

Large-Scale and Language-Oblivious Code
Authorship Identification

Mohammed Abuhamad Inha University, Incheon, South Korea

Tamer AbuHmed Inha University, Incheon, South Korea

Aziz Mohaisen University of Central Florida, Orlando, USA

DaeHun Nyang Inha University, Incheon, South Korea

CCS '18: Proceedings of the 2018 ACM SIGSAC Conference on Computer and

Communications Security Pages 101-114.
Toronto, Canada — October 15 - 19, 2018
ISBN: 978-1-4503-5693-0
doi>10.1145/3243734.3243738
link: https://dl.acm.org/citation.cfm?id=3243738

Abstract:

Efficient extraction of code authorship attributes is key for successful identification. However,

the extraction of such attributes is very challenging, due to various programming language

specifics, the limited number of available code samples per author, and the average code lines

per file, among others. To this end, this work proposes a Deep Learning-based Code

Authorship Identification System (DL-CAIS) for code authorship attribution that facilitates

large-scale, language-oblivious, and obfuscation-resilient code authorship identification. The

deep learning architecture adopted in this work includes TF-IDF-based deep representation

using multiple Recurrent Neural Network (RNN) layers and fully-connected layers dedicated

to authorship attribution learning. The deep representation then feeds into a random forest

classifier for scalability to de-anonymize the author. Comprehensive experiments are

conducted to evaluate DL-CAIS over the entire Google Code Jam (GCJ) dataset across all

years (from 2008 to 2016) and over real-world code samples from 1987 public repositories on

GitHub. The results of our work show the high accuracy despite requiring a smaller number of

files per author. Namely, we achieve an accuracy of 96% when experimenting with 1,600

authors for GCJ, and 94.38% for the real-world dataset for 745 C programmers. Our system

also allows us to identify 8,903 authors, the largest-scale dataset used by far, with an accuracy

of 92.3%. Moreover, our technique is resilient to language-specifics, and thus it can identify

authors of four programming languages (e.g. C, C++, Java, and Python), and authors writing in

mixed languages (e.g. Java/C++, Python/C++). Finally, our system is resistant to sophisticated

obfuscation (e.g. using C Tigress) with an accuracy of 93.42% for a set of 120 authors.

DL-CAIS: Deep Learning-based Code Authorship
Identification System

Mohammed Abuhamad
University of Central Florida
abuhamad@knights.ucf.edu

Tamer AbuHmed
Inha University

tamer@inha.ac.kr

Aziz Mohaisen
University of Central Florida

mohaisen@ucf.edu

DaeHun Nyang
Inha University

nyang@inha.ac.kr

Abstract—Code authorship identification is useful in many
software forensics contexts. Successful code authorship identifi-
cation relies on efficient extraction of authorship attributes. This
work proposes DL-CAIS, a Deep Learning-based Code Author-
ship Identification System, for large-scale, language-oblivious, and
obfuscation-resilient code authorship identification. The proposed
system includes learning TF-IDF-based deep representations of
code authorship attributions using recurrent neural network. The
deep representations are used to construct a random forest clas-
sifier for scalable and robust de-anonymization of programmers.
We evaluate DL-CAIS using the entire Google Code Jam (GCJ)
dataset across all years (from 2008 to 2016) and using public real-
world code repositories from GitHub. The results show that the
proposed system achieves an accuracy of 92.3% for identifying
8,903 authors for GCJ and 94.38% for the real-world dataset for
745 C programmers. Moreover, the results show that DL-CAIS is
resilient to language-specifics, temporal effects, and obfuscation.

I. INTRODUCTION

Source code authorship identification is the process of code
writer identification by associating a programmer to a given
code based on the programmer’s distinctive stylometric fea-
tures. Authorship identification for textual documents is a well-
established field that has attracted big attention. Identifying
programmers of source code can be more difficult and different
from authorship identification of natural language text. This
basic difficulties are driven from the inherent inflexibility of
the written code expressions established by the syntax rules
of compilers. Recently, a growing attention has been given
to provide robust and scalable authorship identification for
software. Being able to identify code authors is both a risk
and a desirable feature. On the one hand, code authorship
identification poses a privacy risk for programmers who wish
to remain anonymous, including contributors to open-source
projects, activists, and programmers who conduct program-
ming activities on the side. On the other hand, code authorship
identification is useful for software forensics and security an-
alysts, especially for identifying malicious code programmers.
Moreover, authorship identification of source code is helpful
with plagiarism detection [1], authorship disputes [4], copy-

𝑥0

𝑥1

𝑥𝑛

𝑥2
…
.

