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Abstract—Embedded computing devices are used on a large
scale in the emerging internet of things (IoT). However, their
wide deployment raises the incentive for attackers to target these
devices, as demonstrated by several recent attacks. As IoT devices
are built for long service life, means are required to protect sen-
sitive code in the presence of potential vulnerabilities, which might
be discovered long after deployment. Tagged memory has been
proposed as a mechanism to enforce various fine-grained security
policies at runtime. However, none of the existing tagged memory
schemes provides efficient and flexible compartmentalization in
terms of isolated execution environments.

We present TIMBER-V, a new tagged memory architecture
featuring flexible and efficient isolation of code and data on small
embedded systems. We overcome several limitations of previous
schemes. We augment tag isolation with a memory protection
unit to isolate individual processes, while maintaining low mem-
ory overhead. TIMBER-V significantly reduces the problem of
memory fragmentation, and improves dynamic reuse of untrusted
memory across security boundaries. TIMBER-V enables novel
sharing of execution stacks across different security domains,
in addition to interleaved heaps. TIMBER-V is compatible to
existing code, supports real-time constraints and is open source.
We show the efficiency of TIMBER-V by evaluating our proof-
of-concept implementation on the RISC-V simulator.

I. INTRODUCTION

With ongoing advances in miniaturization and energy ef-
ficiency, computing devices are rapidly penetrating everyday
life. Due to long service life, security of such devices becomes
decisive. In in the recent past, we have been witnessing attacks
on millions of cameras and routers [39], cars [38], cardiac
devices [35] and light bulbs [41], to name a few. The high
code complexity of these devices fosters programming bugs,
making their exploitation only a matter of time. This atten-
uates potential IoT use cases since a compromise could have
immediate monetary, legal or privacy consequences [26]. Also,
the protection of intellectual property (IP) in a highly diverse
market like the IoT, which integrates code from multiple
vendors, requires strong security guarantees.

Isolated execution protects sensitive code and data on
devices with compromised or untrusted software, and has been
proposed for different systems, with and without virtual mem-
ory [2,3,7,9,10,13,21,22,25,28,34,37,40,47]. Especially small

resource-constrained devices often suffer from poor memory
utilization due to memory fragmentation and inefficient isola-
tion mechanisms. A tighter integration of trusted memory in
the limited physical address space would demand fine-grained
isolation boundaries, which existing schemes either do not pro-
vide at all, or provide only at the expense of high management
overhead. Also, more flexible isolation mechanisms are impor-
tant for dynamically managing trusted memory. A technique
that has the potential to offer fine-grained and flexible isolation
boundaries is tagged memory. Tagged memory transparently
associates blocks of memory with additional metadata. It has
been used for dynamic information flow tracking [48] as
well as access control [53], and is still an active subject of
research [31,45]. While tagged memory has been shown to
support a variety of security policies like protection of control
data [14], pointers [18] or capabilities [52], strong, efficient
and flexible isolated execution is still an open problem for
small embedded systems. In particular, data flow isolation [45]
cannot provide strong isolation since tags can be destructively
written by untrusted software. Other existing solutions are not
appropriate for low-end embedded devices due to their memory
overhead stemming from large tags [54] or fully programmable
but expensive tag engines [11,17,19,49]. Hence, currently no
existing tagged memory schemes supports efficient isolated
execution on small embedded devices.

In this work, we propose TIMBER-V, a tagged memory
architecture which brings efficient isolated execution in form
of enclaves to low-end devices. Since isolated execution is
still not well researched for low-end RISC-V processors, we
prototype TIMBER-V on the open RISC-V architecture via
a hardware-software co-design. On the hardware side, we
achieve fine-grained in-process isolation with only two tag
bits. Moreover, we combine tagged memory with a memory
protection unit (MPU) to support an arbitrary number of
processes while avoiding the overhead of large tags [54].
On the software side, we enforce isolated execution via a
small trust manager, called TagRoot. We isolate privileged
from unprivileged security domains, supporting both, Intel
SGX enclaves [37] and the TrustZone [3] programming model,
however, with much finer isolation granularity and more ef-
ficient memory utilization. This has several advantages. On
the one hand, data locality can be maintained by interleav-
ing trusted and untrusted memory, thus minimizing memory
fragmentation. On the other hand, TIMBER-V uses a tag
update policy which allows highly flexible dynamic memory
management of trusted data. Dynamic memory support has
been announced for the upcoming Intel SGXv2 which involves
costly interaction with the operating system [29]. In contrast,
TIMBER-V enclaves can instantaneously claim memory by
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using a single instruction. To demonstrate these advantages,
we show heap interleaving and a novel stack interleaving
scheme. That is, we use a single heap and stack across different
security domains while maintaining strong isolation. Moreover,
we demonstrate highly efficient inter-enclave communication
over secure shared memory. We support real-time constraints
by making all trusted software interruptible. We implement and
benchmark TIMBER-V on the RISC-V Spike simulator, allow-
ing an evaluation under different CPU models which highlights
characteristics of TIMBER-V rather than CPU implementation
specifics. We show that the runtime overhead of TIMBER-V
is 25.2% for naive implementations while tag caching reduces
the overhead to 2.6%.

In summary, our main contributions are:
• We propose TIMBER-V, the first efficient tagged memory

architecture for isolated execution on low-end processors
• We present a novel concept called stack interleaving that

allows for efficient and dynamic memory management
• We propose lightweight shared memory between enclaves
• We propose an efficient shared MPU design
• We extensively evaluated our proof-of-concept implemen-

tation1 on the RISC-V simulator for different CPU models

II. BACKGROUND

This section gives background information about related
security architectures, RISC-V and tagged memory.

Security Architectures. Process isolation is a fundamental
security concept which combines hardware and software tech-
niques to isolate the memory of processes from each other. It
is usually enforced by the operating system taking advantage
of processor’s privilege modes. Large systems isolate pro-
cesses in separate virtual address spaces with the help of a
memory management unit (MMU), while resource-constrained
devices use a memory protection unit (MPU), suitable for
single address space implementations. However, these isolation
mechanisms can be circumvented, as modern operating sys-
tems are becoming large and complex, and their exploitation
becomes easier. Recently, there has been a lot of research
towards isolated execution environments which exclude the
operating system from the trusted computing base (TCB).
Isolated execution protects security-critical code in isolated
compartments, ensuring its confidentiality and integrity even
in the presence of malicious privileged software. An outside
module can call these compartments only at their designated
secure entry points. Two widely deployed architectures for
isolated execution are ARM TrustZone [2] and Intel SGX [37].

ARM TrustZone [2] is a hardware security extension which
partitions computer’s resources into a secure and a non-
secure world. This world split is orthogonal to the processor’s
privilege modes and effectively creates a secure virtual CPU.
The secure world can access all system resources, while the
non-secure world can only access non-secure memory regions.
This way, sensitive code can be hidden from the non-secure
world. The TrustZone concept demands a security kernel for
managing the secure world. This includes process and memory
management as well as scheduling, which enlarges the TCB.
Non-secure code must use a single entry point to a secure

1The source code is available at https://github.com/IAIK/timber-v

monitor handler to switch worlds. ARM TrustZone-M [3]
integrates the TrustZone concept into smaller Cortex-M pro-
cessors. Non-secure applications can call secure applications
through multiple designated entry points, specified via non-
secure callable regions.

The central concept of Intel SGX [37] is a hardware-
isolated container, called an enclave, in which sensitive parts
of an application are placed. Unlike TrustZone, an enclave
directly resides in the address space of a user process. SGX
does not rely on any privileged software (trusted kernel,
hypervisor, etc.) to isolate enclaves, thus reducing the TCB
to only the CPU and enclaves themselves. However, SGX’s
management instructions involve pretty complex microcode.

RISC-V. RISC-V [50] is an open and extensible instruction
set architecture and defines three privilege modes [51], namely
machine-mode (M), supervisor-mode (S), and user-mode (U).
M-mode has the highest privileges and is used for emulating
missing hardware features. S-mode and U-mode are meant to
run an operating system and user applications, respectively.

Tagged Memory. The idea behind tagged memory is to extend
each memory word with additional bits that store metadata.
The general tagged architecture concept is very old and can
already be found in numerous early computer designs [23].
There, tag bits were, for example, used for debugging as well
as for dynamically tracking the numeric type of data words.
Recent commercially available computer architectures hardly
support hardware-based tagged memory. Schemes that asso-
ciate memory with metadata, like for example dynamic analy-
sis tools [43,44,46], rely on software-based solutions instead.
However, recent research on tagged-memory architectures in
the system security context [8,19,45] hints that re-establishing
hardware-support can considerably improve security.

III. ADVERSARY MODEL AND DESIGN GOALS

A stakeholder wants to securely execute pieces of code on
a small IoT device. However, the stakeholder distrusts the IoT
device for various possible reasons. First, the device’s oper-
ating system might not sufficiently isolate individual tasks to
guarantee secure code execution, as is the case for the popular
FreeRTOS kernel, for example.2 Second, even if the operating
system provides sufficient task isolation, it might be subject
to exploitation, circumventing all isolation guarantees [27].
Third, the operating system might be controlled by a party
whom the stakeholder distrusts and wants to protect intellectual
property against. We consider the strongest attacker to have
complete control over the operating system. Thus, he can not
only deny service but also use the system’s security features to
spawn malicious enclaves in an attempt to subvert benign ones,
as depicted in Figure 1a. However, we assume that benign
enclaves are properly protected against direct exploitation via
runtime attacks using concepts like memory safety [16], for
example. A proper tag isolation architecture shall guarantee
security of benign enclaves in the presence of such attacks.
We assume that cryptographic primitives are secure. We do not
address physical attacks. The trusted computing base consists
of the hardware, including the hardware emulation mode (M-
mode), as well as a small trust manager (TagRoot).

