
Poster: TEXTBUGGER: Generating Adversarial Text
Against Real-world Applications

Jinfeng Li∗, Shouling Ji∗† �, Tianyu Du∗, Bo Li‡ and Ting Wang§
∗ Institute of Cyberspace Research and College of Computer Science and Technology, Zhejiang University

Email: {lijinfeng0713, sji, zjradty}@zju.edu.cn
† Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies
‡ University of Illinois Urbana-Champaign, Email: lxbosky@gmail.com

§ Lehigh University, Email: inbox.ting@gmail.com

Abstract—In this poster, we present TEXTBUGGER, a general
attack framework for generating adversarial texts. In contrast to
prior works, TEXTBUGGER differs in significant ways: (i) effective
– it outperforms state-of-the-art attacks in terms of success
rate; (ii) evasive – it preserves the utility of benign text; and
(iii) efficient – it generates adversarial text with computational
complexity sub-linear to the text length. Experimental results
demonstrate its effectiveness, evasiveness, and efficiency.

I. INTRODUCTION AND ATTACK DESIGN

Recently, Deep neural networks (DNNs) have been found
to be vulnerable against adversarial examples which are care-
fully generated by adding small perturbations to the legitimate
inputs to fool the targeted models [2]. Such discovery has
also raised serious concerns, especially when deploying such
machine learning models to security-sensitive tasks. While
existing works on adversarial examples mainly focus on the
image domain, it is more challenging to deal with text data due
to its discrete property, which is hard to optimize. Furthermore,
in the text domain, small perturbations are usually clearly per-
ceptible, and the replacement of a single word may drastically
alter the semantics of the sentence. Therefore, existing attack
algorithms designed for images cannot be directly applied to
text, and we need to study new attack techniques. In this poster,
we propose TEXTBUGGER, a framework that can effectively
and efficiently generate utility-preserving adversarial texts
against state-of-the-art text classification systems under both
white-box and black-box settings. A successful adversarial
example is shown in Fig. 1. Due to the limitation of pages, we
only detail the process of generating adversarial texts under
black-box setting.

Task: Sentiment Analysis Classifier: Amazon AWS
Original label: 100% Negative Adversarial label: 89% Positive

Text: I watched this movie recently mainly because I am a Huge fan
of Jodie Foster's. I saw this movie was made right between her 2
Oscar award winning performances, so my expectations were fairly
high. Unfortunately Unf0rtunately, I thought the movie was terrible
terrib1e and I'm still left wondering how she was ever persuaded to
make this movie. The script is really weak wea k.

Fig. 1. A successful adversarial example.

Briefly, the process of generating adversarial texts under
black-box setting contains three steps: (1) Find the important
sentences. (2) Use a scoring function to determine the impor-
tance of each word regarding to the classification result, and

rank the words based on their scores. (3) Use the bug selec-
tion algorithm to change the selected words. The black-box
adversarial text generation algorithm is shown in Algorithm 1.

Algorithm 1 TEXTBUGGER under black-box settings
Input: legitimate document x and its ground truth label y,

classifier F(·), threshould ε
Output: adversarial document xadv

1: Inititialize: x′ ← x
2: for si in document x do
3: Csi = Fy(si);
4: end for
5: Sordered ← Sort(sentences) according to Csi ;
6: Delete sentences in Sordered if Fl(si) 6= y;
7: for si in Sordered do
8: for wj in si do
9: Compute Cwj

according to Eq.1;
10: end for
11: Wordered ← Sort(words) according to Cwj

;
12: for wj in Wordered do
13: bug = SelectBug(wj ,x

′, y,F(·));
14: x′ ← replace wj with bug in x′

15: if S(x,x′) ≤ ε then
16: Return None.
17: else if Fl(x

′) 6= y then
18: Solution found. Return x′.
19: end if
20: end for
21: end for
22: return None

Step 1: Find Important Sentences (line 2-6). Suppose the
input document is x = (s1, s2, · · · , sn), where si represents
the sentence at the ith position. First, we segment each docu-
ment into sentences. Then we filter out the sentences that have
different predicted labels with the original document label (i.e.,
filter out Fl(si) 6= y). Then, we sort the important sentences
in an inverse order according to their importance score Csi .
The importance score of a sentence si is represented with the
confidence value of the predicted class Fy , i.e., Csi = Fy(si).

