
Poster: Automated Evaluation of Fuzzers

Sebastian Surminski, Michael Rodler, Lucas Davi
University of Duisburg-Essen, Germany

{sebastian.surminski, michael.rodler, lucas.davi}@uni-due.de

Abstract—Fuzzing is a well-known technique for automatically
testing the robustness of software and its susceptibility to security-
critical errors. Recently, many new and improved fuzzers have
been presented. One critical aspect of any new fuzzer is its overall
performance. However, given that there exist no standardized
fuzzing evaluation methodology, we observe significant discrep-
ancy in evaluation results making it highly challenging to compare
fuzzing techniques.

To tackle this deficiency, we developed a new framework,
called FETA, which automatically evaluates fuzzers based on a
fixed and comprehensive test set enabling objective and general
comparison of performance results. We apply FETA to various
recently released academic and non-academic fuzzers, eventually
resulting in a large-scale evaluation of the current state-of-the-art
fuzzing approaches.

I. INTRODUCTION

Defects in software cause huge financial losses, threats to
security, and privacy. Manual testing often does not manage
to achieve the required coverage, and verification does not
scale for typical sizes of software projects. As a result, fuzzing
has emerged as a scalable solution to testing software robust-
ness. Fuzzing challenges software with randomly generated
and mutated input. The software is monitored for crashes or
unexpected behavior, identifying possible bugs.

The main difficulty is to generate the appropriate input
to trigger errors. Starting from valid initial seeds, fuzzers
typically mutate the input and re-run the program under investi-
gation. Due to the large number of execution repetitions, edge-
cases and all kinds of malformed input are tested, revealing po-
tential memory errors and software failures. Detecting poorly
handled edge-cases is especially interesting in the context of
software written in C and C++. Due to the largely manual
memory management, memory errors are prevalent and often
lead to critical software vulnerabilities [1].

Fuzzing has become a hot research topic with many new
developments appearing over the last few years [2]. In partic-
ular, the AFL fuzzer [3] project has spiked interest in fuzzing
as it has demonstrated the real-world effectiveness of fuzzing.
AFL utilizes a greybox fuzzing technique combining coverage
tracking with a genetic mutation algorithm to optimize code
coverage. AFL requires only light-weight code instrumentation
for coverage tracking giving it throughput similar to black-
box fuzzing approaches, while being able to explore code
paths more systematically. Several improvements to the search
and mutation strategies of AFL have been proposed [4]–[6].
However, generating good input sets is highly challenging,
especially for programs that require highly structured input
formats. Often, the input must satisfy certain restrictions,
which the fuzzer’s mutation engine is not aware of. Thus,
different methods have been proposed to make the fuzzer

aware of the input structure. This allows the fuzzer to generate
better inputs and explore deep code paths. Further, fuzzing has
been combined with program-transformations [7], symbolic
execution [8], taint tracking [9] and other combinations of
program analysis techniques [10].

The many new developments in the domain of fuzzing lead
to a need for systematic evaluation. As of its nature, fuzzing is
a stochastic process. Hence, an evaluation has to be performed
carefully to produce sound results. There are many factors
influencing the performance of a fuzzer, e.g., seed, run time,
number of repetitions, but also the selection of targets and bug
identification [11]. Typically, when a new fuzzer is developed,
it is compared to existing fuzzers. As there are no predefined
guidelines for the evaluation of fuzzers, there is a huge variety
in the performed evaluations. As a consequence, it is almost
impossible to compare fuzzing techniques.

In this poster, we present the first framework, called
FETA, which automatically evaluates fuzzers in a large set
of predefined experiments. With FETA, new fuzzers can be
evaluated based on a given test set and directly compared
to previous developments. The evaluation of the results is
automated directly generating graphs and figures.

II. CHALLENGES

When evaluating fuzzers, there are several aspects that
have to be considered. Test sets: The targets for the fuzzers
should reflect realistic scenarios and cover a large variety of
programs and bugs, so that all fuzzers under investigation
can show their strengths and weaknesses. Comparability: All
experiments must be run under equal circumstances. That is,
no fuzzer has any advantages over the others. As fuzzing
is a probabilistic process, experiments have to be repeated
many times to produce sound results. Scalability: The number
of targets, repetitions, and fuzzers lead to a vast amount
of time-consuming experiments. Hence, the workload has to
be distributed among different machines. Automation: The
resulting system must be completely automated, as manual
control is infeasible due to run-time and complexity.

III. FETA EXPERIMENT FRAMEWORK

In FETA, an experiment consists of a specific fuzzer, a tar-
get, and an input seed that is run for a certain time. As fuzzing
is a probabilistic process, we repeat this process numerous
times. In order to allow fair comparison, all experiments run for
the same time and with the same available system resources,
e.g., processor cores and memory.

