
1

Poster: Scaling Up Anomaly Detection Using
In-DRAM Working Set of Active Flows Table

Rhongho Jang†‡, Seongkwang Moon†, Youngtae Noh†, Aziz Mohaisen‡, and Daehun Nyang†
†INHA University ‡ University of Central Florida

Abstract—In the zettabyte era, per-flow measurement becomes
more challenging owing to the growth of both traffic volumes and
the number of flows. Also, swiftness of detection of anomalies
(e.g., DDoS attack, congestion, link failure, and so on) becomes
paramount. For fast and accurate anomaly detection, managing
an accurate working set of active flows (WSAF) from massive
volumes of packet influxes at line rates is a key challenge. WSAF
is usually located in a very fast but expensive memory, such as
TCAM or SRAM, and thus the number of entries to be stored is
quite limited. To cope with the scalability issue of WSAF, we pro-
pose to use In-DRAM WSAF with scales, and put a compact data
structure called FlowRegulator in front of WSAF to compensate
for DRAM’s slow access time by substantially reducing massive
influxes to WSAF without compromising measurement accuracy.
We prototype and evaluated our system in a large scale real-world
experiment (connected to monitoring port of our campus main
gateway router for 113 hours, and capturing 122.3 million flows).
As one key application, FlowRegulator detected heavy hitters with
99.8% accuracy.

I. INTRODUCTION

Due to the high speed network, traffic measurement now
have to cope with enormous incoming data rates (i.e., larger
number of flows) with tight deadlines (i.e., real-time). We
stress that large-scale instant measurement is highly necessary
for network anomaly detection. For example, if denial of
service (DoS) attacks cause an influx of packets at 100 Gbps,
detection delay of 100 ms will cause 1.2GB data to hit a server
or a network. Therefore, to avoid large bandwidth penalties,
instant anomaly detection is essential.

A working set of active flows (WSAF) is a type of cache of a
full flow table, which can be found usually in TCAM (Ternary
Content Addressable Memory), CAM, or sometimes SRAM
for traffic monitoring. For instanse, NetFlow uses TCAM for
storing WSAF in which an entry consists of a flow ID and the
counting value. However, the number of entries of the table
cannot be large because those types of memories are quite
expensive. For scalability, we can put WSAF in DRAM instead
of the expensive memory (i.e., incentive to cost-effectiveness).
However, there is a speed issue for In-DRAM WSAF: a packet
arrival rate is too fast to handle by In-DRAM WSAF, owing
to the DRAM’s speed and WSAF table’s hash collision.

To cope with these issues, sketch-based techniques have
been greatly enhanced over several decades because sketch-
based counting algorithms only require a small amount of
memory to encode a large volume of traffic in real-time.
Due to their design, however, most of decode algorithms
involve hundreds of hash calculations and memory accesses
from statistically mixed random blocks to obtain meaningful

statistics [1]. For this reason, offline decoding in a high-
performance server is commonly accepted in practice but
inherently incurs huge network delay. Thus, online decoding
is highly necessary for instant measurement and further timely
detection.

Unfortunately, most sketch-based algorithms lack scalability
and online decoding capabilities. Our approach to solve these
two problems is 1) to use a counting algorithm that can perform
online decoding and 2) to put a flow regulator before WSAF
to slow down the incoming packet rate to WSAF. To realize
both ideas, we designed a highly scalable counting and flow
regulating algorithm called FlowRegulator. By design, instead
of directly inserting or updating every packet of a flow into
WSAF table, FlowRegulator (i.e., a small cache buffer) retains
a fraction of flow counts. By doing so, we can suppress
frequent WSAF updates in DRAM; thereby FlowRegulator
can support large-scale influx of flows with the use of cost-
effective large DRAM. Consequently, FlowRegulator relaxes
the necessity of expensive memories (TCAM or SRAM) for
maintaining large WSAF, and further enables us to build a
highly scalable and fast measurement system. We conducted
a real-world campus network experiment for 113 hours by
connecting our prototype of FlowRegulator to a mirroring port
of a main gateway router, capturing 9.11 billion packets, 122.3
million flows, and 8.5TB bytes. FlowRegulator successfully
measured the whole L4 flows with a standard error (0.65%)
and detected heavy hitters with 99.8% accuracy.

