
Neural Machine Translation Inspired Binary Code
Similarity Comparison beyond Function Pairs

Fei Zuo†, Xiaopeng Li†, Patrick Young‡, Lannan Luo†*, Qiang Zeng†*, Zhexin Zhang†
†University of South Carolina, ‡Temple University

{fzuo, xl4, zhexin}@email.sc.edu, {lluo, zeng1}@cse.sc.edu

Abstract—Binary code analysis allows analyzing binary code
without having access to the corresponding source code. A binary,
after disassembly, is expressed in an assembly language. This
inspires us to approach binary analysis by leveraging ideas and
techniques from Natural Language Processing (NLP), a fruitful
area focused on processing text of various natural languages. We
notice that binary code analysis and NLP share many analogical
topics, such as semantics extraction, classification, and code/text
comparison. This work thus borrows ideas from NLP to address
two important code similarity comparison problems. (I) Given
a pair of basic blocks of different instruction set architectures
(ISAs), determining whether their semantics is similar; and (II)
given a piece of code of interest, determining if it is contained in
another piece of code of a different ISA. The solutions to these
two problems have many applications, such as cross-architecture
vulnerability discovery and code plagiarism detection.

Despite the evident importance of Problem I, existing solutions
are either inefficient or imprecise. Inspired by Neural Machine
Translation (NMT), which is a new approach that tackles text
across natural languages very well, we regard instructions as
words and basic blocks as sentences, and propose a novel cross-
(assembly)-lingual deep learning approach to solving Problem I,
attaining high efficiency and precision. Many solutions have been
proposed to determine whether two pieces of code, e.g., functions,
are equivalent (called the equivalence problem), which is different
from Problem II (called the containment problem). Resolving
the cross-architecture code containment problem is a new and
more challenging endeavor. Employing our technique for cross-
architecture basic-block comparison, we propose the first solution
to Problem II. We implement a prototype system INNEREYE and
perform a comprehensive evaluation. A comparison between our
approach and existing approaches to Problem I shows that our
system outperforms them in terms of accuracy, efficiency and
scalability. The case studies applying the system demonstrate that
our solution to Problem II is effective. Moreover, this research
showcases how to apply ideas and techniques from NLP to large-
scale binary code analysis.

I. INTRODUCTION

Binary code analysis allows one to analyze binary code
without access to the corresponding source code. It is widely
used for vulnerability discovery, code clone detection, user-side
crash analysis, etc. Today, binary code analysis has become
more important than ever. Gartner forecasts that 8.4 billion IoT
devices will be in use worldwide in 2017, up 31 percent from

2016, and will reach 20.4 billion by 2020 [22]. Due to code
reuse and sharing, a single vulnerability at source code level
may spread across hundreds or more devices that have diverse
hardware architectures and software platforms [52]. However,
it is difficult, often unlikely, to obtain the source code from
the many IoT device companies. Thus, binary code analysis
becomes the only feasible approach.

Given a code component that is known to contain some
vulnerability and a large number of programs that are compiled
for different ISAs, by finding programs that contain similar
code components, more instances of the vulnerability can be
found. Thus, cross-architecture binary code analysis draws great
interests [52], [18], [19], [65].

Our insight. A binary, after disassembly, is represented in some
assembly language. This inspires us to approach binary code
analysis by learning from Natural Language Processing (NLP),
a fruitful area focused on processing natural language corpora
effectively and efficiently. Interestingly, the two seemingly
remote areas—binary code analysis and NLP—actually share
plenty of analogical topics, such as semantics extraction from
code/text, summarization of paragraphs/functions, classification
of code/articles, and code/text similarity comparison. We thus
propose to adapt the ideas, methods, and techniques used in
NLP to resolving binary code analysis problems. As a showcase,
we use this idea to perform cross-architecture binary code
similarity comparison.

Previous work [52], [18], [19], [65] essentially resolves the
code equivalence problem at the function level: given a pair of
functions, it is to determine whether they are equivalent. We
consider a different problem: given a code component, which
can be part of a function (e.g., the code in a web server that
parses the URL) or a set of functions (e.g., an implementation
of a crypto algorithm), to determine whether it is contained
in a program. Thus, it is a code containment problem. The
problem has been emphasized by previous work [27], [37],
[45], [66], [60], [61], [38], but the proposed solutions can only
work for code of the same ISA. Resolving the cross-architecture
code containment problem is a new and important endeavor. A
solution to this problem is critical for tasks such as fine-grained
code plagiarism detection, thorough vulnerability search, and
virus detection. For example, a code plagiarist may steal part
of a function or a bunch of functions, and insert the stolen
code into other code; that is, the stolen code is not necessarily
a function. Code plagiarism detection based on searching for
equivalent functions is too limited to handle such cases.

We define two concrete research problems: (I) given a pair
of binary basic blocks of different instruction set architectures
(ISAs), determining whether their semantics is similar or not;

* Corresponding authors.

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA
ISBN 1-891562-55-X
https://dx.doi.org/10.14722/ndss.2019.23492
www.ndss-symposium.org

and (II) given a piece of critical code, determining whether it is
contained in another piece of code of a different ISA. Problem I
is a core sub-task in recent work on cross-architecture similarity
comparison [52], [18], [19], [65], while Problem II is new.

Solution to Problem I. Problem I is one of the most
fundamental problems for code comparison; therefore, many ap-
proaches have been proposed to resolve it, such as fuzzing [52]
and representing a basic block using some features [18],
[19], [65]. However, none of existing approaches are able to
achieve both high efficiency and precision for this important
problem. Fuzzing takes much time to try different inputs,
while the feature-based representation is imprecise (A SVM
classifier based on such features can only achieve AUC =
85% according to our evaluation). Given a pair of blocks of
different architectures, they, after being disassembled, are two
sequences of instructions in two different assembly languages.
In light of this insight, we propose to learn from the ideas
and techniques of Neural Machine Translation (NMT), a
new machine translation framework based on neural networks
proposed by NLP researchers that handles text across languages
very well [29], [57]. NMT frequently uses word embedding
and Long Short-Term Memory (LSTM), which are capable of
learning features of words and dependencies between words in a
sentence and encoding the sentence into a vector representation
that captures its semantic meaning [50], [48], [64]. In addition
to translating sentences, the NMT model has also been extended
to measure the similarity of sentences by comparing their vector
representations [48], [50].

We regard instructions as words and basic blocks as
sentences, and consider that the task of detecting whether
two basic blocks of different ISAs are semantically similar is
analogous to that of determining whether two sentences of
different human languages have similar meanings. Following
this idea and learning from NMT, we propose a novel neural
network-based cross-(assembly)-lingual basic-block embedding
model, which converts a basic block into an embedding, i.e.,
a high dimensional numerical vector. The embeddings not
only encode basic-block semantics, but also capture semantic
relationships across architectures, such that the similarity of
two basic blocks can be detected efficiently by measuring the
distance between their embeddings.

Recent work [18], [19], [65] uses several manually selected
features (such as the number of instructions and the number
of constants) of a basic block to represent it. This inevitably
causes significant information loss in terms of the contained
instructions and the dependencies between these instructions. In
contrast to using manually selected features, our NMT-inspired
approach applies deep learning to automatically capturing
such information into a vector. Specifically, we propose to
employ LSTM to automatically encode a basic block into
an embedding that captures the semantic information of the
instruction sequence, just like LSTM is used in NMT to
capture the semantic information of sentences. This way, our
cross-(assembly)-lingual deep learning approach to Problem I
achieves both high efficiency and precision (AUC = 98%).

Gemini [65] also applies neural networks. There are two
main differences between Gemini and our work. First, as
described above, Gemini uses manually selected features to
represent a basic block. Second, Gemini handles the code
equivalence problem rather than the code containment problem.

Solution to Problem II. A special case of Problem II,
under the context of a single architecture, is well studied [31],
[28], [2], [55], [54], [21], [37], [58], [56], [60], [27]. No prior
solutions to Problem II under the cross-architecture context
exist. To resolve it, we decompose the control flow graph (CFG)
of the code of interest into multiple paths, each of which can be
regarded as a sequence of basic blocks. Our idea is to leverage
our solution to Problem I (for efficient and precise basic-block
comparison), when applying the Longest Common Subsequence
(LCS) algorithm to comparing the similarity of those paths
(i.e., basic-block sequences). From there, we can calculate the
similarity of two pieces of code quantitatively.

Note that we do not consider an arbitrary piece of code
(unless it is a basic block) as a sentence, because it should
not be simply treated as a straight-line sequence. For example,
when a function is invoked, its code is not executed sequentially;
instead, only a part of the code belonging to a particular path
gets executed. The paths of a function can be scrambled (by
compilers) without changing the semantics of the function.

We have implemented a prototype system INNEREYE
consisting of two sub-systems: INNEREYE-BB to resolving
Problem I and INNEREYE-CC to resolving Problem II. We
have evaluated INNEREYE-BB in terms of accuracy, efficiency
and scalability, and the evaluation results show that it outper-
forms existing approaches by large margins. Our case studies
applying INNEREYE-CC demonstrate that it can successfully
resolve cross-architecture code similarity comparison tasks and
is much more capable than recent work that is limited to
comparison of function pairs. The datasets, neural network
models, and evaluation results are publicly available.1

We summarize our contributions as follows:

• We propose to learn from the successful NMT field
to solve the cross-architecture binary code similarity
comparison problem. We regard instructions as words
and basic blocks as sentences. Thus, the ideas and
methodologies for comparing the meanings of sen-
tences in different natural languages can be adapted
to cross-architecture code similarity comparison.

• We design a precise and efficient cross-(assembly)-
lingual basic block embedding model. It utilizes word
embedding and LSTM, which are frequently used
in NMT, to automatically capture the semantics and
dependencies of instructions. This is in contrast to prior
work which largely ignores such information.

• We propose the first solution to the cross-architecture
code containment problem. It has many applications,
such as code plagiarism detection and virus detection.