2FreeRTOS allows to elevate privileges via the prvRaisePrivilege syscall.
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(a) TIMBER-V supports four security domains. (b) Security domains are interleaved in flat physical memory.

Fig. 1: (a) TIMBER-V extends user apps running in U-mode and the operating system running in supervisor S-mode with trusted
memory, namely TU-mode for enclaves and TS-mode for TagRoot. User processes A and B integrate trusted enclave memory
within untrusted apps. The attacker controls all software in the N-domains and can run malicious enclaves (cf. enclave B). (b)
Tag isolation protects T-domains while MPU isolation encapsulates and protects individual processes across domains. T-domains
can only be entered at trusted callable entry points (TC-tag), which allows fast domain transitions.

TIMBER-V does not prevent software side-channel attacks.
While memory interleaving provides the untrusted software
with additional information about enclave’s memory alloca-
tions, an enclave that follows the constant-time paradigm [5,
12] is secure against any address-based side-channel attack.

We demand that a tagged memory architecture designed
for isolated execution shall meet the following design goals:

G1 Security. It shall guarantee that sensitive code can lever-
age strong isolation to maintain confidentiality and in-
tegrity of its sensitive data. This demands (i) strong
memory isolation, (ii) secure entry points, (iii) secure
communication and (iv) attestation and sealing.

G2 Flexibility. It shall be flexible with respect to fine-grained
and dynamically reconfigurable isolation boundaries as
well as the programming model.

G3 Compatibility. Untrusted code shall run without modifi-
cation to support existing operating systems and apps.

G4 Low Overhead. It shall minimize the cost of tagged
memory as well as the performance overhead of switching
security domains.

G5 Real-time. It shall support hard real-time constraints.

IV. TIMBER-V DESIGN

TIMBER-V is a novel tagged memory architecture achiev-
ing lightweight, yet powerful isolated execution on small em-
bedded processors. Specifically, we achieve fine-grained and
dynamic in-process isolation. TIMBER-V follows a hardware-
software co-design. On the hardware side, TIMBER-V uses
tagged memory for enforcing a strong and fine-grained iso-
lation policy and for providing fast domain switches. Tagged
memory is augmented with a Memory Protection Unit (MPU)
for lightweight isolation between processes. Dedicated tag
instructions allow flexible dynamic memory management. For
example, we demonstrate memory interleaving across security
domains not only for heap memory but also for stack memory.
On the software side, TIMBER-V delegates policy enforce-
ment to a small privileged trust manager called TagRoot, which
provides various trusted services to the operating system and
to enclaves.

A. Isolated Execution

TIMBER-V supports four security domains, as depicted
in Figure 1a. The operating system and apps live in the
“normal” N-domains, which are considered untrusted. The N-
domains support the traditional split between user (U-mode)
and supervisor (S-mode) and allow existing code to run without
modification (goal G3). Sensitive memory is protected via
fine-grained memory tagging, which creates islands of trusted
memory inside the N-domains. Trusted user mode (TU-mode)
can be leveraged for isolated execution environments, called
enclaves. Moreover, trusted supervisor mode (TS-mode) allows
to run a trust manager like TagRoot, augmenting the un-
trusted operating system with trusted services. To achieve this,
TIMBER-V combines security domain isolation with MPU-
based process isolation. The trusted domains are protected by
a strict tagged memory policy, which we denote as tag isola-
tion. Individual processes or enclaves are protected via MPU
isolation. Memory accesses are only permitted if both mecha-
nisms “agree”. This allows a variety of different programming
models, as demanded by goal G2. For example, we achieve
TrustZone’s [3] security split via memory tags, however with
much finer and highly dynamic isolation boundaries. Also,
TIMBER-V can embed enclaves directly in user processes,
as done in Intel SGX-like designs [37], however, again with
the benefits of tagged memory.

Tag Isolation. TIMBER-V uses a two-bit tag per 32-bit
memory word for fine-grained protection of trusted memory
(goal G2). Having only two tag bits keeps the hardware cost
of tagged memory low, achieving goal G4 while at the same
time retaining advantages for fine-grained memory isolation.
With two tag bits we encode four different tags, namely N-
tag, TU-tag, TS-tag and TC-tag. We use them to identify
untrusted memory (N-tag), trusted user memory (TU-tag),
trusted supervisor memory (TS-tag) as well as secure entry
points via the trusted callable TC-tag. Tag isolation is depicted
with arrows in Figure 1b and will be discussed in detail in
Section VII. At every memory access, a hardware tag engine
ensures that trusted memory cannot be accessed from untrusted
code (i). Moreover, trusted supervisor memory (TS-tag) used
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for TagRoot cannot be accessed from enclaves (TU-tag). In
contrast, trusted domains can access lesser trusted memory (ii),
as long as the MPU isolation policy allows it. Finally, tag
isolation could be directly applied to other peripherals, e.g.,
preventing DMA accesses to trusted memory.

MPU Isolation. Tag isolation enforces protection of secu-
rity domains. However, an embedded system typically runs
several independent processes within the same security do-
main. Relying on tag isolation for process isolation would
require large tags, which is unacceptable for our goal G4.
TIMBER-V isolates individual processes via a memory pro-
tection unit (MPU) (see dashed boxes and arrows (iii) in
Figure 1b). This minimizes tagging overhead while supporting
fine-grained in-process isolation.

Fast Domain Transitions. Our system distinguishes horizontal
and vertical domain transitions, as shown in the upper half
of Figure 1b. Both need to be fast and efficient to achieve
goal G4. Horizontal transitions switch between N and T-
domains while maintaining the current privilege mode. To
avoid code-reuse attacks, trusted domains can only be entered
at secure entry points (iv) (cf. goal G1). Entry points are
marked as trusted callable with the TC-tag and are denoted as
“TUenter” and “TSenter”, depending on the caller’s privilege
mode (iv). Whenever the CPU fetches an instruction tagged
with TC-tag, it switches to the trusted security domains. Like-
wise, when fetching normal N-tag memory, the CPU switches
back to the normal N-domains, leaving trusted execution,
denoted as “TUleave” and “TSleave” (v), respectively. More
details about how TUenter and TSenter are protected will be
discussed in Section VII. Unlike SGX, which involves costly
checks in microcode for each domain switch [29], our design
imposes zero runtime overhead. Unlike TrustZone-M [3], it
allows even faster and very compact transitions, keeping code
locality and compatibility to the maximum extent possible.3

Vertical transitions are in fact syscalls (vi). In the N-
domains, apps can issue syscalls to the operating system.
Likewise, in the T-domains, enclaves can request TagRoot
services via trusted TSyscalls. When finished, a syscall or
TSyscall can return to the calling app or enclave, respectively.
To cleanly separate vertical transitions, TIMBER-V adds a
separate trusted syscall (trap) handler.

MPU Sharing. TIMBER-V shares a single MPU between the
N-domains and the T-domains. That is, the same MPU slots
can be used for processes executing in U-mode and in TU-
mode. Thus, TIMBER-V not only supports traditional apps
and secure enclaves but also mixed processes, as shown in
Figure 1. In contrast to using two separate MPUs, our approach
reduces hardware and energy costs since fewer MPU slots are
required. To maintain compatibility (goal G3), the operating
system can always update shared MPU slots. Any such updates
are detected by the MPU which then prevents enclaves from
using the updated slots until TS-mode validates the changes.
To do so, we augment the MPU with just two additional flags.

3For example, one could split an unmodified program binary into untrusted
and trusted parts by mere tagging, that is, without the need for changing
code or the memory layout. However, in practice one typically augments the
program with secure argument passing, stack handling and register cleanup.

TABLE I: Tag update policy, permitting (3) or refusing (7)
tag updates from certain security domains.

Can update tag N-tag TC-tag TU-tag TS-tag
N-domains 3 7 7 7
TU-mode 3 7 3 7
TS-mode 3 3 3 3
M-mode 3 3 3 3

B. Dynamic Memory Management

TIMBER-V supports highly flexible management of trusted
memory. For this, new tag-aware instructions are added which
act according to a tag update policy. Using these instructions,
we show dynamic memory interleaving as well as a simple but
effective code hardening transformation.

New Tag-aware Instructions. TIMBER-V adds new checked
memory instructions which allow fine-grained and dynamic
management of trusted memory. We call them “checked”
instructions, since they augment ordinary memory instructions
adhering to tag isolation with one additional programmable tag
check. This additional tag check does not bypass our tag isola-
tion policy but tightens it by constraining memory accesses to a
specific security domain. For example, when enclaves process
untrusted data, they can use checked instructions to prevent
accidentally accessing a wrong security domain.

Tag Update. In addition to the tag checks, checked store in-
structions allow to (de)privilege memory by changing memory
tags as follows. Tags can only be updated within the same or a
lower security domain but cannot be used to elevate privileges,
as shown in Table I. TS-mode (and M-mode) have full access
to all tags. TU-mode can only change tags between N-tag
and TU-tag to support dynamic interleaving of user memory.
We prevent TU-mode from manipulating TC-tags, which are
reserved for secure entry points. Our tag update policy makes
isolation boundaries flexible during runtime (goal G2).

Dynamic Memory Interleaving. Checked memory instruc-
tions allow to dynamically claim memory across security
domains, thus maintaining data locality and reducing manage-
ment overhead. For example, an enclave can claim untrusted
memory during runtime by setting its tags from N-tag to TU-
tag. We show that this allows heap interleaving as well as a
novel code transformation that we call stack interleaving. That
is, an enclave does not need to maintain a separate secure
heap or stack. In general, dynamic memory interleaving can
help reduce memory requirements to a single heap and a
single stack per execution thread. This has not only oper-
ational advantages like reduced memory fragmentation and
thus reduced memory consumption but also security gains,
since dynamic memory management can be removed from the
trusted computing base (TCB).

