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Abstract—Blockchain networks, especially cryptocurrencies,
rely heavily on proof-of-work (PoW) systems, often as a basis
to distribute rewards. These systems require solving specific
puzzles, where Application Specific Integrated Circuits (ASICs)
can be designed for performance or efficiency. Either way, ASICs
surpass CPUs and GPUs by orders of magnitude, and may harm
blockchain networks. Recently, Equihash is developed to resist
ASIC solving with heavy memory usage. Although commercial
ASIC solvers exist for its most popular parameter set, such
solvers do not work under better ones, and are considered
impossible under optimal parameters. In this paper, we inspect
the ASIC resistance of Equihash by constructing a parameter-
independent adversary solver design. We evaluate the product,
and project at least 10x efficiency advantage for resourceful
adversaries. We contribute to the security community in two
ways: (1) by revealing the limitation of Equihash and raising
awareness about its algorithmic factors, and (2) by demonstrating
that security inspection is practical and useful on PoW systems,
serving as a start point for future research and development.

I. INTRODUCTION

Proof-of-work (PoW) systems were initially designed to
combat spam and some denial of service (DoS) attacks. The
basic idea, where anyone requesting service has to solve a
computationally-hard puzzle before being verified and served,
was proposed as early as 1992 [8], and was later formalized
and named in 1999 by Jakobsson [14]. These systems pro-
viding quantized fairness are easy to depend on, and quickly
gained popularity since the adoption in Bitcoin [18].

Public blockchain applications typically utilize PoW sys-
tems in their consensus protocols, where users compete solving
PoW puzzles to create blocks (and get corresponding rewards).
For an honest user, more computing power (often referred to as
hash power by cryptocurrency miners) will bring more chance
to create blocks, therefore more rewards. In the same way,
adversaries can accumulate hash power to gain control on the
consensus, eventually launching attacks or even taking over
the system [18].

By design, massive hash power should come with significant
cost, dominated by the power consumption of solvers (often
called mining rigs). With commodity hardware like CPUs

and GPUs, the unit price of hash power stays roughly the
same, and the system is fair to everyone. However, dedicated
ASIC solvers are more energy-efficient, yielding much higher
profitability for their owners. Products like [23] work faster by
orders of magnitude but draw very little power. When these
products are available to some users but not to others, the
system is no longer fair, and is exposed to various risks.

Existing studies [1], [5], [19], [20] have issued the problem
and provided decent solutions [10] for cryptographic hashing,
but additional factors divert PoW systems from the track,
namely (1) PoW systems require stronger ASIC-resistance
than message hashing: a 2-3 times efficiency advantage can
considerably centralize and weaken blockchain systems, but
is too small to cause any problem elsewhere; and (2) PoW
systems can utilize additional puzzles that do not have hash-
like semantics.

Once open to the public, PoW schemas in blockchain
networks are hard to modify, and applying fixes becomes
especially difficult. Almost any change to the system would
require a successful hard fork, demanding support from most
its users and/or miners. Therefore any vulnerability within a
PoW schema has to be disclosed to the public before being
patched, which is the opposite to common security practices.
To this end, PoW schemas must be carefully inspected and
hardened beforehand.

Equihash [4] is one of the state-of-the-art PoW schemas
achieving considerable ASIC-resistance. It uses the memory-
hard approach [7], and when parameters are properly set, is
sufficient to eliminate single-chip ASIC solvers. However, we
have found a set of weaknesses, allowing efficient multi-chip
solvers to be built under all parameters. In this paper, we
analyze its software solving algorithm from an adversary’s
viewpoint, and construct a solver design to exploit the weak-
nesses. We also work around limitations to make the design
as practical as possible, but skipping fine-grained engineering
decisions not relevant to the subject.

In general, Equihash provides reasonable memory require-
ments on both capacity and bandwidth, but its memory usage
can be dissected into subroutines with different characteristics
and handled accordingly. These subroutines can be separately
optimized and then implemented onto a small chip, making
full use of its connected memory but consuming very little
power. Simulation results with a 28nm library show up to
90% reduction in computation power compared to latest GPUs
(under 12nm process), making it safe to project at least 10x
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efficiency advantage for resourceful adversaries.
As Equihash is already deployed in practical applications 1

2, we decide to present and evaluate our solver design without
actually building any miner. Going through the production
cycle might allow commercial products to harm the systems
before maintainers have time to understand the risks. These
applications are more or less moving (or have already moved)
to larger parameter sets, where existing ASIC solvers fail [15]
but our construction remains effective.

The direct goal of our study is to explore the interaction
between PoW schemas and efficient ASIC solver designs,
so future systems can achieve better fairness and thus better
protection. We also intend to raise the awareness that efficient
multi-chip ASIC solvers are possible for Equihash, and that
the assets protected by its deployments should be carefully
valued. However, this paper is not to criticize Equihash. In
fact, Equihash is one of the most ASIC-resistant PoW schemas
already put into production, and remains so even with our
projected ASIC efficiency advantage.

We list our methodology and contributions below:
• We propose a method to inspect PoW systems, by analyz-

ing the algorithm and constructing an adversary solver.
Introducing hardware design strategies to the process
reveals hidden factors.

• We apply the method on Equihash, especially targeting
parameter sets with large memory capacity requirements.
At the time of writing, there is no witness of similar
designs or implementations.

• We evaluate the produced solver design, estimating its
efficiency using simulation results of its core compo-
nents and power usage of commodity hardware. We
then compare it to the best results on CPUs and GPUs,
projecting a 10x ASIC advantage as a reference for
system deployments and further research.

• We list the factors encountered when constructing the
design and discuss their effect on ASIC-resistance.

We start this paper by briefing existing studies including the
theories of PoW, ASIC solvers, ASIC-resistant approaches,
and Equihash itself. In section III we propose our strategy
as an adversary. We apply it to Equihash in section IV
and construct a design, using multiple on-chip modules to
complete Equihash subroutines. In section V we evaluate
the performance and resource usage of our product, proving
its practicality and projecting an advantage of resourceful
adversaries. We conclude the paper with discussion on our
methodology and algorithmic factors affecting the design
construction.

