
Poster: Analyzing Semantic Correctness of Security-critical Algorithm
Implementations with Symbolic Execution

Author: Sze Yiu Chau (schau@purdue.edu) Affiliation: Purdue University

Poster Abstract: In order to achieve security, protocol implementations not only need to avoid low-level
memory access errors, but also faithfully follow and fulfill the requirements prescribed by the protocol
specifications at the semantic level. Failure to do so could lead to compatibility issues and damage the
security guarantees intended by the original design. In this poster, I will discuss how to use symbolic
execution to analyze semantic correctness of implementations of security-critical algorithms. The main
intuition is that, while symbolic execution faces scalability challenges, it provides a systematic means of
exploring possible execution paths and a formula-based abstraction, both of which are useful in finding
semantic level implementation flaws. In many cases, scalability challenges can be avoided with concolic
inputs carefully crafted by exploiting features of the input formats used by target protocols, along with
optimizations based on domain knowledge that can help prune the search space. As examples, the poster
will first present our previous work on analyzing implementations of X.509 certificate validation. Our
analysis of 9 small footprint TLS libraries has uncovered 48 instances of noncompliance, as well as some
inaccurate claims in a previous work based on blackbox fuzzing. It will then discuss our most recent work
on analyzing implementations of PKCS#1 v1.5 RSA signature verification, and explain how some of the
implementation flaws we found in crypto libraries and IPSec software suites can lead to authentication
bypass and denial-of-service attacks due to new variants of the Bleichenbacher-style low-exponent RSA
signature forgery. Altogether, 9 new CVEs of varying degree of severity have been assigned thanks to this
series of research.

1



Analyzing Semantic Correctness of Security-critical Algorithm Implementations with Symbolic Execution

Sze Yiu Chau � Purdue University � schau@purdue.edu
� https://www.cs.purdue.edu/homes/schau/

(1) Motivation

• Semantic correctness is fundamental to achieving security
→Q: Is an algorithm implementation faithfully following the specification?
→ Just because it doesn’t crash, doesn’t mean that it is correct
• How do we reason about the semantic correctness of an algorithm implementation?

(2) Symbolic Execution . . . More Than Just Automatic Test Case Generation

• Blackbox fuzzing is a prominent software testing approach, but
→ Hard to reason about code internals with only observable inputs and outputs
→ Symbolic execution provides

– in general better code coverage
– a very useful abstraction in the form of logical formula

• Scalability challenges of symbolic execution can be worked around with
→ strategically mixing concrete values with symbolic variables

– Resemble the idea of “Grammar-based whitebox fuzzing” [Godefroid et al., PLDI ’08]
– Get through parsing quickly and focus on the security-critical validation logic

→ other domain-specific optimizations
• Two success stories on finding semantic correctness issues in deployed implementations:
→➊ X.509 Certificate Validation [Chau et al., IEEE S&P ’17]
→➋ PKCS#1 v1.5 Signature Verification [Chau et al., NDSS ’19]

➊–① Research Focus

Goal: Expose RFC Violations in X.509 implementations

• Focus our analysis on small-footprint, small code-base libraries

SSL
SSL SSL

• Domain-specific optimizations: No crypto and simplified string matching

➊–② Extracting the Validation Logic

SymCert

SSL

Symbolic
Execution Engine

Accepting
Universe
(approx.)

Rejecting
Universe
(approx.)

(P∧Q)→Y
¬X→¬Q
S=T-5

X∨Y→¬P
T/2+3=K
A⊕B=1

Sets of Logical
Formulas

SSL

...

Accepting
Universe

Rejecting
Universe

X.509 Certificate Chain Input Universe

➊–③ Finding Flaws Through Simple Inspections and Cross-Validation (Differential Testing)

A2 (approx.)

(P∧Q)→Y
¬X→¬Q
S=T-5

R1 (approx.)

X∨Y→¬P
T/2+3=K
A⊕B=1

A1 (approx.)

(P∧Q)→Y
¬X→¬Q
S=T-5

R2 (approx.)

X∨Y→¬P
T/2+3=K
A⊕B=1

SMT Solver

Accepting
Universe
(approx.)

Rejecting
Universe
(approx.)