ℎ0
4

ℎ1
4

ℎ𝑛
4

ℎ2
4

ℎ0
5

ℎ1
5

ℎ𝑛
5

ℎ2
5

ℎ0
6

ℎ1
6

ℎ𝑛
6

ℎ2
6

𝑦0

𝑦1

𝑦𝑛

…
.

3 Fully-connected layers 3 RNN layers (LSTM-GRU)

instances

…
.

RFC with 300 trees

Code

files

TF-IDF representations

Data preprocessing Deep representations for authorship attribution Classification

ℎ0
3

ℎ1
3

ℎ𝑛
3

ℎ2
3

ℎ0
2

ℎ1
2

ℎ𝑛
2

ℎ2
2

ℎ0
1

ℎ1
1

ℎ𝑛
1

ℎ2
1

RNN-1 RNN-2 RNN-3

Fig. 1: A high-level illustration of the Deep Learning-based
Code Authorship Identification System (DL-CAIS).

right infringement [2], and code integrity investigations [3].

The problem of code author identification is challeng-
ing, and faces several obstacles that prevent the develop-
ment of practical identification mechanisms. First, program-
ming “style” of programmers continuously evolves over time.
Second, the programming style of programmers varies from
language to another. Third, while it is sometimes possible to
obtain the source code of programs, sometimes it is not, and
the source code is occasionally obfuscated by automatic tools,
preventing their recognition.

This work contributes to code authorship identification
in multiple directions as follows: First, we design a feature
learning architecture using recurrent neural network (RNN) to
enable the extraction of high quality and distinctive code au-
thorship attributes. The deep representations of code authorship
attributes are learned by feeding code samples presented by the
TF-IDF (Term Frequency-Inverse Document Frequency) to the
RNN architecture. Thus, our approach does not require a prior
knowledge of any specific programming language. Second,
we experimentally conduct a large scale code authorship
identification and demonstrate that our technique can handle
a large number of programmers (8,903 programmers) while
maintaining a high accuracy (92.3%). Third, we show that
our approach is oblivious to language specifics when using a
dataset of authors writing in multiple languages. We based our
assessment on an analysis over four individual programming
languages (namely, C++, C, Java, and Python). Fourth, we
investigate the effect of obfuscation methods on the authorship
identification and show that our approach is resilient to both
simple off-the-shelf obfuscators, such as Stunnix, and more
sophisticated obfuscators, such as Tigress. Finally, we examine
our approach on real-world datasets and achieve 95.21% and
94.38% of accuracy for datasets of 142 C++ programmers and
745 C programmers, respectively.

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’16, 21-24 February 2016, San Diego, CA, USA
Copyright 2016 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2016.23xxx

90

91

92

93

94

95

96

97

98

99

100

150 450 750 1K 3K 5K 7K 9K

A
c
c
u

ra
c
y
 (

%
)

Number of authors (Programmers)

LSTM-RFC

GRU-RFC

(a) C++

90

91

92

93

94

95

96

97

98

99

100

150 300 450 600 750 900 1K 2K 2K

A
c
c
u

ra
c
y
 (

%
)

Number of authors (Programmers)

LSTM-RFC

GRU-RFC

(b) Java

90

91

92

93

94

95

96

97

98

99

100

150 450 750 1K 2K 3K

A
c
c
u

ra
c
y
 (

%
)

Number of authors (Programmers)

LSTM-RFC

GRU-RFC

(c) Python

90

91

92

93

94

95

96

97

98

99

100

150 300 450 566

A
c
c
u

ra
c
y
 (

%
)

Number of authors (Programmers)

LSTM-RFC

GRU-RFC

(d) C

Fig. 2: Accuracy of authorship identification of programmers
with seven sample code files per programmer in C++. Java,
Python, and C languages.

