combine a targeted
attack with the requirement that the added noise should be
barely, if at all, perceptible. We use a modified backpropaga-
tion scheme, which has been very successful in creating adver-
sarial perturbations for image classification and we initialize
our optimization by forced-alignment to further minimize au-
dible noise. Also, the psychoacoustics-based approach focuses
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on the human-perceptible frequency range, which is different
from ultrasound-based approaches.

C. Hiding Information in Audio

Watermarking approaches use human perception to hide
information about an image, video, or audio clip within it-
self [4], [13], [55]. The purpose in the case of watermarking,
however, differs from our method and steganography, as it is
used for copyright protection. Watermarking uses algorithms to
hide information in audio signals within the lower frequencies
or also with help of a psychoacoustic model [46], [56]. Dif-
ferently from watermarking and steganography, the frequency
ranges cannot be chosen arbitrarily when an ASR system is to
be attacked. Instead, the information must be presented in just
those frequency regions, on which the ASR has been trained.

Audio steganography is motivated by the challenge of
hiding additional information in an acoustic carrier signal, e. g.,
for transmitting sensitive information in case of comprehensive
Internet censorship [23]. LSB techniques [1], [24] manipulate
the binary representation of a signal and hide information
in the least significant bits of a signal, which limits the
perceived distortions to a minimum. In contrast to our work,
such schemes ignore the acoustic characteristics of the carrier
signal and achieve their hiding capabilities at the expense of
disrupting the statistical characteristics of the original input.
Modulation-based systems [23], [33] manipulate the carrier
signal in the time or frequency domain to encode information
within the signal characteristics. Such modulations allow the
attacker to consider the frequency or energy features of a
signal and help to provide a less conspicuous manipulation
of the carrier signal. Both classes of steganography systems
aim at hiding information in a legitimate carrier signal but are
focused on creating a protected transmission channel within an
untrusted system. In contrast, while our work is designed to
provide a comparable level of inconspicuousness, we require
the successful transcription of a target message through an
automated speech recognition system, which precludes the use
of watermarking or steganography algorithms here.

VII. DISCUSSION

We have shown that it is possible to successfully attack
state-of-the-art DNN-HMM ASR systems with targeted ad-
versarial perturbations, which are barely or even impossible
to distinguish from original audio samples. Based on different
experiments, we demonstrated that it is possible to find the best
setup for the proposed algorithm for the creation of adversarial
examples. However, these results also open questions regarding
possible countermeasures and future work.

A. Parameter Choice

The choice of the parameters highly affects the amount
of perceptible noise. The evaluation has shown that a higher
number of iterations increases the success rate, but simultane-
ously the amount of noise. However, for iterations < 500 the
success rate is already very high and therefore, 500 should
not be exceeded. Additionally, by this choice, the required
calculation time is reduced as well. If the success rate needs to
be raised, the increase of λ had a higher effect. Although the
participants in the MUSHRA test did prefer smaller values for
λ, there was no significant difference if λ was only increased

by 20 dB. Additionally, the phone rate should be set to an
optimum value as this highly affects the success of the attack.

Besides improving the success of the attack, the choice
of the original audio sample greatly influences the quality of
the adversarial example. There might be use cases, where the
original audio sample is fixed, but in general, the choice of
the original sample is free. We recommend using music or
other unsuspicious audio samples, like bird twittering, which
do not contain speech, as speech has to be obfuscated, typically
leading to larger required adversarial perturbations.

The process can be parallelized and is relatively fast in
comparison to other attacks proposed in the past, as we
have integrated the preprocessing into the backpropagation.
Therefore, we recommend to use different promising setups
and to choose that one which sounds the most inconspicuous
while giving the required success rate.

B. Countermeasures

Distillation was shown to be a successful countermeasure
against attacks in image classification [36]. It is a technique
to improve the robustness of classification-based DNNs [19],
which uses the output of a pre-trained DNN as soft labels
in order to train a second DNN with these soft labels as
targets. However, the transcription of the DNN-based ASR
system not only depends on the classification result but also
on the temporal alignment. Therefore, distillation might not be
an appropriate countermeasure for ASR systems.

