
Riccardo Paccagnella, Pubali Datta, Wajih Ul Hassan, Adam Bates, Christopher Fletcher, Andrew Miller
Department of Computer Science, College of Engineering, University of Illinois at Urbana-Champaign

Securing Operating System Audit Logs

GOALS

Our solution must guarantee tamper-evidence, meaning that
that logs generated before system compromise cannot be
falsified by the attacker without that being detectable.

Further, to be viable within commodity operating systems, our
solution must be transparent, efficient, and minimally
invasive to existing audit frameworks.

Finally, log verifiability should not depend on a fully trusted
verifier or remote server (single point of failure).

INTRODUCTION

Audit logs provide definitive ground truth of a system’s
activities, making them crucial to detect and explain system
intrusions.

However, malware can engage in anti-forensic activity after
an intrusion, including modification and deletion of the logs
to cover their tracks.

We need methods to guarantee the integrity of
system audit logs in commodity operating systems.

SYSTEM DESIGN

Our system leverages features of increasingly available trusted
execution environments (TEE) to enable transparent tamper-
evident logging.

It employs a parameterizable batch signature scheme, signing
log events in blocks.

Before a message is logged, the logger passes it to TEE, where
the current block’s hash value is extended with the message.

When a block is ready to be committed, the TEE uses its private
key to sign over the block’s incremental hash and its ID, and
then releases the resulting digital signature σ to the untrusted
environment.

!	 = 	$%&'((*+,ℎ(./00_234.5_67	||	9:||	…	||	9<)

These signatures can be verified to attest log integrity:

To provide continuity across power cycles, the TEE seals its
state at shutdown and unseals it at startup. At each startup the
session monotonic counter is incremented.

In a centralized logging framework, blocks can be committed
upon each log transmission to the central server.

SECURITY ANALYSIS

Removing a subset of events for any block will invalidate its
integrity proof, which cannot be forged.

Similarly, an attacker cannot insert or modify events into a
committed log block without invalidating its integrity proof.

An attacker also cannot remove or reorder an entire log block
because that will invalidate the chronologically-ordered
sequence of block IDs.

Killing the logger process to prevent a block's commitment
will be detected from the missing sealed state at the next
startup (session not terminated correctly).

Similarly, rollback attacks will fail during the startup.

Examples of Linux Audit logs

PRELIMINARY EVALUATION

We implement a prototype version of our solution for the
Linux Audit system that uses Intel SGX as a TEE.

We measure the average overhead of guard_log when
processing 40,000 identical log events:

Logger TEE
STATE:
 (pk, sk)
 curr_block_hash
 curr_block_ID
 session_counter

FUNCTIONS:
 guard_log(m)
 commit_log_block()

Log
Logs

Integrity
Proofs

	>?0@((*+,ℎ(234.5_67	||	9:||	…	||	9<)
Logs

Integrity
Proofs

FUTURE WORK

- Measure the system-wide impact of our solution
- Develop strategies to prevent log tampering

Integrity of logs
is maintained

Point of Compromise

time

Poster: Securing Operating System Audit Logs

Riccardo Paccagnella⇤, Pubali Datta⇤, Wajih Ul Hassan⇤, Adam Bates⇤, Christopher Fletcher⇤, Andrew Miller⇤

⇤University of Illinois at Urbana-Champaign
{rp8,pdatta2,whassan3,batesa,cwfletch,soc1024}@illinois.edu

Abstract—System auditing mechanisms are an important

concern when investigating and responding to security incidents.

Unfortunately, attackers regularly engage in anti-forensic activities

after an intrusion, erasing or falsifying system logs to cover their

tracks. While a variety of tamper-evident logging solutions have

appeared in the industry and the literature, these techniques

have seen limited usage because of impractical limitations such

as requiring expensive cryptographic computations, fully trusted

servers or specialized no-rewrite storage. In this poster, we

introduce a novel framework for scalable tamper-evident system

logging. Our system leverages features of increasingly available

trusted execution environments (TEE) to enable the verification

of log integrity while being minimally invasive to the underlying

logging framework. We further present a security analysis of our

system and evaluate its performance overhead on the standard

Linux’s audit framework.

