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Abstract—A new generation of scams has emerged that uses
voice impersonation to obtain sensitive information, eavesdrop
over voice calls and extort money from unsuspecting human
users. Research demonstrates that users are fallible to voice
impersonation attacks that exploit the current advancement in
speech synthesis. In this paper, we set out to elicit a deeper
understanding of such human-centered ‘voice hacking” based
on a neuro-scientific methodology (thereby corroborating and
expanding the traditional behavioral-only approach in signifi-
cant ways). Specifically, we investigate the neural underpinnings
of voice security through functional near-infrared spectroscopy
(fNIRS), a cutting-edge neuroimaging technique, that captures
neural signals in both temporal and spatial domains. We design
and conduct an fNIRS study to pursue a thorough investigation of
users’ mental processing related to speaker legitimacy detection —
whether a voice sample is rendered by a target speaker, a different
other human speaker or a synthesizer mimicking the speaker. We
analyze the neural activity associated within this task as well as
the brain areas that may control such activity.

Our key insight is that there may be no statistically significant
differences in the way the human brain processes the legitimate
speakers vs. synthesized speakers, whereas clear differences are
visible when encountering legitimate vs. different other human
speakers. This finding may help to explain users’ susceptibility
to synthesized attacks, as seen from the behavioral self-reported
analysis. That is, the impersonated synthesized voices may seem
indistinguishable from the real voices in terms of both behavioral
and neural perspectives. In sharp contrast, prior studies showed
subconscious neural differences in other real vs. fake artifacts
(e.g., paintings and websites), despite users failing to note these
differences behaviorally.

Overall, our work dissects the fundamental neural patterns
underlying voice-based insecurity and reveals users’ susceptibility
to voice synthesis attacks at a biological level. We believe that
this could be a significant insight for the security community
suggesting that the human detection of voice synthesis attacks
may not improve over time, especially given that voice synthesis
techniques will likely continue to improve, calling for the design
of careful machine-assisted techniques to help humans counter
these attacks.
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I. INTRODUCTION

Voice is supposed to be a unique identifier of a person.
In human-to-human conversations, people may be able to
recognize the speakers based on the unique traits of their
voices. However, previous studies have shown that human-
based speaker verification is vulnerable to voice impersonation
attacks [30]. A malicious entity can impersonate someone’s
voice by mimicking it using speech synthesis techniques. In
particular, off-the-shelf speech morphing techniques can be
used to generate the spoofed voices of people of interest (vic-
tims) [30]. The attacker can then perform social engineering
trickeries using an impersonated voice to fool the users into
accepting it as a legitimate one. These attacks may eventually
make the users reveal sensitive and confidential information,
which may hamper their security, privacy, and safety.

Such voice imitation is an emerging class of threats, espe-
cially given the advancement in speech synthesis technology,
seen in a variety of contexts that can harm a victim’s reputation
and her security/safety [30]. For instance, the attacker could
publish the morphed voice samples on social media [17],
impersonate the victim in phone conversations [21], leave fake
voice messages to the victim’s contacts, and even launch man-
in-the-middle attacks against end-to-end encryption technolo-
gies that require users to verify the voices of the callers [38],
to name a few instances of such attacks.

Given the prominence and rapid emergence of these threats
in the wild, it is crucial to understand users’ innate psy-
chological behavior that governs the processing of voices
and their potential susceptibility to voice impersonation at-
tacks. In this paper, we follow the neuroimaging methodology
adopted in a recently introduced line of research (e.g., [8],
[32], [34]) to scrutinize the user behavior in the specific
context of such “voice security”. Specifically, we study users’
neural processes (besides their behavioral performance) to
understand and leverage the neural mechanics when users
are subjected to voice impersonation attacks using a state-of-
the-art neuroimaging technique called functional near-infrared
spectroscopy (fNIRS).

The specific goal of this paper is to study the neural
underpinnings of voice (in)security, and analyze differences
(or lack thereof) in neural activities when users are processing
different types of voices. We examine how the information
present in the neural signals can be used to explain users’
susceptibility to voice imitation attacks using synthesized
voices (i.e., speaker legitimacy detection). Prior studies [25],
[32]-[34] have shown that subconscious neural differences



TABLE 1. SUMMARY OF REAL-FAKE ANALYSIS OBSERVED IN

RELATED WORKS VS. OUR WORK

Type of Artifacts Differences in | Differences
Neural Activity | in Behavioral
Response
Websites under phish- | Present Nearly absent
ing ( [32]-[34])
Paintings [25] Present Nearly absent
Voices (our work) Absent Nearly absent

exist when users are subject to real vs. fake artifacts, even
though users themselves may not be able to tell the two apart
behaviorally. Neupane et al. in their previous studies [32]-
[34] found differences in neural activities at the right, middle,
inferior, and orbitofrontal areas when users were processing
real and fake websites. Similarly, Huang et al. [25] found dif-
ferences in neural activation at similar areas when users were
viewing real and fake Rembrandt paintings. Higher activation
in the frontopolar area implicates the use of working memory
and cognitive workload. Lower activation in the orbitofrontal
area suggests that the users trust stimuli presented to them g
[15]. of the target speakers.

Based on these prior results, we performed our study with
the hypothesis that these and other relevant brain areas might
be activated differently when users are listening to the original
and fake voices of a speaker. We, therefore, set-up the fNIRS
headset configuration to measure the frontal and temporo-
parietal brain which overlaps with the regions reported in these
previous “real-fake detection” studies. The implications of the
neural activity differences, if present when processing real vs.
fake voices, can be important as these differences could be
automatically mined and the user under attack could be alerted
to the presence/absence of the attack, even though the user may
have himself failed to detect the attack (behaviorally). Neupane
et al. suggested such an approach in the context of phishing
attacks [33]. Our study investigates the same line in the context
of voice synthesis attacks.

The neuroimaging technique used in our study, i.e., fNIRS,
is a non-invasive imaging method to measure the relative
concentration of oxygenated hemoglobin (oxy-Hb) and deoxy-
genated hemoglobin (deoxy-Hb) in brain cortex [11], [24],
[26]. By examining the changes in oxy-Hb and deoxy-Hb,
we can infer the activities in the neural areas of interest. We
carefully selected fNIRS as our study platform as it has the
unique capabilities to provide spatially accurate brain activity
information better than the EEG (Electroencephalography)
and similar to that of fMRI (Functional Magnetic Resonance
Imaging) [26]. Therefore, we preferred fNIRS to ensure we
capture the features from both temporal and spatial domains.
Unlike fMRI, fNIRS also allows us to pursue the study in envi-
ronments with better ecological validity since the participants
do not have to be in a supine position in the fMRI scanner
while making decisions.

Our Contributions: We design and conduct an fNIRS study
to pursue a thorough investigation of users’ processing of real
and morphed voices. We provide a comprehensive analysis
of the collected neuroimaging data set and the behavioral
task performance data set. Contrary to our hypothesis (and
contrary to the case of website/painting legitimacy detection),

we do not obtain differences in the way the brains process
legitimate speakers vs. synthesized speakers, when subject to
voice impersonation attacks, although marked differences are
seen between neural activity corresponding to a legitimate
speaker vs. a different unauthorized human speaker. That is,
the synthesized voices seem nearly indistinguishable from the
real voices with respect to the neurocognitive perspective.
This insight may serve well to explain users’ susceptibility to
such attacks as also reflected in our task performance results
(similar to the task performance results reported in [30]).
Table I captures a summary of our work versus other real-
fake detection studies.