A general countermeasure could be to consider human
perception. A very simple version would be to apply MP3
encoding to the input data. However, the DNN is not trained for
that kind of data. Nevertheless, we did run some tests on our
adversarial examples. With this setup, the original transcription
could not be recovered, but the target transcription was also
distorted. We assume that training the ASR-DNN with MP3-
encoded audio files will only move the vulnerability into the
perceptible region of the audio files, but will not circumvent
blind spots of DNNs completely.

A more appropriate solution might be the adaption of
the loss function during the training of the DNN. It can be
utilized to measure a human-like perception-based difference.
This may result in an ASR system, which is more similar to
human speech recognition and, therefore, it is likely that hiding
messages is more difficult.

C. Future Work

One obvious question is whether our attack also works
in a real-world setup. For real-world attacks, different cir-
cumstances have to be considered. This mainly includes the
acoustic transfer function, which is relevant if an audio signal
is transferred over the air. Also, additional noise from different
sources can be present in a real-world environment. In a
controlled environment (e. g., an elevator) it is possible to
calculate the transfer function and to consider or exclude
external noise. Additionally, it is not unusual to have music in
an elevator, which would make such a setup very unsuspicious.
A transfer function independent approach may be borrowed
from the image domain, specifically from Athalye et al. [2]. In
this work, the loss function is designed in order to consider all

13



kinds of rotations and translations. Similar to their approach,
the loss function of the ASR-DNN may not only be designed
to optimize one specific transfer function but to maximize the
expectation over all kinds of transfer functions. However, for
a realistic over-the-air attack, we think it is worth it to spend
more time investigating all possible attack vectors and their
limitations. In this work, we, instead, wanted to focus on the
general and theoretical feasibility of psychoacoustic hiding and
therefore leave over-the-air attack for future work.

A similar attack can also be imagined for real applications,
e. g., Amazon’s Alexa. However, the detailed architecture of
this system is hard to access and it requires a-priori investi-
gations to obtain that kind of information. It may be possible
to retrieve the model parameters with different model stealing
approaches [22], [34], [37], [49], [54]. For Alexa, our reverse
engineering results of the firmware indicate that Amazon uses
parts of Kaldi. Therefore, a limited knowledge about the
topology and parameters might be enough to create a model
for a black-box attack. A starting point could be the keyword
recognition of commercial ASR systems, e. g., “Alexa.” This
would have the advantage that the keyword recognition runs
locally on the device and would, therefore, be easier to access.

For image classification, universal adversarial perturbations
have already been successfully created [7], [29]. For ASR
systems, it is still an open question if these kinds of adversarial
perturbations exist and how they can be created.

VIII. CONCLUSION

We have presented a new method for creating adversarial
examples for ASR systems, which explicitly take dynamic
human hearing thresholds into account. In this way, borrowing
the mechanisms of MP3 encoding, the audibility of the added
noise is clearly reduced. We perform our attack against the
state-of-the-art Kaldi ASR system and feed the adversarial
input directly into the recognizer in order to show the general
feasibility of psychoacoustics-based attacks.

By applying forced alignment and backpropagation to the
DNN-HMM system, we were able to create inconspicuous
adversarial perturbations very reliably. In general, it is possible
to hide any target transcription within any audio file and,
with the correct attack vectors, it was possible to hide the
noise below the hearing threshold and make the changes psy-
chophysically almost imperceptible. The choice of the original
audio sample, an optimal phone rate, and forced alignment
give the optimal starting point for the creation of adversarial
examples. Additionally, we have evaluated different algorithm
setups, including the number of iterations and the allowed
deviation from the hearing thresholds. The comparison with
another approach by Yuan et al. [59], which is also able to
create targeted adversarial examples, shows that our approach
needs far lower distortions. Listening tests have proven that the
target transcription was incomprehensible for human listeners.
Furthermore, for some audio files, it was almost impossible for
participants to distinguish between the original and adversarial
sample, even with headphones and in a direct comparison.

Future work should investigate the hardening of ASR
systems by considering psychoacoustic models, in order to
prevent these presently fairly easy attacks. Additionally, similar
attacks should be evaluated on commercial ASR systems and

in real-world settings (e.g., in a black-box setting or via over-
the-air attacks).
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