TABLE I: The accuracy of authorship identification using
models trained on data from 2014 and tested on data from
2015 and 2016

Authors LSTM-RFC GRU-RFC
C++ 292 97.65 96.43

Python 44 100 100
Java 50 100 100

II. DL-CAIS: DEEP LEARNING-BASED CODE
AUTHORSHIP IDENTIFICATION SYSTEM

Our approach for large-scale code authorship identifica-
tion has three phases: preprocessing, representation through
learning, and classification. To identify authors, we need a
scalable classifier that can accommodate a large number of
programmers. However, the deep learning architecture alone
does not give us a good accuracy (e.g., 86.2% accuracy for
1,000 programmers). Instead of using the softmax classifier
of the deep learning architecture, we use RFC for the clas-
sification, and by providing the deep representation of TF-
IDF as an input. RFC is known to be scalable, and our
target dataset has more than 8,000 authors (or classes) to be
identified. Such a large dataset can benefit from the capability
of RFC. Our authorship identifier is built by feeding a TF-
IDF-based deep representation extracted by RNN and then
classifying the representation by RFC. This hybrid approach
allows us to take advantage of both deep representation’s
distinguishing attribute extraction capability and RFC’s large
scale classification capability.

III. EXPERIMENTS AND RESULTS

Large-scale Authorship Identification. Figure 2 shows the
results of DL-CAIS using the dataset of all programmers with
seven code samples for four different programming languages.
Figure 2(a) shows that the LSTM-RFC achieves an accuracy
of 92.3% for 8,903 C++ programmers. Figure 2(b) shows that
LSTM-RFC achieves an accuracy of 97.24% for 1,952 Java
programmers. Figure 2(c) shows an accuracy of 96.2% when
using LSTM-RFC for 3,458 Python programmers. Finally,
Figure 2(d) shows the result for C programmers, where LSTM-
RFC achieves an accuracy of 93.96% for 566 C programmers.

Effect of Temporal Changes. We trained our models (LSTM-
RFC and GRU-RFC) on data from the year 2014 and used
the data from 2015 and 2016 as a testing set. As a result,
Table I shows that our approach of code authorship identi-
fication is resilient to temporal changes in the coding style
of programmers as it achieves 100% accuracy for both Python
and Java languages and 97.65% for the 292 C++ programmers.
Identification with Mixed Languages. Figure 3 shows the ac-
curacy of our approach with three datasets: C++/C, C++/Java,

90

91

92

93

94

95

96

97

98

99

100

100 250 500 626

A
c
c
u
ra

c
y
 (

%
)

Number of authors (Programmers)

LSTM-RFC

GRU-RFC

(a) C/C++

90

91

92

93

94

95

96

97

98

99

100

100 250 500 855

A
c
c
u
ra

c
y
 (

%
)

Number of authors (Programmers)

LSTM-RFC

GRU-RFC

(b) Java/C++

90

91

92

93

94

95

96

97

98

99

100

100 250 500 1.0K 1.5K 1.9K

A
c
c
u
ra

c
y
 (

%
)

Number of authors (Programmers)

LSTM-RFC

GRU-RFC

(c) Python/C++

Fig. 3: The accuracy of the authorship identification of pro-
grammers with sample codes of two programming languages.

90

91

92

93

94

95

96

97

98

99

100

20 50 80 100 120

A
c
c
u

ra
c
y
 (

%
)

Number of authors (Programmers)

LSTM-RFC

GRU-RFC

(a) C++ obfuscated
with Stunnix.

90

91

92

93

94

95

96

97

98

99

100

20 50 80 100 120

A
cc

ur
ac

y
(%

)

Number of authors (Programmers)

LSTM-RFC
GRU-RFC

(b) C code obfuscated
with Tigress.

Fig. 4: The accuracy of authorship identification with obfus-
cated source code.

and C++/Python. Figure 3(a) shows an accuracy of 96.34%
for a dataset of 626 C++/C programmers with LSTM-RFC,
and its accuracy of 97.52% when used with LSTM-RFC on
855 C++/Java programmers, as illustrated in Figure 3(b). For
the C++/Python dataset, Figure 3(c) shows that our approach
provides an accuracy of 97.49% for 1,879 programmers.

Identification in Obfuscated Domain. Figure 4(a) shows the
accuracy achieved using our approach on different Stunnix-
obfuscated C++ datasets. Figure 4(b) shows the achieved ac-
curacy on different Tigress-obfuscated C datasets ranging from
20 to 120 authors using two different RNN units. The results
shows that our approach is resilient to different obfuscation.

IV. CONCLUSION

This work contributes to the extension of deep learning
applications by utilizing deep representations in authorship
attribution. In particular, we examined the learning process
of large-scale code authorship attribution using RNN, a more
efficient and resilient approach to language-specifics, number
of code files available per author, and code obfuscation.