Code Hardening Transformation. Checked instructions can
be used for additional code hardening against code-reuse
attacks. In these attacks, one misuses existing code to perform
malicious actions, e.g., leak secrets from trusted to untrusted
domains. In contrast, normal code execution usually operates
in a single security domain and all accessed memory tags are
predetermined by this security domain. Our code hardening
transformation enforces this property by replacing memory
instructions with checked instructions, checking for the correct
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TABLE II: TagRoot trusted OS and enclave services.
Trusted OS services Trusted enclave services
create-enclave(ecb) get-key(id)
add-region(ecb, region) shm-offer(targetEID, region)
add-data(ecb, region) shm-accept(ownerEID)
add-entries(ecb, entries) shm-release(region)
init-enclave(ecb)
load-enclave(ecb)
destroy-enclave(ecb)
resume()

tag and restraining code execution to the current security do-
main. Only code interacting with untrusted memory on purpose
is left unmodified. As discussed later, this transformation adds
negligible performance overhead and we apply it to enclaves
and TagRoot as an additional layer of defense.

C. Trusted Services

We provide a small trust manager, called TagRoot, which
serves as trust anchor for bootstrapping secure enclaves and
maintaining isolated execution, as demanded by goal G1.
TagRoot offers trusted OS services to the untrusted operating
system as well as trusted enclave services to the enclaves
themselves. This includes enclave management, secure entry
points, attestation and sealing. Moreover, in contrast to existing
solutions, TagRoot supports fast enclave to enclave communi-
cation via secure shared memory, which imposes zero copying
overhead and allows m:n connectivity. TagRoot and enclaves
are fully interruptible, thus meeting goal G5.

Enclave Life Cycle. TIMBER-V enclaves are created and
loaded within an ordinary user process at the discretion of
the operating system but with assistance of TagRoot. Once
loaded, enclaves can be directly invoked by user apps to carry
out security-critical tasks. For freshly generated enclaves, one
typically provisions secret data like cryptographic keys to the
enclave via a secure remote channel. This channel is authen-
ticated using enclave attestation with assistance of TagRoot.
During its lifetime, enclaves can authenticate and communicate
with other enclaves or seal sensitive information for keeping
state across reboots, again with the help of TagRoot.

Possible Extensions. Independently of our TagRoot design,
TIMBER-V allows other trust manager designs as well. For
example, implementing trusted I/O is straight forward by tag-
ging I/O memory as trusted. Also, trusted scheduling services
requiring availability guarantees can be easily implemented in
TS-mode. However, since these additional services enlarge the
TCB, we did not implement them in our current prototype. We
discuss different design options in Section XI.

V. TAGROOT TRUST MANAGER

We develop a small trust manager for TIMBER-V, called
TagRoot. It runs in trusted supervisor mode (TS-mode) and
offers privileged trusted services to the untrusted operating
system as well as unprivileged trusted services to enclaves.
All trusted services are listed in Table II.

A. Trusted OS Services

Trusted OS services can be invoked by the operating
system via TSenter (see (iv) in Figure 1b) and provide enclave

Fig. 2: TagRoot trusted metadata includes enclave control
blocks (ECB) and interrupt frames with unforgeable headers.

management like creation and cleanup, loading as well as han-
dling of interruption. Also, trusted OS service calls define the
enclave identity used for subsequent trusted enclave services.

Creation and Cleanup. Enclaves are identified by a data struc-
ture called enclave control block (ECB) which is kept in secure
TS-mode memory, as shown in Figure 2. ECBs are created
via create-enclave. When creating a new enclave, the
operating system can add memory regions (contiguous chunks
of memory) to it via add-region. These enclave regions
will be loaded in the MPU when the enclave is about to run.
TagRoot ensures that enclave regions will never overlap with
other enclaves but are unique to each enclave. However, as
mentioned before, an enclave region can cover app memory
as well. Thus, a single shared MPU region can hold enclave
data and app data. This is achieved by executing add-data,
which claims enclave memory by setting TU-tag, as long as the
claimed memory is within the enclave’s regions. add-data
works on a word granularity, thus supporting fine-grained in-
process memory interleaving. All claimed memory (TU-tag)
constitutes the actual enclave (TU-mode), while the rest (N-
tag) constitutes the untrusted app (U-mode) (cf. processes in
Figure 1b). While the enclave can access its app counterpart,
the opposite direction is prohibited by the tag isolation policy.
Similar to enclave data, entry points are announced by a call to
add-entries. TagRoot will mark all entry points with TC-
tag, given that they belong to the enclave’s regions. Finally,
a call to init-enclave will cause TagRoot to compute a
cryptographic identity over the enclave and mark it as runnable.
Once the enclave is initialized, it cannot be altered using
the above trusted service calls but only loaded, resumed or
destroyed. At the end of an enclave’s life cycle, a call to
destroy-enclave will unload and invalidate the ECB,
preventing the enclave from further execution, clear all claimed
enclave memory, release enclave regions and clear up ECB
memory. This also reverts all enclave tags to N-tag.

Loading enclaves. In order to run an enclave, the operating
system first loads the enclave regions into the MPU and then
calls load-enclave. If another enclave is currently loaded,
TagRoot unloads it by invalidating stale enclave MPU slots.
Next, TagRoot validates the current MPU configuration, as
configured by the operating system, by acknowledging all
updated MPU slots that correspond to the enclave. Moreover,
TagRoot locks the enclave’s ECB to prevent further modifica-
tions and restores its runnable or interrupted state in a special
register, called STSTATUS. Now that the enclave is loaded, it
can be entered from the app by a simple call to one of its entry
points (TUenter), or in case of interruption, it can be resumed.

Interruptibility. Trusted code execution is fully interruptible
except for a small trusted interrupt handler. Interruptibility
is necessary to support real-time tasks reacting on external
I/O events or control loops that need to run periodically in
order to meet certain stability criteria, for example. Whenever
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an interrupt happens during enclave execution, TIMBER-V
raises a special “interrupted” CPU flag that prevents re-entering
the enclave and calls the trusted trap vector of TagRoot.
TagRoot then saves the current enclave’s execution context
in a protected interrupt frame (see Figure 2) and erases
sensitive CPU registers to avoid accidental leakage of sensitive
data. Moreover, it sets the interrupted program counter to
a dedicated resume function, before giving control to the
operating system. When the operating system returns from
interrupt handling, resume gets executed. TagRoot restores
the enclave execution context, clears the “interrupted” CPU
flag and resumes enclave execution. This process is completely
transparent and requires no changes to the operating system.
Moreover, it also supports interruption of TagRoot (TS-mode)
while processing trusted service calls.

Enclave Identity. From a functional perspective, enclaves are
defined by their code base and initial data as well as their
entry points. To capture this, all trusted OS service calls
from create-enclave to init-enclave contribute to
a continuous SHA256 computation, called measurement. The
measurement involves not only the sequence of trusted service
calls but also its parameters, that is, enclave regions, data
as well as entry points. The measured data is immutable
until init-enclave stores the final measurement as enclave
identity (EID) inside the ECB and marks the enclave state as
runnable (see Figure 2). Thus, the EID reliably identifies en-
claves. This concept is similar to MRENCLAVE in SGX [29].
Enclave identities are used for trusted enclave services.

B. Trusted Enclave Services

Enclaves can request trusted enclave services via TSyscalls
(see (iv) in Figure 1b). This includes sealing, attestation and
inter-enclave communication via shared memory.

Sealing and Remote Attestation. An enclave can call
get-key to generate enclave-specific cryptographic keys [1],
derived from the enclave identity (EID) and a secret platform
key Kp, which is only known to TagRoot and remote verifiers.
The keys are derived as follows: kidEID = HMACKp(EID, id).
By providing an additional key identifier id, the enclave can
request keys for different purposes. For example, it can derive
sealing keys for encrypting and decrypting sensitive data for
secure offline storage. Also, it can derive remote attestation
keys to compute a message authentication code (MAC) over
a challenge given by a remote verifier. The remote verifier
knowing the platform key Kp can then recompute the MAC,
thus remotely attesting the enclave. TagRoot can be easily
extended to asymmetric remote attestation protocols [1].

Secure Shared Memory. TagRoot supports secure shared
memory (shm) as a fast and flexible inter-enclave communi-
cation method. An enclave can offer another “target” enclave
shared memory access to parts of its own enclave memory
regions via shm-offer. TIMBER-V creates a special entry
in the offering enclave’s control block (ECB), covering the
offered shm region and the target enclave’s EID. For this, the
target enclave does not need to exist yet. It can independently
accept the shm offer via shm-accept, which expects the
offering enclave’s EID as argument. When accepting shm,
TagRoot scans the existing ECBs to find the offering enclave
via its EID. In case a valid shm offer exists, TagRoot adds

the offered shm region to the target enclave’s regions in the
ECB and also returns the memory region’s pointer back to the
enclave to help it use the shared memory. Once an enclave
has accepted a new shared memory region, it has to notify
the untrusted operating system to load the shm region into
the MPU. The target enclave can close an accepted shm by
issuing shm-release, which removes the shm from the
enclave’s memory ranges. An offering enclave can withdraw
a pending offer by offering the empty region, however it
cannot close an accepted offer. This is because TagRoot only
manipulates the ECB of the calling enclave but not the one of
the communication partner.

Our secure shared memory allows m:n connectivity be-
tween enclaves, where m is the number of offers an enclave
can make and n is the number of offers a target enclave can
accept. m is unlimited and n is only limited by the number
of enclave regions that can be stored in the ECB, which is an
implementation-defined constant. Moreover, TagRoot’s shared
memory supports a transitive trust model. An owner enclave
could subsequently offer the same shared memory to other
target enclaves, thus minimizing memory usage in case of
broadcast channels, for example.

Local Attestation. Local attestation is implicitly achieved
using shared memory without the involvement of crypto-
graphic secrets. By offering and accepting shared memory,
both involved enclaves identify their communication partner
via its EID, thus mutually attesting each other.