Since this potential indistinguishability of real vs. morphed
lies at the core of human biology, we posit that the problem
is very severe, as the human detection of synthesized attacks
may not improve over time with evolution, Further, in our
study, we use an off-the-shelf, academic voice morphing tool
based on voice conversion, CMU Festvox [19], whereas with
the advancement in the voice synthesizing technologies (e.g.,
newer voice modeling techniques such as those offered by
Lyrebird and Google WaveNet [29], [41]), it might become
even more difficult for users to identify such attacks. Also, our
study participants are mostly young individuals and with no
reported hearing disabilities, while older population samples
and/or those having hearing disabilities may be more prone to
voice synthesis attacks [16].

We do not claim that the rejection of our hypothesis nec-
essarily means that the differences between real and morphed
voices are absent conclusively — further studies might need to
be conducted using other neuroimaging techniques and other
wider samples of users. However, our work certainly casts
a serious doubt regarding the presence of such differences
(in contrast to other real-fake contexts, such as paintings or
websites), which also maps well with our behavioral results,
thereby explaining human-centered voice insecurity.

In light of our results, perhaps the only feasible way to
protect users from such attacks would be by making them
more aware of the threat, and possibly by developing technical
solutions to assist the users. Even though machine-based
voice biometric systems have also been shown to be vulner-
able to voice synthesis attacks [30], the security community
can certainly work, and has been working, towards making
such techniques more secure with advanced liveness detection
mechanisms, which could aid the end users against voice
synthesis based social engineering scams, whenever possible.

Broader Scientific Significance: We believe that our work
helps to advance the science of human-centered voice security,
in many unique ways. It also serves to reveal the fundamental
neural basis underlying voice-based security, and highlights
users’ susceptibility to advanced voice synthesis attacks. Table
X gives a snapshot of all our results.

Beyond the aforementioned novel contributions, one im-
portant scientific attribute of our work lies in recreating and
revalidating the findings from the prior behavioral-only (task
performance) study of voice insecurity reported in the literature
[30] through independent settings. Similar to [30], our results
confirm the susceptibility of human users to voice imperson-
ation attacks.



Security Relevance and Implications: Although our work
is informed by neuroscience, it is deeply rooted in computer
security and provides valuable implications for the security
community. We conduct a neuroimaging-based user study and
show why attackers might be successful at morphed voice
attacks. Many similar security studies focusing on human
neuro-physiology have been published as a new line of re-
search in mainstream security/HCI venues, e.g., [8], [32]-
[34]. How users perform at crucial security tasks from a
neurological standpoint is therefore of great interest to the
security community.

This line of research followed in our work provides novel
security insights and lessons that are not possible to elicit via
behavioral studies alone. For example, prior studies [32]—
[34] showed that security (phishing) attacks can be detected
based on neural cues, although users may themselves not be
able to detect these attacks. Following this line, our work
conducted an fNIRS study to dissect users’ behavior under
voice impersonation attacks, an understudied attack vector.
Our results show that even brain responses cannot be used
to detect such attacks, which serve to explain why users are
so susceptible to these attacks.

II. BACKGROUND & PRIOR WORK

In this section, we provide an overview on fNIRS system,
and discuss the related works.

A. fNIRS Overview

The non-invasive fNIRS technology has unique capabilities
in that it can provide spatially accurate brain activity informa-
tion in line with fMRI, but it can do so in an ecologically
valid experimental environments (not inside a scanner under
a supine posture). It is easy to set-up and robust to motion
artifacts, and offers high spatial resolution [11], [24], [26]. The
basis of fNIRS is the usage of near-infrared light (700-900 nm
range), which can penetrate through scalp to reach the brain
cortex. Optical fibers are placed on the surface of the head for
illumination while detection fibers measure light reflected back
[10], [40]. The differences in absorption spectra of the lights
by oxy-Hb and deoxy-Hb allow the measurement of relative
changes in hemoglobin in the blood in brain. fNIRS provides
better temporal resolution compared to fMRI and better spatial
resolution (approximately Smm) compared to EEG. Based on
these attractive features, we have chosen fNIRS as a platform
to conduct our study reported in this paper. The hemodynamic
changes measured by the fNIRS occurs at slow rate of 6-9 sec
similar to fMRI, so the trial duration is relatively longer than
EEG [10].

B. Related Work

Voice spoofing attacks are a serious threat to users’ secu-
rity and privacy. Previous studies have shown that attackers
equipped with voice morphing techniques could breach ma-
chine and human speaker verification systems [28], [30], [38].
Mukhopadhyay et al. [30] attacked both machine-based and
human-based speaker verification system with morphed voice
samples and different speakers’ (other users’) voice samples.
They report that both human and machine are vulnerable to

such attacks. Shirvanian et al. [38] successfully launched man-
in-the-middle attacks against “Crypto Phones”, where users
verbally exchange and compare each other’s authentication
codes before establishing secure communications, using mor-
phed voice samples. Lewison et al. [28] proposed a block-
chain system in which face-recognition is combined with
voice verification to prevent voice morphing attacks. Bai et
al. [4] proposed the use of voices to authenticate certificates.
However, it can be subject to potential morphing attacks. In
this light, it is important to understand why users may fail to
identify the voice of a speaker under morphing attacks, and
inform the designers of automated speech recognition systems
as to how users may distinctively process speakers’ voices.

Recently, several studies have reported the use of neu-
roimaging to understand the underlying neural processes con-
trolling users’ decision-making in security tasks [8], [32]-[34].
Specifically, Neupane et al. [34] analyzed brain signals when
users were detecting the legitimacy of phishing websites and
reading malware warnings using a state-of-the-art neuroimag-
ing technique fMRI. Neupane et al. [32] followed up the study
with EEG and eye-tracking to understand users’ neural and
gaze metrics during phishing detection and malware warnings
tasks in a near-realistic environment.

Relevant to our study is the fNIRS study of phishing
detection by Neupane et al. [33]. They used fNIRS to measure
neural activities when users were identifying real and phishing
websites, and built neural cues based machine learning models
to predict real and phishing website. Unlike this study, we use
the fNIRS system to measure the neural behavior in a different
application paradigm — voice security.

There are some neuroscience studies on voice recognition
(e.g., [3], [6], [7], [20]). Belin et al. [6] studied the brain
areas involved in voice recognition. Formisano et al. [20] in
their fMRI study showed the feasibility of decoding speech
content and speaker identity from observation of auditory
cortical activation patterns of the listener. Similar to our study,
Bethman et al. [7] studied how human brain processes voices
of a famous familiar speaker and an unfamiliar speaker. In
contrast to all these studies, our research focuses on the
security aspect of voice impersonation attack and explains why
users fail to identify fake voices, and evaluates the privacy
issues related to the BCI devices.