Step 2: Find Important Words (line 8-11). Considering
the vast search space of possible changes, we should first
find the most important words that contribute the most to the
original prediction results, and then modify them slightly by
controlling the semantic similarity. One reasonable choice is
to directly measure the effect of removing the ith word, since

TABLE I. RESULTS OF THE BLACK-BOX ATTACK ON IMDB.

Targeted Model Original Accuracy
DeepWordBug [1] TEXTBUGGER

Success Rate Time (s) Perturbed Word Success Rate Time (s) Perturbed Word

Google Cloud NLP 85.3% 43.6% 266.69 10% 70.1% 33.47 1.9%
IBM Waston 89.6% 34.5% 690.59 10% 97.1% 99.28 8.6%

Microsoft Azure 89.6% 56.3% 182.08 10% 100.0% 23.01 5.7%
Amazon AWS 75.3% 68.1% 43.98 10% 100.0% 4.61 1.2%

Facebook fastText 86.7% 67.0% 0.14 10% 85.4% 0.03 5.0%
ParallelDots 63.5% 79.6% 812.82 10% 92.0% 129.02 2.2%

TheySay 86.0% 9.5% 888.95 10% 94.3% 134.03 4.1%
Aylien Sentiment 70.0% 63.8% 674.21 10% 90.0% 44.96 1.4%
TextProcessing 81.7% 57.3% 303.04 10% 97.2% 59.42 8.9%

Mashape Sentiment 88.0% 31.1% 585.72 10% 65.7% 117.13 6.1%

0.00
0.05
0.10
0.15
0.20

W
or
d
Co

nt
rib

ut
io
n

it 's so
lad
dis
hand

ju
eni
leonl

y

tee
nag

e
boy

s
cou

ld

pos
sib
lyfind it

fun
ny

−0.90
−0.85
−0.80
−0.75
−0.70

Se
nt
im

en
t S

co
re

Fig. 2. Illustration of how to select important words to apply perturbations.

Algorithm 2 Bug Selection algorithm
1: function SELECTBUG(w,x, y,F(·))
2: bugs = BugGenerator(w);
3: for bk in bugs do
4: candidate(k) = replace w with bk in x;
5: score(k) = Fy(x)−Fy(candidate(k));
6: end for
7: bugbest = argmaxbk score(k);
8: return bugbest;
9: end function

comparing the prediction before and after removing a word
reflects how the word influences the classification result as
shown in Fig. 2. Therefore, we introduce a scoring function
that determine the importance of the jth word in x as:

Cwj =Fy(w1, w2, · · ·, wm)−Fy(w1, · · ·, wj−1, wj+1, · · ·, wm) (1)

Step 3: Bugs Generation (line 12-20). We propose five
bug generation methods for TEXTBUGGER: (1) Insert: insert
a space into the word; (2) Delete: delete a random character of
the word except for the first and the last character; (3) Swap:
swap random two adjacent letters in the word but do not alter
the first or last letter; (4) Substitute-C : replace characters with
visually similar characters (e.g., replacing “o” with “0”) or
adjacent characters in the keyboard; (5) Substitute-W : replace
a word with its topk nearest neighbors in a context-aware word
vector space. As shown in Algorithm 2, after generating five
bugs, we choose the optimal bug according to the change of
the confidence value, i.e., choosing the bug that decreases the
confidence value of the ground truth class the most. Then we

0 10 20 30 40 50
Edit Distance

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

TextBugger
DeepWordBug

(a) Edit Distance

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Jaccard Coefficient

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

TextBugger
DeepWordBug

(b) Jaccard Coefficient

0 1 2 3 4 5 6
Euclidean Distance

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

TextBugger
DeepWordBug

(c) Euclidean Distance

0.0 0.2 0.4 0.6 0.8 1.0
Semantic Similarity

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

TextBugger
DeepWordBug

(d) Semantic Similarity

Fig. 3. The average utility of adversarial texts.