We distribute experiments evenly among different ma-
chines. Currently, we are using 14 servers with two dual-core



Intel Xeon processors each. As specific demands for the num-
ber of available processor cores can be set, all machines have
the same available resources. Our framework automatically
generates experiments, distributes Docker containers, monitors
the execution and collects the results. The results of the various
fuzzing runs are subsequently automatically aggregated and
evaluated. This design of our framework easily allows us to
integrate new targets and new fuzzers, which can be scheduled
as further experiments. The outcome is then automatically
collected from the docker instances, and integrated into the
evaluation.

A. Selected Datasets

Currently there are two major datasets in use for evaluating
bug-finding tools, which are already integrated into FETA:
The LAVA [12] data sets (LAVA-{1,M}, Rode0day1, and the
DARPA Cyber Grand Challenge (CGC)2. These datasets are
specially designed for evaluation and come with a ground truth,
e.g., the actual number of errors. However, these datasets also
have several shortcomings. Both LAVA and Rode0day contain
standard programs with synthetically injected bugs, which are
structurally similar. As such, the LAVA datasets currently
do not contain a large variety of different bugs. The CGC
dataset consists of a set of rather small handcrafted programs
with known vulnerabilities and minimal OS interactions. The
CGC dataset offers a broader variety of bug types. However,
it is geared towards automatic binary analysis systems and
automated exploit generation and as such does not reflect
realistic conditions.

Real-world targets like popular software do not have a
ground truth. However, it is possible to use old versions with
known bugs. Previous work in this area use a similar set of vul-
nerable versions of popular programs, e.g., [4]. However, there
is no standardized data-set consisting of real-world targets
and bugs. We collected popular targets from existing fuzzing
papers, projects3, and other vulnerable software versions (e.g.,
7zip, libpng) to build a comprehensive data-set. By combining
existing datasets and aggregating ad-hoc datasets from related
work, we provide a first step to a standardized dataset for
evaluating new fuzzers.

B. Fuzzer Selection

Obviously, we cannot include fuzzers where the source
code is not available. As such, we are currently running the
fuzzers AFL, AFLFast, FairFuzz, and Angora, but are also
working on the evaluation of further fuzzers like honggfuzz,
VUzzer, QSYM, Driller. Unfortunately, we had to face several
integration problems as several fuzzers either come with no
clear instructions or rely on specific dependencies, such as old
kernels or compilers.

IV. RELATED WORK

Typically, all newly developed fuzzers come with a per-
formance evaluation. However, there is a large variety in the
realization of these evaluations. There are many parameters
that have a result on the outcome of the fuzzing process: Apart

1https://rode0day.mit.edu/
2https://www.darpa.mil/program/cyber-grand-challenge
3e.g., https://github.com/google/fuzzer-test-suite/

of target and input seed, one needs to consider the duration
of runs and number of repetitions of the process. As fuzzing
involves a large random component, the results vary massively.
This was shown recently by Klees et al. [11], who performed
an evaluation of the experiments of 32 fuzzing papers. In
general, the results of different evaluations are not directly
comparable. Moreover, wrong evaluations might lead to wrong
or misleading conclusions. Hence, a standardized evaluation
methodology is urgently needed.

V. SUMMARY AND FUTURE WORK

We developed a framework to automatically run a stan-
dardized performance evaluation of fuzzers. The flexible ar-
chitecture allows to integrate different fuzzers in a comparable
manner. Pre-defined experiments are run on each fuzzer. At
the current stage, our servers are running and generate results.
We are working on matching bugs that were discovered, and
exploring whether fuzzers trigger different bugs. In our future
work, we aim at integrating and evaluating further fuzzers into
the FETA framework. Any new fuzzer will automatically run
in FETA with the pre-defined set of targets and seeds. FETA
also enables automatically comparison of the new fuzzers to
the already tested fuzzers.

ACKNOWLEDGMENT

This work has been partially funded by the DFG as part
of project S2 within the CRC 1119 CROSSING.

REFERENCES

[1] L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal war in
memory”, in 2013 IEEE Symposium on Security and Privacy, 2013.
DOI: 10.1109/SP.2013.13.

[2] V. J. Manes, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz,
and M. Woo, “Fuzzing: Art, science, and engineering”, arXiv preprint
arXiv:1812.00140, 2018. arXiv: 1812.00140.

[3] M. Zalewski, Technical "whitepaper" for afl-fuzz, 2016. [Online].
Available: http://lcamtuf.coredump.cx/afl/technical_details.txt.

[4] M. Böhme, V. Pham, and A. Roychoudhury, “Coverage-based greybox
fuzzing as markov chain”, IEEE Transactions on Software Engineering,
2018. DOI: 10.1109/TSE.2017.2785841.