C. The Premise of our Hypothesis

Prior researchers [25], [32]-[34] have also conducted stud-
ies to understand why people fall for fake artifacts (e.g., fake
images, fake websites) analyzing their neural signals. Huang et
al. [25] had conducted a study to understand how human brain
reacts when they are asked to identify if a given Rembrandt
painting was a real or a fake. They reported differences in
neural activation at left and right visual areas when users were
viewing real and fake Rembrandt paintings (see Figure 2).
Neupane et al. had also conducted studies [32]—[34] to analyze
the neural activations measured using different neuroimaging
devices (e.g., EEG [32], fNIRS [33] and fMRI [34]) when
users were subjected to phishing attacks. The users were asked
to identify if a given website was real or fake and their
neural signals were concurrently measured when they were
viewing these websites. They reported differences in the brain
activations when users were processing real and fake websites.
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Fig. 1. Activation in right middle frontal gyri (RMFG), right inferior frotal

gyri (RIFG), left inferior parietal lobule (LIPL), left precentral gyrus, right

cerebellum, and left cingulate gyrus is dependent on whether or not the

participant was viewing an image of a genuine website (real vs. fake) [34].
TABLE II. BRAIN AREAS ACTIVATED IN PHISHING TASK [34] AND
THEIR CORRESPONDING FUNCTIONS

Brain Areas

| Functions

Orbitofrontal area Decision-making; judgment

Middle frontal, inferior
frontal, and inferior
parietal areas

Working memory

Right cerebellum and
left precentral gyrus

Feedforward and feedback projections

Occipital cortex Visual processing, search

Specifically, Neupane et al. [34] revealed statistically sig-
nificant activity in several areas of the brain that are critical and
specific to making “real” or “fake” judgments. For the websites
those the participants identified as fake (contrasted with real),
participants activated right middle, inferior, and orbital frontal
gyri, and left inferior parietal lobule. The functions governed
by these areas are listed in Table II. On the other hand, when
real websites were identified, participants showed increased
activity in several regions, such as the left precentral gyrus,
right cerebellum, and the occipital cortex (see Figure 1).
Neupane et al. [33] also explored a feasibility of fake website
detection system based on fNIRS-measured neural cues, where
they were able to obtain the best area under the curve of 76%.

REAL > FAKE FAKE > REAL
Left Right

Fig. 2. Activation in the visual areas, calcarine sulcus (CS), is dependent on
whether or not the participant was viewing an image of a genuine Rembrandt
(real vs. fake) [25].

Similar to the tasks of identifying real and fake websites
or images, the speaker legitimacy detection task also involves
real-fake decision making and hence we hypothesized that
similar areas should be activated in the speaker legitimacy

detection task. We set-up our study to test the hypothesis that
the brain areas related to the real-fake decision making should
be activated differently when users are listening to the original
and fake voices of a speaker as well. We, therefore, set-up
the fNIRS headset configuration to measure the frontal and
temporo-parietal brain regions reported in these previous “real-
fake detection” studies. Next, we also try to automatically infer
the type of voice (real or morphed voice) a user is listening to
based on the fNIRS-measured neural signals.

D. Voice Synthesis

Voice synthesis is commonly used in text-to-speech sys-
tems. The quality of the synthesized voice is judged by its
intelligibility and its similarity to a targeted human voice. Tra-
ditionally, it is known to be challenging for a voice synthesizer
to produce a natural human speech (without noticeable noise)
artificially and make it indistinguishable from the human voice
[18]. Additionally, voice synthesizers require a huge amount of
data from a target speaker to learn the phonemes and generate
a synthesized speech of the target speaker.

However, newer techniques have emerged that may do a
much better job of synthesizing a voice. Voice morphing (also
referred to as voice conversion and voice transformation) is one
such technique to generate a more naturalistic (human-type)
voices with fewer samples. Voice morphing software takes
some samples of a speech spoken by a source speaker and
produces a sound as if it was spoken by the target speaker by
mapping between the spectral features of the source speaker’s
and the target speaker’s voice [42]. Previous research [30],
[38] has reported via behavioral studies that the morphed voice
attack may be successful against users with high probability.
In our study, we followed a methodology described in [30] and
used the CMU Festvox voice converter [19], an academic off-
the-shelf voice morphing tool, to generate the morphed voices
of the target speakers.

E. Threat Model

In our work, we study how access to a few voice samples
of a speaker can be used to launch attacks on human-based
speaker verification systems. We assume that an attacker has
collected a few voice samples previously spoken by the target
victim with or without her consent. The attacker can get such
voice samples from any public speeches made by the victim
or by stealthily following the victim and recording audio as
he speaks with other people. The attacker then uses the voice
samples to train a model of a morphing engine (we followed
the procedures mentioned in [30] for morphing engine), such
that the model creates the victim’s voice for any (new) arbitrary
speech spoken by the attacker. This morphed speech can now
be used to attack human-based speaker verification systems.
The attackers can either make a fake phone call, or leave voice
messages, or produce a fake video with the victim’s voice in
it and post it online.

FE. Terminology and Attack Description

Victim Speakers: These are the speakers whose voices were
manipulated to launch voice impersonation attacks on partici-
pants in our study.



Familiar Speakers: In our study, we used the voice samples
of Oprah Winfrey and Morgan Freeman to represent the set of
familiar speakers. The reason for choosing these celebrities
in our case study is to leverage their distinct and unique
voice texture and people’s pre-existing familiarity with their
voices. The participants were also asked to answer if they
were familiar with the voice of these celebrities as “a yes/no
question” before their participation.

Briefly Familiar Speakers: In our study, these are the speakers
whom the participants did not know before the study and were
only familiarized during the experimental task only to establish
brief familiarity. The briefly familiar speakers represent a set
of people with whom the users have previously interacted only
for a short-term (e.g., a brief conversation at a conference).

Different Speaker Attack: Different speakers are the arbitrary
people who attempt to use their own voice to impersonate as
the victim speaker. In our study, using a different speaker’s
voice, replacing the voice of a legitimate speaker to fool the
participants, is referred to as the different speaker attack.

Morphed Voice Attack: Attackers can create spoofed voice
using speech morphing techniques to impersonate the voice of
a victim user, referred to as a morphed voice. In our study, the
use of such a voice to deceive other users to extract their private
information is therefore called the morphed voice attack.

Speaker Legitimacy Detection: In our study, this represents the
act of identifying whether the given voice sample belongs to
the original speaker or is generated by a morphed engine. The
different speaker attack is used as a baseline for the morphing
attack, since it is expected that people might be able to detect
the different speaker attack well.

III. STUDY DESIGN & DATA COLLECTION

In this section, we present the design of our experimental
task, the set-up involving fNIRS, and the protocol we followed
for data collection with human participants.

A. Ethical and Safety Considerations

Our study was approved by our university’s institutional
review board. We ensured the participation in the study was
strictly voluntary and the participants were informed of the
option to withdraw from the study at any point in time. We
obtained an informed consent from the participants and made
sure they were comfortable during the experiment. We also fol-
lowed the standard best practices to protect the confidentiality
and privacy of participant’s data (task responses and fNIRS
data).