• We implement a prototype INNEREYE and evaluate
its accuracy, efficiency, and scalability. We use real-
world software across architectures to demonstrate the
applications of INNEREYE.

• This research successfully demonstrates that it is
promising to approach binary analysis from the angle
of language processing by adapting methodologies,
ideas and techniques in NLP.

1https://nmt4binaries.github.io

2

https://nmt4binaries.github.io

II. RELATED WORK

A. Traditional Code Similarity Comparison

Mono-architecture solutions. Static plagiarism detection or
clone detection includes string-based [2], [5], [16], token-
based [31], [55], [54], tree-based [28], [32], [53], and PDG
(program dependence graph)-based [20], [36], [13], [34]. Some
approaches are source code based, and are less applicable
in practice, especially concerning closed-source software; e.g.,
CCFINDER [31] finds equal suffix chains of source code tokens.
TEDEM [53] introduces tree edit distances to measure code
similarity at the level of basic blocks, which is costly for
matching and does not handle all syntactical variation. Others
compare the semantics of binary code using symbolic execution
and theorem prover, such as BinHunt [21] and CoP [37], but
they are computation expensive and thus not applicable for
large codebases.

Second, dynamic birthmark based approaches include API
birthmark [58], [56], [7] system call birthmark [60], function
call birthmark [58], instruction birthmark [59], [51], and core-
value birthmark [27]. Tamada et al. propose an API birthmark
for Windows application [58]. Schuler et al. propose a dynamic
birthmark for Java [56]. Wang et al. introduce two system
call based birthmarks suitable for programs invoking sufficient
system calls [60]. Jhi et al. propose a core-value based birthmark
for detecting plagiarism [27]. However, as they rely on dynamic
analysis, extending them to other architectures and adapting to
embedded devices would be hard and tedious. Code coverage
of dynamic analysis is another inherent challenge.

Cross-architecture solutions. Recently, researchers start to
address the problem of cross-architecture binary code similarity
detection. Multi-MH and Multi-k-MH [52] are the first two
methods for comparing function code across different archi-
tectures. However, their fuzzing-based basic block similarity
comparison and graph (i.e., CFG) matching-based algorithm
are too expensive to handle a large number of function
pairs. discovRE [18] utilizes pre-filtering to boost CFG based
matching process, but it is still expensive, and the pre-filtering is
unreliable, outputting too many false negatives. Both Esh [14]
and its successor [15] define strands (data-flow slices of basic
blocks) as the basic comparable unit. Esh uses SMT solver to
verify function similarity, which makes it unscalable. As an
improvement, the authors lift binaries to IR level and further
create function-centric signatures [15].

B. Machine Learning-based Code Similarity Comparison

Mono-architecture solutions. Recent research has demon-
strated the usefulness of applying machine learning and deep
learning techniques to code analysis [46], [39], [47], [26],
[63], [25], [49], [23], [39]. White et al. further propose
DeepRepair to detect the similarity between source code
fragments [63]. Mou et al. introduce a tree-based convolutional
neural network based on program abstract syntax trees to
detect similar source code snippets [47]. Huo et al. devise
NP-CNN [26] and LS-CNN [25] to identify buggy source
code files. Asm2Vec [17] produces a numeric vector for each
function based on the PV-DM model [33]. Similarity between
two functions can be measured with the distances between
the two corresponding representation vectors. αDiff [35]
characterizes a binary function using its code feature, invocation

feature and module interactions feature, where the first category
of feature is learned from raw bytes with a DNN. However, this
work only focuses on similarity detection between cross-version
binaries. Zheng et al. [11] independently propose to use word
embedding to represent instructions, but their word-embedding
model does not address the issue of out-of-vocabulary (OOV)
instructions, while handling OOV words has been a critical
step in NLP and is resolved in our system (Section IV-C);
plus, their goal is to recover function signature from binaries
of the same architecture, which is different from our cross-
architecture code similarity comparison task. Nguyen et al.
develop API2VEC for the API elements in source code to
measure code similarity [49], which is not applicable if there
are insufficient API calls.

Cross-architecture solutions. Genius [19] and Gemini [65]
are two prior state-of-the-art works on cross-architecture bug
search. They make use of conventional machine learning and
deep learning, respectively, to convert CFGs of functions into
vectors for similarity comparison. BinGo [8] introduces a
selective inlining technique to capture the function semantics
and extracts partial traces of various lengths to model functions.
However, all of these approaches compare similarity between
functions, and cannot handle code component similarity de-
tection when only a part of a function or code cross function
boundaries is reused in another program.

Summary. Currently, no solutions are able to meet all these
requirements: (a) working on binary code, (b) analyzing code
of different architectures, (c) resolving the code containment
problem. This work fills the gap and proposes techniques for
efficient cross-architecture binary code similarity comparison
beyond function pairs. In addition, it is worth mentioning that
many prior systems are built on basic block representation or
comparison [21], [44], [37], [52], [19]; thus, they can benefit
from our system which provides more precise basic block
representation and efficient comparison.

III. OVERVIEW

Given a query binary code component Q, consisting of
basic blocks whose relation can be represented in a control
flow graph (CFG), we are interested in finding programs, from
a large corpus of binary programs compiled for different archi-
tectures (e.g., x86 and ARM), that contain code components
semantically equivalent or similar to Q. A code component
here can be part of a function or contain multiple functions.

We examine code component semantics at three layers:
basic blocks, CFG paths, and code components. The system
architecture is shown in Figure 1. The inputs are the query
code component and a set of target programs. The front-end
disassembles each binary and constructs its CFG. (1) To model
the semantics of a basic block, we design the neural network-
based cross-lingual basic-block embedding model to represent
a basic block as an embedding. The embeddings of all blocks
are stored in a locality-sensitive hashing (LSH) database for
efficient online search. (2) The path similarity comparison
component utilizes the LCS (Longest Common Subsequence)
algorithm to compare the semantic similarity of two paths, one
from the query code component and another from the target
program, constructed based on the LCS dynamic programming
algorithm with basic blocks as the sequence elements. The

3

Basic-block embedding generation Basic-block embedding generation

Sim (b1, b2)

b1 b2

Instruction embedding generation

B1 B2

Siamese

architecture
Target programs

Front-end

Path similarity comparison

Detection

result

Query code
segment

Neural network-based cross-lingual

basic-block embedding model

Component similarity comparison

Fig. 1: System architecture.

length of the common subsequence is then compared to the
length of the path from the query code component. The ratio
indicates the semantics of the query path as embedded in
the target program. (3) The component similarity comparison
component explores multiple path pairs to collectively calculate
a similarity score, indicating the likelihood of the query code
component being reused in the target program.

Basic Block Similarity Detection. The key is to measure the
similarity of two blocks, regardless of their target ISAs. As
shown in the right side of Figure 1, the neural network-based
cross-lingual basic-block embedding model takes a pair of
blocks as inputs, and computes a similarity score s ∈ [0, 1]
as the output. The objective is that the more the two blocks
are similar, the closer s is to 1, and the more the two blocks
are dissimilar, the closer s is to 0. To achieve this, the model
adopts a Siamese architecture [6] with each side employing
the LSTM [24]. The Siamese architecture is a popular network
architecture among tasks that involve finding similarity between
two comparable things [6], [10]. The LSTM is capable of
learning long range dependencies of a sequence. The two
LSTMs are trained jointly to tolerate the cross-architecture
syntactic variations. The model is trained using a large dataset,
which contains a large number of basic block pairs with a
similarity score as the label for each pair (how to build the
dataset is presented in Section V-D).

A vector representation of an instruction and a basic block
is called an instruction embedding and a block embedding,
respectively. The block embedding model converts each block
into an embedding to facilitate comparison. Specifically, three
main steps are involved in evaluating the similarity of two
blocks, as shown on the right side of Figure 1. (1) Instruction
embedding generation: given a block, each of its instructions
is converted into an instruction embedding using an instruction
embedding matrix, which is learned via a neural network
(Section IV). (2) Basic-block embedding generation: the
embeddings of instructions of each basic block are then fed into
a neural network to generate the block embedding (Section V).
(3) Once the embeddings of two blocks have been obtained,
their similarity can be calculated efficiently by measuring the
distance between their block embeddings.

A prominent advantage of the model inherited from Neural
Machine Translation is that it does not need to select features
manually when training the models; instead, as we will show
later, the models automatically learn useful features during the
training process. Besides, prior state-of-the-art, Genius [19]
and Gemini [65], which use manually selected basic-block

 Neural machine translation made rapid progress recently.

wt

Context words (Ct); window size is 2.

Fig. 2: A sliding window used in skip-gram.

features, largely loses the information such as the semantics of
instructions and their dependencies. As a result, the precision
of our approach outperforms theirs by large margin. This is
shown in our evaluation (Section VII-E3).

IV. INSTRUCTION EMBEDDING GENERATION

An instruction includes an opcode (specifying the operation
to be performed) and zero or more operands (specifying
registers, memory locations, or literal data). For example, mov
eax, ebx is an instruction where mov is an opcode and
both eax and ebx are operands.2 In NMT, words are usually
converted into word embeddings to facilitate further processing.
Since we regard instructions as words, similarly we represent
instructions as instruction embeddings.

Our notations use blackboard bold upper case to denote
functions (e.g., F), capital letters to denote basic blocks (e.g.,
B), bold upper case to represent matrices (e.g., U, W), bold
lower case to represent vectors (e.g., x, yi), and lower case to
represent individual instructions in a basic block (e.g., x1, y2).

A. Background: Word Embedding

A unique aspect of NMT is its frequent use of word
embeddings, which represent words in a high-dimensional
space, to facilitate the further processing in neural networks.
In particular, a word embedding is to capture the contextual
semantic meaning of the word; thus, words with similar contexts
have embeddings close to each other in the high-dimensional
space. Recently, a series of models [42], [43], [4] based on
neural networks have been proposed to learn high-quality word
embeddings. Among these models, Mikolov’s skip-gram model
is popular due to its efficiency and low memory usage [42].