VI. DYNAMIC MEMORY MANAGEMENT

TIMBER-V provides highly flexible and dynamic memory
management. Memory can be claimed by different security do-
mains during runtime with fine granularity. Dynamic memory
has been an issue for isolated execution before. For example,
Intel SGX adds dynamic management of enclave pages in
SGXv2 via separate trusted service calls in microcode. In con-
trast to Intel SGX, TIMBER-V naturally supports much finer
grained dynamic memory management by simply updating
tags. User software can directly claim or release memory via
checked store instruction without the need for trusted service
calls. This high flexibility and efficiency enables novel appli-
cation scenarios like dynamic memory interleaving schemes.
Memory interleaving minimizes memory fragmentation by
keeping data locality across security domains. For example,
when passing large untrusted data structures to an enclave, the
enclave could avoid copying the data to enclave memory by
just updating tags. Thus, the data structures remain interleaved
within the untrusted memory. In the same way memory inter-
leaving can be used for dynamic memory management—the
dynamic allocation and deallocation of trusted memory.

In this section, we first explain heap interleaving from
which we develop stack interleaving, a novel memory inter-
leaving scheme. We do this for both, TagRoot and enclaves,
and show that we can entirely outsource dynamic memory
from TagRoot to the untrusted operating system, thus reducing
the TCB. Finally, we show that stack interleaving supports
interrupts with arbitrary nesting levels.

A. Heap Interleaving

Heap interleaving reuses an untrusted heap to store trusted
data. To do so, trusted code first instructs untrusted code to
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allocate a chunk of memory on its heap. The precise heap
layout is irrelevant as long as the requested memory chunk lies
within N-tagged memory. Since the complex task of memory
allocation is now outsourced to the untrusted domains, the TCB
can be significantly reduced. Next, the trusted code claims
the allocated memory chunk. This is done via checked store
instructions, which atomically check memory for N-tag and
update it to TS-tag or TU-tag, respectively. This protects the
newly created trusted heap object against malicious access
from the N-domains. However, care must be taken to reliably
identify trusted heap objects during their lifetime. To free a
trusted heap object, the trusted code simply clears it and reverts
its tags to N-tag by means of checked store instructions, and
notifies the untrusted code to do the heap cleanup.

User Heap Interleaving. Typically, an enclave actively re-
quests heap space for trusted heap objects, which it uses
internally to satisfy its dynamic memory demand. To reliably
identify a trusted heap object, enclaves should always keep a
pointer to it inside protected enclave memory and only use
this pointer to reference the trusted object. If enclaves would
interpret untrusted function arguments as trusted heap pointers,
memory corruption attacks become possible.

Supervisor Heap Interleaving. When creating a new en-
clave, the operating system allocates a trusted enclave control
block (ECB) on its heap and calls create-enclave, which
claims the ECB for TS-mode. Since most trusted OS service
calls take the ECB as argument from the untrusted OS,
TagRoot needs means to verify its validity. This is done in
two steps. First, TagRoot accesses an ECB only via checked
memory instructions, checking for TS-tag. This prevents mis-
interpreting untrusted data as ECB. Second, since the ECB
argument could point to arbitrary TS-tagged memory, TagRoot
identifies valid ECBs via an unforgeable header at the start of
each ECB, as will be explained in Section VI-C.

B. Stack Interleaving

Stack protection is crucial for isolated execution. Typically,
an execution thread is given individual stacks for every security
domain it can exercise. For example, SGX enclaves use sep-
arate secure stacks which are isolated from their hosting app.
Also, operating systems usually maintain separate kernel stacks
for each app. With TIMBER-V we can reuse the same stack
across different security domains, thus removing the need for
maintaining multiple stacks per execution thread. This reduces
memory fragmentation, which is particularly relevant for the
limited physical address space of low-end embedded systems.

Stack interleaving is a simple program transformation that
inserts additional stack allocation code. Whenever allocating a
new stack frame, we claim this memory using checked store
instructions, checking memory for N-tag and updating it to TS-
tag or TU-tag, respectively. When deallocating the stack frame,
we clear it and revert the tags to N-tag via checked stores. As
with heap interleaving, one needs means to check validity of
dynamic memory, that is, validity of stack pointers. We show
stack interleaving (i) horizontally within supervisor mode,
(ii) horizontally within user mode, and (iii) vertically across
TSyscalls. We implement stack interleaving in a separate
compilation step and defer details to Section VII.

Fig. 3: User stack interleaving with nested TUenter and ocall.

Horizontal Supervisor Stack Interleaving. When receiving
trusted OS service calls (TSenter), TagRoot reuses the S-
mode stack maintained by the untrusted operating system.
Validity of the stack pointer is implicitly checked by our stack
interleaving transformation, checking untrusted memory for N-
tag before claiming it. This prevents TagRoot from accidentally
overwriting trusted memory. If the untrusted operating system
provides an invalid sp, it can only break system’s availability,
which it can do anyway. While processing trusted service calls,
sp cannot be manipulated because TagRoot does not leave TS-
mode until the service call is finished (or interrupted).

Horizontal User Stack Interleaving. When transitioning from
an untrusted app to an enclave (TUenter), the enclave claims
and releases stack frames on the untrusted app’s stack. An
enclave might call untrusted functions from the outside, e.g., to
request dynamic heap memory or file access. Such transitions
are named “ocalls” and demand special treatment. First, a
finished ocall needs to return to the enclave’s call site, denoted
as “oret”. We achieve this by making the oret sites callable
using TC-tag, as depicted in Figure 3. Second, orets need to
be protected against misuse, as follows: An attacker could
directly jump to an oret without a corresponding ocall and
thus perform code reuse attacks. We address this by securely
pushing the return address (i.e., the address of oret) onto the
stack before doing the ocall and verifying it afterwards. Thus,
an attacker can only jump into active orets. However, the
attacker could point sp to arbitrary trusted data that contains
a valid return address. E.g., he could confuse the nesting level
of multiple ocalls by returning to a previous ocall rather than
the latest one. Consider the code in Figure 3, where both,
TUentrA and TUentrB perform ocalls, leading to a nested
call sequence denoted with numbers 1) to 6). When returning
from ocallA in step 7), an attacker could confuse the context
of oretA by pointing sp to the first TUentrA frame instead
of the correct fifth one (see upper right corner). We prevent
this by verifying the stack pointer sp at each enclave oret
site against SPTOP, which holds the sp of the latest ocall in
trusted enclave memory. To support nesting, we securely push
the previous SPTOP onto the stack and restore it afterwards.

Vertical Stack Interleaving. When enclaves request trusted
services via a TSyscall, TagRoot reuses the enclave’s stack in
the same way as outlined before. However, care must be taken
since the stack is now interleaved across different privilege
modes. Before TagRoot uses the enclave stack, it has to ensure
that sp points into the current enclave’s memory and that
it has enough space for processing the TSyscall. The stack
requirements of TSyscalls can be statically determined by
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means of profiling or static code analysis. In addition, the stack
needs to be able to hold one interrupt frame.

Interrupt Handling. Stack interleaving naturally supports
interrupt handling. As outlined in Section V-A, on interruption
of trusted code TagRoot stores the current execution context
in a secure interrupt frame. With stack interleaving, TagRoot
can directly store the interrupt frame on the current stack. As
with ocalls, care must be taken since the untrusted operating
system can manipulate the stack pointer before resuming from
interruption. However, unlike before, we cannot keep a copy
of the last valid sp in secure memory (like SPTOP) because
the operating system might resume a different interrupted
enclave first or resume an interrupted TagRoot service call. To
allow TagRoot distinguishing valid interrupt frames from other
TS-tagged data, we introduce an unforgeable header, which
TagRoot can check on every resume call.

C. Unforgeable Headers

Trusted metadata such as ECBs or interrupt frames are
protected via unforgeable headers (see Figure 2). To make
headers unforgeable, they are tagged with TC-tag which only
TagRoot can set. ECB headers and interrupt frame headers
contain two distinct magic values which TagRoot can use
to identify valid ECBs and valid interrupt frames. TagRoot
takes care not to accidentally set the TC-tag on any other
data containing these magic values. Since headers are callable
via TC-tag, they could be misused as malicious entry points.
To prevent this, the magic values have to fulfill the following
property: When interpreted as assembler instruction, they shall
divert control flow to some form of secure error handling (e.g.,
an endless loop “j .” or a jump to an error handler).

VII. TIMBER-V IMPLEMENTATION DETAILS

We implemented TIMBER-V on the RISC-V Spike simu-
lator and used it to run our TagRoot implementation. Subse-
quently, we give more details about tag isolation and the disam-
biguation of TUenter and TSenter, our tag-aware instructions,
the proposed code transformations, required efforts for enclave
developers, our MPU design and additional CPU registers.

Tag Isolation Policy. Our tag isolation policy is given in
Table III. N-domains can only access N-tagged memory. The
only way to enter T-domains is by fetching code tagged with
TC-tag. Depending on the current privilege mode, TIMBER-V
performs a TUenter or a TSenter. When fetching N-tagged
memory, the CPU leaves trusted execution and switches back
to the N-domains. This is denoted as TUleave and TSleave.
Enclaves in TU-mode cannot write TC-tags to prevent manip-
ulation of secure entry points. TS-tagged memory is exclusive
to TS-mode and protects trusted metadata against malicious
enclaves and the operating system. For security reasons, we
also prevent TS-mode from fetching TU-tagged memory. This
technique is well known and implemented as supervisor mode
execution prevention (SMEP) in Intel x86 CPUs [29], for
example. M-mode has full access to all tags, as it is commonly
used to emulate missing hardware features.

TUenter vs TSenter Disambiguation. Both TU-mode and
TS-mode use the same TC-tag to specify secure entry points.
If not cleanly separated, this would allow confusion attacks
between TUenter and TSenter. For example, an attacker could

TABLE III: Tag isolation policy for the memory accesses
read (r), write (w), fetch or execute (x) as well as the horizon-
tal transitions TUenter/TSenter (e) and TUleave/TSleave (l).