II. BACKGROUND

In this section, we summarize the current status of PoW
systems, its major applications, some revelant facts and the
dynamics within. We hope to reach a sound basis, concluding
some research efforts and known facts, before proceeding with
our method and construction.

1Zcash, https://z.cash/
2Bitcoin Gold, https://bitcoingold.org/

A. PoW systems and blockchains

The principle of PoW systems is that users requesting
something need to demonstrate some computational efforts
in a (sometimes implicitly) specified interval of time. The
results can be quickly verified by server-side programs to fairly
distribute resources, based on the computational cost guaran-
teed by the PoW schema. Through quantitative control of this
cost, service providers can have fine-grained control over the
resource distribution, making PoW an effective approach to
preventing resource abuse.

Blockchain networks deploy PoW as a critical component,
but with some minor changes. In blockchain networks, results
are checked by all users instead of servers. We take Bitcoin
[18] as an example throughout this section, as it is currently
the most significant PoW-protected system both in headcount
and in computing resources.

PoW activities within the Bitcoin network can be summa-
rized into the following sequence:

• Miners (a majority of users) try to find a string nonce,
such that hash result Hash(block||nonce) is less than
a dynamic threshold, forming a PoW proof, where ||
represents string concatenation.

• A valid PoW proof allows a miner to generate a block,
contributing to Bitcoin’s functionality and earning a re-
ward (ie. newly generated Bitcoins).

• The network adjusts the threshold (referred to as diffi-
culty) to control global block generation rate, binding the
reward to the computing resources consumed in mining,
therefore backing Bitcoin’s value.

Naturally miners mine for profit, and seek energy efficiency
rather than performance. If presented with a slow but efficient
configuration and a performant but less efficient one, they
would prefer the former, and deploy more to compensate for
the performance loss. To this end, energy efficiency becomes
the dominant parameter for mining rigs, as it is directly
connected to overall profitability.

In the Bitcoin scenario, the PoW schema consists of massive
amounts of SHA256 calls. These simple and repetitive oper-
ations are not the intended workloads of CPUs, so dedicated
mining rigs soon take over with much higher efficiency. The
more specialized they are, the better they are at repeating the
hashing task, and the less energy they take to complete the
same PoW proof: GPUs overtake CPUs by reducing control
flow; Field Programmable Gate Arrays (FPGAs) overpower
GPUs by improving parallelism; and the mining business is
eventually dominated by ASICs, driving all its competitors un-
profitable. For example, decent software produces 24 Mhash/s
on CPUs using 100 Watts3, and around 150 Mhash/s on GPUs
at around 300 Watts4, while a typical ASIC mining rig can
perform 18 Thash/s but only drawing 1620 Watts [23].

With more users and powerful mining rigs, Bitcoin’s mining
difficulty eventually reached a point where it is virtually
impossible for individual miners to create blocks alone. Miners

3Pooler’s cpuminer on Intel Core i7-2600.
4Cgminer on Nvidia GTX580.
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join mining pools to gather hash power and split the awards
according to their shares. Mining pools have two major forms:
(1) physical pools funded economically, and (2) online pools
that process PoW puzzles into easier ones, to be solved by
individual miners. In either form, the pool is presented to the
network as a single user, and controls all the blocks it creates.

Here, a vulnerability arise within the network’s economy.
Users tend to switch to more profitable mining pools, which
can gradually accumulate hash power to launch attacks. These
attacks have already been stated in the original Bitcoin paper
[18], but their practicality has greatly increased due to the
massive efficiency advantage of ASIC solvers. In fact, a
Bitcoin mining pool literally reached 51% hash power of the
whole network [3], enough to alter the blockchain to its own
interest. Bitcoin eventually mitigated the risk by holding a
conference and having the top mining pools discuss a plan,
distributing hash power. Most other blockchain systems are
still vulnerable, but are not mature enough to have this option.

B. ASIC solvers and ASIC resistance

The blockchain communities have been debating about the
effects of efficient ASIC solvers and whether or not to resist
them. In this section we list major claims from both sides,
to show that ASIC resistance is a reasonable concern for
blockchain systems. Note that the list may not be complete
and some claims may be biased.

In all, ASIC solvers give users more hash power and
profitability at higher difficulties, eventually raising network
difficulties. Miners with commodity hardware (CPUs and
GPUs) tend to quit, and manufacturers optimize their products
for better efficiency.

ASIC mining rigs are highly profitable but costly to design
and produce, so they sell at incredibly high prices, and are
beyond the reach of most individual users from the very
beginning. To make matters worse, manufacturers often limit
their production and sales to maintain mining profitability.
Some models are even deployed directly and never sold at
all.

Those supporting ASIC solvers think high difficulties lead
to high attack costs, and can prevent botnets from impacting
blockchain applications. Those against ASIC solvers state
that these products are beyond the reach of many, making
blockchains more or less controlled by ASIC miners and solver
designers.

In this paper, we do not directly support either of the two
sides. For now, ASIC resistance is a reasonable security factor,
but its importance is yet to be studied. However, it is safe for
us to base our impact on the following facts:

• Efficient ASIC solvers can be used to carry out attacks,
and it is believed that some products are involved in past
attacks [17].

• Claiming to resist ASIC solvers but failing to do so (in
this case Equihash under (144, 5) and larger parameter
sets) is a vulnerability on its own.

C. Memory hardness and Equihash

Later PoW systems use memory-bound functions [1], [5],
[19], [20] to achieve ASIC resistance, by requiring large mem-
ory capacity and intense memory access. Because fast, on-
chip memory has limited capacity; and large, off-chip memory
is relatively slow, memory restricts the mass parallelism of
ASICs and limits their advantage [19].