The skip-gram model learns word embeddings by using a
neural network. During training, a sliding window is employed
on a text stream. In Figure 2, for example, a window of size
2 is used, covering two words behind the current word and

2Assembly code in this paper adopts the Intel syntax, i.e., op dst,
src(s).

4

two words ahead. The model starts with a random vector for
each word, and then gets trained when going over each sliding
window. In each sliding window, the embedding of the current
word, wt, is used as the parameter vector of a softmax function
(Equation 1) that takes an arbitrary word wk as a training input
and is trained to predict a probability of 1, if wk appears in the
context Ct (i.e., the sliding window) of wt, and 0, otherwise.

P (wk ∈ Ct|wt) =
exp(wT

t wk)∑
wi∈Ct

exp(wT
t wi)

(1)

where wk, wt, and wi are the embeddings of words wk, wt,
and wi, respectively.

Thus, given an arbitrary word wk, its vector representation
wk is used as a feature vector in the softmax function
parameterized by wt. When trained on a sequence of T words,
the model uses stochastic gradient descent to maximize the
log-likelihood objective J(w) as showed in Equation 2.

J(w) =
1

T

T∑
t=1

∑
wk∈Ct

(log P (wk|wt)) (2)

However, it would be very expensive to maximize J(w),
because the denominator

∑
wi∈Ct

exp(wT
t wi) sums over all

words wi in Ct. To minimize the computational cost, popular
solutions are negative sampling and hierarchical softmax. We
adopt the skip-gram with negative sampling model (SGNS) [43].
After the model is trained on many sliding windows, the
embeddings of each word become meaningful, yielding similar
vectors for similar words. Due to its simple architecture and
the use of the hierarchical softmax, the skip-gram model can
be trained on a desktop machine at billions of words per hour.
Plus, training the model is entirely unsupervised.

B. Challenges

Some unique challenges arise when learning instruction
embeddings. First, in NMT, a word embedding model is usually
trained once using large corpora, such as Wiki, and then reused
by other researchers. However, we have to train an instruction
embedding model from scratch.

Second, if a trained model is used to convert a word that
has never appeared during training, the word is called an out-
of-vocabulary (OOV) word and the embedding generation for
such words will fail. This is a well-known problem in NLP, and
it exacerbates significantly in our case, as constants, address
offsets, labels, and strings are frequently used in instructions.
How to deal with the OOV problem is a challenge.

C. Building Training Dataset

Because we regard blocks as sentences, we use instructions
of each block, called a Block-level Instruction Stream (BIS)
(Definition 1), to train the instruction embedding model.

Definition 1: (Block-level Instruction Stream) Given a basic
block B, consisting of a list of instructions. The block-level
instruction stream (BIS) of B, denoted as π(B), is defined as

π(B) = (b1, · · · , bn)

where bi is an instruction in B.

word2vec

An Instruction embedding matrix Wx86

f1 f2

p (B1(2))
p (B2(2))

p (B1(1))
p (B2(1))
p (B3(1))

p (f1) p (f2)

Fig. 3: Learning instruction embeddings for x86. π(B(j)
i)

represents the i-th block-level instruction stream (BIS) in the
function Fj . Each square in a BIS represents an instruction.

Preprocessing Training Data. To resolve the OOV problem,
we propose to preprocess the instructions in the training dataset
using the following rules: (1) The number constant values are
replaced with 0, and the minus signs are preserved. (2) The
string literals are replaced with <STR>. (3) The function names
are replaced with FOO. (4) Other symbol constants are replaced
with <TAG>. Take the following code snippets as an example:
the left code snippet shows the original assembly code, and
the right one is the preprocessed result.

MOVL %ESI, $.L.STR.31 MOVL ESI, <STR>
MOVL %EDX, $3 MOVL EDX, 0
MOVQ %RDI, %RAX MOVQ RDI, RAX
CALLQ STRNCMP CALLQ FOO
TESTL %EAX, %EAX TESTL EAX, EAX
JE .LBB0_5 JE <TAG>

Note that the same preprocessing rules are applied to
instructions before generating their embeddings. This way, we
can significantly reduce the OOV cases. Our evaluation result
(Section VII-C) shows that, after a large number of preprocessed
instructions are collected to train the model, we encounter very
few OOV cases in the later testing phase. This means the trained
model is readily reusable for other researchers. Moreover,
semantically similar instructions indeed have embeddings that
are close to each other, as predicted.

D. Training Instruction Embedding Model

We adopt the skip-gram negative sampling model as imple-
mented in word2vec [42] to build our instruction embedding
model. As an example, Figure 3 shows the process of training
the model for the x86 architecture. For each architecture, an
architecture-specific model is trained using the functions in our
dataset containing binaries of that architecture. Each function
is parsed to generate the corresponding Block-level Instruction
Streams (BISs), which are fed, BIS by BIS, into the model for
training. The training result is an embedding matrix containing
the numerical representation of each instruction.

The resultant instruction embedding matrix is denoted by
W ∈ Rde×V , where de is the dimensionality of the instruction
embedding selected by users (how to select de is discussed
in Section VII-F) and V is the number of distinct instructions
in the vocabulary. The i-th column of W corresponds to the
instruction embedding of the i-th instruction in the vocabulary
(all distinct instructions form a vocabulary).

5

movq %rsi,80(%rsp)
addq %rax,%rsi
addq %rax,$-1
xorl %edx,%edx
divq %rsi
movq %rdx,96(%rsp)
cmpq %rax,16(%rdx)
jbe .LBB2_68

adds r1, r2, r1
adc r7, r3, r0
subs r0, r1, #1
sbc r1, r7, #0
bl __udivdi3
ldr r3, [sp, #60]
ldr r2, [r3, #16]
ldr r3, [r3, #20]
subs r2, r2, r0
sbcs r2, r3, r1
bhs .LBB2_120

Source code
numblocks = (tmp_len+blocksize-1)/blocksize;
if(numblocks > pre_comp->numblocks)

X86-64 assembly ARM assembly

Fig. 4: C source of a basic block from ec_mult.c in
OpenSSL and the assembly code for two architectures.

V. BLOCK EMBEDDING GENERATION

A straightforward attempt for generating the embedding
of a basic block is to simply compose (e.g., summing up) all
embeddings of the instruction in the basic block. However, this
processing cannot handle the cross-architecture differences, as
instructions that stem from the same source code but belong
to different architectures may have very different embeddings.
This is verified in our evaluation (Section VII-D).

Figure 4 shows a code snippet (containing one basic block)
that has been compiled targeting two different architectures,
x86-64 and ARM. While the two pieces of binary code are
semantically equivalent, they look very different due to different
instructions sets, CPU registers, and memory addressing modes.
The basic block embedding generation should be able to handle
such syntactic variation.

A. Background: LSTM in NLP

RNN is a type of deep neural network that has been
successfully applied to converting word embeddings of a
sentence to a sentence embedding [12], [30]. As a special
kind of RNN, LSTM is developed to address the difficulty of
capturing long term memory in the basic RNN. A limit of 500
words for the sentence length is often used in practice, and a
basic block usually contains less than 500 instructions.

In text analysis, LSTM treats a sentence as a sequence
of words with internal structures, i.e., word dependencies.
It encodes the semantic vector of a sentence incrementally,
left-to-right and word-by-word. At each time step, a new
word is encoded and the word dependencies embedded in
the vector are “updated”. When the process reaches the end of
the sentence, the semantic vector has embedded all the words
and their dependencies, and hence, can be viewed as a feature
representation of the whole sentence. That semantic vector is
the sentence embedding.

B. Cross-lingual Basic-block Embedding Model Architecture

Inspired by the NMT model that compares the similarity of
sentences of different languages, we design a neural network-
based cross-lingual basic-block embedding model to compare
the semantics similarity of basic blocks of different ISAs.
As showed in Figure 5, we design our model as a Siamese
architecture [6] with each side employing the identical LSTM.

Layer 1

Layer n

B1 B2

Fig. 5: Neural network-based basic-block embedding model.
Each shaded box is an LSTM cell.

Our objective is to make the embeddings for blocks of similar
semantics as close as possible, and meanwhile, to make blocks
of different semantics as far apart as possible. A Siamese
architecture takes the embeddings of instructions in two blocks,
B1 and B2, as inputs, and produces the similarity score as
an output. This model is trained with only supervision on a
basic-block pair as input and the ground truth χ(B1,B2) as an
output without relying on any manually selected features.

For embedding generation, each LSTM cell sequentially
takes an input (for the first layer the input is an instruction
embedding) at each time step, accumulating and passing
increasingly richer information. When the last instruction
embedding is reached, the last LSTM cell at the last layer
provides a semantic representation of the basic block, i.e., a
block embedding. Finally, the similarity of the two basic blocks
is measured as the distance of the two block embeddings.

Detailed Process. The inputs are two blocks, B1 and B2, repre-
sented as a sequence of instruction embeddings, (e(1)

1 , · · · , e(1)
T),

and (e(2)
1 , · · · , e(2)

S), respectively. Note that the sequences may
be of different lengths, i.e., |T | 6= |S|, and the sequence lengths
can vary from example to example; both are handled by the
model. An LSTM cell analyzes an input vector coming from
either the input embeddings or the precedent step and updates
its hidden state at each time step. Each cell contains four
components (which are real-valued vectors): a memory state
c, an output gate o determining how the memory state affects
other units, and an input gate i (and a forget gate f , resp.) that
controls what gets stored in (and omitted from, resp.) memory.
For example, an LSTM cell at the first layer in LSTM1 updates
its hidden state at the time step t via Equations 3–8:

i(1)t = sigmoid(Wie
(1)
t + Uix

(1)
t−1 + vi) (3)

f(1)t = sigmoid(Wf e(1)t + Ufx(1)t−1 + vf) (4)

c̃t(1) = tanh(Wce(1)t + Ucx(1)t−1 + vc) (5)

c(1)t = i(1)t �c̃t(1) + f(1)t �c̃t(1) (6)

o(1)t = sigmoid(Woe(1)t + Uox(1)t−1 + vo) (7)

x(1)t = o(1)t �tanh(c
(1)
t) (8)

where � denotes Hadamard (element-wise) product; Wi, Wf ,

6

Clang C/C++
Frontend

LLVM
Optimizer

IR

LLVM X86 Backend

Basic Block Boundary Annotator
IR

LLVM ARM Backend

.