II. FLOWREGULATOR DESIGN

Our large WSAF in DRAM is in contrast to the small WSAF
in TCAM (i.e., industry practice). In DRAM, we can store
much more flows, thereby, we do not need a remote collector
for decoding. However, the downside is that we cannot evade
the “sluggishness” of DRAM.
FlowRegulator to relax the {ips = pps} constraint: Instead
of directly inserting or updating every flow packet into the
table, we put a small buffer called FlowRegulator to retain
a fraction of flow counts before WSAF. FlowRegulator has
a memory block (or a virtual vector initialized to all 0’s)
for every single flow, and whenever a packet comes in, the
corresponding block is updated by setting a random bit of the
block. When the block saturates (or a portion of block has set
to 1’s), the resulting counting fraction (we note that this is not
the total size of a flow) is added up to the WSAF (i.e., a hash
table in DRAM). Because FlowRegulator retains mice flows
whose sizes are lower than the saturation condition, not all the
packets are fed into WSAF, but only the packets that trigger

2

0 10 20 30 40 50 60
Time (minute)

103

104

105

106

ip
s

of
 W

SA
F

ta
bl

e Actual PPS (CAIDA) 16-bit RCC (3MB) 16-bit FlowRegulator (128KB)

Fig. 1. WASF relaxation: FlowRegulator (FR) and RCC ips of CAIDA dataset

the saturation condition are given to WSAF. This design will
greatly reduce insert per second (ips) even under a high packet
per second (pps) condition.

To develop FlowRegulator, we utilize the recyclable counter
with confinement (RCC) [4] that already has online decoding
capability, and proven to be useful for measurement in the
wireless SDN environment [2], [3]. To investigate its feasi-
bility, we have tested RCC for its rate regulation (defined as
Output ips/Input pps). Given that access time of SRAM is 10-
20 times faster than DRAM’s (and even faster with TCAM),
RCC’s rate regulation should be less than 5%. However, its
regulation and retention capacity (the maximum number of
packets in a virtual vector) are not operationally sufficient.
Thus, it is impossible to work with RCC for building FlowReg-
ulator. One way to increase the rate regulation is to give RCC
a larger virtual vector, but that does not expand the retention
capacity.
Two-layer design for higher rate regulation: Here, our ob-
servation is that enlarging the virtual vector size increases the
retention capacity just in an addictive manner, and thus, this is
not a viable (i.e., scalable) option. Instead, we designed a new
counting algorithm for FlowRegulator, which has two layers
of probabilistic counters to achieve the higher rate regulation.
Our FlowRegulator plays a key role of retaining flows (from
feeding into WSAF) for a while as well as counting flows.
In the two-layer design, the second (higher) layer’s one bit
encodes multiple packets of a flow from a saturated sketch of
the first (lower) layer. This design has substantially improved
the rate regulation in a multiplicative manner. It enables higher
rate regulation while not being detrimental to the accuracy and
speed, while being scalable.

III. EVALUATION

WASF ips relaxation. In Fig. 1, the x-axis represents the
time line of our CAIDA dataset, and the black solid line on
the top represents the actual pps of the trace. Below the pps
line, RCC’s and FlowRegulator’s regulation rates are shown
in red squares and blue diamonds, respectively. The figure
shows that RCC relaxes ips to feed packets to WSAF table
at the speed of 112 kips (thousand ips), which corresponds to
12% regulation rate. FlowRegulator effectively regulated flows
to pass only 1.02% with 128KB DRAM memory. As results,
FlowRegulator has sufficient margin, while RCC does not have
as can be seen in Fig. 1.
Monitoring in the wild. We implemented our FlowRegulator
in an off-the-shelf device and measured up-link traffics (1
Gbps bandwidth) at the backbone gateway (Juniper EX9208
switch) of our campus for 113 hours in total. During 113 hours,
9.1 billion packets of 122.3 billion L4 flows were measured
simultaneously both in packets and in bytes.

Fig. 2. Accuracy of packet counting (left) and byte counting (right).

Fig. 3. False positive and false negative rates of packet heavy hitter detection
(left) and byte volume heavy hitter detection (right).

Accuracy. FlowRegulator used 128KB for sketch, and 33MB
for the WSAF table. Sketches and WSAF table are all in
DRAM. Fig. 2 shows the estimation accuracy by standard error
for the real-world experiment. For packet counting, we report
0.54% standard error over 350 flows of which size is 1000K+,
1.61% over 11,047 flows for 100K packets, 3.46% over 104292
flows for 10K+ packets. For byte counting, we report 0.63%
over 414 flows of which byte size is 1G+, 1.74% over 12,125
flows of 100MB+, 3.65% over 107,726 flows of 10MB+. This
accuracy matches the accuracy observed in the lab experiment
with the CAIDA dataset.
Heavy hitter detection. Fig. 3 shows FlowRegulator’s heavy
hitter detection accuracy in terms of false positive/negative
rate. Owing to FlowRegulator capability of counting both in
packets and in bytes, it can detect both packet heavy hitters
and byte heavy hitters. False negative rates in both cases are
negligible, and the false positive rates of packet/byte heavy
hitters are less than 0.1% and 0.2%, respectively.

IV. CONCLUSION

In this work, we have developed FlowRegulator for instant
flow monitoring. Our approach is different from conventional
measurement frameworks by introducing a new notion of very
large In-DRAM working set of active flows. In the future
work, we plan to demonstrate FlowRegulator’s performance
and feasibility through an extensive analyses.
Acknowledgement. This work was supported by NRF grant
number 2016K1A1A2912757 (Global Research Lab Initiative).