Access permitted N-tag TC-tag TU-tag TS-tag
N-domains rwx --e --- ---
TU-mode rwl r-x rwx ---
TS-mode rwl rwx rw- rwx
M-mode rwx rwx rwx rwx

TABLE IV: TIMBER-V tag-aware instructions.
Checked Loads Checked Stores
lbct etag, dst, src sbct etag, ntag, src, dst
lbuct etag, dst, src shct etag, ntag, src, dst
lhct etag, dst, src swct etag, ntag, src, dst
lhuct etag, dst, src Load Test Tag
lwct etag, dst, src ltt etag, dst, src

spawn a malicious enclave (TU-mode). While this malicious
enclave normally cannot access other benign enclaves, the
attacker could invoke the enclave via a TSenter from S-mode
rather than a TUenter from U-mode. Hence, the malicious
enclave would execute in higher-privileged TS-mode, thus
undermining all of TagRoot’s security guarantees. We prevent
such attacks by constraining horizontal transitions to MPU
regions of the same privilege mode: TUenter is only allowed
for user mode MPU slots, while TSenter can only target
MPU slots marked for TS-mode. TS-mode slots cannot be
manipulated from the untrusted OS. Again, this resembles
supervisor mode execution prevention [29].

MPU Design. Each MPU slot not only holds base and bound
information together with rwx access permissions but also a
TU and a TS flag. Slot marked as TU are shared between
enclaves and untrusted apps. Slots marked as TS cannot be
manipulated from untrusted code and are used to distinguish
TSenter from TUenter, as outlined before. Only TagRoot
can enable these flags. While the untrusted operating system
cannot manipulate TS slots, it can overwrite TU slots, which
will automatically clear the TU flag. This prevents enclave
execution until TagRoot validates changes and reenables TU.

Tag-aware Instructions. We add new instructions for check-
ing and manipulating tags, as listed in Table IV. We duplicate
existing RISC-V load and store instructions to checked variants
with the suffix ct. Checked loads preserve semantics of load-
ing memory from address src into the register dst. Likewise,
checked stores transfer the content of the src register to the
memory address dst. Unlike normal memory accesses, the
checked instructions trigger a trap if the memory tag of the
memory address being accessed does not match the expected
tag, encoded in etag. In addition, checked stores overwrite the
tag at dst with a new tag, encoded in ntag. The accessed
memory address is determined by a base address, stored in
a register, and a 12-bit signed address offset, encoded as
immediate. Also, etag and ntag are encoded as immediate,
stripping the upper bits of the address offset to 10 bits and 8
bits for checked loads and checked stores, respectively.

For cases where memory tags are unknown, we add a
separate load and test tag (LTT) instruction.4 Similar to a
checked load, LTT verifies the tag of a memory location

4Cf. the Test Target (TT) instruction of TrustZone-M [3].
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1 lw t0 , 2 4 ( sp )
2

3 lw t1 , 2 0 4 8 ( a1 )
4

5 add t0 , t0 , t 1
6 sw t0 , 2 4 ( sp )

(a) Original code.

1 l w c t t s , t0 , 2 4 ( sp )
2 a d d i a1 , a1 ,2040
3 l w c t t s , t1 , 8 ( a1 )
4 a d d i a1 , a1 ,−2040
5 add t0 , t0 , t 1
6 swct t s , t s , t0 , 2 4 ( sp )

(b) Transformed code.

Fig. 4: Code hardening for TS-mode with overflow correction.

1 f u n c t i o n :
2 a d d i sp , sp ,−8
3

4

5 . . .
6

7

8 a d d i sp , sp , 8
9 r e t

(a) Original code.

1 f u n c t i o n :
2 a d d i sp , sp ,−8
3 swct n , t s , ze ro , 4 ( sp )
4 swct n , t s , ze ro , 0 ( sp )
5 . . .
6 swct t s , n , ze ro , 4 ( sp )
7 swct t s , n , ze ro , 0 ( sp )
8 a d d i sp , sp , 8
9 r e t

(b) Transformed code.

Fig. 5: Stack interleaving for TS-mode.

(src) against a given expected tag (etag). However, instead
of trapping, LTT stores the result in a register (dst), thus
allowing subsequent code to take appropriate action. We utilize
LTT for enclave cleanup, since this discharges TagRoot from
keeping track of the exact enclave layout.

Code Transformations. We implement code transformations
in a separate compilation step, where we compile source code
to assembler code which we then transform using a custom
awk script [24]. The code hardening transformation simply
replaces all memory accesses with their checked instruction
pedants, as shown for TS-mode in Figure 4. In some cases
address overflows occur, namely when the encoding space of
memory addresses is insufficient for a direct 1:1 transformation
due to the additional etag and ntag encoding. In these cases,
we insert correcting instructions which shift the overflowing
part to the instruction’s base register (lines 2–4). For stack in-
terleaving the script detects stack allocations and deallocations
by searching for manipulations of the stack pointer sp. It then
claims or unclaims the stack frame by inserting checked store
instructions accordingly, as seen in Figure 5 lines 3–4 and 6–7.

Developer Effort. From a developer’s perspective, writing
enclaves boils down to placing memory into distinct linker
sections, for which we provide macros. One can mix enclave
and non-enclave code in the same source file via annotations.
Entry points are specified via a simple array. Ocalls in addition
require to invoke an assembler macro. Code transformations
are fully integrated in the macros and the build system.
For memory accesses across security domains we provide
dedicated macros setting etag accordingly. Edge routines
could further reduce efforts, as done in the SGX SDK [30].

Additional CPU registers. We add new control and status
registers (CSRs) for TS-mode (and M-mode). STSTATUS
configures TIMBER-V and controls enclave execution. It holds
a flag indicating the current security mode (normal or trusted).
Moreover, whenever a running enclave traps due to an interrupt
or exception, STSTATUS will raise a flag that prevents enclave
execution until resumed by TS-mode. To allow TS-mode to
intercept traps, we add a separate trap vector, called STTVEC.

Whenever the CPU is in trusted mode, traps are redirected to a
trusted trap handler pointed to by STTVEC. Traps happening
in normal mode are forwarded to the standard trap handler,
stored in STVEC. This is implemented in a small M-mode
trap delegation code. To help the trusted trap handler in setting
up scratch space, we duplicate the supervisor scratch register
for the trusted mode, called STSCRATCH. In addition, we add
a register denoted as SECB to hold a pointer to an enclave
control block, which identifies the currently loaded enclave.
This helps TS-mode in processing trusted enclave service calls.

VIII. SECURITY ANALYSIS

Shielded execution systems like TIMBER-V build upon
various components to protect sensitive data from being leaked
(confidentiality) or corrupted (integrity). In the following, we
discuss how TIMBER-V protects enclaves against direct and
indirect accesses. Furthermore, we discuss security of enclave
shared memory, TagRoot and dynamic memory interleaving.

Direct Access. During runtime, the tag isolation policy pre-
vents N-domains from directly accessing or tampering enclave
memory. Also, our tag update policy does not allow elevating
the current privilege mode. To prevent (malicious) enclaves
from accessing other enclave’s memory, TagRoot ensures that
(i) enclave regions do not overlap upon enclave initialization,
and (ii) the MPU only holds regions of a single enclave at a
time. (i) ensures exclusiveness, i.e., the only way for having
enclave regions overlap is via shared memory, as discussed
later. (ii) ensures that enclaves cannot misuse stale MPU entries
of other enclaves. Also, our shared MPU design prevents
forging of MPU entries. Whenever the untrusted operating
system updates an MPU slot, an enclave cannot use it until
TagRoot acknowledges these changes (cf. Section VII).

Indirect Access. Indirect security violations are prevented by
(i) load-time attestation, (ii) secure entry points and (iii) secure
interruption. During enclave loading, the operating system
could manipulate an enclave’s code to divulge secret infor-
mation later on. To prevent this, enclave loading is measured
using a cryptographically strong hash function (SHA256).
Thus, whenever the untrusted operating system manipulates
the loading procedure, this will yield a different enclave
identity (EID) leading to different cryptographic keys, and
subsequent attestation or unsealing of secrets will fail. To pre-
vent direct code-reuse attacks from leaking sensitive enclave
data to an attacker, TIMBER-V enforces secure entry points
via the TC-tag. Since TC-tag can only be set by TagRoot,
they are tamper-proof. Of course, this does not prevent code-
reuse attacks in case of memory safety vulnerabilities in the
enclave code itself. Achieving memory safety is an ongoing
field of research [16]. If memory safety cannot be guaranteed,
our code hardening transformation can make potential code-
reuse attacks harder by preventing the attacker from misusing
memory instructions to leak sensitive information. Finally,
indirect information leakage due to enclave interruption is
prevented by TagRoot, which clears sensitive register content
before giving control to the operating system.

Shared Memory. In general, enclave regions cannot be modi-
fied during runtime except for shared memory, where enclaves
willingly accept memory region overlaps with other enclaves.
Since this process involves mutual authentication, it cannot be
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misused to open bogus shared memory. Shared memory (shm)
also demands temporal isolation to prevent time-of-check vs
time-of-use (TOCTOU) attacks in two directions. First, if a
shm-offering enclave gets destroyed, a target enclave still has
access to the shm. As long as the target enclave does not
release it, the shm cannot be given to a newly created offering
enclave because TagRoot prevents enclave region overlaps.
Thus, TagRoot supports temporal authenticity of the offering
enclave. Second, if the target enclave gets destroyed after
having accepted a shm offer, it might get reinstantiated and
accept the same shm offer again without the knowledge of the
offering enclave. This allows TOCTOU attacks. To avoid this,
the offering enclave needs to close the shm offer after being
accepted and employ a simple handshake to verify aliveness
of the target enclave. For example, both enclaves could agree
on a session identifier that changes for each enclave restart.