.

.

llvm-gcc
Frontend

GHC
Frontend

.

.

.

Fig. 6: LLVM architecture. The basic-block boundary annotator
is added into the backends of different architectures.

Wc, Wo, Ui, Uf , Uc, Uo are weight matrices; and vi, vf , vc,
vo are bias vectors; they are learned during training. The reader
is referred to [24] for more details.

At the last time step T , the last hidden state at the last layer
provides a vector h(1)

T (resp. h(2)
S), which is the embedding of

B1 (resp. B2). We use the Manhattan distance (∈ [0, 1]) which
is suggested by [48] to measure the similarity of B1 and B2 as
showed in Equation 9:

Sim(B1,B2) = exp(− ‖ h(1)
T − h(2)

S ‖1) (9)

To train the network parameters, we use stochastic gradient
descent (SGD) to minimize the loss function:

min
Wi,Wf ,...,vo

N∑
i=1

(yi − Sim(Bi
1,B

i
2))2 (10)

where yi is the similarity ground truth of the pair < Bi
1,B

i
2 >,

and N the number of basic block pairs in the training dataset.

In the end, once the Area Under the Curve (AUC) value
converges, the training process terminates, and the trained cross-
lingual basic-block embedding model is capable of encoding
an input binary block to an embedding capturing the semantics
information of the block that is suitable for similarity detection.

C. Challenges

There are two main challenges for learning block embed-
dings. First, in order to train, validate and test the basic-block
embedding model, a large dataset containing labeled similar
and dissimilar block pairs is needed. Unlike prior work [65]
that builds the dataset of similar and dissimilar function pairs
by using the function names to establish the ground truth about
the function similarity, it is very challenging to establish the
ground truth for basic blocks because: (a) no name is available
to indicate whether two basic blocks are similar or not, and
(b) even if two basic blocks have been compiled from two
pieces of code, they may happen to be equivalent or similar,
and therefore, it would be incorrect to label them as dissimilar.

Second, many hyperparameters need to be determined
to maximize the model performance. The parameter values
selected for NMT are not necessarily applicable to our model,
and need to be comprehensively examined (Section VII-F).

D. Building Dataset

1) Generating Similar Basic-Block Pairs: We consider two
basic blocks of different ISAs that have been compiled from
the same piece of source code as equivalent. To establish the

ground truth about the block similarity, we modify the backends
of various architectures in the LLVM compiler. As shown in
Figure 6, the LLVM compiler consists of various frontends (that
compile source code into a uniform Intermediate Representation
(IR)), the middle-end optimizer, and various architecture-
dependent backends (that generate the corresponding assembly
code). We modify the backends to add the basic-block boundary
annotator, which not only clearly marks the boundaries of
blocks, but also annotates a unique ID for each generated
assembly block in a way that all assembly blocks compiled
from the same IR block (i.e., the same piece of source code),
regardless of their architectures, will obtain the same ID.

To this end, we collect various open-sourced software
projects, and feed the source code into the modified LLVM
compiler to generate a large number of basic blocks for different
architectures. After preprocessing (Section IV-C) and data
deduplication, for each basic block Bx86, the basic block BARM

with the same ID is sampled to construct one training example
<Bx86, BARM , 1>. By continually sampling, we can collect a
large number of similar basic-block pairs.

2) Generating Dissimilar Basic-Block Pairs: While two ba-
sic blocks with the same ID are always semantically equivalent,
two blocks with different IDs may not necessarily be dissimilar,
as they may happen to be be equivalent.

To address this issue, we make use of n-gram to measure the
text similarity between two basic blocks compiled for the same
architecture at the same optimization level. A low text similarity
score indicates two basic blocks are dissimilar. Next, assume a
block BARM

1 of ARM is equivalent to a block Bx86
1 of x86 (they

have the same ID); and another block Bx86
2 of x86 is dissimilar

to Bx86
1 according to the n-gram similarity comparison. Then,

the two blocks, BARM
1 and Bx86

2 , are regarded as dissimilar,
and the instance <BARM

1 , Bx86
2 , 0> is added to the dataset.

Our experiments set n as 4 and the similarity threshold as 0.5;
that is, if two blocks, through this procedure, have a similarity
score smaller than 0.5, they are labeled as dissimilar. This way,
we can obtain a large number of dissimilar basic-block pairs
across architectures.

VI. PATH/CODE COMPONENT SIMILARITY COMPARISON

Detecting similar code components is an important problem.
Existing work either can only work on a single architecture [60],
[21], [37], [44], [58], [56], [27], or can compare a pair of
functions across architectures [52], [18], [19], [65]. However,
as a critical code part may be inserted inside a function to avoid
detection [28], [27], [37], how to resolve the cross-archite code
containment problem is a new and more challenging problem.

We propose to decompose the CFG of the query code
component Q into multiple paths. For each path from Q,
we compare it to many paths from the target program T ,
to calculate a path similarity score by adopting the Longest
Common Subsequence (LCS) dynamic programming algorithm
with basic blocks as sequence elements. By trying more than
one path, we can use the path similarity scores collectively to
detect whether a component in T is similar to Q.

A. Path Similarity Comparison

A linearly independent path is a path that introduces at least
one new node (i.e., basic block) that is not included in any

7

previous linearly independent paths [62]. Once the starting block
of Q and several candidate starting blocks of T are identified
(presented in Section VI-B), the next step is to explore paths
to calculate a path similarity score. For Q, we select a set of
linearly independent paths from the starting block. We first
unroll each loop in Q once, and adopt the Depth First Search
algorithm to find a set of linearly independent paths.

For each linearly independent path of Q, we need to find the
highest similarity score between the query path and the many
paths of T . To this end, we apply a recently proposed code
similarity comparison approach, called CoP [37] (it is powerful
for handling many types of obfuscations but can only handle
code components of the same architecture). CoP combines
the LCS algorithm and basic-block similarity comparison to
compute the LCS of semantically equivalent basic blocks
(SEBB). However, CoP’s basic-block similarity comparison
relies on symbolic execution and theorem proving, which is
very computationally expensive [40]. On the contrary, our work
adopts techniques in NMT to significantly speed up basic-block
similarity comparison, and hence is much more scalable for
analyzing large codebases.

Here we briefly introduce how CoP applies LCS to detect
path similarity. It adopts breadth-first search in the inter-
procedural CFG of the target program T , combined with the
LCS dynamic programming to compute the highest score of
the LCS of SEBB. For each step in the breadth-first dynamic
programming algorithm, the LCS is kept as the “longest path”
computed so far for a block in the query path. The LCS score
of the last block in the query path is the highest LCS score,
and is used to compute a path similarity score. Definition 2
gives a high-level description of a path similarity score.

Definition 2: (Path Similarity Score) Given a linearly in-
dependent path P from the query code component, and a
target program T . Let Γ = {Pt

1, . . . ,Pt
n} be all of the linearly

independent paths of T , and |LCS(P,Pt
i)| be the length of

the LCS of SEBB between P and Pt
i , Pt

i ∈ Γ. Then, the path
similarity score for P is defined as

ψ(P, T) =
maxPt

i∈Γ |LCS(P,Pt
i)|

|P|

B. Component Similarity Comparison

Challenge. The location that the code component gets embed-
ded into the containing target program is unknown, and it is
possible for it to be inserted into the middle of a function. It
is important to determine the correct starting points so that
the path exploration is not misled to irrelevant code parts of
the target program. This is a unique challenge compared to
function-level code similarity comparison.

Idea. We look for the starting blocks in the manner as follows.
First, the embeddings of all basic blocks of the target program T
are stored in an locality-sensitive hashing database for efficient
online search. Next, we begin with the first basic block in the
query code component Q as the starting block, and search
in the database to find a semantically equivalent basic block
(SEBB) from the target program T . If we find one or several
SEBBs, we proceed with the path exploration (Section VI-A)
on each of them. Otherwise, we choose another block from Q

as the starting block [37], and repeat the process until the last
block of Q is checked.

Component similarity score. We select a set of linearly
independent paths from Q, and compute a path similarity score
for each linearly independent path. Next, we assign a weight
to each path similarity score according to the length of the
corresponding query path. The final component similarity score
is the weighted average score.

Summary. By integrating our cross-lingual basic-block em-
bedding model with an existing approach [37], we have
come up with an effective and efficient solution to cross-
architecture code-component similarity comparison. Moreover,
it demonstrates how the efficient, precise and scalable basic-
block embedding model can benefit many other systems [21],
[37], [44] that rely on basic-block similarity comparison.

VII. EVALUATION

We evaluate INNEREYE in terms of its accuracy, efficiency,
and scalability. First, we describe the experimental settings
(Section VII-A) and discuss the datasets used in our evaluation
(Section VII-B). Next, we examine the impact of preprocessing
on out-of-vocabulary instructions (Section VII-C) and the
quality of the instruction embedding model (Section VII-D). We
then evaluate whether INNEREYE-BB can successfully detect
the similarity of blocks compiled for different architectures
(Problem I). We evaluate its accuracy and efficiency (Sec-
tions VII-E and VII-G), and discuss hyperparameter selection
(Section VII-F). We also compare it with a machine learning-
based basic-block comparison approach that uses a set of
manually selected features [19], [65] (Section VII-E3). Finally,
we present three real-world case studies demonstrating how
INNEREYE-CC can be applied for cross-architecture code
component search and cryptographic function search under
realistic conditions (Problem II) in Section VII-H.

