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I. EXTENDED ABSTRACT

Due to the growing popularity of adversarial machine
learning, renewed interest has been shown towards malware
classification. In return, the evasion of malware classifiers
at test-time using machine learning specific attacks has also
been invigorated, as adversarial examples have been shown to
subvert a great number of different machine learning classifiers
despite repeated attempts at mitigating their threat.

However, the adversarial example attacks imply drawbacks
that make them impractical to apply and validate for actual
malware samples: adversarial examples seek to limit the
amount of perturbation applied to the sample, while provably
shifting the sample closer (and eventually over) the classifica-
tion boundary of a substitute classifier. In malware samples,
limiting the perturbation does not positively affect their utility.
Furthermore, realizing the small perturbation computed in
feature-space as a perturbation on the actual sample is difficult
and assumes knowledge of the feature-extraction process.

In this research project, we aim to understand how mal-
ware attackers can fool static feature malware classifiers with
unbounded perturbation attacks [1]–[3] applied directly on
JavaScript malware code. We simultaneously relax attacker
assumptions, until we arrive at a fully model-independent
and partially data-independent adversary. Our study shows
that practical evasion attacks for malware classifiers can be
performed with fewer assumptions than previously considered,
while realizing strong adversarial goals such as transferability
and universality.

We perform an extensive experimental evaluation by study-
ing a range of different malware classifiers for JavaScript sam-
ples. Most notably, we study how different feature extraction
and embedding methods perform: most previous research in-
vestigated how different machine learning algorithms perform
over the same feature sets. Instead, we restrict our study to
a single target dataset of malware and benign samples, and
focus on different feature extraction methods that have been
used in recent literature [4]–[7].

II. SNIPPET-BASED ADVERSARIES

The first adversary assumes label-query access to the clas-
sifier and access to the training data distribution, similar to

black-box attackers in adversarial example scenarios. How-
ever, different from attacks studied under these conditions, we
also relax the noise constraint fool the target classifier.

We start by replacing the noise-limiting constraint by a
generic utility constraint: the adversarial modifications should
not inhibit the functionality of the malware sample. As adver-
sarial examples are typically computed by iteratively optimiz-
ing the noise subject to such constraints, this notably increases
the difficulty of producing adversarial examples. In general, we
cannot guarantee the preservation of functionality. However,
using static analysis, we can determine a restricted set of ad-
missible perturbations. By using domain-specific knowledge,
we can construct an attacker that realizes transferable and
universal perturbations across different feature representations
and machine learning classifiers.

We propose a benign snippet transferring attacker for classi-
fier evasion, that is instantiated by different levels of access to
the target classifier. For all instantiations, we assume that the
attacker is realized by mining snippets from a (likely) benign
substitute dataset. Snippets are connected code segments that
can be provably inserted into the target sample using different
insertion strategies without interference. We automatically
mine snippets by examining the contents of popular web-pages
for fully self-contained code that is free of side effects using a
light-weight static analysis. Additionally, the malware samples
are analyzed for insertion points, where these snippets can
be included. The combined results of both analyses yields
the parameter space over which the adversarial perturbation
is computed.

Historically, optimizations over an appropriate loss func-
tion have been the tool of choice to compute adversarial
perturbations. Due to our setting, we have no access to the
target model, and cannot phrase the optimization problem
in a way that makes it amendable to first order methods
without introducing additional assumptions. Instead, we utilize
random sub-sampling and localized grid-search to efficiently
compute perturbations. At this point, we distinguish between
three attackers with increasingly restricted access to the target
model: ADV-LBL, ADV-QL and ADV-NOBOX. We hereby
gradually relax the adversarial assumptions down to a model-
independent adversary. ADV-LBL retains label-access to the
target model. They can perform an unlimited amount of



queries for samples, returning the classifier result in form of
a label. As access to the model is unbounded, this attacker
can leverage a grid search over the parameter space of snippet
and insertion methods to produce an adversarial perturbation.
In contrast to a grid-search over pixel values (or general L-
norm constrained adversaries), this method is feasible compu-
tationally since the search base is discrete. ADV-QL is given
limited query-access to the target model. Since a grid search
over the parameter space is no longer feasible, the attacker
instead randomly samples parameter choices randomly and
tests them against the model until the number of queries is
reached. ADV-NOBOX is a fully non-adaptive attacker, and
does not have access to the model. We show that no classical
training procedure over the target classifier is required. Instead,
the attacks rely on statistical measures and similarity metrics
over the benign reference dataset.

With limited access to the target classifier, pre-computing an
adversarial perturbations that maximize the misclassification
probability independent of the underlying malware sample
becomes increasingly interesting. We therefore investigate
universal perturbations and adapt the attackers to compute
the perturbations over a set of malware samples rather than
a single one.

III. EVALUATION AND PRELIMINARY RESULTS

We conduct a study of the adversarial examples produced
the adversaries described in the previous section on a dataset
containing 41027 malicious samples and 54021 benign sam-
ples mined from the alexa top5k websites. Furthermore, we
evaluate across a wide range of different syntactic and lexico-
graphic feature-representations of JavaScript source code used
in previous work: N-grams, feature hashes and a AST-path
attention model of code. This departs from how most prior
work evaluates adversarial examples: As the malware setting
is notably diverse in different feature representations, having
a unified perturbation mechanism that works by computing
perturbations over the input space rather than the feature
space enables the study of transferability properties across
feature representations. We further evaluate the transferability
across different classifiers, notably deep neural networks, ran-
dom forests, gradient-boosted decision trees and hierarchical
attention networks (where applicable). To evaluate universal
perturbations we give each attacker access to a set of malware
samples that were not part of the classifiers training data.

Our preliminary results indicate that all classifiers we con-
sider are susceptible to perturbations computed by each type of
attacker. When analyzing the attack success rate as a function
of the perturbation (which we compute as a percentage of code
size), we see that attackers with less information typically need
a larger amount of perturbation to achieve the same evasion
rate. However, the fact that these types of attacks are possible
at all, even for non-adaptive adversaries, is indicative of the
brittleness of Machine Learning to large-scale changes. We
believe that the effectiveness of these types of attack is due
to multiple causes. First, the attacks generate samples that are
very likely to be outside the classifiers training distribution.

Second, if given a sample containing features that are highly
indicative of both benign and malicious samples, classifiers
seemed to favour specific code segments from our snippet
set. As we require a classifier to compute a single label
during training, this could cause the classifier to overfit to few,
highly salient features that are contained within only small
segments of code in the overall document. We traced back
this issue to source code re-use: classifiers increasingly tend
to memorizing code snippets that are common in the dataset
during training. Finally, code classifiers are forced to fit a
document of arbitrary size into a fixed-size representation. This
property makes such classifiers especially vulnerable to attacks
that are not constrained in the size of their perturbation, as long
as we can guarantee that any possible perturbation is viable
(i.e. fits the utility constraint).

We further analyze how traditional adversarial training fares
against these attacks. Our preliminary results are similar to
the findings for image perturbations: adversarial training using
PGD [8] does not scale to large perturbations computed by
our adversaries. Adversarial training using the adversaries
presented here is infeasible for ADV-LBL, for ADV-QL it
remains feasible only for very small number of queries. In-
stead, we use our adversaries in adversarial training by directly
augmenting the training dataset. However, we find that they
tend to overfit strongly to the adversary used during training.
We further investigate whether we can balance the training
dataset by removing frequent clones, thereby mitigating the
overfitting issue that we believe is one of the main causes
why this type of attack works. Finally, we are currently in the
process of investigating out-of-distribution statistics to detect
perturbations.
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