B. Design of the Voice Recognition Task

The study design for our voice recognition task followed
the one employed in recent task performance study of speaker
verification [30]. However, unlike [30], our study captured
neural signals in addition to the task performance data. We
designed our experiment to test the following hypothesis:

Hypothesis 1 The activation in frontopolar and temporopari-
etal areas, which covers most of the regions activated in previ-
ous studies (see Section II-C), will be high when participants

are listening to the morphed voice of a speaker compared to
the original voice of the speaker:

To test this hypothesis, we used original, morphed, and dif-
ferent voices for two types of speakers — familiar speakers and
briefly-familiar speakers(see Section II-F). The participants
were asked regarding their familiarity with these speakers’
voices as “a yes/no question” before the experiment. During
the experiment, the participants were asked to identify the
real (legitimate) and fake (illegitimate) voice of a speaker. We
assumed the real voices may impose more trust compared to
the fake voices. The failure of users in detecting such attacks
would demonstrate a vulnerability of numerous real-world
scenarios that rely (implicitly) on human speaker verification.

Stimuli Creation: Voice Conversion: We followed the
methodology similar to the one reported in [30] to create our
dataset. For familiar speakers, we collected the voice samples
of two popular celebrities, Oprah Winfrey and Morgan Free-
man, available from the Internet. For unfamiliar speakers, we
recruited participants via Amazon Mechanical Turk (MTurk).
We asked twenty American speakers in MTurk to record the
speech of these two celebrities in their own voices. They were
asked to read the same sentences the celebrities had spoken in
the recorded audio and also to imitate the celebrities’ speaking
style, pace and emotion. We fed these original voice samples of
the celebrities and the recorded voice samples from one male
and one female speaker among these twenty speakers to the
CMU Festvox voice converter [19] to generate the morphed
voices of Morgan Freeman and Oprah Winfrey.

In line with the terminology used in [30], in our study, the
original recording of a victim speaker’s voice is referred to
as a “real/original voice”. For each speaker, the fake voices
created using speech morphing techniques is referred as a
“morphed voice”, and recorded speech in other speaker’s
voices is referred as a “different speaker”.

Experiment Design: We used an event-related (ER) design for
our study. In ER design, each trial is presented as an event with
longer inter-trial-interval and we can isolate fNIRS response to
each item separately [37]. We familiarized the participants with
the voice a of victim speaker for 1-minute. We could not let the
participants replay the original audio during familiarization as
it would have made the experiment longer. As the experiment
gets longer, fatigue effects may set in, eventually affecting the
quality of the brain signals recorded.. After familiarization, we
presented 12 randomly selected speech samples (4 in original
speaker’s voice voice, 4 in morphed voice and 4 in different
speaker’s voice and asked participants to identify legitimate
and fake voices of the victim speakers. The process was
repeated for four victim speakers (2 familiar speakers, and
2 briefly familiar speakers) randomly. Following [30], our
study participants were not informed about voice morphing
to prevent explicit priming in the security task. In real life
also, people may have to decide a speaker’s legitimacy without
knowing the voices may have been morphed.

The experiment started with the Firefox browser loading
the instructions page (specifying the tasks the participants are
supposed to perform) for 30 seconds. This was followed by
a rest page of 14 sec (+ sign shown at the center of a blank
page) during which participants were asked to relax. We next
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Fig. 3.
the short voice samples presented next as real or fake.

played a speech sample of a victim speaker for 60 sec, and
then showed a rest page for 8 sec. This was followed by
12 trials, each 20 sec long. Each trial consisted of a voice
(corresponding to a fake/real voice of the speaker) played for
15 sec, followed by a 5 sec long response page. The response
page had a dialog box with the question, “Do you think the
voice is of the original speaker?” and the “Yes” and “No”
buttons. The participants answered the question using mouse
input. A rest page of 8 sec was loaded after each trial. Rest
trials are considered as windows of baseline brain activity. The
process was repeated for four speakers and the experiment
ended with the goodbye note of 5 sec. The system recorded the
participant’s neural data, responses and response time. Figure
3 depicts the flow diagram.

C. Study Protocol

Our study followed a within-subject design, whereby all
participants performed the same set of (randomized) trials
corresponding to the voice recognition task.

Recruitment and Preparation Phase: We recruited twenty
healthy participants from the broader university community
(including students and staff) by distributing the study ad-
vertisements across our university’s campus. We asked the
participants about their familiarity with Morgan Freeman’s and
Oprah Winfrey’s voices, i.e., if the participants have heard the
celebrities’ voices before and could recognize those voices,
along with participants’ age, gender, and educational back-
ground in the pre-test questionnaire. Of the 20 participants,
10 were male and 10 were female. All were English speaking
participants in the age range of 19-36 years with a mean age of
24.5 years. Table III summarizes the demographic information
of our participants.

Previous power analysis studies have found 20 to be an
optimal number of participants for such studies. For instance,
statistical power analysis of ER-design fMRI studies have
demonstrated that 80% of clusters of activation proved repro-
ducible with a sample size of 20 subjects [31]. Both fMRI
and fNIRS are based on hemodynamic response of the BOLD
principle, so we assumed similar power analysis for fMRI
and fNIRS. Also previous fNIRS studies have shown that
fNIRS measurements are reliable with 12 participants [35].

The flow diagram depicts the presentation of trials in the experiment. The participants were familiarized with a speaker, and were asked to recognize

TABLE III. DEMOGRAPHICS
[ Participant Size N = 20 |
Gender(%)

Male 50%
Female 50%
Age(%)

18-22 20%
22-26 55%
27-31 20%
31+ 5%
Handedness(%)

Right-Handed | 90%
Left-Handed 10%

Background(%)

High School 10%
Bachelor’s 20%
Masters 55%
Doctorate 10%
Others 15%

Our participant demographics is also well-aligned with prior
neuroimaging security studies [7], [8], [32], [34]. Each partic-
ipant was paid $10 upon completion.

Task Execution Phase: To execute the experiment, we used
two dedicated computers, one in which the experimental task
was presented and the task responses and the response times
were logged, namely stimuli computer, and the other in which
fNIRS data measured during the experiment was recorded,
namely data collection computer. We synchronized the data
between these two computers by placing a marker in the fNIRS
data at the beginning of the task.

We recorded hemodynamic responses, the rapid delivery
of blood to active neuronal tissues [23], in the frontal cortex
and the temporoparietal cortex on both hemispheres using
fNIRS system developed by Hitachi Medical (ETG 4000) in
our experiment. These areas cover the brain regions activated
in previous studies [33], [34] (see Section II-C). We took
the measurement of each participant’s head to determine the
best size of probe cap that would fit the participant. The
fNIRS optodes were then placed on participant’s head using
fNIRS probe cap which ensured standardized sensor placement



according to the well established 10-20 system. The inter-
optode distance was set to 30mm and the data was acquired
at the frequency of 10Hz. Figure 4 depicts the experimental
set-up used in our study.

.
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Fig. 4. Experimental setup used in our voice impersonation attack study. The
instructions were shown on the stimuli computer’s screen. Audio was played
back through external PC speakers (not shown in the figure).

Calibration is needed to ensure the quality of the data
recorded is good. The participant was then moved to the stimuli
computer for performing the speaker voice recognition task.
Next, the participants were instructed on the tasks they were
performing in our study. They were asked to use the mouse
to enter the responses and were requested to minimize the
body movements during the experiment. The participants then
performed the task discussed in Section III-B.

In our study, we recorded the changes in the concentra-
tion of oxygenated hemoglobin (oxy-Hb) and deoxygenated
hemoglobin (deoxy-Hb) through the fNIRS device, and task
performance metrics (response and response times) while the
participants performed the tasks as the repeated measures of
our study.