[5] C. Lemieux and K. Sen, “FairFuzz: A targeted mutation strategy
for increasing greybox fuzz testing coverage”, in Proceedings of the
33rd ACM/IEEE International Conference on Automated Software
Engineering, ACM, 2018. DOI: 10.1145/3238147.3238176.

[6] V.-T. Pham, M. Böhme, A. E. Santosa, A. R. Căciulescu, and A.
Roychoudhury, “Smart greybox fuzzing”, Nov. 2018. arXiv: 1811 .
09447 [cs.CR]. [Online]. Available: http://arxiv.org/abs/1811.09447.

[7] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-Fuzz: Fuzzing by
program transformation”, in 2018 IEEE Symposium on Security and
Privacy (SP), 2018. DOI: 10.1109/SP.2018.00056.

[8] B. S. Pak, “Hybrid fuzz testing: Discovering software bugs via fuzzing
and symbolic execution”, School of Computer Science Carnegie Mellon
University, 2012.

[9] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled search”,
CoRR, vol. abs/1803.01307, 2018. arXiv: 1803 . 01307. [Online].
Available: http://arxiv.org/abs/1803.01307.

[10] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“VUzzer: Application-aware evolutionary fuzzing”, in Proceedings
2017 Network and Distributed System Security Symposium, 2017. DOI:
10.14722/ndss.2017.23404.

[11] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
fuzz testing”, in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’18, 2018. DOI:
10.1145/3243734.3243804.

[12] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W.
Robertson, F. Ulrich, and R. Whelan, “LAVA: Large-Scale automated
vulnerability addition”, in IEEE Symposium on Security and Privacy,
2016. DOI: 10.1109/SP.2016.15.

2

https://rode0day.mit.edu/
https://www.darpa.mil/program/cyber-grand-challenge
https://github.com/google/fuzzer-test-suite/
https://doi.org/10.1109/SP.2013.13
https://arxiv.org/abs/1812.00140
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://doi.org/10.1109/TSE.2017.2785841
https://doi.org/10.1145/3238147.3238176
https://arxiv.org/abs/1811.09447
https://arxiv.org/abs/1811.09447
http://arxiv.org/abs/1811.09447
https://doi.org/10.1109/SP.2018.00056
https://arxiv.org/abs/1803.01307
http://arxiv.org/abs/1803.01307
https://doi.org/10.14722/ndss.2017.23404
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1109/SP.2016.15


Motivation

Lösung

Herausforderung

Fuzzer Workers
✔ Docker Containers
✔ Automatically distributed via Docker Swarm
✔ Similar resources given

Evaluation
Fuzzer evaluation using popular fuzzing test sets

✔ DARPA Cyber Grand Challenge
✔ Rode0day
✔ LAVA

Fuzzer Manager
✔ Automatic distribution
✔ Equal distribution of resources
✔ Distribution of fuzzing targets and seeds to workers
✔ Scheduling of experiments
✔ Collection of results
✔ Evaluation and graphs

Ongoing Work
 Extend the evaluation set by existing

applications
 Integrate more fuzzers

(Angora, hongfuzz, Vuzzer, QSYM, Driller)
 Detailed vulnerability and crash analysis

Automated Evaluation of Fuzzers
Sebastian Surminski, Michael Rodler, Lucas Davi

Fuzzing

Challenges
 Specific input requirements
 Code coverage
 Edge cases
 Deep paths

 Much research on optimizing fuzzers

 New development come with performance evaluation


But:

 No standardized methodology

 Weaknesses in evaluation

Solution
Standardized performance evaluation of different fuzzers

 Flexible adaptation to new fuzzers and new targets
 Usage of standard target test sets
 Scaling to large number of machines
 Similar computing power for each fuzzer
 Automatic evaluation

The FETA Fuzzing Framework

Evaluation of Fuzzers

Secure Software Systems
University of Duisburg-Essen, Germany

0001001001111
1011111101011
1100101000110
1100100110101
1010101001001

 Automated software testing

 Generate randomly mutated input

 Detect unexpected behavior

Crash?

Report bug,
Bug analysis

Yes

No

Mutate input
System under investigation

FETA
SYSTEM

Institute for Computer Science and BusinessInformation Systems (ICB)

Working Group for Computer Science

Secure Software Systems

University of Duisburg-Essen

Germany
https://www.syssec.wiwi.uni-due.de/en/

This work is licensed under a

Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/

No overall comparison!

Status:
Running!

Workers

Manager

This work has been
partially funded by the
DFG as part of project S2 
within the CRC 1119 
CROSSING.


	Introduction
	Challenges
	FETA Experiment Framework
	Selected Datasets
	Fuzzer Selection

	Related Work
	Summary and Future Work