A. Experimental Settings

We adopt word2vec [42] to learn instruction embed-
dings, and implemented our cross-lingual basic-block embed-
ding model in Python using the Keras [9] platform with
TensorFlow [1] as backend. Keras provides a large number
of high-level neural network APIs and can run on top of
TensorFlow. Like the work CoP [37], we require that the
selected linearly independent paths cover at least 80% of the
basic blocks in each query code component; the largest number
of the selected linearly independent paths in our evaluation is 47.
INNEREYE-CC (the LCS algorithm with path exploration) is
implemented in the BAP framework [3] which constructs CFGs
and call graph and builds the inter-procedural CFG. INNEREYE-
CC queries the block embeddings (computed by INNEREYE-
BB) stored in an LSH database. The experiments are performed
on a computer running the Ubuntu 14.04 operating system with
a 64-bit 2.7 GHz Intel® Core(TM) i7 CPU and 32 GB RAM
without GPUs. The training and testing are expected to be
significantly accelerated if GPUs are used.

B. Dataset

We first describe the dataset (Dataset I), as shown in Table I,
used to evaluate the cross-lingual basic-block embedding
model (INNEREYE-BB). All basic-block pairs in the dataset

8

TABLE I: The number of basic-block pairs in the training, validation and testing datasets.
Training Validation Testing Total

Sim. Dissim. Total Sim. Dissim. Total Sim. Dissim. Total Sim. Dissim. Total
O1 35,416 35,223 70,639 3,902 3,946 7,848 4,368 4,354 8,722 43,686 43,523 87,209
O2 45,461 45,278 90,739 5,013 5,069 10,082 5,608 5,590 11,198 56,082 55,937 112,019
O3 48,613 48,472 97,085 5,390 5,397 10,787 6,000 5,988 11,988 60,003 59,857 119,860

Cross-opts 34,118 33,920 68,038 3,809 3,750 7,559 4,554 4,404 8,958 42,481 42,074 84,555

Total 163,608 162,893 326,501 18,114 18,162 36,276 20,530 20336 40,866 202,252 201,391 403,643

are labeled with the similarity ground truth. In particular,
we prepare this dataset using OpenSSL (v1.1.1-pre1) and
four popular Linux packages, including coreutils (v8.29),
findutils (v4.6.0), diffutils (v3.6), and binutils
(v2.30). We use two architectures (x86-64 and ARM) and
clang (v6.0.0) with three different optimization levels (O1-
O3) to compile each program. In total, we obtain 437,104 basic
blocks for x86, and 393,529 basic blocks for ARM.

We follow the approach described in Section V-D to gen-
erate similar/dissimilar basic-block pairs. Totally, we generate
202,252 similar basic-block pairs (one compiled from x86 and
another from ARM; as shown in the 11th column of Table I),
where 43,686 pairs, 56,082 pairs, 60,003 pairs, and 42,481 pairs
are compiled using O1, O2, O3, and different optimization
levels, respectively. Similarly, we generate 201,391 dissimilar
basic-block pairs (as shown in the 12th column of Table I),
where 43,523 pairs, 55,937 pairs, 59,857 pairs, and 42,074 pairs
are compiled using O1, O2, O3, and different optimization
levels, respectively.

C. Evaluation on Out-Of-Vocabulary Instructions

As pre-processing is applied to addressing the issue of out-
of-vocabulary (OOV) instructions (Section IV-C), we evaluate
its impact, and seek to understand: a) how the vocabulary size
(the number of columns in the instruction embedding matrix)
grows with or without pre-processing, and b) the number of
OOV cases in later instruction embedding generation.

To this end, we collect various x86 binaries, and disassemble
these binaries to generate a corpus which contains 6,115,665
basic blocks and 39,067,830 assembly instructions. We then
divide the corpus equally into 20 parts. We counted the
vocabulary size in terms of the percentage of the corpus
analyzed, and show the result in Figure 7. The red line and
the blue line show the growth of the vocabulary size when
pre-processing is and is not applied, respectively. It can be seen
that the vocabulary size grows fast and becomes uncontrollable
when the corpus is not pre-processed.

We next investigate the number of OOV cases, i.e., unseen
instructions, in later instruction embedding generation. We
select two binaries that have never appeared in the previous
corpus, containing 67,862 blocks and 453,724 instructions. We
then count the percentage of unseen instructions that do not
exist in the vocabulary, and show the result in Figure 8. The
red and blue lines show the percentage of unseen instructions
when the vocabulary is built with or without pre-processing,
respectively. We can see that after pre-processing, only 3.7%
unseen instructions happen in later instruction embedding
generation, compared to 90% without pre-processing; (for an
OOV instruction, a zero vector is assigned). This shows that

0 10 20 30 40 50 60 70 80 90 100
0

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75

Th
e

si
ze

 o
f v

oc
ab

ul
ar

y
(

10
6).

With pre-processing
Without pre-processing

Fig. 7: The growth of the vocabulary size.

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

T
he

 p
ro

po
rt

io
n

of
 u

ns
ee

n
in

st
ru

ct
io

ns
 in

 te
st

 c
or

pu
s(

%
).

With pre-processing
Without pre-processing

Fig. 8: The proportion of unseen instructions.

the instruction embedding model with pre-processing has a
good coverage of instructions. Thus, it may be reused by other
researchers and we have made it publicly available.

D. Qualitative Analysis of Instruction Embeddings

We present our results from qualitatively analyzing the
instruction embeddings for the two architectures, x86 and ARM.
We first use t-SNE [41], a useful tool for visualizing high-
dimensional vectors, to plot the instruction embeddings in
a three-dimensional space, as shown in Figure 9. A quick
inspection immediately shows that the instructions compiled for
the same architecture cluster together. Thus the most significant
factor that influences code is the architecture as it introduces
more syntactic variation. This also reveals one of the reasons
why cross-architecture code similarity detection is more difficult
than single-architecture code similarity detection.

We then zoom in Figure 9, and plot a particular x86
instruction MOVZBL EXC,<TAG>[RCX+0] and its neighbors.
We can see that the mov family instructions are close together.

Next, we use the analogical reasoning to evaluate the quality
of the cross-architecture instruction embedding model. To do
this, we randomly pick up eight x86 instructions. For each x86
instruction, we select its similar counterpart from ARM based
on our prior knowledge and experience. We use [x] and {y} to

9

Fig. 9: Visualization of all the instructions for x86 and ARM in 3D space,
and a particular x86 instruction and its neighbor instructions, with t-SNE.

ADD SP,SP,0

SUB SP,SP,0

BEQ <TAG>

BNE <TAG>

CMP R9,0
CMP R7,0

LDR R0,[R4+0]

LDR R0,[R5+0]

ADDQ RSP,0

SUBQ RSP,0

JE <TAG>
JNE <TAG>

TESTL R12D,R12D

TESTL R15D,R15D

MOVQ RDI,[R12+0]

MOVQ RDI,[R14+0]

Fig. 10: Visualization of a set of instructions
for x86 and ARM based on MDS. The blue
circles and red triangles represent x86 instruc-
tions and ARM instructions, respectively.

represent the embedding of an ARM instruction x, and an x86
instruction y, respectively; and cos([x1], [x2]) refers to the
cosine distance between two ARM instructions, x1 and x2. We
have the following findings: (1) cos([ADD SP,SP,0], [SUB
SP,SP,0]) is approximate to cos({ADDQ RSP,0}, {SUBQ
RSP,0}). (2) cos([ADD SP,SP,0], {ADDQ RSP,0}) is ap-
proximate to cos([SUB SP,SP,0], {SUBQ RSP,0}). This
is similar to other instruction pairs. We plot the relative positions
of these instructions in Figure 10 according to their cosine
distance matrix based on MDS. We limit the presented
examples to eight due to space limitation. In our manual
investigation, we find many such semantic analogies that are
automatically learned. Therefore, it shows that the instruction
embedding model learns semantic information of instructions.

E. Accuracy of INNEREYE-BB

We now evaluate the accuracy of our INNEREYE-BB. All
evaluations in this subsection are conducted on Dataset I.

1) Model Training: We divide Dataset I into three parts
for training, validation, and testing: for similar basic-block
pairs, 80% of them are used for training, 10% for validation,
and the remaining 10% for testing; the same splitting rule is
applied to the dissimilar block pairs as well. Table I shows
the statistic results. In total, we have four training datasets: the
first three datasets contain the basic-block pairs compiled with
the same optimization level (O1, O2, and O3), and the last one
contains the basic-block pairs with each one compiled with
a different optimization level (cross-opt-levels). Note that in
all the datasets, the two blocks of each pair are compiled
for different architectures. This is the same for validation
and testing datasets. Note that we make sure the training,
validation, and testing datasets contain disjoint sets of basic
blocks (we split basic blocks into three disjoint sets before
constructing similar/dissimilar basic block pairs). Thus, any
given basic block that appears in the training dataset does not
appear in the validation or testing dataset. Through this, we can
better examine whether our model can work for unseen blocks.
Note that the instruction embedding matrices for different
architectures can be precomputed and reused.

We use the four training datasets to train INNEREYE-BB
individually for 100 epochs. After each epoch, we measure the
AUC and loss on the corresponding validation datasets, and
save the models achieving the best AUC as the base models.

2) Results: We now evaluate the accuracy of the base
models using the corresponding testing datasets. The red lines
in the first four figures in Figure 11, from (a) to (d), are the
ROC curves of the similarity test. As each curve is close to
the left-hand and top border, our models have good accuracy.