IV. ANALYSIS METHODOLOGY

In this section, we provide the steps we followed to
process the neural signals for our analysis. We also provide
an overview of the statistical tests we conducted on our data.

A. Neural Data Processing

Raw light intensity fNIRS data collected in the experiment
were processed to remove high-frequency noise and motion
artifacts using Hitachi’s data acquisition software. A bandpass
filter saving the frequencies between .5 and .01 Hz was used
to attenuate signatures representing respiratory and cardiac
fluctuations. We used the modified Beer-Lambert law [14] to
transform the resulting light intensity data into relative con-
centration changes of oxygenated hemoglobin (oxy-Hb) and
deoxygenated hemoglobin (deoxy-Hb) [40]. We then designed
an in-house software to extract the average oxy-Hb and average
deoxy-Hb from each channel for each trial (15 second voice
sample) presented in the experimental task.

The hemoglobin is called oxy-Hb when it transports
oxygen to cerebral tissue and is called deoxy-Hb when it
releases oxygen after metabolism. The difference in oxyHb

and deoxyHb concentrations at the baseline (rest) and the task
performance is said to determine the location in the cortex of
where activities are happening [27].

The signal measured by each channel was related to the part
of the brain above which the channel was placed. These fNIRS
channels were virtually registered onto the stereotactic brain
coordinate system using Tsuzuki’s 3D-digitizer free method
[39]. This method allowed us to place a virtual optode holder
on the scalp by registering optodes and channels onto reference
brains. We then identified the brain area represented by each
channel and grouped these channels based on the majority
of the Brodmann Area [9] they covered. We considered
five broadman areas, namely, dorsolateral prefrontal cortex,
orbitofrontal gyrus, frontopolar area, superior temporal gyrus
and middle temporal gyrus, found to be activated in previous
studies [25], [33], [34] for real-fake artifacts to measure
differences in neural activities between real and fake voices.
These areas are referred as our regions of interest (ROIs).
As mentioned in III-B, the hypothesis of our study was that
the areas related to decision making, trust, working-memory,
and familiarity will have different activations for real and fake
voices as well, similar to other real-fake artifacts, like paintings
and websites. The oxy-Hb and deoxy-Hb measured by the
channels in each group was then separately averaged for each
trial.

B. Statistical Tests

We used IBM SPSS [36] for the purpose of statistical
analysis reported in our study. Kolmogorov-Smirnov test used
for normality detection revealed that oxy-Hb and deoxy-Hb
data were non-normal. Thus, Friedman’s test and Wilcoxon
Singed-Rank Test (WSRT) were used for measuring differ-
ences in the means of different groups of trials underlying
our analysis. Following the correction methodology adopted
in [33], and since our analysis focused on pre-established
ROIs per our hypotheses, the comparisons at each of the ROI
were considered separately and were corrected using Holm-
bonferroni correction [1]. We also report the effect size of
WSRT which was calculated using the formula » = Z/v/N ,
where Z is the value of the z-statistic and N is the number of
observations on which Z is based. Cohen criteria [12] reports
effect size > .1 as small, > .3 as medium and > .5 as large.

V. TASK PERFORMANCE RESULTS

To recall, in our experimental task, participants were asked
to answer if the voice trial played was of the “real” speaker or a
“fake” speaker. We had logged the participants’ responses and
response times during the experiment. A participant’s response
was marked as correct if she had identified the original
speaker’s voice as real, and the other speakers’ (morphed and
different speaker) voice as fake. We then calculated the average
accuracy and response time (RTime) the participants spent on
providing answers for each type of trial. Accuracy is defined
as the ratio of the total number of correctly identified instances
to the total number of samples presented to each participant.

From Table V, we observe that the overall accuracy of
correctly identifying the voice of the speaker is around 64%
which is only slightly better than the random guessing (50%).
It seems highest for the original speaker and the lowest for



TABLE IV. REGIONS OF INTEREST (ROI): THE BRAIN AREAS COVERED BY OUR FNIRS PROBE-CAP
[ # [ ROI Name [ Acronym | Brodmann Area # | Functionality ]
2 | Dorsolateral Prefrontal Cortex | DLPFC 9 Working memory, attention
3 | FrontoPolar Area FPA 10 Memory recall, executive functions
7 | Superior Temporal Gyrus STG 22 Primary auditory cortex, auditory processing
8 | Middle Temporal Gyrus MTG 21 Recognition of known faces
9 | Orbitofrontal Area OFA 11 Cognitive processing, decision making, trust

TABLE V. ALL SPEAKERS: ACCURACY (%), PRECISION (%), RECALL (%) AND F-MEASURE (%) AND RESPONSE TIME (SECONDS)
. Acc Prec Rec FM RTime
Trial
u (o) u (o) u (o) u (o) u (o)
Original 82.1 (16.6) | 50.63 (12.5) | 83.2 (16.1) | 61.31 (9.0) 2.57 (0.5)
Morph 42.8 (24.1) | 46.71 (19.7) | 42.8 (24.1) | 43.40 (19.8) | 2.58 (0.5)
Different | 67.2 (21.5) | 47.82 (16.0) | 68.1 (21.2) | 55.82 (16.0) | 2.51 (0.5)
Average 64.2 (11.5) | 48.39 (15.3) | 64.7 (20.7) | 53.51 (15.0) | 2.54 (0.5)

the morphed speakers. Also, we notice that the participants
reported 58% of the morphed speakers and 33% of different
speakers as real speakers. This shows that the morphed speak-
ers were more successful than the different speakers in voice
impersonation attacks. Our results are in line with the task
performance results of voice impersonation attacks reported
by Mukhopadhyay et al. [30].

The Friedman’s test showed a statistically significant differ-
ence in mean accuracies across original, morphed and different
speaker voices (x2(20)=17.71, p<.0005). On further contrast-
ing the accuracy rates across different types of trials with
WSRT, we found that the participants identified original voices
with a statistically significantly higher accuracy than morphed
voices (p<.001) with large effect size (r=.76), and identified
different speaker’s voices with statistically significantly higher
accuracy than morphed voices (p<.0005) with a large effect
size (r=.78). We did not see other statistically significant
results.

The users failing to identify morphed voices shows the
quality of the converted voice generated by the morphing
engine. The morphed voices might have sounded so similar
to the original speaker’s voice that the participants failed
to identify them most of the times. This suggests that the
attacker with a sophisticated tech speech morphing engine
may successfully launch voice impersonation attacks on users,
which is a concern to the security and privacy community.

VI. NEURAL RESULTS

In this section, we analyze the neural activations when
users are listening to the original, morphed, and different
speakers voice with the baseline (rest condition), and with
respect to each other.

A. Voice Trial vs. Rest Trial

To recall, in our experimental task, participants were in-
structed to identify the voice of the speaker when played back
and to relax when the rest sign was displayed. To evaluate
the brain areas activated when participants were listening to
original, morphed and different speakers, we contrasted the
brain activation during these trials with the rest trial as a
ground truth. This analysis provided the neural signatures of
detecting the legitimacy of speakers.