Acknowledgement. This work was supported by NRF-
2016K1A1A2912757 (Global Research Lab Initiative), and a
collaborative seed grant from the Florida Cybersecurity Center
(FC2).

REFERENCES

[1] S. Burrows, S. M. M. Tahaghoghi, and J. Zobel, “Efficient plagiarism
detection for large code repositories,” Softw. Pract. Exper., vol. 37, no. 2,
pp. 151–175, Feb. 2007.

[2] G. Frantzeskou, E. Stamatatos, S. Gritzalis, C. E. Chaski, and B. S.
Howald, “Identifying authorship by byte-level n-grams: The source code
author profile (scap) method,” International Journal of Digital Evidence,
vol. 6, no. 1, pp. 1–18, 2007.

[3] C. H. Malin, E. Casey, and J. M. Aquilina, Malware forensics: investi-
gating and analyzing malicious code. Syngress, 2008.

[4] L. J. Wilcox, “Authorship: the coin of the realm, the source of com-
plaints,” The Journal of the American Medical Association, vol. 280,
no. 3, pp. 216–217, 1998.

3

NDSS Symposium 2019 University of Central Florida

Code Authorship Identification

▪ Code authorship identification: Source code authorship

identification is the process of code writer identification by

associating a programmer to a given code based on the

programmer’s distinctive stylometric features.

▪ Code authorship identification: advancement in code

authorship identification research has enabled successful

applications in forensic contexts including ghostwriting

detection, copyright dispute settlements, and other code

analysis applications.

▪ This work proposes DL-CAIS, a Deep Learning-based Code

Authorship Identification System, for large-scale, language-

oblivious, and obfuscation-resilient code authorship

identification.

Challenges
▪ Temporal effect: programmers’ style change and evolve.

▪ Language-specifics: programming languages have different features.

▪ Obfuscation: sometimes only obfuscated code is available.

▪ Large-scale code authorship identification: For four

programming languages C, C++, Java and Python and with 7 samples

per programmer.

▪ Effect of Temporal Changes: There’s an effect but our

approach is resilient to such effects. The table The accuracy of

authorship identification using models trained on data from 2014

and tested on data from 2015 and 2016

▪ Identification with Mixed Languages: The figure shows The

accuracy of the authorship identification of programmers with

sample codes of two programming languages.

DL-CAIS

▪ Data collection and preprocessing:

• Dataset: Google Code Jam Competition (2008-2016) .

• Four programming languages (c, C++, Java, and Python)

• Presented in TF-IDF

▪ Code authorship attribution: using a deep learning (RNN)

model high-quality authorship attribution are extracted.

▪ Code authorship identification: using Random Forest

Classifier, the system achieved state-of-the-art results in

different settings.

▪ Identification in Obfuscated Domain. Figure 4 shows the

accuracy achieved using our approach on different obfuscated

datasets with authors from 20 to 120 using two different RNN

units. The results shows that our approach is resilient to different

obfuscation.

Conclusion and Future work

▪ This work was dedicated to facilitating the learning process of

large-scale code authorship attribution using RNN, which is

more efficient and more resilient to language-specifics, temporal

effects, and code obfuscation.

▪ Future Work

• Binary code authorship identification.

• Obfuscated binary code authorship identification.

• Code multi-authors identification.

▪ Acknowledgement: This work was supported by NRF-

2016K1A1A2912757 (Global Research Lab Initiative), and a

collaborative seed grant from the Florida Cybersecurity Center

(FC2).

DL-CAIS: Deep Learning-based Code Authorship Identification System

INTRODUCTION

EXPERIMENTS and RESULTS

Mohammed AbuHamad Tamer Abuhmed Aziz Mohaisen DaeHun Nyang

abuhamad@knights.ucf.edu tamer@inha.ac.kr mohaisen@ucf.edu nyang@inha.ac.kr

Figure 1: DL-CAIS: Deep Learning-based Code Authorship Identification System

Figure 2: Large-scale code authorship identification

Figure 3: Identification of authors writing in multiple languages

Figure 4: Identification in obfuscation domain using Stunnix and Tigress obfuscation tools

	I Introduction
	II DL-CAIS: Deep Learning-based Code Authorship Identification System
	III Experiments and Results
	IV Conclusion
	References