To further comprehend the performance of our models
on basic blocks with different sizes, we create small-BB and
large-BB testing subsets. If a basic block contains less than
5 instructions it belongs to the small-BB subset; a block
containing more than 20 instructions belongs to the large-BB
subset. We then evaluate the corresponding ROC. Figure 11e
and Figure 11f show the ROC results evaluated on the large-
BB subset (221 pairs) and small-BB subset (2409 pairs),
respectively, where the basic-block pairs are compiled with
the O3 optimization level. The ROC results evaluated on the
basic-block pairs compiled with other optimization levels are
similar, and are omitted here due to the page limit. We can
observe that our models achieve good accuracy for both small
blocks and large ones. Because a small basic block contains
less semantic information, the AUC (=94.43%) of the small-
BB subset (Figure 11f) is slightly lower than others. Moreover,
as there are a small portion (4.4%) of large BB pairs in the
training dataset, the AUC (=94.97%) of the large-BB subset
(Figure 11e) is also slightly lower; we expect this could be
improved if more large BB pairs are seen during training.

3) Comparison with Manually Selected Features: Several
methods are proposed for cross-architecture basic block similar-
ity detection, e.g., fuzzing [52], symbolic execution [21], [37],
and basic-block feature-based machine learning classifier [19].
Fuzzing and symbolic execution are much slower than our deep
learning based approach. We thus compare our model against
the SVM classifier using six manually selected block features
adopted in Gemini, such as the number of instructions and
the number of constants (see Table 1 in [65].

We extract the six features from each block to represent
the block, and use all blocks in the training dataset to train
the SVM classifier. We adopt leave-one-out cross-validation
with K = 5 and use the Euclidean distance to measure the
similarity of blocks. By setting the complexity parameter c =
1.0, γ = 1.0 and choosing the RBF kernel, the SVM classifier
achieves the best AUC value. Figure 11 shows the comparison
results on different testing subsets. We can see that our models
outperform the SVM classifier and achieve much higher AUC
values. This is because the manually selected features largely

10

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
iti

ve
 R

at
e

Our model, AUC=98.09%
SVM model, AUC=87.33%

(a) O1

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
iti

ve
 R

at
e

Our model, AUC=97.64%
SVM model, AUC=86.47%

(b) O2

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
iti

ve
 R

at
e

Our model,
SVM model,

AUC=97.49%
AUC=85.40%

(c) O3

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
iti

ve
 R

at
e

Our model, AUC=97.89%
SVM model, AUC=85.28%

(d) Cross-opt-levels

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
iti

ve
 R

at
e

 Our model, AUC=94.97%
SVM model, AUC=79.24%

(e) Large basic blocks in O3

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
iti

ve
 R

at
e

 Our model, AUC=94.43%
SVM model, AUC=69.51%

(f) Small basic blocks in O3

Fig. 11: The ROC evaluation results based on the four testing datasets.

lose the instruction semantics and dependency information,
while INNEREYE-BB precisely encodes the block semantics.

Examples. Table II shows three pairs of similar basic-block
pairs (after pre-processing) that are correctly classified by
INNEREYE-BB, but misclassified by the statistical feature-
based SVM model. Note that the pre-processing does not
change the statistical features of basic blocks; e.g., the number
of transfer instructions keeps the same before and after pre-
processing. Our model correctly reports each pair as similar.

Table III shows three pairs of dissimilar basic-block pairs
(after pre-processing) that are correctly classified by INNEREYE-
BB, but misclassified by the SVM model. As the statistical
features of two dissimilar blocks tend to be similar, the SVM
model—which ignores the meaning of instructions and the
dependency between them—misclassifies them as similar.

F. Hyperparameter Selection for INNEREYE-BB

We next investigate the impact of different hyperparameters
on INNEREYE-BB. In particular, we consider the number of
epochs, the dimensionality of the embeddings, network depth,
and hidden unit types. We use the validation datasets of Dataset
I to examine the impact of the number of epochs, and the testing
datasets to examine the impact of other hyperparameters.

1) Number of Epochs: To see whether the accuracy of the
model fluctuates during training, we trained the model for
200 epochs and evaluated the model every 10 epochs for the
AUC and loss. The results are displayed in Figure 12a and
Figure 12b. We observe that the AUC value steadily increases

and is stabilized at the end of epoch 20; and the loss value
decreases quickly and almost stays stable after 20 epochs.
Therefore, we conclude that the model can be quickly trained
to achieve good performance.

2) Embedding Dimensions: We next measure the impact of
the instruction embedding and block embedding dimensions.

Instruction embedding dimension. We vary the instruction
embedding dimension, and evaluate the corresponding AUC
values shown in Figure 12c. We observe that increasing the
embedding dimensions yields higher performance; and the
AUC values corresponding to the embedding dimension higher
than 100 are close to each other. Since a higher embedding
dimension leads to higher computational costs (requiring longer
training time), we conclude that a moderate dimension of 100
is a good trade-off between precision and efficiency.

Block embedding dimension. Next, we vary the block embed-
ding dimension, and evaluate the corresponding AUC values
shown in Figure 12d. We observe that the performance of the
models with 10, 30 and 50 block embedding dimensions are
close to each other. Since a higher embedding dimension leads
to higher computational costs, we conclude that a dimension
of 50 for block embeddings is a good trade-off.

3) Network Depth: We then change the number of layers
of each LSTM, and evaluate the corresponding AUC values.
Figure 12e shows that the LSTM networks with two and three
layers outperform the network with a single layer, and the
AUC values for the networks with two and three layers are
close to each other. Because adding more layers increases the

11

TABLE II: Examples of similar BB pairs that are correctly classified by INNEREYE-BB, but misclassified by the SVM model.

Pair 1 Pair 2 Pair 3
x86 ARM x86 ARM x86 ARM

MOVSLQ RSI,EBP LDRB R0,[R8+R4] MOVQ RDX,<TAG>+[RIP+0] LDR R2,[R8+0] MOVQ [RSP+0],RBX LDR R0,[SP+0]
MOVZBL ECX,[R14,RBX] STR R9,[SP] MOVQ RDI,R12 MOV R0,R4 MOVQ [RSP+0],R14 STR R9,[SP+0]
MOVL EDX,<STR> STR R0,[SP+0] MOVL ESI,R14D MOV R1,R5 ADDQ RDI,0 STR R0,[SP+0]
XORL EAX,EAX ASR R3,R7,0 CALLQ FOO BL FOO CALLQ FOO ADD R0,R1,0
MOVQ RDI,R13 MOV R0,R6 MOVQ RDI,R12 MOV R0,R4 MOVL ESI,<TAG> BL FOO
CALLQ FOO MOV R2,R7 CALLQ FOO BL FOO MOVQ RDI,[R12] LDR R7,<TAG>
TESTL EAX,EAX BL FOO MOVQ RDX,<TAG>+[RIP+0] LDR R2,[R8+0] MOVB [RDI+0],AL LDR R1,[R6]
JLE <TAG> CMP R0,0 MOVQ RDI,R12 MOV R0,R4 CMPB [RDI+0],0 LDR LR,[SP+0]

BLT <TAG> MOVL ESI,R14D MOV R1,R5 JNE <TAG> MOV R12,R7
CALLQ FOO BL FOO STRB R0,[R1+0]
TESTL EAX,EAX CMP R0,0 B <TAG>
JNE <TAG> BNE<TAG>

TABLE III: Examples of dissimilar BB pairs that are correctly classified by INNEREYE-BB, but misclassified by the SVM model.

Pair 4 Pair 5 Pair 6
x86 ARM x86 ARM x86 ARM

IMULQ R13,RAX,0 MOV R1,R0 XORL R14D,R14D LDMIB R5,R0,R1 MOVL [RSP+0],R14D SUB R2,R1,0
XORL EDX,EDX LDR R6,[SP+0] TESTQ RBP,RBP CMP R0,R1 MOVQ RAX,[RSP+0] MOV R10,0
MOVQ RBP,[RSP+0] CMP R0, 0 JE <TAG> BHS <TAG> CMPB [RAX],0 CMP R2,0
DIVQ RBP BEQ <TAG> MOVQ [RSP+0],R13 MOV R9,0
JMP <TAG> MOVQ [RSP+0],R15 BHI <TAG>

JNE <TAG>

0 20 40 60 80 100 120 140 160 180 200
Epoch

0.79
0.82
0.85
0.88
0.91
0.94
0.97
1.00

AU
C

O1
O2
O3
Cross-opt-levels

(a) AUC vs. # of epochs.

0 20 40 60 80 100 120 140 160 180 200
Epoch

0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

Lo
ss

O1
O2
O3
Cross-opt-levels

(b) Loss vs. # of epochs.

(%) Optimization levels Cross
O1 O2 O3 -opts

50 95.77 95.23 94.97 95.39
100 96.83 96.33 95.99 95.82
150 96.89 96.33 96.24 95.86

(c) AUC vs. instruction embedding dimensions.

(%) Optimization levels Cross
O1 O2 O3 -opts

10 95.57 95.73 95.48 95.59
30 95.88 95.65 96.17 95.45
50 96.83 96.33 95.99 95.82

(d) AUC vs. block embedding dimensions.

(%) Optimization levels Cross
O1 O2 O3 -opts

1 95.88 95.65 96.17 95.45
2 97.83 97.49 97.59 97.45
3 98.16 97.39 97.48 97.76

(e) AUC vs. # of network layers.

(%) Optimization levels Cross
O1 O2 O3 -opts

LSTM 96.83 96.33 95.99 95.82
GRU 96.15 95.30 95.83 95.71
RNN 91.39 93.26 92.60 92.66

(f) AUC vs. network hidden unite types.

Fig. 12: Impact of different hyperparameters. Figure 12a and Figure 12b are evaluated on the validation datasets of Dataset I, and
others are evaluated on its testing datasets.

computational complexity and does not help significantly on
the performance, we choose the network depth as 2.

4) Network Hidden Unit Types: As a simpler-version of
LSTM, Gated Recurrent Unit (GRU) has become increasingly
popular. We conduct experiments on comparing three types
of network units, including LSTM, GRU as well as RNN.
Figure 12f shows the comparison results. It can be seen that
LSTM and GRU are more powerful than the basic RNN, and
LSTM shows the highest AUC values.

G. Efficiency of INNEREYE-BB

1) Training Time: We first analyze the training time for
both the instruction and basic-block embedding models.