REFERENCES

[1] Q. Huang, X. Jin, P. P. C. Lee, R. Li, L. Tang, Y. Chen, and G. Zhang.
Sketchvisor: Robust network measurement for software packet process-
ing. In Proc. of ACM SIGCOMM, pages 113–126, 2017.

[2] R. Jang, D. Cho, A. Mohaisen, Y. Noh, and D. Nyang. Two-level
network monitoring and management in WLAN using software-defined
networking: poster. In In Proc. of ACM WiSec, pages 279–280, 2017.

[3] R. Jang, D. Cho, Y. Noh, and D. Nyang. Rflow+: An sdn-based wlan
monitoring and management framework. in Proc. of INFOCOM, 2017.

[4] D. Nyang and D. Shin. Recyclable counter with confinement for real-
time per-flow measurement. IEEE/ACM Trans. Netw., PP(99):1–1, 2016.

NDSS Symposium,
San Diego, California
24-27 February 2019

This work was supported by
NRF grant number 2016K1A1A2912757
(Global Research Lab Initiative)

In-DRAM working set of active flows (WASF)
Background Due to the high speed of network, large-scale

instant measurement is highly necessary for the network
anomaly detection.

Problem For monitoring traffics, NetFlow uses TCAM for storing
WSAF in which an entry consists of a flow ID and the counting
value. However, the number of entries of the table cannot be
large because those types of memories are quite expensive.

Idea For scalability, we can put WSAF in DRAM instead of the
expensive memory (i.e., incentive to cost-effectiveness).

Challenges However, there is a speed issue for In-DRAM WSAF:
a packet arrival rate is too fast to handle by In-DRAM WSAF,
owing to the DRAM’s speed and WSAF table’s hash collision.

Previous approaches Sketch-based techniques have been used
only require a small amount of memory to encode a large
volume of traffic in real-time. Unfortunately, most sketch-based
algorithms lack scalability and online decoding capabilities.

Laboratory experiment (CAIDA dataset)
WASF {pps = ips} relaxation

§ RCC 1 mpps →112 kips (12% with 3MB memory).
§ FlowRegulator 1 mpps → 10 kips (1.02% with 128KB memory).
Accuracy (standard error)

§ Packet counter (256 KB mem.) 0.28% (1000K+ flows), 0.99% (100K+ flows),
§ Byte counter (256KB mem.) 0.27% (1GB+ flows), 1.00% (100MB+ flows)
§ Top-K identification Recall > 95% (top 1 million flows).

Prototype

Hardware configuration Scenario (campus gateway) Multi-core design (DPDK)

Our approach
Key idea Put a flow regulator in front of WSAF to compensate for
DRAM’s slow access time by substantially reducing massive influxes
to WSAF.
Relax the {ips = pps} constraint:
§ Without FlowRegulator, packet per second (pps) of traffics equal

to insert per second (ips) of WASF (i.e., ips = pps).
§ With FlowRegulator, we retain a fraction of flow counts before

WSAF. When the flow counts saturates, the counting value is
added up to the WSAF (i.e., ips < pps).

Features of FlowRegulator:
§ Small memory usage (i.e., hundreds of KB) to fit the L1 cache.
§ Scalable counting capacity (i.e., retaining portion of large flows).
§ Small flow sampling (i.e., probabilistically).
§ Online decoding capacity (i.e., extract counting values).
Implementation
§ Two-layer design of Recyclable Counter with Confinement (RCC,

published in ToN) for scalable ips reduction (i.e., ips << pps).

Real-world experiment (113-hour campus gateway)

§ Packet counter (128KB mem.) We report 0.54% standard error over 350 flows of which
size is 1000K+,1.61% over 11,047 flows for 100K+, 3.46% over 104,292 flows for 10K+.

§ Byte counter (128KB mem.) We report 0.63% over 414 flows of which byte size is 1G+,
1.74% over 12,125 flows of 100MB+, 3.65% over 107,726 flows of 10MB+.

§ Heavy hitter False negative rates in both cases are negligible, and the false positive
rates of packet/byte heavy hitters are less than 0.1% and 0.2%, respectively.

§ CPU The core’s workload matches the traffic pattern, and the core usage did not go over
40% at any point.

§ Memory As for the queue (black diamonds in the figure), it did not grow noticeably.
The results confirmed that FlowRegulaor implemented on Atom board worked well for the 1
Gbps network monitoring, and for a quite long time.

Poster: Scaling Up Anomaly Detection Using In-DRAM
Working Set of Active Flows Table

INTRODUCTION

Evaluation

Rhongho Jang Seongkwang Moon Youngtae Noh Aziz Mohaisen DaeHun Nyang
r.h.jang@knights.ucf.edu skmoon@seclab.inha.ac.kr ytnoh@inha.ac.kr mohaisen@ucf.edu nyang@inha.ac.kr

Performance (Heavy hitter & CPU & MEM)

Accuracy

v v v v

False positive and false negative rates of packet heavy hitter detection (left) and byte volume heavy
hitter detection (right).