will replace the word with the optimal bug to obtain a new text
x′ (line 14). If the classifier gives the new text a different label
(i.e., Fl(x

′) 6= y) while preserving the semantic similarity
above the threshold (i.e., S(x,x′) ≥ ε), the adversarial text is
found (line 15-19). If not, we repeat the above steps to replace
the next word in Wordered until we find the solution or fail to
find a semantic-preserving adversarial example.

II. EXPERIMENTS AND CONCLUSION

We study adversarial attacks against sentiment analysis
platforms under both white-box and black-box settings. The
main experimental results on IMDB dataset (which contains
25,000 positive and 25,000 negative movie reviews) under
black-box setting are shown in Table I and Fig. 3, from
which we can see that (i) TEXTBUGGER achieves higher attack
success rate than DeepWordBug [1]; and (ii) TEXTBUGGER is
more utility-preserving than DeepWordBug in both word-level
and vector-level.

REFERENCES

[1] J. Gao, J. Lanchantin, M. L. Soffa, and Y. Qi, “Black-box generation
of adversarial text sequences to evade deep learning classifiers,” arXiv
preprint arXiv:1801.04354, 2018.

[2] C. Szegedy, “Intriguing properties of neural networks,” in ICLR, 2014,
pp. 1–10.

2

TextBugger: Generating Adversarial Text Against Real-world Applications
Jinfeng Li1 Shouling Ji1 Tianyu Du1 Bo Li2 Ting Wang3

1.Zhejiang University 2.University of Illinois Urbana-Champaign 3. Lehigh University

Ø Recently, Deep neural networks (DNNs) have been found to be vulnerable against adversarial examples generated by adding small perturbations to the legitimate inputs to
fool the targeted models [2]. Such discovery has also raised serious concerns, especially when deploying such machine learning models to security-sensitive tasks.

Ø We present TextBugger, a general attack framework for generating adversarial texts. In contrast to prior works, TextBugger differs in significant ways: (i) effective -- it
outperforms state-of-the-art attacks in terms of success rate; (ii) evasive -- it preserves the utility of benign text; and (iii) efficient -- it generates adversarial text with
computational complexity sub-linear o the text length. Experimental results demonstrate its effectiveness, evasiveness, and efficiency.

Introduction

TextBugger Evaluation

[1] J. Gao, J. Lanchantin, M. L. Soffa, and Y. Qi, “Black-box generation of adversarial text sequences to
evade deep learning classifiers,” arXiv preprint arXiv:1801.04354, 2018

[2] C. Szegedy, “Intriguing properties of neural networks,” in ICLR, 2014, pp. 1–10.

Reference

Task: Sentiment Analysis Classifier: Amazon AWS
Original label: 100% Negative Adversarial label: 89% Positive

Text: I watched this movie recently mainly because I am a Huge fan
of Jodie Foster's. I saw this movie was made right between her 2
Oscar award winning performances, so my expectations were fairly
high. Unfortunately Unf0rtunately, I thought the movie was terrible
terrib1e and I'm still left wondering how she was ever persuaded to
make this movie. The script is really weak wea k.

Ø Step 1: Find important sentences.
• Segment documents into sentences
• Filter out sentences that have different labels
• Sort in an inverse order according to their score

Ø Step 2: Find important words.

Ø Step 3: Bugs generation.
• Insert: insert a space into the word
• Delete: delete a random character of the word
except for the first and the last character

• Swap: swap random two adjacent letters in the
word but do not alter the first or last letter

• Substitute-C: replace characters with visually
similar characters (e.g., replacing “o” with “0”) or
adjacent characters in the keyboard

• Substitute-W: replace a word with its topk nearest
neighbors in a context-aware word vector space

Examples:

Black-boxWhite-box

Ø Step 4: Choose the optimal bug to substitute the
current word.