Equihash is one of the state-of-the-art approaches in this
category, guarding multiple cryptocurrency networks including
Bitcoin Gold and Zcash, with a billion-dollar market. At the
time of writing, it is one of the two ASIC-resistant PoW
schemes 5 that, under any parameter set practically deployed,
has the ability to eliminate efficient single-chip ASIC solvers
[12].

There are ASIC solvers available, but they are all designed
for the popular (yet suboptimal) (n, k) = (200, 9) parameter
set. None of them claim or have been witnessed to work
on better parameters like (144, 5), and the most known one
has even been proved otherwise. Tromp physically inspected
the product [15], and did not find enough memory to handle
(144, 5), either (1) on a large enough solver core chip, or (2)
off-chip memory components.

Equihash uses a modified version of Wagner’s Generalized
Birthday Problem (GBP) [21] as its puzzle, and then binds
solvers to Wagner’s algorithm by asking for intermediate
results [4]. Alcock [2] detailed the difference between the
Equihash puzzle and Wagner’s GBP and analyzed its effect.

For convenience, we’ll refer to the Equihash puzzle as
Single List Generalized Birthday Problem (SLGBP) because
it has only one list as input.

Single List Generalized Birthday Problem: Alcock defined
the single list generalized birthday problem as follows [2]:
Given a list L of (pseudo-)random n-bit strings {xi}, find 2k

distinct indices i such that
⊕

i xi = 0, where
⊕

is the XOR
operator.

Equihash’s algorithm: Equihash’s algorithm can be seen
as a single-list variation of Wagner’s algorithm, where k
rounds of join operations are performed, each taking the
list and produces another, canceling out the next n

k+1 bits
in every element in every output element. The algorithm in
figure 1 shows the exact algorithm steps before applying any
optimizations. The join operation is the core subroutine of
Equihash. It is typically implemented by first sorting the items
and then going through the result, generating further index sets
and calculating XOR values on the fly 6.

Equihash sets the initial list size at N = 21+
n

k+1 , to maintain
the expectation of list size |L(i)| before the final round.

In the original Equihash paper [4], the authors implemented
and tested (n, k) = (144, 5) as their proof of concept.
However, this parameter set is not widely used, due to the
longer time it takes to solve a single puzzle. The most
popular Equihash adopter, Zcash, uses (200, 9) instead [13].

5The other one is EtHash.
6Some software solvers accomplish this step with hashing, but they are

somewhat equivalent to bucket sort.
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Input : list L of N n-bit strings (N � 2n)
begin

Enumerate L(0) as {(xi, {i})|i = 1, 2, ..., N}
r ← 1
while r < k do

join Sort L(r−1), finding all unordered pairs
((xi, Si), (xj , Sj)) such that xi collides
with xj on the first rn

k+1 bits, and that
Si ∩ Sj = ∅

L(r) ← {(xi⊕xj , Si∪Sj)|((xi, Si), (xj , Sj))
is a found pair }

r ← r + 1

join Sort L(k−1), finding all unordered pairs
((xi, Si), (xj , Sj)) such that xi = xj , and that
Si ∩ Sj = ∅
R← {(Si ∪ Sj)|((xi, Si), (xj , Sj)) is a found
pair }

Output: list R of sets of distinct indices

Fig. 1: Equihash algorithm for SLGBP

Throughout this paper, we will be presenting our solver and
comparing it to software solvers under both parameter sets.
However, mining software products are more optimized and
statistics have significantly better coverage under (200, 9), so
the results are more convincing.

Under (200, 9), an Equihash puzzle takes 2M binary strings
of 200 bits as input. In each of the first 8 rounds, an 20-bit
substring is taken from each string to find collisions. These
bits are discarded, and the remaining strings of each colliding
pair are XORed to enter the next round. In the final round, all
40 bits are taken, and 1.879 colliding pairs (or solutions) can
be expected [2], [6].

Following memory-hardness theories [1], [7]–[9], Equihash
is designed to force intense memory usage, both about capacity
and about bandwidth. Even when analyzed with the method
proposed later in [19], we find that it achieved moderate
bandwidth hardness. These two aspects greatly impact the
design and implementation of ASIC solvers.

However, Equihash is not bullet-proof, with various factors
limiting its ASIC-resistance:

• Being more of a real-life algorithm (ie. containing real-
life subroutines like sorting) rather than cryptographic
routine, it is subject to optimizations like the index pointer
technique we discuss below.

• CPUs and GPUs are general purpose devices, and under
PoW workload, have many components drawing power
but not contributing to puzzle solving. At the very least,
ASIC solvers can remove them for a small advantage.

• As mentioned in section II-A, the mining business is
extremely volatile. Even minor advantages can enable
attacks, which already happened to Bitcoin Gold, an
Equihash adopter [17].

Index pointer: Index pointer is a technique observed in
software solvers like [22] and analyzed in [2].

In the original algorithm, index sets S are carried within the
join step, and their size expand exponentially with each round.
With this technique applied, index sets are stored incrementally
as a tree, greatly reducing the memory footprint of Equihash.
We notice in section IV-B that this technique can greatly
reduce logic and memory access width as well, increasing the
efficiency advantage of adversaries.

To summarize this section, blockchain networks are vul-
nerable to monopoly formation and attacks, as adversaries
can reach several times efficiency in PoW solving using
ASIC solvers against software. It is hard to fix for deployed
blockchain networks, therefore PoW schemas must be care-
fully chosen, and thoroughly inspected for limitations.

III. ADVERSARY STRATEGY

Empirically, computing devices tend to consume less power
when optimized for area, and will likely be more energy-
efficient, though sometimes sacrificing performance. The cryp-
tocurrency mining industry has long been adopting this idea,
and has created solver products with incredible efficiency.
Optimizing for area brings other benefits as well, like lowered
per-chip investment and increased manageability, but in this
paper, we focus solely on the most decisive criterion, energy
efficiency, as discussed in section II-A.

It is widely agreed that two major methods exist to reduce
chip area: (1) apply advanced production technologies to
shrink all components, and (2) complete the design using less
logic. The first approach does not change the game for anyone,
because CPUs and GPUs are manufactured in the same way as
ASICs, and always share production technologies. Adversaries
are therefore forced to take the latter track, to refine their
designs and reduce logic usage.