(P∧Q)→Y
¬X→¬Q
S=T-5

X∨Y→¬P
T/2+3=K
A⊕B=1

Sets of Logical
Formulas

➊–④ Summary of Experiments and Findings

• Tested 9 implementations from 4 families of SSL/TLS libraries

Library - version Released Lines of C code Total Paths Extraction Time Violations

axTLS - 1.4.3 Jul 2011 16,283 ∼ 0.8K ∼ 1 Minute 7
axTLS - 1.5.3 Apr 2015 16,832 ∼ 0.8K ∼ 1 Minute 6

tropicSSL - (Github) Mar 2013 13,610 ∼ 0.2K ∼ 1 Minute 10
* PolarSSL - 1.2.8 Jun 2013 29,470 ∼ 0.3K ∼ 1 Minute 4
mbedTLS - 2.1.4 Jan 2016 53,433 ∼ 0.6K ∼ 1 Minute 1
* CyaSSL - 2.7.0 Jun 2013 51,786 ∼ 0.6K ∼ 2 Minutes 7
wolfSSL - 3.6.6 Aug 2015 103,690 ∼ 32K ∼ 1 Hour 2

* MatrixSSL - 3.4.2 Feb 2013 18,360 ∼ 0.2K ∼ 1 Minute 6
MatrixSSL - 3.7.2 Apr 2015 37,879 ∼ 12K ∼ 1 Hour 5

Total: 48

➊–⑤ Notable Findings and Their Implications

• Various libraries misintrept the 2-byte year (YY) of UTCTime
→ Some expiration dates are shifted by 100 years

– CVE-2017-1000415 assigned for MatrixSSL 3.7.2 (CVSS v3.0 score: 5.9 Medium Severity)

– CVE-2017-1000416 assigned for axTLS 1.5.3 (CVSS v3.0 score: 5.3 Medium Severity)

•Overly Permissive comparisons of OIDs in ExtKeyUsage (wolfSSL 3.6.6, MatrixSSL 3.7.2)
→ Compare only the sum of OID encoded bytes, collision prone

– CVE-2017-1000417 assigned for MatrixSSL 3.7.2 (CVSS v3.0 score: 5.3 Medium Severity)

➊–⑤ Notable Findings and Their Implications (Continued)

• Reject certificates with GeneralizedTime (tropicSSL, axTLS 1.4.3)
• Country, State, Locality ignored (axTLS 1.4.3 and 1.5.3)
• Incomplete extension handling (various libraries)

➊–⑥ New Findings Comparing To Previous Work Based On Fuzzing

• Incorrectly reject valid certs due to overly restrictive date time comparisons (CyaSSL 2.7.0)

• Incorrect Extension Parsing (CyaSSL 2.7.0)
• pathLenConstraint ignored (CyaSSL 2.7.0, PolarSSL 1.2.8, tropicSSL and wolfSSL 3.6.6)
→ Previous work inaccurately claimed both CyaSSL 2.7.0 and PolarSSL 1.2.8 incorrectly reject

a specific corner case of pathLenConstraint [Brubaker et al., IEEE S&P ’14]

➋–① Research Focus

Goal: Find semantic flaws in implementations of PKCS#1 v1.5 RSA signature verification

• PKCS#1 v1.5 signatures are widely used, e.g., X.509 Certificates, SSH, IPSec, etc.
• Some flaws are known to be exploitable for signature forgery when e is small
→ “Bleichenbacher-style” low exponent signature forgery attacks

– First reported by Daniel Bleichenbacher at CRYPTO ’06 Rump Session
→Many variants found later, e.g. in OpenSSL, GnuTLS, Mozilla Firefox, etc.

➋–② Technical Improvements Over ➊

• Automatically generate concolic test cases based on relations of the components
→ PKCS#1 v1.5 has diverse input components, e.g. ASN.1, padding w/ implicit length
→ Programmatically prepare input buffers according to combinations of component lengths
• Easier root cause analysis with Contstraint Provenance Tracking (CPT)
→Want to be able to go back to source code from the formula-based abstraction
→ CPT tracks the source-level origin of each clause of a path constraint

➋–③ Summary of Experiments and Findings

• Tested 15 implementations, including TLS & crypto libraries, SSH and IPSec software suites

Implementation
(version)

Test
Harness

Execution
Time

Total Path
(Accepting)

axTLS
(2.1.3)