Instruction embedding model training time. The training
time is linear to the number of epochs and the corpus size. We
use Dataset I, containing 437,104 blocks for x86 and 393,529
blocks for ARM, with 6,199,651 instructions in total, as the
corpus to train the instruction embedding model. The corpus
contains 49,760 distinct instructions which form a vocabulary.
We use 10−5 as the down sampling rate and set the parameter
mini-word-count as zero (no word is ignored during
training), and train the model for 100 epochs. Table IV shows
the training time with respect to different instruction embedding
dimensions. We can see that the instruction embedding model
can be trained in a very short period of time.

Block embedding model training time. We next evaluate the

12

(a) Training time of single-layer networks with
respect to different hidden unit types.

(b) Training time of LSTMs with respect to
different number of network layers

Fig. 13: Training time of the basic-block embedding model. The instruction
embedding dimension is 100, and the block embedding dimension is 50. The
number above each bar is the time (second per epoch) used to train the model.

(Second) Optimization levels Cross
O1 O2 O3 -opts

L=1, D=30 3.040 3.899 4.137 2.944
L=1, D=50 3.530 4.702 4.901 3.487
L=2, D=30 6.359 8.237 8.780 6.266
L=2, D=50 6.663 8.722 9.139 6.625

Fig. 14: Testing time of INNEREYE-BB with
respect to different number of network layers
and block embedding dimensions. The instruc-
tion embedding dimension is 100. L denotes
the number of network layers. D denotes the
block embedding dimension.

TABLE IV: Training time of the instruction embedding model
with respect to different embedding dimensions.

Instruction embedding dimension 50 100 150
Training time (second) 82.71 84.22 89.75

time used for training the basic-block embedding model. The
training time is linear to the number of epochs and the number
of training samples. The results are showed in Figure 13. The
number above each bar is the time (second per epoch) used
to train the model. Figure 13a shows the training time with
respect to different types of network hidden unit. Figure 13b
displays the training time of the LSTM networks in terms of
different number of network layers. In general, LSTM takes
longer training time, and a more complicated model (with more
layers) requires more time per epoch.

Earlier we have shown that the block embedding model
with 2 network layers and 20 epochs of training can achieve a
good performance (Section VII-F), which means that it requires
five and a half hours (=(213 + 275 + 290 + 193)× 20/3600)
to train the four models on the four training subsets, and each
model takes around an hour and a half for training. With a
single network layer, each model only needs about 40 mins
for training and can still achieve a good performance.

2) Testing Time: We next investigate the testing time of
INNEREYE-BB. We are interested in the impacts of the number
of network layers and the dimension of block embeddings,
in particular. Figure 14 summaries the similarity test on the
four testing datasets in Dataset I. The result indicates that the
number of network layers is the major contributing factor of
the computation time. Take the second column as an example.
For a single-layer LSTM network with the block embedding
dimension as 50, it takes 0.41 ms (= 3.530/8722) on average
to measure the similarity of two blocks, while a double-layer
LSTM network requires 0.76 ms (= 6.663/8722) on average.

Comparison with Symbolic Execution. We compare the
proposed embedding model with one previous basic-block
similarity comparison tool which relies on symbolic execution
and theorem proving [37]. We randomly select 1,000 block
pairs and use the symbolic execution-based tool to measure
the detection time for each pair. The result shows that the
INNEREYE-BB runs 3700x to 140000x faster, and the speedup
can be as high as 8000x on average.

The reason for the high efficiency of our model is that
most computations of INNEREYE-BB are implemented as

easy-to-compute matrix operations (e.g., matrix multiplication,
matrix summation, and element-wise operations over a matrix).
Moreover, such operations can be parallelized to utilize multi-
core CPUs or GPUs to achieve further speedup.

H. Code Component Similarity Comparison

We conduct three case studies to demonstrate how
INNEREYE-CC can handle real-world programs for cross-
architecture code component similarity detection.

1) Thttpd: This experiment evaluated thttpd (v2.25b) and
sthttpd (v2.26.4), where sthttpd is forked from thttpd
for maintenance. Thus, their codebases are similar, with many
patches and new building systems added to sthttpd. To
measure false positives, we tested our tool on four independent
programs, including thttpd (v2.25b), atphttpd (v0.4b),
boa (v0.94.13), and lighttpd (v1.4.30). We use two archi-
tectures (x86 and ARM) and clang with different compiler
optimization levels (O1-O3) to compile each program.

We consider a part of the httpd_parse_request
function as well as the functions invoked within this code part
from thttpd as the query code component, and check whether
it is reused in sthttpd. Such code part checks for HTTP/1.1
absolute URL and is considered as critical. We first identify
the starting blocks both in the query code component and the
target program sthttpd (Section VI-B), and proceed with the
path exploration to calculate the similarity score, which is 91%,
indicating that sthttpd reuses the query code component. The
whole process is finished within 2 seconds. However, CoP [37]
(it uses symbolic execution and theorem proving to measure
the block similarity) takes almost one hour to complete. Thus,
by adopting techniques in NMT to speed up block comparison,
INNEREYE is more efficient and scalable.

To measure false positives, we test INNEREYE against
four independently developed programs. We use the query
code component to search for the similar code components in
atphttpd (v0.4b), boa (v0.94.13), and lighttpd (v1.4.30).
Very low similarity scores (below 4%) are reported, correctly
indicating that these three programs do not reuse the query
code component.

2) Cryptographic Function Detection: We next apply
INNEREYE to the cryptographic function detection task.
We choose MD5 and AES as the query functions, and
search for their implementations in 13 target programs
ranging from small to large real-world software, including

13

cryptlib (v3.4.2), OpenSSL (v1.0.1f), openssh (v6.5p1),
git (v1.9.0), libgcrypt (v1.6.1), truecrypt (v7.1a),
berkeley DB (v6.0.30), MySQL (v5.6.17), glibc (v2.19),
p7zip (v9.20.1), cmake (v2.8.12.2), thttpd (v2.25b), and
sthttpd (v2.26.4). We use x86 and ARM, and clang with
O1–O3 optimization levels to compile each program.

MD5. MD5 is a cryptographic hash function that produces
a 128-bit hash value. We first extract the implementation of
MD5 from OpenSSL compiled targeting x86 with -O2. The
part of the MD5 code that implements message compressing
is selected as the query.

We use the query code component to search for similar code
components from the target programs. The results show that
cryptlib, openssh, libgcrypt, MySQL, glibc, and
cmake implement MD5 with similarity scores between 88%
and 93%. We have checked the source code and confirmed it.

AES. AES is a 16-byte block cipher and processes input via a
substitution-permutation network. We extract the implementa-
tion of AES from OpenSSL compiled for ARM with -O2, and
select a part of the AES code that implements transformation
iterations as the query code component.

We test the query code component to check whether it
is reused in the target programs, and found that cryptlib,
openssh, libgcrypt, truecrypt, berkeley DB, and
MySQL contain AES with the similarity scores between 86%
and 94%, and the others do not. We have checked the source
code and obtained consistent results.

The case studies demonstrate that INNEREYE-CC is an
effective and precise tool for cross-architecture binary code
component similarity detection.

VIII. DISCUSSION

We chose to modify LLVM to prepare similar/dissimilar
basic blocks, as LLVM is well structured as passes and thus it
is easier to add the basic block boundary annotator to LLVM
than GCC. However, the presented model merely learned from
binaries compiled by LLVM. We have not evaluated how well
our model can be used to analyze binaries in the case binaries
are compiled using diverse compilers. As word embeddings
and LSTM are good at extracting instruction semantics and
their dependencies, we believe our approach itself is compiler-
agnostic. We will verify this point in our future work.

We evaluated our tool on its tolerability of the syntactic
variation introduced by different architectures and compiling
settings; but we have not evaluated the impact of code
obfuscation. How to handle obfuscations on the basic block
level without relying on expensive approaches such as symbolic
execution is a challenging and important problem. We plan
to explore, with plenty of obfuscated binary basic blocks in
the training dataset, whether the presented model can handle
obfuscations by properly capturing the semantics of binary basic
blocks. But it is notable that, at the program path level, our
system inherits the powerful capability of handling obfuscations
due to, e.g., garbage code insertion and opaque predicate
insertion, from CoP [37].

Finally, it is worth pointing out that, as many prior systems
are built on basic block comparison or representation [21],

[44], [37], [52], [19], they can benefit from our block embed-
ding model, which provides precise and efficient basic block
information extraction and comparison.

IX. CONCLUSION

Inspired by Neural Machine Translation, which is able to
compare the meanings of sentences of different languages, we
propose a novel neural network-based basic-block similarity
comparison tool INNEREYE-BB by regarding instructions
as words and basic block as sentences. We thus borrow
techniques from NMT: word embeddings are used to represent
instructions and then LSTM is to encode both instruction
embeddings and instruction dependencies. It is the first tool
that achieves both efficiency and accuracy for cross-architecture
basic-block comparison; plus, it does not rely on any manually
selected features. By leveraging INNEREYE-BB, we propose
the first tool INNEREYE-CC that resolves the cross-architecture
code containment problem. We have implemented the system
and performed a comprehensive evaluation. This research
successfully demonstrates that it is promising to approach binary
analysis from the angle of language processing by adapting
methodologies, ideas and techniques in NLP.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their constructive comments and feedback. This project was
supported by NSF CNS-1815144 and NSF CNS-1856380.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning.” in OSDI, 2016.

[2] B. S. Baker, “On finding duplication and near-duplication in large
software systems,” in WCRE, 1995.

[3] BAP: The Next-Generation Binary Analysis Platform, “http://bap.ece.
cmu.edu/,” 2013.

[4] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural
probabilistic language model,” Journal of Machine Learning Research,
vol. 3, no. Feb, pp. 1137–1155, 2003.

[5] M. Bilenko and R. J. Mooney, “Adaptive duplicate detection using
learnable string similarity measures,” in KDD, 2003.