We ran Wilcoxon-Signed Rank Tests (WSRT) to evaluate
the differences in mean oxy-Hb and mean deoxy-Hb at each
regions of Interest (ROIs) between the original trial vs. the rest
trial VI. We found statistically significant differences in oxy-Hb
at the dorsolateral prefrontal cortex, frontopolar area, superior
temporal gyrus and middle temporal gyrus for the original
speaker trial than the rest trial (such differences are listed in
Table VI, rows 1-4 and Figure 5(a)). Statistically significant
differences in deoxy-Hb at the dorsolateral prefrontal cortex,
frontopolar area, middle temporal gyrus and orbitofrontal area
for the original vs. rest trial (Table VI, rows 5-8) was also
observed.

TABLE VL NEURAL ACTIVATIONS: ORIGINAL SPEAKER VS. REST
[ # [ ROI-Type | Hb-Type [ p-value | Effect Size |
1 DLPFC OXy .009 .60
2 FPA OXy .008 .59
3 STG OXy .002 .70
4 MTG OXy .045 44
5 DLPFC deoxy .035 47
6 FPA deoxy .000 .87
7 MTG deoxy .000 .82
8 OFA deoxy .022 Sl
TABLE VIIL NEURAL ACTIVATIONS: MORPHED SPEAKER VS. REST
[ # ] ROI-Type | Hb-Type [ p-value | Effect Size |
1 DLPFC OXy .035 47
2 FPA OXy .002 .73
3 STG OXy .024 .50
4 FPA deoxy .007 .60
5 STG deoxy .041 45
6 MTG deoxy .000 .88

Similarly, on contrasting changes in mean-oxy and mean-
deoxy at different ROIs between the morphed speaker and
the rest trial using WSRT, we noticed statistically significant
differences in oxy-Hb at the dorsolateral prefrontal cortex,
frontopolar area, and superior temporal gyrus (Table VII,
rows 1-3 and Figure 5(b)). Also, at frontopolar area, superior
temporal gyrus, and middle temporal gyrus, statistically signif-
icant differences in deoxy-Hb were observed for the morphed
speaker than in the rest trial (Table VII, rows 4-6).

Applying WSRT to measure differences in mean oxy-Hb



Morph vs Rest

Fig. 5.

TABLE VIII.
[ # ] ROL-Type | Hb-Type [ p-value [ Effect Size |

NEURAL ACTIVATIONS: DIFFERENT SPEAKER VS. REST

1 DLPFC OXy .007 .60
2 FPA oxy .001 1
3 STG oxy .000 .83
4 MTG OXy .004 .63
5 OFA OXy .042 A5
6 DLPFC deoxy .027 49
7 FPA deoxy .001 .73
8 MTG deoxy .000 81
9 OFA deoxy .046 44

and mean deoxy-Hb between the different speaker trial and
the rest trial at various regions of interest revealed statistically
significant differences in oxy-Hb at dorsolateral prefrontal
cortex, frontopolar area, superior temporal gyrus, middle tem-
poral gyrus and orbitofrontal gyrus for different speaker trial
than in the rest trial (Table VIII, rows 1-5 and Figure 5(c)).
It also rendered statistically significant differences in deoxy-
Hb at dorsolateral prefrontal cortex, frontopolar area, middle
temporal gyrus, and orbitofrontal area for the different speaker
trial compared to the rest trial (Table VIII, rows 4-6).

Interpretation: Listening, attention and decision-making are
critical components of higher cognitive function. The detection
of voice impersonation attacks in our study involves all these
elements in helping participants figure out the original and
the fake voices of the speakers. The statistically significant
activity in the dorsolateral prefrontal cortex and the frontopolar
area at the neural level (Tables VI, VIII and VII) is indica-
tive of the involvement of working memory and executive
cognitive functions in this task. The previous studies [5],
[13] have found interaction among the dorsolateral prefrontal
cortex, frontopolar area and orbitofrontal area to play a critical
role in conflict-dependent decision-making. The activation in
orbitofrontal area portrays that the participants were being
suspicious while identifying the different voices presented to
them. They were sometimes trusting the voice of the real
speaker as real and sometimes distrusting the voice as fake.
A study by Dimoka et al. [15] found that trust was associated
with lower activation in orbitofrontal area. The activation in
orbitofrontal cortex is observed only when users are listening
to voice of different speaker indicating that they were being
suspicious when they were asked to identify different speaker’s
voice sample. This level of suspicion is also reflected in the
behavioral results where participants were able to detect the
different speakers much better than the morphed speakers. The

Diff vs Rest

Activation regions with statistically significant oxy-Hb changes: (a) Original vs Rest; (b) Morphed vs Rest; (c) Different vs Rest.

activation in superior temporal gyrus and middle temporal
gyrus, related to auditory processing [43], shows that the
participants were carefully processing the voice of the speakers
to decide their legitimacy. This shows that the participants were
actively trying to decide if the given voice was real or fake.

B. Speaker Legitimacy Analysis

Now we present the results of contrasting neural activations
between the original speaker and fake speakers (i.e., the
morphed speaker and the different speaker). These compar-
isons of the brain activities delineate the brain areas involved
in processing the voices of original and morphed speakers
(synthesized voices), and original and different speakers. To
recall, the different speaker scenario is used as a baseline to
study the morphed speaker scenario.

Contrast 1: Original Speaker vs. Morphed Voice: This anal-
ysis provides an understanding of how the original speaker’s
voice and morphed speaker’s voices are perceived by the
human brain. To recall, our experimental task had four victim
speakers. All these speakers were familiarized to participants
during the experiment. In this analysis, we examined the neural
activities when participants were listening to all original speak-
ers and all morphed speakers. For the same, we ran WSRT at
different ROIs to evaluate the differences in mean oxy-Hb, and
deoxy-Hb between original and morphed voice. However, we
did not observe any statistically significant differences.

Contrast 2: Original Speaker vs. Different Speaker: In this
analysis, we compared the neural metrics when participants
were listening to the voice of original speaker vs. the voice of
a different speaker. We hypothesized that the original speakers
— since they were familiarized to participants — will produce
different neural activations than the different speakers.

For this analysis, we applied WSRT to contrast the mean
oxy-Hb and mean deoxy-Hb at different ROIs between all
the voices of original speaker and the voices of different
speaker. It revealed statistically significant differences in oxy-
Hb for original speaker than different speaker at superior
temporal gyrus (p=.029) with medium effect size (r=.48).
These differences are visualized in Figure 6.

We also applied WSRT to contrast the neural activity
for original and different speakers’ voices only corresponding
to the samples correctly identified by the participants per
their behavioral response. We observed statistically significant
differences at superior temporal gyrus (p<.05).



Fig. 6. Statistically significantly higher oxy-Hb observed in superior temporal
gyrus (STG) when participants were listening to the voice of original speakers
compared to the voice of the different speaker.

Interpretation of Contrasts 1 and 2: Based on the results
of prior real vs. fake website/painting detection studies [25],
[32]-[34], we expected to see differences in neural activity
corresponding to real vs. morphed voices. However, contrary
to our hypothesis, our results do not reveal such differences,
which suggests that the original voices may have sounded
identical to the morphed voices. This insight is also captured
in our behavioral task performance analysis (Section V),
and serves well to explain the users’ susceptibility to voice
morphing attacks.