TagRoot. All of the aforementioned analysis critically depends
on the integrity of TagRoot. We assume loading of TagRoot it-
self is protected using secure boot [42]. Once loaded, TagRoot
can protect itself in an isolated execution container similar
to enclaves by using tag isolation via TS-tag and secure entry
points protected via TC-tag together with TS-mode MPU slots.

Dynamic Memory Interleaving. Here, untrusted code offers
N-tag memory to trusted code. To be secure, untrusted argu-
ments need to be validated by trusted code. In particular, one
needs to ensure (i) validity of the memory when claiming it,
and (ii) validity during usage. By claiming dynamic memory
with checked store instructions (etag = N-tag) one can
ensure (i), namely that trusted code does not accidentally
overwrite trusted data in case of bogus memory pointers,
for example. In addition, vertical stack interleaving crosses
privilege modes and, thus, requires additional enclave region
checks, as explained in Section VI-B. Point (ii) is different
for the various interleaving schemes we presented before. In
general, whenever pointers to trusted memory objects can be
manipulated by untrusted code, one needs means to validate
them. For supervisor heap and stack interleaving we introduced
unforgeable headers, uniquely identifying valid ECBs and
interrupt frames. This voids the need for tracking valid objects.
In contrast, for user heap interleaving we recommended to
track pointers to trusted heap objects inside the enclave. Also,
horizontal user stack interleaving with ocalls needs additional
checks of the stack pointer sp when re-entering the enclave.
Here, we store the last valid stack pointer inside the enclave.
By maintaining (i) and (ii), dynamic memory interleaving is
secure against corruption and direct information leakage.

IX. EVALUATION

A. Methodology

We evaluate TIMBER-V by running various macro- and
micro-benchmarks in the Spike simulator, which we ex-
tended to support TIMBER-V. We configure Spike for the
RV32IMAFD ISA and use it to record histograms of all
executed instructions. To estimate the runtime in CPU cycles,
we map executed instructions to actual CPU cycles using
different pipelined CPU models. We first define a simple
baseline model, against which we then compare two possible
realizations of TIMBER-V, namely TIMBER-V Model A, cap-
turing unoptimized implementations, and TIMBER-V Model

TABLE V: Expected CPU cycles per instruction.

CPU model ld st lc
t

sc
t

re
g

m
ul

di
v

ot
he

r

st
al

l

Baseline Model 1 1 - - 1 1 1 1 3
TIMBER-V Model A 2 2 2 3 1 1 1 1 4
TIMBER-V Model B 1.1 1.1 1.1 1.1 1 1 1 1 3.1

B, representing optimized designs with tag caching. It should
be noted that Model B is by no means an upper bound on
the maximum performance achievable. Rather, it presents a
conservative performance estimate based on related work about
tagged memory architectures [31,45,48]. We outline these CPU
models in the following and summarize them in Table V.

Baseline CPU Model. As a baseline we assume that all regis-
ter (reg) or memory instructions (ld/st) take one CPU cycle.
This is reasonable for a load/store architecture as RISC-V
with on-chip SRAM commonly used for embedded processors.
When instructions stall the execution pipeline we assume addi-
tional latency to refill the pipeline. This applies to conditionally
taken branches for indirect jumps as well as to syscalls and
returns and is indicated by the column stall. We assume
that multiplication (mul) and division (div) instructions also
complete within one CPU cycle, which keeps our evaluation
results pessimistic. That is, comparing against this baseline
will show higher overhead than observed in practice, where
multiplication and division typically take multiple cycles.

TIMBER-V CPU Models. Each instruction fetch requires one
additional tag fetch. For the unoptimized Model A, we assume
that this tag fetch can be effectively hidden by the prefetcher.
Thus, linear code fetches do not exhibit overhead and all non-
memory instructions (reg, mul, div and other) take one
cycle. However, when the execution pipeline stalls, the tag
fetching overhead gets visible for the first instruction after the
stall. Thus, we add one extra cycle for stalls. For memory loads
and stores we assume one extra cycle to load and check the tag
on the accessed data. A checked memory load (lct) does not
experience additional overhead since the data’s memory tag
is already loaded for enforcement of the tag isolation policy
and can be readily used for the additional tag check. On the
other hand, for checked memory stores (sct) we assume one
additional cycle to store the new tag. This model does not
make use of tag caching, which could significantly improve
performance. A tag cache can serve tags in parallel to ordinary
memory accesses and thus, hide the tag checking latency for
all cached tags. By comparing state-of-the-art literature on
tagged memory architectures, we observe that tag caching can
reduce the average overhead of tag accesses into the low single
digit range [31,45,48]. Considering that our work utilizes two
tag bits per word, we conservatively estimate the expected
performance impact of the tag operations with 10%, which
is reflected in Model B. The resulting costs for the individual
instruction classes is depicted in the last line of Table V. Again,
the prefetcher hides tag checking latency for instructions, while
a stall is prolonged by 10% of a cycle. Likewise, memory
loads and stores experience 10% overhead. We assume that
checked stores (sct) are not slower than ordinary stores (st)
because the additional tag update latency can be absorbed by
the parallel tag cache.
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Fig. 6: Runtime overhead of TIMBER-V tag isolation for simple CPUs (Model A) and tag caching (Model B).
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Fig. 7: Runtime overhead of the additional code hardening transformation.
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Fig. 8: Runtime overhead of the additional stack interleaving transformation.

B. Macrobenchmarks

To benchmark raw CPU performance, we used the beebs
benchmark suite [4] as well as CoreMark [20]. We compiled
them with GCC version 7.3.0 with “-O1”. We excluded beebs
benchmarks with external dependencies. Also, we filtered
nettle-md5 and fdct due to verification mismatches.
For newlib-log and ns we had to prevent the compiler
from optimizing out essential code by adding volatile and
noinline statements. We ran beebs and CoreMark with one
iteration since our evaluation does not need warm-up iterations
to fill CPU caches but precisely captures all instructions.

Tag Isolation. Our tag isolation policy causes overhead of code
execution for both, N-domains and T-domains. Figure 6 shows
an average runtime overhead of 25.2% for TIMBER-V Model
A with a peak of 47% for nsichneu, which uses frequent
lookup table accesses. insertsort frequently swaps mem-
ory locations, which causes higher overhead. statemate
implements a state machine with frequent state updates and
tarai uses recursion, causing stack accesses to dominate over
other operations. Interestingly, aha-compress shows signif-
icantly less overhead than compress, because it benchmarks
four different CPU intensive compression algorithms with
relatively few memory accesses. The fibcall benchmark
shows least runtime overhead (3.4%) because the recursive
Fibonacci computation can be kept entirely within the CPU
registers. For the optimized TIMBER-V Model B, the average
overhead is as little as 2.6% with a minimum of 0.3% for
fibcall and a maximum of 4.7% for nsichneu. Our
results indicate that even for memory intensive benchmarks
Model B incurs small runtime overhead.

Code Hardening Transformation. Our code hardening trans-
formation adds only negligible overhead, as shown in Figure 7.
This is because the checked instructions are almost a drop-in
replacement for ordinary memory instructions. Since ordinary
memory instructions are subject to tag isolation causing mem-
ory tags to be loaded from memory (this overhead is included
in Figure 6), the additional tag checks of checked instructions
do not incur additional performance penalty. Few benchmarks
show noticeable overhead because the code hardening transfor-
mation in some cases inserts correcting instructions to handle
address overflows, as discussed in Section VII. By integrat-
ing the transformation directly into the compiler, one could
leverage compiler optimization to avoid overflow behavior.

Stack Interleaving. To benchmark the additional overhead
induced by stack interleaving, we compare each TIMBER-V
model without stack interleaving against a compilation with
enabled stack interleaving. The results are shown in Figure 8.
The overhead is highly dependent on good compiler optimiza-
tion and the used stack space. Many benchmarks (e.g., the
memory-intensive nsichneu) show zero overhead for stack
interleaving, since stack frames are optimized out in favor
of CPU registers. The highest overhead (178.8%) occurs for
minver, which allocates a temporary stack buffer of 500
words for computing matrix inverses. The average runtime
overhead of stack interleaving is acceptable with 11.7% for
Model A and 5.9% for Model B. Yet, we see potential for im-
provements in several directions: First, large stack allocations
should be avoided. This is bad practice anyway since there
exists no generic way of handling out-of-memory behavior
on stack allocations. We manually adapted minver to pre-
allocate a large stack buffer in the data segment and observed
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Fig. 9: Runtime overhead of additional heap interleaving.

that the runtime overhead drops from 82% and 178.8% to
negligible 2.5% and 5.6% for Model B and Model A, re-
spectively. Second, since stack interleaving implicitly erases
new stack frames, one can avoid potential double clearing.
We evaluated this for huffbench by manually removing the
calls to memset on stack buffers. This reduces overhead from
7.2% and 8.5% down to 3.9% and 5% for Model B and Model
A, respectively. This task could be automated by a compiler.
Third, one could optimize frequent stack frame allocation
and deallocation in favor of less frequent pre-allocation. For
example, when having frequent calls to the same subfunction
inside a loop, one could pre-allocate the subfunction’s stack
frame at the call site, thus reducing the stack interleaving
overhead from N loop iterations to one.

Heap Interleaving. For heap interleaving we only evaluate
benchmarks that use heaps. We use a simple heap implemen-
tation provided with FreeRTOS, namely heap-4. For heap
interleaving we wrapped (de)allocation routines to claim and
unclaim allocated memory using checked store instructions.
The runtime overhead of heap interleaving is slightly below
14%, as shown in Figure 9, which is comparable to stack
interleaving. We believe further improvements are possible
since our realloc wrappers currently do not reuse existing
allocations but always request new memory with malloc.
The huffbench test shows negligible overhead because it
allocates only one out of many buffers on the heap. Our secure
malloc wrapper acts like calloc, clearing the whole buffer
while changing tags. Likewise, our secure free automatically
erases all data, while restoring the original tags. Thus, for
security critical code that demands such zeroing functionality
anyway, heap interleaving comes virtually for free.