Recall in section II-C that ASIC solvers (including propos-
als) and deployments with parameters disabling them [12],
[15] both exist for Equihash. An optimal parameter set will
eventually be found, and adversaries can not rely on memory-
saving tweaks forever. Implementing the whole solver within
one chip will sooner or later become impossible, as required
in [19]. In this case, an ideal strategy for adversaries is to go
through the following design methodology:

1) Analyze the solving algorithm (in this case Wagner’s
algorithm for SLGBP) and decide on the data to offload
from the core solver chip (or solver core for short).

2) Implement the solver core, optimizing for area.
3) Based on data access characteristics (frequency, word

length, burst, cost of latency, etc), pick an adequate
memory configuration, including type, amount, topology
and device parameters like timing.

4) Pick a clock speed for the core, precisely using up
memory bandwidth.

5) Tweak non-bottleneck components, trading performance
for lower power.

Given a set of PoW puzzles with concrete parameters, this
process should always produce a resonable solver. Security
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inspection can then be performed by evaluating its products
and projecting adversary advantage.

IV. SOLVER CONSTRUCTION

In this section we apply the above methodology on Equihash
and construct an efficient solver design. As mentioned in
section II-C, existing (single-chip) ASIC solvers cannot output
valid solutions for parameter sets requiring more memory. Our
method uses off-chip memory so the same limitation does not
hold. As Equihash adopters are discussing parameter changes
(if not already done so like [12]), our construction represents
a new type of risk and has to be treated with care.

We perform memory usage analysis and assign an ASIC so-
lution to each subroutine accordingly. We (as adversaries) en-
countered limitations and resolved some by adjusting Wagner’s
algorithm. These interactions are good indicators of ASIC-
resistance and can be observed similarly in other schemas.

A. Memory usage analysis

To construct the top-level design of an adversary solver,
we have to understand how the algorithm accesses data. As
Equihash does not include significant lookahead opportunities,
we dig directly into the join step in figure 1, inspecting
its subroutines including sorting/hashing, pair generation, and
XOR computation.

Recall that Wagner’s algorithm runs k rounds in each
attempt to solve the SLGBP, each round taking input data from
the previous, and the last round using different parameters. The
amount of pairs produced is always random, so we perform
our analysis using its mathematical expectations for now.

First of all, the random input L has to be saved. It can not be
instantly consumed as the sorting key is only n

k+1 bits for the
first round. We can save a portion of capacity and bandwidth
usage if the key is fed directly to sorting components. A
even better option is to have L ready in memory ahead of
time, arranging the subroutine in a timeslice with less memory
access. We apply this method in section IV-E.

Next, the solver must either sort or hash its input. If done
with sorting, optimally only one pass of sequential read is
needed. The hashing method need to write the hash table
somewhere for use later, introducing two extra memory access
passes, write and read. Software solvers use hashing [22]
because optimal sorting is not available on CPUs and GPUs.
As we are constructing an ASIC design, this is not a problem
for us.

Table I lists ideal memory capacity and bandwidth usage
for the sorting step. In section IV-B we’ll discuss how it is
not achievable on popular parameter sets and how we work
around it. The tweaks weakens its memory advantage, but we
still use it for demonstration thanks to its better flexibility.

When fed with sorted input, the pair generation step itself
does not access memory at all. However, due to the index
pointer technique, produced index pairs in normal rounds
have to be written back to memory, causing memory usage
as in table I. The technique has both been proved [2] and
field-tested [22] to lower overall memory requirements, so

the additional usage here is totally acceptable. Note that the
utilized storage builds up incrementally with algorithm rounds,
the exact opposite of L, which can have a column discarded
in every round.

The XOR calculation step can always get indices from its
previous step, but the operands are still in memory and thus
need to be fetched. Its results can be partially consumed by
the next sort/hash step, with the remaining written back to
memory for further XOR rounds. As the input is random, no
satisfying cache policy exist for this step, and the subroutine
always use memory as indicated in table I.

The final step is to build the index set, both to eliminate
groups with duplicate indices and to fulfill the algorithm bound
requirements of Equihash. Practically this subroutine is to
traverse index pointer trees, using the final round’s output as
root. We decide to defer this till the end of the algorithm, so
index pointer pairs generated in non-final round don’t create
complex interactions, and can propagate through the pipeline
at a line speed of one item or pair per cycle.

Under popular parameters like (200, 9), checking for index
set intersection after every round does not significantly reduce
list length [2] and is safe to skip. These results can ease the
final check, but there is very little to gain because the Equihash
schema doesn’t produce a lot of final results [4]. This step
include very little memory access, and is omitted in the table.

Under some other parameters like (192, 11), the expected
number of solutions can drop to 10−7 scale. Frequent checking
would cause lists to decay quickly, and would often deplete
them in early rounds. In this case, it may be beneficial to
always perform checks, freeing up the pipeline to process the
next puzzle. We ignore these cases here because they exhibit
totally different characteristics not discussed in its original
paper, thus will unlikely deploy practically without further
research.

B. Sorting

An optimal sorting method is actually possible with ded-
icated hardware, but its linear logic complexity makes it
impractical for popular parameter sets. In this section we
introduce our sorting peripheral and add merge step, trading
memory for logic.

1) Linear sort: The linear sorting technique we use here
is similar to the one used by Grozea [11] when CPU, GPU,
and FPGA are compared for sorting performance. We slightly
tweak its RTL design into figure 2 7. Table II describes the
actual behavior of a smartcell, and can be directly used in the
Look-Up Table (LUT) in figure 2.