TH1 01:42:14 1476 (6)
TH2 00:00:05 21 (21)
TH3 00:00:10 21 (1)

BearSSL
(0.4)

TH1 00:01:55 3563 (1)
TH2 00:00:06 42 (1)
TH3 00:00:00 6 (1)

BoringSSL
(3112)

TH1 00:06:09 3957 (1)
TH2 00:00:08 26 (1)
TH3 00:00:00 6 (1)

Dropbear SSH
(2017.75)

TH1 00:46:10 1260 (1)
TH2 00:00:11 23 (1)
TH3 00:00:15 7 (1)

GnuTLS
(3.5.12)

TH1 00:01:35 570 (1)
TH2 00:00:06 22 (1)
TH3 00:00:01 4 (1)

LibreSSL
(2.5.4)

TH1 00:10:27 4008 (1)
TH2 00:01:40 1151 (1)
TH3 00:25:45 1802 (1)

libtomcrypt
(1.16)

TH1 00:01:13 2262 (3)
TH2 00:00:11 805 (3)
TH3 00:04:49 7284 (1)

MatrixSSL
(3.9.1)

Certificate

TH1 00:01:54 4554 (1)
TH2 00:00:04 202 (1)
TH3 00:00:22 939 (2)

Implementation
(version)

Test
Harness

Execution
Time

Total Path
(Accepting)

MatrixSSL
(3.9.1)
CRL

TH1 00:01:55 4574 (21)
TH2 00:00:04 202 (61)
TH3 00:00:07 350 (7)

mbedTLS
(2.4.2)

TH1 00:14:56 51276 (1)
TH2 00:00:03 26 (1)
TH3 00:00:00 38 (1)

OpenSSH
(7.7)

TH1 00:07:00 3768 (1)
TH2 00:00:08 22 (1)
TH3 00:00:00 2 (1)

OpenSSL
(1.0.2l)

TH1 00:06:31 4008 (1)
TH2 00:00:56 1148 (1)
TH3 00:16:16 1673 (1)

Openswan
(2.6.50)

TH1 00:01:07 378 (1)
TH2 00:00:04 26 (1)
TH3 00:00:00 6 (1)

PuTTY
(0.7)

TH1 00:03:22 3889 (1)
TH2 00:00:07 42 (1)
TH3 00:00:00 6 (1)

strongSwan
(5.6.3)

TH1 00:01:32 2262 (3)
TH2 00:16:36 15747 (3)
TH3 00:00:24 216 (6)

wolfSSL
(3.11.0)

TH1 00:04:05 14316 (1)
TH2 00:00:06 26 (1)
TH3 00:00:00 6 (1)

➋–④ Notable Findings and Their Implications

• Various unwarranted leniciencies in accepting malformed signatures
→ Some lead to immediate practical signature forgeries when e is small enough
→ 6 new CVEs assigned for the newly discovered and exploitable flaws

– CVE-2018-15836 assigned for Openswan 2.6.50 (CVSS v3.0 score: 7.5 High Severity)

– CVE-2018-16151 assigned for strongSwan 5.6.3 (CVSS v3.0 score: 7.5 High Severity)

– CVE-2018-16152 assigned for strongSwan 5.6.3 (CVSS v3.0 score: 7.5 High Severity)

– CVE-2018-16253 assigned for axTLS 2.1.3 (CVSS v3.0 score: 5.9 Medium Severity)

– CVE-2018-16150 assigned for axTLS 2.1.3 (CVSS v3.0 score: 5.9 Medium Severity)

– CVE-2018-16149 assigned for axTLS 2.1.3 (CVSS v3.0 score: 5.9 Medium Severity)

→ Particularly bad for IPSec software suites because some key generation programs (e.g.,
‘ipsec_rsasigkey’ on Ubuntu) forces e = 3
→ axTLS suffers from both potential signature forgery and Denial of Service
→ Please refer to the paper for detailed attack algorithms and complexity analysis

Symbolic execution can be quite effective in analyzing semantic correctness
• Thanks to its good coverage and formula-based abstraction of the implemented logic
• 2 success stories on anlayzing X.509 certificate validation and RSA signature verification

Symbolic execution can be quite effective in analyzing semantic correctness
• Thanks to its good coverage and formula-based abstraction of the implemented logic
• 2 success stories on anlayzing X.509 certificate validation and RSA signature verification