C. Microbenchmarks

In the following, we discuss performance of trusted ser-
vices as well as horizontal transitions between apps and en-
claves. The performance numbers are summarized in Table VI.
We depict SHA256 hashing costs in a separate column.

Trusted OS services. Trusted OS services are invoked like
ordinary functions, hence, the transition denoted as TSenter
has minimal overhead. When returning from a TSenter via
TSleave, all callee-saved registers are cleared to avoid infor-
mation leakage. The following results show the performance
of the individual trusted OS service calls without TSenter
and Tleave overhead. The base cost of create-enclave is
dominated by claiming the ECB. We show the runtime when
creating the first enclave. The runtime slightly increases when
adding more enclaves since we chain all ECB’s in a linked
list. For add-region we show the runtime for adding the
first region. The runtime grows with the number of regions
as well as the number of enclaves due to the region overlap

TABLE VI: Enclave performance in expected CPU cycles.

Functionality TIMBER-V Model B TIMBER-V Model A
Base cost Hash cost Base cost Hash cost

TSenter 7.1 0.0 9.0 0.0
TSleave 27.4 0.0 32.0 0.0
create-enclave 527.5 5647.1 759.0 7175.0
add-region 396.3 5821.6 606.0 7483.0
add-data 212.0 11309.4 340.0 14365.0
add-entries 206.4 5616.2 348.0 7127.0
init-enclave 123.5 5236.6 208.0 6397.0
load-enclave 315.6 0.0 437.0 0.0
destroy-enclave 733.5 0.0 1057.0 0.0Tr

us
te

d
O

S
Se

rv
ic

es

TSyscall 68.3 0.0 71.0 0.0
TSyscall dispatch 71.1 0.0 88.0 0.0
TSyscall return 49.2 0.0 66.0 0.0
get-key 337.5 12216.6 457.0 15686.0
shm-offer 1045.6 0.0 1560.0 0.0
shm-accept 1455.0 0.0 2062.0 0.0
shm-release 231.7 0.0 317.0 0.0
interrupt-enclave 107.7 0.0 175.0 0.0
resume-enclave 103.0 0.0 200.0 0.0Tr

us
te

d
E

nc
l.

Se
rv

ic
es

TUenter 1.0 0.0 1.0 0.0
TUleave 4.1 0.0 5.0 0.0
ocall 16.9 0.0 29.0 0.0

A
pp

-E
nc

l.

ocall return 28.4 0.0 45.0 0.0

checks add-region performs. This variability is acceptable
since overlap checks are cheap. Also, overlap checks are only
performed at enclave initialization but not during runtime. For
add-data and add-entries runtime increases with the
size of the added data blob or the number of added entries,
respectively. This is because changing memory tags as well as
computing the hash measurement depends on the amount of
data. Also, performance slightly depends on the position of the
associated enclave region in the ECB. The base costs are shown
in Table VI when adding one data word or one entry to the first
enclave region. init-enclave has constant overhead. In
contrast, destroy-enclave unclaims all enclave memory
with a linear sweep over the enclave. We show the runtime of
destroying an empty enclave. load-enclave validates the
MPU configuration against the loaded enclave’s ECB, hence
the moderate overhead. Once an enclave is loaded, horizontal
transitions between U-mode (app) and TU-mode (enclave)
experience no principled overhead, as discussed later.

Trusted enclave services. Trusted enclave services are imple-
mented as TSyscalls, which experience slight overhead due to
M-mode trap delegation. TSyscall dispatching includes valida-
tion of the MPU configuration for vertical stack interleaving
and jumping to the correct service routine. A return from a
TSyscall unwinds the dispatcher context, clears all caller-saved
registers and returns back to TU-mode using the RISC-V sret
instruction. In the following we exclude TSyscall, dispatch
and return overhead. get-key computes an HMAC using
two SHA256 computations, hence the overhead. shm-offer
needs to check validity of the arguments—not only their
memory tags but also whether the arguments belong to the
calling enclave. Apart from that, the performance is constant
and independent of other enclaves. shm-accept traverses
the linked list of ECB’s to find a matching SHM offer. For
our benchmarks, the first enclave in the linked list has a
corresponding SHM offer. shm-release only erases the
accepted SHM region from the enclave’s ECB, in our case, the
fifth enclave region. Interruption and resumption of enclaves
(and TagRoot) is quite fast and mainly consists of saving
and restoring the execution context in the interrupt frame. As
before, the performance numbers of interrupt-enclave
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and resume exclude TSyscall latency due to trap delegation,
while TSyscall dispatch and return overhead do not apply here.

TUenter and TUleave. As shown in the last rows of Table VI,
TUenter has no overhead, showing only one jump instruction
into the enclave. TUleave only takes longer because of an
assumed pipeline stall of the ret instruction. When enclaves
call untrusted functions on the outside, these ocalls need to
securely store and verify the stack pointer, as discussed in
Section VI-B. Moreover, an enclave must clear sensitive CPU
registers on TUleave as well as ocalls, which can be automated,
e.g., via so-called edge routines in the SGX SDK [30].

D. Memory Overhead

TIMBER-V adds two tag bits to each 32-bit memory
word, thus introducing 6,25% hardware memory overhead. Our
TIMBER-V architecture directly runs unmodified code and,
thus, does not introduce software memory overhead. Like-
wise, our code hardening transformation does not introduce
memory overhead, since memory instructions are replaced
1:1 with checked instructions. Slight overhead only occurs if
additional instructions are inserted for fixing offset overflows,
as discussed in Section IX-B. Heap interleaving needs small
constant-sized code memory for the allocation hooks but in
turn voids the need for secure heap implementations, which in
total reduces code size. We do not give actual numbers since
this strongly depends on the heap implementation. Stack inter-
leaving needs additional code for stack frame allocation and
deallocation. Currently, we insert checked store instructions for
each allocated word, thus showing 43% overhead in assembler
code lines for the expensive minver benchmark. However,
when optimizing for code size, one could easily achieve con-
stant overhead per stack (de)allocation by embedding checked
stores in a loop. We manually optimized stack interleaving for
minver and reduced the code overhead to 1%.

TagRoot Code Size. We used sloccount to count the
number of source code lines as an estimate of TagRoot’s
complexity. TagRoot consists of 369 lines of assembler code
and 1686 lines of C-code, from which 313 lines are used by
HMAC and SHA256. This code base is fairly small, which is
desirable for a trusted computing base as it reduces the risk of
programming bugs. Also, the small size is beneficial for formal
verification techniques that could help certify our TagRoot
implementation [33]. As a comparison, the used FreeRTOS
operating system has approximately 12 500 lines of code.

X. RELATED WORK

In this section, we compare TIMBER-V against related
work on isolated execution as well as tagged memory.

A. Isolated Execution

Hardware-based isolated execution can be classified
into virtual and physical address-based systems, of which
Maene et al. [36] give an extensive overview. Many schemes
target mid and upper-class processors with virtual memory
support, among which are AEGIS [47], Intel TXT [28], ARM
TrustZone [2], Bastion [10], IBM SecureBlue++ [7], Intel
SGX [37], ISO-X [22]. Sanctum [13] implements the SGX

enclave model on RISC-V with virtual memory, adding addi-
tional side-channel protection. In contrast, we bring enclaves
to smaller RISC-V featuring only limited physical memory.

Physical Address-based Systems. SMART [21], Sancus [40],
Soteria [25], TyTAN [9], and TrustLite [34] implement pro-
gram counter-based memory access control for isolating secure
tasks. Secure task’s memory regions are only accessible when
the program counter is in its code region. Sancus has a
hardware-only TCB and isolates a fixed number of small unin-
terruptible secure tasks stored in pre-defined memory locations.
TyTAN and TrustLite use an execution aware MPU (EA-
MPU) with multiple code and/or data regions per secure task.
TrustLite loads all secure tasks at boot time, while TyTAN
allows dynamic loading and unloading of secure tasks at
runtime. The EA-MPU makes context switches faster but limits
the number of concurrently loaded secure tasks. In contrast,
TIMBER-V supports an arbitrary number of enclaves with
fine-grained, dynamic isolation and multiple entry points.

Secure communication in TrustLite is done via a simple
handshake protocol, where two secure tasks first attest each
other and then use cryptographic session tokens to authen-
ticate messages. In TIMBER-V local enclave attestation and
communication is done implicitly via shared memory, without
using any cryptographic secrets. TyTAN uses a dedicated IPC
proxy task which forwards messages between secure tasks,
introducing copying overhead (1324 CPU cycles). In contrast,
our secure shared memory is a fast alternative for exchanging
bulk data between enclaves.

TrustZone-M [3] supports four security domains like
TIMBER-V. Horizontal and vertical domain transitions require
special instructions, while in TIMBER-V domain switches
are direct, thus imposing zero runtime overhead. TrustZone-
M only supports secure and non-secure tasks, while our
architecture supports mixed processes, where enclaves are
directly embedded in untrusted processes via tagged memory,
thus achieving fine-grained isolation. TrustZone-M optionally
supports two separate MPUs, one for the secure and one for
the non-secure world. We reuse the same MPU across secu-
rity domains, thus saving hardware costs. Also, our dynamic
memory interleaving allows for stack (and heap) reuse, while
TrustZone-M requires separate stacks for each domain.

B. Tagged Memory Architectures

The availability of metadata is the foundation for a mul-
titude of run-time monitoring techniques like various sani-
tizers [44,46], as well as dynamic information flow track-
ing (DIFT) (a.k.a. taint tracking) [43]. Subsequently, many
hardware-based tagged memory architectures have been de-
veloped. In particular, for DIFT, implementations range from
single tag bit schemes with fixed policy (e.g., Minos [14] and
CHERI [52]), over multi-bit schemes with partially config-
urable policy (e.g., Raksha [15], DIFT [48], DIFT with copro-
cessor [32]), to schemes with configurable bit width and fully
programmable policy and enforcement (e.g., FlexiTaint [49],
instruction-grain lifeguards [11], Harmoni [17], PUMP [19]).