A ‘smartcell’ here consists of two sets of flip-flops (FFs)
and one digital comparator. One set of FFs drives the output
network while the other stores a value internally. Every cycle,
the input value is compared to the stored one. The greater value
is sent to output and the lesser one is saved locally. Extra logic
is added to handle the head and tail of any sequence passing

7The diagram is simplified for better understanding. Clock networks and
irrelevant control networks are omitted, and combinational logic is represented
with corresponding semantic blocks.
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TABLE I: Subroutine memory usage of Wagner’s algorithm on SLGBP

subroutine round parameterized (200, 9) (144, 5) (192, 11)
capacity bandwidth capacity bandwidth capacity bandwidth capacity bandwidth

storage of L input n ∗ 2
1+ n

k+1 b n b/tick 400 Mib 200 b/tick 4608 Mib 144b/tick 24 Mib 192 b/tick
storage of L normal n ∗ 2

1+ n
k+1 b 0 400 Mib 0 4608 Mib 0 24 Mib 0

optimal sort normal 0 n
k+1

b/tick 0 20 b/tick 0 24 b/tick 0 16 b/tick

optimal sort last 0 2n
k+1

b/tick 0 40 b/tick 0 48 b/tick 0 32 b/tick

pair generation normal (n+k+1)(k−1)
k+1

∗ 2
2+ n

k+1 b 2n+2
k+1

b/tick 672 Mib 42 b/tick 6400 Mib 50 b/tick 43 Mib 34 b/tick

XOR (round i) normal n ∗ 2
1+ n

k+1 b 3n(k+1−i)
k+1

b/tick 400 Mib 6 540 b/tick 4608 Mib 6 480 b/tick 24 Mib 6 528 b/tick

through, because comparing binary values to nothing does not
make sense in our scenario. We add a bit on every set of FFs,
representing whether valid data is stored. When only one value
is present on a smartcell, it is saved if not, or sent to output
if already saved. The other set of FFs are set to invalid.

Fig. 2: Simplified RTL diagram of a smartcell

TABLE II: Behavioral truth table of a smartcell

case behavior
input internal internal output

greater lesser keep set to input
lesser greater set to input set to internal
valid invalid set to input set to invalid

invalid valid set to invalid set to internal

Chaining Nc smartcells in series, we can accomplish the
sorting task with linear time at the cost of linear logic. During
the entire sort process, only one sequential pass of reading is
performed on the original data. This reduces many memory
accesses, thus significantly saving memory bandwidth.

Wagner’s algorithm requires sorting with payload, adding
extra bits to the FFs but not the comparators. In the original
Equihash paper, a payload datum is an index set that doubles
in length each round. With the index pointer technique applied,
we only need to carry a single index pointer. This pointer can
come from a prepending counter and does not need to be read.

This design is simple to implement at RTL level (eg. in
Verilog). It works perfectly for short enough sequences, but
its linear logic is too much for any reasonable parameter
set deployed in production. Under the popular parameter set
(n, k) = (200, 9), N = 221. If all of the 2M items are sorted
using smart cells (Nc = N ), the module would need too much
power 8 and area to be practical. (144, 5) brings even bigger
challenge for adversaries, as 32M items need to be sorted in
every pass.

8More than 1 kW at 1 GHz, according to section V-B2.

2) Merge sort: Our linear sort peripheral has linear logic
complexity, so the merging method in [11] isn’t helpful,
because it cannot reduce logic. To actually reduce the area and
energy cost, the only way is to reduce smartcell instances. This
forces us into building exactly one linear sort peripheral that
can not handle long sequences, and we therefore have to dump
its results into off-chip memory. The merge sort peripheral will
not have pipelined input, and have to include a fetcher.

For every x-way merge sort, an extra full pass of sequen-
tial write and random read (including both sorting key and
payload) is introduced, but reducing the number of smartcell
instances to 1/x, benefitting wider merge sort peripherals.
However, off-chip memory access has significant latencies and
the random access here need to include prefetch queues. For
this to work, each merging way need a private queue, bring-
ing up the cost of wide merging. Under certain parameters,
multiple stages of moderately-wide merge sort might provide
better overall efficiency. Unlike linear sort, the merge sort here
works on processed data, so index pointers need to be read
from memory, adding datum width to prefetch queues.

The depth of the prefetch buffers is also an important
factor to consider. It has to cover the off-chip memory latency
measured in clock cycles, and is thus influenced by both of
them. To produce more practical (or pessimistic) efficiency
projection and reach a sound conclusion, we set a greater depth
(thus higher clock frequency) than needed. An actual adversary
can correct these values in the last step of our methodology
and gain further energy efficiency.

C. Pair generation

Generating index pointer pairs is a trivial task for either an
automaton or a micro controller unit (MCU), as its only tasks
are to store the incoming sorting payloads and enumerate pairs
out of every group sharing a sorting key. Keeping it up to line
speed (one pair per cycle) is also simple but proving so is not.

1) Tail cutting: As stated in the original Equihash paper, the
expectation of input list length for each round is always N , so
in good cases 9 the length could go well beyond N , demanding
extra bits everywhere within the solver and affecting overall
throughput. Devadas [6] gave the precise formula for SLGBP’s
expected number of solutions in 2017, and showed that this
number varies greatly depending on parameters.

9Longer lists, which tend to produce more solutions, therefore more profit.
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TABLE III: Measured effect of tail cutting

tail length (200, 9) (144, 5)
solutions loss solutions loss

0 1.53 17.5% 1.80 10.0%
1024 1.64 12.5% 2.00 0
2048 1.66 11.5% 2.00 0
4096 1.66 11.5% 2.00 0

Under (200, 9), 1.879 final solutions are expected. Solutions
do not present great values and lengths of intermediate lists
|L(r)| do not decay significantly. Under (144, 5), fewer rounds
are run. Lengths of |L(r)| are less influenced by the index set
intersection problem [2], and the expectation of solution counts
is very close to 2. We therefore choose to cut the tail at a point
and discard further index pointers.

We ran software simulation on different tail lengths (see
table III), and found it reasonable to cut the tail at zero length.
The 17.5% loss under (200, 9) may seem a lot, but is totally
profitable considering its efficiency gain.