[6] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature
verification using a "Siamese" time delay neural network,” in NIPS,
1994.

[7] D.-K. Chae, S.-W. Kim, J. Ha, S.-C. Lee, and G. Woo, “Software
plagiarism detection via the static API call frequency birthmark,” in
Annual ACM Symposium on Applied Computing (SAC), 2013.

[8] M. Chandramohan, Y. Xue, Z. Xu, Y. Liu, C. Y. Cho, and H. B. K. Tan,
“BinGo: Cross-architecture cross-OS binary search,” in FSE, 2016.

[9] F. Chollet et al., “Keras,” https://keras.io, 2015.
[10] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric

discriminatively, with application to face verification,” in CVPR, 2005.
[11] Z. L. Chua, S. Shen, P. Saxena, and Z. Liang, “Neural nets can learn

function type signatures from binaries,” in USENIX Security, 2017.
[12] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of

gated recurrent neural networks on sequence modeling,” in NIPS Deep
Learning and Representation Learning Workshop, 2014.

[13] J. Crussell, C. Gibler, and H. Chen, “Attack of the clones: Detecting
cloned applications on android markets,” in ESORICS, 2012.

[14] Y. David, N. Partush, and E. Yahav, “Statistical similarity of binaries,”
in PLDI, 2016.

[15] Y. David, N. Partush, and E. Yahav, “Similarity of binaries through
re-optimization,” in PLDI, 2017.

14

https://keras.io

[16] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” Journal of the
American society for information science, vol. 41, no. 6, pp. 391–407,
1990.

[17] S. H. Ding, B. C. Fung, and P. Charland, “Asm2vec: Boosting
static representation robustness for binary clone search against code
obfuscation and compiler optimization,” in IEEE Symposium on Security
and Privacy (SP), 2019.

[18] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, “discovRE: Efficient
cross-architecture identification of bugs in binary code.” in NDSS, 2016.

[19] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, “Scalable
graph-based bug search for firmware images,” in CCS, 2016.

[20] M. Gabel, L. Jiang, and Z. Su, “Scalable detection of semantic clones,”
in ICSE, 2008.

[21] D. Gao, M. Reiter, and D. Song, “Binhunt: Automatically finding
semantic differences in binary programs,” in ICICS, 2008.

[22] Gartner says 8.4 billion connected "Things" will be in use in 2017,
“http://www.gartner.com/newsroom/id/3598917,” 2017.

[23] Z. Han, X. Li, Z. Xing, H. Liu, and Z. Feng, “Learning to predict
severity of software vulnerability using only vulnerability description,”
in International Conference on Software Maintenance and Evolution
(ICSME), 2017.

[24] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[25] X. Huo and M. Li, “Enhancing the unified features to locate buggy files
by exploiting the sequential nature of source code,” in IJCAI, 2017.

[26] X. Huo, M. Li, and Z.-H. Zhou, “Learning unified features from natural
and programming languages for locating buggy source code.” in IJCAI,
2016.

[27] Y.-C. Jhi, X. Wang, X. Jia, S. Zhu, P. Liu, and D. Wu, “Value-based
program characterization and its application to software plagiarism
detection,” in ICSE, 2011.

[28] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” in ICSE, 2007.

[29] N. Kalchbrenner and P. Blunsom, “Recurrent continuous translation
models.” in EMNLP, 2013.

[30] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional
neural network for modelling sentences,” in CIKM, 2013.

[31] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, 2002.

[32] R. Koschke, R. Falke, and P. Frenzel, “Clone detection using abstract
syntax suffix trees,” in WCRE, 2006.

[33] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in ICML, 2014.

[34] J. Li and M. D. Ernst, “CBCD: Cloned buggy code detector,” in ICSE,
2012.

[35] B. Liu, W. Huo, C. Zhang, W. Li, F. Li, A. Piao, and W. Zou, “αDiff:
cross-version binary code similarity detection with DNN,” in ASE, 2018.

[36] C. Liu, C. Chen, J. Han, and P. S. Yu, “GPLAG: detection of software
plagiarism by program dependence graph analysis,” in KDD, 2006.

[37] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with applications
to software plagiarism detection,” in FSE, 2014.

[38] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with applications
to software and algorithm plagiarism detection,” IEEE Transactions on
Software Engineering, no. 12, pp. 1157–1177, 2017.

[39] L. Luo and Q. Zeng, “SolMiner: mining distinct solutions in programs,”
in ICSE-C, 2016.

[40] L. Luo, Q. Zeng, C. Cao, K. Chen, J. Liu, L. Liu, N. Gao, M. Yang,
X. Xing, and P. Liu, “System service call-oriented symbolic execution
of android framework with applications to vulnerability discovery and
exploit generation,” in Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and Services. ACM, 2017,
pp. 225–238.

[41] L. v. d. Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal
of Machine Learning Research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[42] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in ICLR Workshop, 2013.

[43] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their compositionality,”
in NIPS, 2013.

[44] J. Ming, M. Pan, and D. Gao, “iBinHunt: Binary hunting with
inter-procedural control flow,” in Annual International Conference on
Information Security and Cryptology (ICISC), 2012.

[45] J. Ming, F. Zhang, D. Wu, P. Liu, and S. Zhu, “Deviation-based
obfuscation-resilient program equivalence checking with application
to software plagiarism detection,” IEEE Transactions on Reliability,
2016.

[46] S. A. Mokhov, J. Paquet, and M. Debbabi, “The use of NLP techniques
in static code analysis to detect weaknesses and vulnerabilities,” in
Canadian Conference on Artificial Intelligence, 2014.

[47] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural
networks over tree structures for programming language processing.” in
AAAI, 2016.

[48] J. Mueller and A. Thyagarajan, “Siamese recurrent architectures for
learning sentence similarity,” in AAAI, 2016.

[49] T. D. Nguyen, A. T. Nguyen, H. D. Phan, and T. N. Nguyen, “Exploring
API embedding for API usages and applications,” in ICSE, 2017.

[50] H. Palangi, L. Deng, Y. Shen, J. Gao, X. He, J. Chen, X. Song, and
R. Ward, “Deep sentence embedding using long short-term memory
networks: Analysis and application to information retrieval,” IEEE/ACM
Transactions on Audio, Speech and Language Processing (TASLP), 2016.

[51] H. Park, S. Choi, H.-i. Lim, and T. Han, “Detecting code theft via a
static instruction trace birthmark for Java methods,” in International
Conference on Industrial Informatics (INDIN), 2008.

[52] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, “Cross-
architecture bug search in binary executables,” in IEEE Symposium on
Security and Privacy (SP), 2015.

[53] J. Pewny, F. Schuster, L. Bernhard, T. Holz, and C. Rossow, “Leveraging
semantic signatures for bug search in binary programs,” in ACSAC, 2014.

[54] L. Prechelt, G. Malpohl, and M. Philippsen, “Finding plagiarisms among
a set of programs with JPlag,” Journal of Universal Computer Science,
vol. 8, no. 11, pp. 1016–1038, 2002.

[55] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: local
algorithms for document fingerprinting,” in SIGMOD, 2003.

[56] D. Schuler, V. Dallmeier, and C. Lindig, “A dynamic birthmark for Java,”
in ASE, 2007.

[57] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in NIPS, 2014.

[58] H. Tamada, K. Okamoto, M. Nakamura, A. Monden, and K.-i.
Matsumoto, “Dynamic software birthmarks to detect the theft of
windows applications,” in International Symposium on Future Software
Technology, 2004.

[59] Z. Tian, Q. Zheng, T. Liu, and M. Fan, “DKISB: Dynamic key instruction
sequence birthmark for software plagiarism detection,” in HPCC_EUC,
2013.

[60] X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu, “Behavior based software theft
detection,” in CCS, 2009.

[61] X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu, “Detecting software theft via
system call based birthmarks,” in ACSAC, 2009.

[62] A. H. Watson and T. J. McCabe, Structured testing: A testing method-
ology using the cyclomatic complexity metric. US Department of
Commerce, Technology Administration, NIST, 1996, vol. 500, no. 235.

[63] M. White, M. Tufano, M. Martinez, M. Monperrus, and D. Poshyvanyk,
“Sorting and transforming program repair ingredients via deep learning
code similarities,” arXiv preprint: 1707.04742, 2017.

[64] J. Wieting, M. Bansal, K. Gimpel, and K. Livescu, “Towards universal
paraphrastic sentence embeddings,” in ICLR, 2016.

[65] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural
network-based graph embedding for cross-platform binary code similarity
detection,” in CCS, 2017.

[66] F. Zhang, D. Wu, P. Liu, and S. Zhu, “Program logic based software
plagiarism detection,” in International Symposium on Software Reliability
Engineering (ISSRE), 2014.

15

	Introduction
	Related Work
	Traditional Code Similarity Comparison
	Machine Learning-based Code Similarity Comparison

	Overview
	Instruction Embedding Generation
	Background: Word Embedding
	Challenges
	Building Training Dataset
	Training Instruction Embedding Model

	Block Embedding Generation
	Background: blackLSTM in NLP
	Cross-lingual Basic-block Embedding Model Architecture
	Challenges
	Building Dataset
	Generating Similar Basic-Block Pairs
	Generating Dissimilar Basic-Block Pairs

	Path/Code Component Similarity Comparison
	Path Similarity Comparison
	Component Similarity Comparison

	Evaluation
	Experimental Settings
	Dataset
	Evaluation on Out-Of-Vocabulary Instructions
	Qualitative Analysis of Instruction Embeddings
	Accuracy of InnerEye-BB
	Model Training
	Results
	Comparison with Manually Selected Features

	Hyperparameter Selection for InnerEye-BB
	Number of Epochs
	Embedding Dimensions
	Network Depth
	Network Hidden Unit Types

	Efficiency of InnerEye-BB
	Training Time
	Testing Time

	Code Component Similarity Comparison
	Thttpd
	Cryptographic Function Detection

	Discussion
	Conclusion
	References