Compared to DIFT architectures, TIMBER-V has notably
different characteristics. Firstly, DIFT schemes have a strong
focus on performing tag/taint propagation during ALU opera-
tions. TIMBER-V, on the other hand, does not perform any tag
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propagation but utilizes tags for isolation purposes. Abusing
a DIFT architecture solely for isolation, while possible in
some schemes like Raksha [15] and PUMP [19], is needlessly
wasteful. Secondly, TIMBER-V introduces a new trusted se-
curity domain, and the isolation and update policies depend
on the currently active domain. Partially configurable DIFT
architectures typically do not support such a domain switch.
Finally, even fully programmable DIFT architectures are not
necessarily suited for implementing TIMBER-V. Namely, ar-
chitectures that perform tag operations asynchronously to the
main processor [11,17,32] introduce a TOCTOU gap that can
potentially be used to exfiltrate data from the trusted domain.

Besides DIFT-based architectures, other architectures use
tagged-memory for enforcing various kinds of memory pro-
tection. HardBound [18] implements fat pointers to prevent
spatial memory safety violations. HDFI [45] uses a single tag
bit to protect sensitive data words. However, in HDFI, tag
checks are only performed when reading the data which means
that destructive write operations on sensitive data can not be
prevented but only detected. This property corresponds to the
weak low-watermark policy for objects of the Biba integrity
model [6]. In contrast, TIMBER-V follows the stronger strict
integrity policy of the Biba model by refusing untrusted modi-
fications of trusted data. Compared to that, Mondrian Memory
Protection [53], which uses two tag bits, and Loki [54], using
up to 32 tag bits per word, are more similar to TIMBER-V.
However, both concepts solely use tagged memory to imple-
ment word-wise access permissions which is not sufficient
to implement efficient isolated execution. Additionally, when
different permissions are tightly interleaved, Loki’s tag size is
simply too large for low-end devices that we target.

XI. POSSIBLE EXTENSIONS

The concept of TIMBER-V can be directly applied to other
system components. Together with secure interrupts, flexible
safety-critical systems can be implemented.

Secure Components and Peripherals. One can easily extend
CPU caches with our two tag bits and propagate them to
main memory on cache eviction. Also, memory-mapped I/O
peripherals can benefit from TIMBER-V’s tag isolation policy
by pinning their tag bits in a tag cache. That way, TIMBER-V
can facilitate secure I/O, that is, secure interaction with end
users, sensors, actuators or other networked devices.

Secure Interrupts. Most embedded systems react upon regular
timer or irregular I/O interrupts. TIMBER-V supports secure
interrupts by modifying the M-mode trap delegation mecha-
nism to route interrupts directly to the trusted trap handler,
which is not callable to prevent fake interrupts from S-mode.

Safety-critical Systems. TagRoot is a compact implementation
of isolated execution on top of TIMBER-V. Extending Tag-
Root for safety-critical systems with availability guarantees is
an interesting field of research and should be straight forward.
We denote safety-critical enclaves as safeclaves. To guaran-
tee real-time behavior, safeclaves must be protected against
denial-of-service attacks (DoS). Safeclaves are not triggered
by untrusted code but by external I/O events or recurring
timer periods. TagRoot can intercept safeclave interrupts as
discussed before in order to assuredly trigger safeclave execu-
tion. Obviously, one cannot use dynamic memory interleaving

for safeclaves. Normal enclaves, however, can still benefit
from interleaving. Also, by slightly adapting our shared MPU
design, one can exclude safeclave MPU slots from being
shared, making safeclaves safe against DoS from the OS.

XII. CONCLUSION

We presented TIMBER-V, the first efficient tagged mem-
ory architecture for isolated execution of enclaves. TIMBER-V
minimizes memory overhead of tagged memory by augmenting
tag isolation with MPU isolation. The flexibility of TIMBER-V
enables fine-grained and dynamic management of trusted
memory, enabling novel schemes like stack interleaving. This
reduces memory fragmentation, which is particularly relevant
for low-end devices. A small trust manager provides trusted
services, including secure shared memory. We implemented
and evaluated TIMBER-V to demonstrate its practicality.

ACKNOWLEDGMENTS

This work was partially supported by the TU Graz LEAD
project “Dependable Internet of Things in Adverse Environ-
ments” and by the Austrian Research Promotion Agency (FFG)
via the K-project DeSSnet, which is funded in the context of
COMET – Competence Centers for Excellent Technologies
by BMVIT, BMWFW, Styria and Carinthia. Furthermore, this
research was co-funded by the German Science Foundation,
as part of project S2 and P3 within CRC 1119 CROSSING,
and Intel Collaborative Research Institute for Collaborative
Autonomous & Resilient Systems (ICRI-CARS).

REFERENCES

[1] I. Anati, S. Gueron, S. Johnson, and V. Scarlata. Innovative technology
for CPU based attestation and sealing, 2013. White Paper.

[2] ARM Security Technology: Building a Secure System using TrustZone
Technology, 2009. Ref. no. PRD29-GENC-009492C.

[3] TrustZone technology for ARMv8-M Architecture, 2017. Ref. no.
100690 0200 00 en.

[4] J. Bennett, A. Burgess, S. Cook, K. Eder, S. Hollis, and J. Pallister. Bris-
tol/embecosm embedded benchmark suite. http://beebs.eu/ (Accessed
2018/06/18).

[5] D. J. Bernstein. Cache-Timing Attacks on AES, 2005. https://cr.yp.to/
antiforgery/cachetiming-20050414.pdf. (Accessed 2018/05/29).

[6] K. J. Biba. Integrity Considerations for Secure Computer Systems,
1977. The MITRE Corporation. Tech. Report ESD-TR-76-372.

[7] R. Boivie and P. Williams. SecureBlue++: CPU Support for Secure
Executables, 2012. IBM research report no. RC25369.

[8] A. Bradbury, G. Ferris, and R. Mullins. Tagged memory and minion
cores in the lowRISC SoC, 2014. lowRISC-MEMO 2014-001.

[9] F. F. Brasser, B. E. Mahjoub, A. Sadeghi, C. Wachsmann, and P. Koe-
berl. TyTAN: tiny trust anchor for tiny devices. In Design Automation
Conference – DAC’15, pages 34:1–34:6. ACM, 2015.

[10] D. Champagne and R. B. Lee. Scalable architectural support for trusted
software. In High Performance Computer Architecture – HPCA’10,
pages 1–12. IEEE Computer Society, 2010.

[11] S. Chen, M. Kozuch, P. B. Gibbons, M. P. Ryan, T. Strigkos, T. C.
Mowry, O. Ruwase, E. Vlachos, B. Falsafi, and V. Ramachandran.
Flexible Hardware Acceleration for Instruction-Grain Lifeguards. IEEE
Micro, 29:62–72, 2009.

[12] B. Coppens, I. Verbauwhede, K. D. Bosschere, and B. D. Sutter. Prac-
tical Mitigations for Timing-Based Side-Channel Attacks on Modern
x86 Processors. In Security and Privacy – S&P’09, pages 45–60. IEEE
Computer Society, 2009.

[13] V. Costan, I. A. Lebedev, and S. Devadas. Sanctum: Minimal Hardware
Extensions for Strong Software Isolation. In USENIX Security’16, pages
857–874. USENIX Association, 2016.

14



[14] J. R. Crandall, S. F. Wu, and F. T. Chong. Minos: Architectural support
for protecting control data. TACO, 3:359–389, 2006.

[15] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: a flexible information
flow architecture for software security. In International Symposium on
Computer Architecture – ISCA’07, pages 482–493. ACM, 2007.

[16] A. A. de Amorim, C. Hritcu, and B. C. Pierce. The Meaning of Memory
Safety. In Principles of Security and Trust – POST’18, volume 10804
of LNCS, pages 79–105. Springer, 2018.

[17] D. Y. Deng and G. E. Suh. High-performance parallel accelerator for
flexible and efficient run-time monitoring. In Dependable Systems and
Networks – DSN’12, pages 1–12. IEEE Computer Society, 2012.

[18] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic. Hard-
bound: architectural support for spatial safety of the C programming
language. In Architectural Support for Programming Languages and
Operating Systems – ASPLOS’08, pages 103–114. ACM, 2008.

[19] U. Dhawan, C. Hritcu, R. Rubin, N. Vasilakis, S. Chiricescu, J. M.
Smith, T. F. K. Jr., B. C. Pierce, and A. DeHon. Architectural Support
for Software-Defined Metadata Processing. In Architectural Support for
Programming Languages and Operating Systems – ASPLOS’15, pages
487–502. ACM, 2015.

[20] EEMBC. CoreMark. https://www.eembc.org/coremark/ (Accessed
2018/06/18).

[21] K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito. SMART: Secure
and Minimal Architecture for (Establishing Dynamic) Root of Trust. In
Network and Distributed System Security Symposium – NDSS’12. The
Internet Society, 2012.

[22] D. Evtyushkin, J. Elwell, M. Ozsoy, D. V. Ponomarev, N. B. Abu-
Ghazaleh, and R. Riley. Iso-X: A Flexible Architecture for Hardware-
Managed Isolated Execution. In Symposium on Microarchitecture –
MICRO’14, pages 190–202. IEEE Computer Society, 2014.

[23] E. A. Feustel. The Rice research computer: a tagged architecture.
In American Federation of Information Processing Societies – AFIPS,
volume 40 of AFIPS Conference Proceedings, pages 369–377. AFIPS,
1972.

[24] The GNU Awk User’s Guide. Edition 4.2. https://www.gnu.org/
software/gawk/manual/gawk.html,(Accessed 2018/08/06).
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