Unlike original vs morphed analysis, we observed statis-
tically significant differences in neural activities at superior
temporal gyrus when users were listening to voices of original
speakers vs. different speakers. The superior temporal gyrus
is found to be activated for familiar voices in previous neuro-
science studies [7] (the original speaker voices are the familiar
voices in our case). Given this difference in neural activation,
it is justified that the users were able to identify the different
speakers in our voice impersonation attacks a large majority
of times (Section V).

Overall, we see that users’ brain activation explains why
people were not able to detect the morphed speakers while they
could detect the different speaker reasonably well, as shown
in the task performance results.

C. Gender-based Speaker Legitimacy Analysis

Since gender may play some role in the detection of
original, different and morphed voices, we pursued gender-
centric analysis from our dataset. In this analysis, we divided
our datasets into two categories based on the gender of the
participants — male and female. We had 10 male and 10 female
participants in our study. We first performed analysis on each
category of participants to understand how they react to real,
morphed and different voices compared to rest. Similar to
our analysis in Section VI-A, on using WSRT, we observed
differences in oxy-Hb in dorsolateral prefrontal cortex, fron-
topolar area, middle temporal gyrus and superior temporal
gyrus between original voice trails and rest trials (all p-values
less than p<.05) for both male and female participants. We
also observed differences in oxy-Hb at dorsolateral prefrontal
cortex, frontopolar area, and superior temporal gyrus between
morphed and rest for both male and female participants (all p-
values less than p<.05). Similarly, for different speakers’ voice
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trials compared to rest trials on WSRT, we observed differ-
ences in oxy-Hb in dorsolateral prefrontal cortex, frontopolar
area, orbitofrontal area, middle temporal gyrus, and superior
temporal gyrus (all p-values less than p<.05). These areas of
brain are activated in decision making, familiarity analysis, and
real-fake judgment (detailed interpretation presented in Section
VI-A).

We also compared the neural activation when female par-
ticipants were listening to real and morphed voices of a speaker
and did not observe any statistically significantly different
result. Similarly, we did not observe any statistically significant
difference in neural activation when male participants were
listening to real and morphed voices. This suggests that users
maybe biologically susceptible to fake voices irrespective of
their gender.

D. Familiarity-based Speaker Legitimacy Analysis

To recall, we had polled the participants’ about their famil-
iarity with the two famous celebrities in our pre-test question-
naire. We compared the brain activities when participants were
listening to the famous speakers’ original samples to the briefly
familiar speakers’ original samples. This helped us understand
the differences in neural activations when participants heard
long-term familiarized voices vs. briefly-familiarized voices.
We performed WSRT in mean oxy-Hb and deoxy-Hb between
the original trials of the famous speakers and the briefly
familiar speakers at different ROIs. We observed statistically
significantly higher deoxy-Hb at frontopolar area (p=.031)
with medium effect size (r=.48) and middle temporal gyrus
(p=-.005) with large effect size (r=.63). These differences have
been depicted in Figure 7.

Fig. 7. Statistically significantly higher deoxy-Hb observed in middle
temporal gyrus (MTG) and frontopolar area (FPA) when participants were
listening to the voice of familiar speaker compared to the unfamiliar speaker.

Interpretation: The famous speakers were previously known
to the participants, so their voice prints might have resided
in the long-term memory. The higher activation in frontopolar
area for famous speakers compared to briefly familiar speakers
showed that the users were using their memory to identify the
original voice samples. Similarly, we also saw higher activa-
tion in middle temporal gyrus for famous speakers voice in
comparison to briefly familiar speakers. The middle temporal
gyrus has been found to be more activated for familiar voices
in previous studies [7]. Overall, these results illustrate that
the human brain processes familiar voices differently from the
unfamiliar voices.



VII. NEURAL ANALYTICS: ORIGINAL VS. MORPHED

CLASSIFICATION

In the previous section, we observed that the neural activity
in original vs. morphed speakers was not statistically signifi-
cantly different. In this section, to further validate this result,
we show that the machine-learning on neural data can also not
help classify these differences.

A. Feature and Performance Metrics

For extracting features, we normalized the oxy-Hb and
deoxy-Hb data in each region of interest using z-score nor-
malization. Next, at each ROI, we computed maximum, mini-
mum, average, standard deviation, slope, variation, skew, and
kurtoisis for the normalized oxy-Hb and deoxy-Hb data for
each trial as features. We computed these features separately
for the first and second half of each 15 second long task. We
also separated the 15 seconds of data into 3 segments, and we
took the average value of each of these 3 segments for the
oxy-Hb and deoxy-Hb datastreams. We had one feature vector
for each trial.

To build classification models, we utilized off-the-shelf
machine learning algorithms provided by Weka. To this end,
we used 10-fold cross-validation for estimation and validation
of the models built on different algorithms including: Trees —
J48, Logistic Model Trees (LMT), Random Forest (RF) and
Random Tree (RT); Functions — Neural Networks, Multilayer
Perceptron (MP), Support Vector Machines (SMO), Logistics
(L) and Simple Logistic (SL), and Bayesian Networks — Naive
Bayes (NB).

As performance measures, we report the precision (Prec),
recall (Rec), F-measure (F'M) or F1 Score for machine
learning classification models. Prec refers to the accuracy
of the system in rejecting negative classes and measures the
security of the proposed system. Rec is the accuracy of the
system in accepting positive classes and measures the usability
of the proposed system. Low recall leads to high rejection of
positive instances, hence unusable, and low precision leads to
high acceptance of negative instances, hence insecure. F'M
represents the balance between precision and recall.

True positive (TP) represents the total number of correctly
identified instances belonging to the positive class while frue
negative(TN) is the number correctly rejected instances of
negative class. Similarly, false positive (FP) is the number of
negative instances incorrectly accepted as positive class and
false negative (FN) represents the number of times the positive
class is rejected.

B. Speaker Legitimacy Detection Accuracies

Our statistical analysis of neural data related to original
speaker, morphed speaker voices showed some, albeit minimal,
significant differences in oxy-Hb and deoxy-Hb. Taking this
into account, we extracted features from these underlying
neural differences and built a 2-class classifiers as discussed
in Section VII-A to identify original and morphed speakers.
In this classification task, the positive class corresponds to
original speaker and negative class corresponds to the mor-
phed. For the speaker legitimacy detection, we observed that
none of the classifiers performed well. The best F-measure of
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identifying the voice of morphed speaker vs. original speaker
obtained was 53% (see Table IX). To improve the results, we
also evaluated the classification model with the best subset of
features selected using correlation-based feature selection al-
gorithm [22], and the best F-measure we achieved was 56.2%.
We did not see statistically significant difference in these F-
measures when compared to those of human detection and
random guessing. These results show that, similar to human
behavioral performance, even neural patterns and machine
learning may not be successful to identify voice impersonation
attacks.