As mentioned in section IV-A, solutions are extremely
scarse under some parameter sets, giving these solutions
significant economic values in blockchain networks. In this
scenerio, good cases in intermediate steps should be carefully
preserved, requiring different techniques. The tail-cutting sub-
routine could significantly hurt profitability here and may not
be a good idea. Instead, index checking should be performed
to shorten the lists in every round. These parameter sets have
not been practically deployed, so we can safely defer the
evaluation of corresponding designs for now.

D. Postprocessing

The xor computation step takes very little logic and is
easy to catch up with other components’ speed, given that its
memory access can be similarly buffered as in section IV-B2.
Even though the design is not trivial and can affect overall
efficiency, it is not a serious challenge for ASIC designers.
Since we are inspecting Equihash rather than building an
actual solver product, knowing its ability to be practically and
profitably done is sufficient for our research.

The same holds for the index set construction step at the
very end. This subroutine does not require high throughput
and can be done with relatively slow MCUs.

E. Pipelining

If the above components run sequentially like software,
the solver will spend most of its time in non-bottleneck
subroutines, wasting memory bandwidth and power. There are
two major solutions: (1) cut the power from idle components,
and (2) use a pipelined design to improve performance. They
should yield similar efficiency, but the pipeline method has
higher profitability (higher per-chip performance), and is more
likely to be accepted by adversaries. In this section we apply
pipelining to reduce idling within the whole design.

The most applicable subroutine is linear sorting. For every
empty cell with valid input, its output becomes valid strictly

after 2 clock cycles, so a sorting peripheral with Nc cells start
to produce output at precisely 2Nc cycles after it is presented
with the first input item. It continues to emit exactly one new
item every tick until the sequence is depleted. Such behavior
can then be modeled and optimized as a 2Nc-stage pipeline.
To prevent two sequences from mixing, an invalid value is
inserted as a separator, setting its throughput to one sequence
per Nc + 1 cycles.

The merge sort module itself has no pipeline capability
across input sequences. It ejects all items before starting to
process a new sequence. Therefore, no merging unit has valid
input when the end-of-sequence marker is emitted. Given that
prefetching can start before a queue is depleted and that the
marker does not repeat in output, the prefetcher needs a cycle
for each queue to either fetch or insert markers. All merging
units also need an extra tick to propagate its result, except
the last stage which delivers output directly. These operations
also consume items from prefetch queues, triggering memory
reads, so they cannot go parallel.

A Wm-way merge sort module implemented with Nm

merging units can process a sequence of length N every
N +Nm +Wm cycles including one used for the marker.

As we perform pair generation, XOR computation and
intersection check using simple logic on microcontrollers,
we should see line-speed performance as long as connected
memory meets bandwidth requirements. The overall behavior
of pipelined solvers can be characterized space-time diagrams,
as shown in figure 3. Note that the pipeline characteristics of
the linear sort stage changes with merge width, so subgraph
(b) is not to scale.

V. SOLVER EVALUATION

As discussed in previous sections, all underlying peripheral
blocks correspond to algorithm-layer semantics and the final
solver products might vary in design. In this section, we
choose an acceptable arrangement with minimal logic footprint
and analyze its overall efficiency. We focus on comparison
of our overall efficiency (in solutions/J) to software solvers,
because only comparing performance (in solutions/s) or power
without mentioning each other is meaningless in the scenario,
as mentioned in section II.

We use the most popular set of parameters, (200, 9) so that
our results can be directly compared with CPU/GPU solvers.
In fact this is the only parameter set deployed widely enough
to have highly-optimized software solvers and good statistical
coverage available. Nevertheless, we still present and evaluate
a valid arrangement for (144, 5), as a baseline for future
research and deployments.

Under (200, 9), we cut tails at offset 0 and merge sequences
twice with 8*4-way merge sort modules, leaving our insertion-
sort module with 2048 smartcells. Our example solver com-
pletes a single round for every puzzle, so every puzzle should
go through the solver k times before producing solutions. We
demonstrate the modified algorithm in figure 4 and its data
flow in figure 5.
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(a) without merging

(b) with one merge stage (not to scale)

Fig. 3: Space-time diagram of pipelined Equihash solvers

Under (144, 5), list L contains significantly more items.
As smartcells and prefetch queues are both power-hungry,
increasing their numbers is not worthwhile. Adversaries can
tackle this by adding a third 8*4-way merge stage and a third
buffer block (limiting the insertion-sort module to 1024 cells
at the same time).

A. Memory usage

Recall in section III that our design uses off-chip memories
so it can handle all Equihash parameters. In table IV we list all
off-chip memory usage10 of our example design. We also use
external memory as buffers before every merge sort module,
writing one sorting item (both key and payload) and reading
one out every cycle. These buffers need to cover two batches
in the worst case.

TABLE IV: Off-chip memory usage

parameter usage capacity peak read peak write

(200, 9)
L 1600 Mib 400 b/tick 180 b/tick
P 2016 Mib 21 b/tick 42 b/tick

Buffer (each) 248 Mib 62 b/tick 62 b/tick

(144, 5)
L 23040 Mib 288 b/tick 120 b/tick
P 25600 Mib 25 b/tick 50 b/tick

Buffer (each) 4736 Mib 74 b/tick 74 b/tick

The memory utilization in table IV is far from uniform.
The capacity and bandwidth requirements vary between us-
ages, allowing manufacturers to pick suitable configurations

10Listed capacity are all calculated with static allocation. No padding is
taken into account.

