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Abstract—Access to biomedical data is key for the advance-
ment of biomedical research. However, biomedical data raises
new privacy concerns: membership inference attacks against a
biomedical database can leak sensitive information, such as the
participants’ health status. In this paper, we study membership
inference attacks on DNA methylation data, one of the most
important epigenetic elements regulating the human health.
We design three different types of attacks exploiting published
summary statistics. Two of them are based on statistical tests
and the third one on a machine learning model. Moreover, we
exploit the dependencies between genome and methylation data to
replace knowledge of the target’s methylome by knowledge of the
target’s genome, which is currently more accessible. Our extensive
evaluation shows that such membership inference attacks are
effective. In order to mitigate these privacy risks, we rely on
differential privacy and show that such defense is able to provide
strong privacy guarantees at the cost of a significantly decreased
utility. By restraining the number of released methylation regions
to a few hundreds, we can reach an acceptable level of privacy
without sacrificing all statistical utility.

With the rapidly decreasing costs of molecular profiling,
the types of available biomedical data are increasingly diverse
and go beyond the genomes of individuals. DNA methylation is
one of the most important new types of biomedical data. Being
a key regulator of gene transcription, abnormal methylation
patterns can lead to severe diseases, such as cancer [2]. More-
over, DNA methylation is also related to environmental cues,
such as pollution, exposure to stress or cigarette smoke [8], [9],
[1]. Despite being linked with such sensitive information, DNA
methylation data is already available on various open research
platforms, such as the Gene Expression Omnibus (GEO) [4].
Contrary to genomic data whose privacy has been extensively
studied by the security research community [3], [7], [6], the
privacy risks stemming from these more recent epigenomic
data attracted less attention.

One of the most critical attacks in the biomedical research
setting is membership inference, popularized by Homer et
al.[5]: Given some raw data about a targeted individual, the
attacker wants to know whether this individual is member of
a dataset (i.e., has contributed his data) by solely relying on
aggregated statistics about this dataset. Such a membership
inference attack can have serious privacy implications if this
dataset contains individuals carrying a specific disease.

We aim at evaluating whether DNA methylation databases
are also vulnerable to membership inference attacks. DNA
methylation data is not only very sensitive as it can unveil se-

vere diseases such as cancer, some regions of our methylation
profiles are highly correlated with the genome, thus leakage of
such data can indirectly expose family members’ private data.
As a consequence, anticipating privacy risks and mitigating
them with technical means is of utmost importance.

a) Contributions: Specifically, we present multiple at-
tacks against the membership privacy of individuals participat-
ing in DNA methylation-based studies. We consider two types
of adversarial settings, both relying on mean DNA methylation
statistics released about the databases. The first setting assumes
the adversary to know its victim’s DNA methylation profile,
while the second setting assumes the victim’s genome to be
known instead.

For both adversarial settings, we design three types of
membership inference attacks: one based on the L1 distance,
one based on the likelihood-ratio (LR) test and one based on a
machine learning classifier trained on distance features. For the
genome-based inference, we particularly design our attack to
capture the probabilistic dependencies between the two types
of biomedical data. We prove that the mean of the conditional
distribution of the methylation values given the genomic values
is a sufficient statistic for the genome-based attack.

We then conduct an extensive evaluation of our attacks on
six diverse datasets, containing a total of 1,320 patients. Our
results consistently demonstrate the success of this type of
attack over different tissues and diseases. While the statistical
test based on the LR test exceeds 0.7 AUC and reaches
over 0.95 AUC in one case (see Figure 1a), machine-learning
increases the AUC to over 0.9 in most cases. Additionally, the
attacker’s training data can be distinct from the target data, as
our experiments on transferability demonstrate in Figure 1b.
Even if the attacker only knows the target’s genome, inference
of the methylation values followed by a membership inference
attack is possible, as Figure 1c shows.

Propelled by these results, we propose a differentially
private mechanism. We empirically evaluate its effectiveness
on our various datasets. While our mechanism is able to
provide strong privacy guarantees, it also negatively affects the
utility of the data. If the adversary gets access to the full set of
methylation points, we cannot obtain perfect privacy and, at the
same time, accurate statistics. However, if only a few hundred
methylation values are released, the average amount of noise
added decreases and reasonable privacy levels are reached, see
Figure 2.
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(a) AUC of the L1 and LLR tests applied to all
methylation positions.
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(b) Transferability of learned models based on LLR
features.
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(c) ROC curves of methylation-based L1 and LLR
tests and genome-based L1 and LLR tests.

Fig. 1: An overview on our attack evaluation results.
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Fig. 2: Defense with Laplace noise and release of only a few
hundred methylation values.
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Genome-based Attack

→ exploit correlation between
genome and methylation:

same LLR test on all related
positions:

Statistics-based Attack

→ two statistical tests:

mean only:

mean and standard deviation:
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The Data

• DNA methylation: additional molecule
(methyl group) attached to DNA

• represented as value in [0, 1]
• methylation patterns vary between tissues, 

due to environmental factors and due to
diseases

The Question

௩ݔ ∈ ?ܦ

Are membership inference attacks possible given only mean ߤ

and standard deviation ? ߪ

௩ݔ ∈ ܦ
→ ௩ has cancerݔ

ML-based Attack

→ learn which distance magnitude is informative 

distance features:

scaled versions:

test-inspired features:
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mean
case

mean
reference

combination of all methylation values
with students t-test

L1 test outperforms
LLR test

learning on IBD UC: LLR feature works best

transferability works, even across different tissues

probability of
metylation value
modeled by Gaussian

expected methylation value
given the genome

acceptable performance
loss by inference
L1 test outperforms
LLR test

Defense with Differential Privacy

D: methylation values of 60 patients

D‘: one patient different

difference
informative

→ output a random mean

that hides the contribution of the changed entry

formally:

where

number of positions
here: 300.000

number of patients
here: 60

privacy parameter

mitigation of
privacy threat
at cost of utility