TABLE IX. SPEAKER LEGITIMACY DETECTION: PRECISION, RECALL
AND F-MEASURE (HIGHLIGHTED BEST CLASSIFIER)
| Prec | Rec [ FM |
RandomTree 49.5 (9.5) 48.8 (10.9) | 48.9 (9.7)
Logistic 49.4 (11.2) | 50.0 (11.9) | 49.4 (10.9)
J48 48.8 (10.7) | 48.8 (12.1) | 48.6 (11.2)
NaiveBayes 46.7 (10.1) | 43.8 (11.2) | 44.8 (9.5)
MultilayerPerceptron | 50.0 (11.3) | 48.8 (11.1) | 49.0 (10.3)
LMT 483 (11.1) | 54.4 (12.4) | 50.8 (10.9)
SimpleLogistic 49.4 (10.3) | 59.1 (13.5) | 53.2 (10.1)
SMO 49.0 (12.6) | 47.2 (12.9) | 47.8 (12.0)
RandomForest 47.1 (9.5) 52.8 (11.4) | 49.6 (9.8)
VIII. DISCUSSION AND FUTURE WORK

In this section, we summarize and discuss the main findings
from our work, outline the strengths/limitations of our study
and point to future work. Table X provides a summary of our
overall results.

Summary and Insights: The participants in our study showed
increased activation in dorsolateral prefrontal cortex, frontopo-
lar cortex and orbitofrontal gyrus,the areas associated with
decision-making, working memory, memory recall and trust
while deciding on the legitimacy of the voices of speakers
compared to the rest trials. They also showed activation in
superior temporal gyrus, which is the region that processes
the auditory signals. Overall, these results show that the users
were certainly putting a considerable effort in making real vs.
fake decisions as reflected by their brain activity in regions
correlated with higher order cognitive processing. However,
our behavioral results suggests that users were not doing well
in identifying original, morphed and different speakers’ voices.
Perhaps the poor behavioral result was because the participants
were unaware of the fact that the voices could be morphed (a
real-world attack scenario). Another reason could be that the
quality of voice morphing technology is very good in capturing
features of the original speaker/victim.

We also analyzed the differences in neural activities when
participants were listening to original voice and morphed voice
of a speaker. However, we did not see any statistically signif-
icant differences in the activations in brain areas reported in
previous real-fake studies [34]. Although the lack of statistical
difference does not necessarily mean that the differences do not
exist, our study confirms that they may not be present always,
if at all present. Our task performance results also showed that
people were nearly as fallible to the morphed voice as they
were to the real voices. The results show that the human users
may be inherently incapable of distinguishing between real and



TABLE X. RESULTS SUMMARY: NEURAL FINGERPRINTS OF SPEAKER LEGITIMACY DETECTION, AND CORRESPONDING TASK PERFORMANCE AND
MACHINE LEARNING (ML) RESULTS.

Task Condition Activation Regions | Task ML Implications
Result Result
Voice Trial vs Rest Original vs. Rest | DPLFC; FPD; N/A N/A Regions associated with working
Trial STG; MTG; OFA memory, decision-making, trust,
Morphed vs. Rest | DPLFC/ FPA; STG; | N/A N/A familiarity, and voice processing
MTG are all activated during the
Different vs. Rest | DPLFC; FPA; STG; [ N/A N/A | experimental task.
MTG; OFA
Speaker Legitimacy Original vs. No difference 43% 53% Both users and their brains seem to
Detection Morphed fail at detecting voice morphing
attacks
Original vs. STG 55% N/A Brain differentiates original speaker
Different and different speakers voice

morphed voices. Consequently, they may need to rely on other
external mechanisms to help them perform this differentiation
(e.g., automated detection tools). Nevertheless, even current
voice biometric solutions have been shown vulnerable to voice
impersonation attacks [30].

In line to this, we built and tested an automated mechanism
to identify original and morphed voice extracting features from
neural data corresponding to each of the two types of voices.
We found that it could only predict the voice correctly with
the accuracy slightly better than random guessing. This shows
that both the explicit responses of the users and the implicit
activity of their brains are indicative that morphed voices are
nearly indistinguishable from the original voices. This neuro-
behavioral phenomenon serves to show that users would be
susceptible to voice imitation attacks based on off-the-shelf
voice morphing techniques. We believe this to be an important
finding given the already emergence of voice imitation attacks.
More advanced state-of-the-art voice modeling techniques than
the one we used in our study, such as those offered by Lyrebird
and Google WaveNet [29], [41], could make people even more
susceptible to voice imitation attacks.

This same finding also bears positive news in other do-
mains. The fact that “listeners” can not differentiate between
the original voice of a speaker from a morphed voice of the
same speaker, at both neural and behavioral level, seems to
suggest that current morphing technology may be ready to
serve those who have lost their voices.

In our study, the participants were not trained to look for
specific forms of fabrications in the fake voice samples. Such
an explicit training of users to detect fabrications could make
an impact on users’ ability to detect fabricated voices. Future
studies should be conducted to analyze the effect of such
training against users’ performance in identifying morphed
voices. This will be an interesting avenue for further research.

Study Strengths and Limitations: In line with any other
study involving human subjects, our study had certain lim-
itations. The study was conducted in a lab setting. So, the
performance of the users might have been affected since they
might not have been concerned about the security risks. Even
though we tried to emulate a real-world scenario of computer
usage in a lab setting and used a light-weight fNIRS probe
caps designed for the comfort level, performing the task with
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the headset on might have affected the performance of some
of the participants. In real-world voice impersonation attacks,
the participants are not explicitly told to identify the real and
fake voices of the speaker unlike our study. However, this
could actually be seen as a strength of our work. Our results
show that the participants were unable to detect these attacks
despite being asked explicitly, and hence the result in the
real-world attack may be even worse, where the users have
to make the decision implicitly. Also, the participants in our
study were mostly young, so the results of the study may not
represent the success rate of voice spoofing attacks against
older people or people with declination in hearing ability (the
attack success rates against such populations may actually
be higher in practice [16]). However, our sample size and
diversity is well-aligned with those of prior studies (e.g., [33],
[34]). Also, our participants belonged to the broader university
community, including students, employees, and others.

One limitation of our study pertains to the number of trials.
We asked the users to identify forty eight voice samples, each
presented for 16 seconds, in about thirty minutes of the study.
Although multiple long trials are a norm in neuroimaging
studies for desired statistical power [2], the users may not
have to face these many challenges in a short span of time in
real-life. Another limitation pertains to the fNIRS device we
used for the study. fNIRS captures the brain activities mostly
close to the cortex of the brain. So, it might have missed
the neural activities in the inner core of the brain. The users’
decision making process towards the end of 15 seconds might
also not be captured by fNIRS. It is an inherent limitation in
measuring the BOLD signal. Finally, the fact that the voices
of the speakers, Oprah and Freeman used in our study were
distinctive and familiar to the speakers, might have confounded
the neural activity in the frontal cortex. Future studies might
be needed to explore a more realistic task set-up. Nevertheless,
we believe that our work provides a sound first study of vocal
security from a neuro-physiological perspective with important
take-aways and insights that future studies can build upon.

IX. CONCLUDING REMARKS

In this paper, we explored voice security through the lens
of neuroscience and neuroimaging, running an fNIRS study
of human-centered speaker legitimacy detection. We dissected
the brain processes that control people’s responses to a real
speaker’s voice, a different speaker’s voice, and a morphed



voice. We showed that there are differences in neural activities
when users are listening to real vs. different speakers’ voices.
However, we did not notice significant differences when users
were subject to real vs. morphed voices, irrespective of their
behavioral response. We believe that this key insight from our
work helps justify the users’ susceptibility to morphing attacks
as also demonstrated by our task performance results as well
as prior studies.
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