Input : list L of N n-bit strings (N � 2n)
begin

Enumerate L(0) as {xi|i = 1, 2, ..., N}
r ← 1
while r < k do

Enumerate X(r) with the first n
k+1 bits of

items in L(r−1), adding indices
Enumerate Y (r) with the unused bits of

items in L(r−1)

sort Sort X(r) into multiple sequences,
preserving indices

merge Merge sorted sequences into one, preserving
indices

gen Find no more than N unordered pairs (i, j)
such that xi = xj

P (r) ← {(i, j)|(i, j) is a found pair}
xor L(r) ← {(yi ⊕ yj)|(i, j) is a found pair }

r ← r + 1

Enumerate X(k) with all bits of items in
L(k−1), adding indices

sort Sort X(k) into multiple sequences, preserving
indices

merge Merge sorted sequences into one, preserving
indices

gen Find all unordered pairs (i, j) such that xi = xj

P (k) ← {(i, j)|(i, j) is a found pair}
check Reconstruct the list R of index sets using lists

P (r) of index pointer pairs, where
r = k, k − 1, ..., 1, removing any set with less
than 2k distinct indices

Output: list R of sets of distinct indices

Fig. 4: ASIC-assisted Equihash algorithm for good-parameter
SLGBP

to maximize efficiency. It is reasonable to use high-speed
memory for L and lower-speed memory for P (to save energy),
and possibly on-chip memory for buffers under (200, 9).
These options increase ASIC advantage and make our final
projection pessimistic for adversaries (or optimistic for the
security inspection).

Consider our pipelining configuration in section IV-E, we
work with 4 puzzles at the same time in our (200, 9) con-
figuration. The memory capacity requirement is around 3x
that of a single puzzle, except for L, where an extra list is
used to store the results from xor step. The solver issues 3
reads (two by xor and one by sort) and one write (by either
xor or input) to L, totaling 560 bits in the worst case. New
puzzles can be written to L simultaneously with the gen step
of the final round, when no more xor step is performed, thus
should not add to bandwidth requirements. Assuming we only
use memory statically (no dynamic allocations), we would
be using 4112 Mib excluding overheads caused by padding.
Our bandwidth requirement for L would be 290 Gb/s at 500
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Fig. 5: Internal dataflow of an Equihash solver with two merge
steps

MHz and 197 Gb/s at 333 MHz, achievable with commercially
available DDR4 modules configured in multiple channels.

Our (144, 5) configuration uses more memory for two
reasons: (1) longer L and P , and (2) an extra puzzle is needed
to fill the pipeline. The acess patterns stay the same, but
bandwidth requirements are actually lowered because items
in L are significantly shorter.

B. Energy efficiency

1) Performance: Recall that the linear sorting peripheral
processes a full-length sequence every Nc + 1 cycles, and
speeds up when sequences are shorter than expected. This
becomes the bottleneck within the solver, whose throughput
performance is measured accordingly. In both of our example
arrangements, the first merging stages are the bottlenecks,
where all end-of-sequence markers are present.

Under (200, 9), one batch is processed every 2.10M cycles.
Every equihash puzzle has to be solved k times, so at 500
MHz our example should solve 26.5 puzzles, yielding 40.6
solutions per second. Under (144, 5), one batch is processed
every 33.6M cycles. At the same frequency, our design should
solve 5.95 puzzles and yield 10.7 solutions per second.

2) Power consumption: Our design uses large amounts of
FFs, binary comparators, and some on-chip memory, so we
decide to estimate our overall power based on the count of
these elements. To obtain these base data, we ran Synopsis
Design Compiler on our insertion sort modules and collected
power reports under SMIC 28nm HKMG with frequency set

to 1 GHz, listed in table V. Although these power reports do
not strictly resemble actual chips, they serve as references for
IC frontend designers and should suffice in our scenario.

TABLE V: Insertion sort power usage at 1GHz

data width index width Nc register combinational
20b 21b 64 19.1011 mW 1.9151 mW
20b 21b 128 38.1958 mW 3.5137 mW
20b 21b 192 56.9064 mW 6.9055 mW
20b 21b 256 75.6878 mW 9.8749 mW
20b 21b 384 112.2805 mW 10.0351 mW
40b 21b 64 28.6188 mW 2.6302 mW
40b 21b 128 56.8771 mW 4.6216 mW
40b 21b 256 113.4787 mW 8.6371 mW

In table VI we estimate the power usage of our major
modules running at 1 GHz. We assume 70 ns and 5 ns latencies
for off-chip and on-chip memory, therefore the queue before
each merge stage contains 70 items, with 5 items stored
directly in FFs.

When actually scaling the clock speed, most modules’
power consumption is proportional to frequency, and can be
estimated accordingly. If intended for lower frequencies (like
below), the prefetch queues can be shorter, thus saving extra
energy, and is favorable to adversaries. However, we ignore
this optimization, because its effects are minor compared to
the overall efficiency advantage.

TABLE VI: Component power estimations at 1GHz

component (200, 9) (144, 5)
optimistic pessimistic optimistic pessimistic

smartcell 467 µW 489 µW 562 µW 587 µW
4-way merge 406 µW 471 µW 488 µW 565 µW
8-way merge 1.10 mW 1.38 mW 1.32 mW 1.65 mW
queue (70, 5) 8.26 mW 8.51 mW 9.83 mW 10.1 mW

prefetcher 2.44 mW 2.59 mW 2.93 mW 3.11 mW
sort 956 mW 1.00 W 575 mW 601 mW

merge 272 mW 281 mW 323 mW 333 mW
total 1.50 W 1.56 W 1.54 W 1.93 W

A smartcell saves two sets of items with FFs, together with
a binary comparator, and a full insertion-sort module includes
Nc of them. An M -to-1 merge unit stores only one item
as output and has C(M, 2) comparators. If read latencies of
external and on-chip memory are expressed in ticks as Le and
Lo, every prefetch queue is implemented with Le − Lo items
stored in on-chip memory and Lo items in FFs, with its power
close to 0.5(Le + Lo) sets of FFs. A prefetcher has an extra
(narrow) queue to indicate ownership for fetched data, a set of
encoder and decoder, as well as an address counter for each
data queue.

Under (200, 9) and at 500 MHz, our solver should produce
40.6 solutions per second and use 0.75-0.78 Watts of power
excluding microcontrollers, or 52-54 solutions per Joule. Un-
der (144, 5), we produce 5.36 solutions at the same frequency
and using similar power, yielding 5.6-7.0 solutions per Joule.
Compared to the best software solvers available 11, our method

11Proprietary softwares running on GPUs. Around 4 solutions per Joule
under (200, 9) and around 0.4 solutions per Joule under (144, 5).
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has already achieved more than ten times core efficiency. The
advantage would increase even further if tweaks mentioned in
section III and IV-B2 are applied.

Traditionally PoW solvers spend most their power in com-
putation. In our design, computational workloads are reduced
so much, the core power usage goes below previously-known
overheads including memory, interconnects and microcon-
trollers. Actual designers might as well want to use higher-
bandwidth memory solutions, bringing up the solver’s fre-
quency to mitigate the overhead. Although some inevitable
deviation is introduced to our results, our goal is not defeated.
multi-chip ASIC solvers are still far more efficient than CPUs
and GPUs, and Equihash’s ASIC resistance is not strong
enough.

Ren [19] uses an estimated 0.3 nJ/B memory access cost
for ASICs in the methodology, which would be an overhead
around 10 W at 500 MHz if applied directly. We project a
much lower consumption because:

• Malladi [16] states that modern memory systems has
lower cost per access at very high utilization. It is very
likely for ASIC Miner manufacturers to use up all the
bandwidth to optimize performance by adjusting the
operating frequency of the solver core.

• These results are to some extent outdated. Later produc-
tion technologies and memory interfaces (like DDR4)
have lower voltage and are more optimized, thus have
lower power consumption.

• The value might have included components other than
memory itself, like cache and memory controllers. Our
solver does not have any 12 and demand very little from
memory controllers, thus might mitigate some cost.

Even if we take the worst-case memory power usage into
consideration, and utilize the most pessimistic values, adver-
saries still have higher efficiency than the latest GPUs. If
equally up-to-date production technologies are available, the
efficiency will further increase because of smaller components
and lower voltages. A projection of 10x advantage is therefore
reasonable for resourceful adversaries that apply mentioned
optimizations. ASIC solver products, if ever produced, will
therefore be profitable, making blockchain applications vul-
nerable to unforeseen attacks and monopoly formation.

VI. INSIGHTS

In this section we discuss our methodology of inspecting
PoW schemas and constructing the solver design. We also
list factors that have influence on the process, both those
enabling our design and those causing difficulties. These
factors serve as useful start points for future ASIC-resistance
studies, especially in PoW systems.

A. Methodology

Our demonstration shows a practical and useful way to serve
as a baseline for future refinements.

12Power consumed by buffers already included.

Exploiting as an adversary has long been used by the
security community to inspect and ultimately defend systems
and applications. It is uncommon for blockchain networks
to go through these steps and prove their unlikelihood of
monopoly formation. We suspect two major explanations: (1)
being unfamiliar to IC-related research effort involved in these
systems, and (2) lack of responsible disclosure method. The
former problem can be handled by identifying subroutines
that can be efficiently implemented on hardware already
(possibly via finding products with similar functionalities). It
frees researchers from fine-grained details. The latter is more
complex due to blockchain’s natural resistance towards PoW
rule patching.

As mentioned in section II-A, to apply any change onto
the PoW schema (and therefore the consensus policy), one
would have to launch a hard fork. This requires the fork to
gain endorsement from a majority of the network, forcing
exploits to be publicly disclosed beforehand. Even though
ASIC solvers take months to produce, it may still not be
enough to notify enough participants and fork successfully.
Fortunately, the weakness we are pointing out is not so
significant to need immediate patching. It is sufficient to lower
attack profitability and buy time for future actions, just from
raising awareness and having users value related assets with
corresponding knowledge

B. ASIC-friendly factors

Clear subroutine boundary: The memory requirements of
Equihash are provided by multiple subroutines with clear
boundaries, exposing larger attack surface compared to other
deployed PoW schemas. Multiple subroutines are more likely
to be exploited separately, weakening the overall ASIC-
resistance.

Real-life subroutines: The sort/hash step in Equihash is
more of a real-life algorithm than a cryptographic routine, and
is easily vulnerable to all kinds of tweaks and optimizations.

Sequential memory access: Both the sort/hash step and
the xor step contains significant sequential memory access,
creating a memcpy-like workload, increasing ASIC advantage
and benefiting special memory configurations not available for
CPU/GPUs.

C. ASIC-resistant factors

Algorithm bounding: Equihash implements the idea of
algorithm bounding, but only with moderate strength. This
prohibits adversaries from using alternate algorithms but not
from tweaks like choosing a sort/hash method and cutting tails.

Logic complexity: The idea of logic complexity has long
existed for hardware designers, especially when designing
acceleration peripherals. The massive amount of logic stops
adversaries from applying linear sorting, and could possibly
provide alternate ASIC-resistance.

Dynamic resource usage: We mentioned in section II-C
and section IV-A that L shrinks and P grows after each
round. Solvers have to either (1) provide enough resources (in
this case memory) for static allocation, or (2) add logic for
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dynamic allocation. Since software can accomplish this very
well, large-scale, complex and unpredictable resource usage
might limit ASIC advantage.

VII. CONCLUSION

In this paper, we propose a method to inspect the ASIC-
resistance of PoW schemas and apply it on Equihash. By
constructing a practical and efficient ASIC solver, we discover
its limitation in the form of adversary advantage.

We have demonstrated the following contributions:
• It is practical and useful to carry out inspections on PoW

systems, by constructing solver designs from adversaries’
point of view.

• Equihash resists single-chip ASIC solvers, but is not
bullet-proof. Efficient ASIC solvers using off-chip mem-
ory are still possible. Solvers following our design work
under all parameters, with energy efficiency advantage
around 10x.

• We list encountered algorithmic factors and comment on
their influence adversary strategy, innovating future PoW
schemas.

Our future plan is to refine our methodology to reveal other
weaknesses within PoW schemas. We hope the construction
procedure can inspire future ASIC-resistance studies, eventu-
ally securing related applications. At the same time, we would
like to try out new PoW ideas, hopefully to conquer known
problems and achieve better fairness.
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