I. INTRODUCTION

Logging is an essential component of building and main-
taining secure systems. When suspicious events occur, audit
logs are frequently turned to as a definitive ground truth of
the system’s activities. Unfortunately, system intruders also
understand the value of a system’s audit logs—because audit
logs describe an attacker’s method of entry, mission objectives,
and further propagation within a system, attackers regularly
engage in anti-forensic countermeasures to erase or conceal
this vital forensic evidence. Penetration testing tools such as
Metasploit [3] go so far as to automate this process, allowing
an intruder to erase audit records from a variety of sources with
a single command. Perhaps worse than log removal, attackers
may also edit existing events or insert new ones so as to inject
confusion into subsequent investigations.

In light of this reality, it is surprising that commodity
operating systems offer no special protections for their logging
frameworks. To solve this problem, prior solutions relied on
specialized Write-Once-Read-Many (WORM) storage, remote
trusted servers, or expensive cryptography. However, a lack
of widespread adoption indicates that these approaches are
inapplicable for the demands of operating system logging.

In this poster, we revisit the goal of tamper-evident log-
ging within the context of standard operating system ab-
stractions. To this end, we introduce a scalable and practical
tamper-evident framework. Our framework leverages features
of increasingly-available Trusted Execution Environment tech-
nologies to record logs in such a way that they cannot later
be falsified without detection. We analyze the security of our
system by showing how it can always detect log integrity
violations. Finally, we implement a prototype of our system
and evaluate its performance to show how log integrity is
provided with low computational overhead for the logger.

II. SYSTEM DESIGN

The goal of our work is to store logs in a way that they
cannot be falsified without detection. To this end, our system
generates integrity proofs over the logs as they are processed
by the underlying audit framework. These proofs are digital
signatures stored to disk altogether with the log. In particular,
our protocol consists of five routines: (1) Initialization; (2)
Startup; (3) Logging; (4) Commitment; and (5) Shutdown.
Each of these routines corresponds to a call to a function
running inside the TEE, which is trusted to confidentially store
cryptographic keys. To overcome the performance limitations
of digital signatures, our protocol employs a parameterizable
batch signature scheme, signing log events in blocks.

a) Initialization phase: The initialization phase is used
when our system is first deployed on the host. This phase starts
with creating an asymmetric key pair for the TEE. Next, the
TEE is used to initialize a new monotonic counter, and a block
ID variable e is initialized to zero. The TEE is then used to
seal these values so that they can be securely stored on disk;
they will be unsealed in the startup phase.

b) Startup phase: The startup phase is invoked once per
host startup. This phase starts with unsealing the previously
sealed key, monotonic counter, and block ID. In case of any
missing or corrupted data, an error is raised and the enclave
is forced to run a new initialization routine. The system
then increments the value of the monotonic counter to mark
the beginning of a new session. Finally, the block ID e is
incremented and an incremental hash for its corresponding
block is initialized. The TEE maintains the key, monotonic
counter, block ID, and incremental hash in its protected mem-
ory throughout the system execution until the shutdown phase
is invoked. Once this phase is complete, the system is ready
to receive log events from the underlying audit framework.

c) Logging phase: The logging phase is invoked when-
ever the audit framework produces a new log event. This phase
consists of extending the current block’s hash value with the
new log event. Performance is paramount in this routine since
it is invoked with high frequency.

d) Commitment phase: The commitment phase is in-
voked to generate an integrity proof over the current block of
logs e. In this phase, the TEE uses its private key to sign over
e’s incremental hash, and then releases the resulting digital
signature to the untrusted environment. Finally, a new block
with ID e+ 1 is started.

e) Shutdown phase: Upon receiving a shutdown noti-
fication, the system must complete the current block and seal
the current block ID e together with the current value and ID

of the monotonic counter. This phase ensures that (1) all log
entries up to the moment of shutdown are successfully signed
and (2) when the system is started up again it can continue
with block ID e+ 1.

A. Verifying log integrity

Once a log block M with id e and spanning a set of
consecutive log entries hm1, ...,mli, is committed and its
corresponding signature � is released by the logger, a verifier
can attest its integrity as follows. Verifying the integrity of
logs in M consists of recomputing the hash value hash =
H(hekm1k...kmli) and then using the host’s public key pk to
verify that � is a valid signature for hash.

III. SECURITY ANALYSIS

We now analyze the security of our tamper-evident logging
mechanism. Let t be the time of system compromise. We dis-
cuss our system protects against various tampering techniques
an adversary may attempt to use, on the recorded logs or on
our system itself, to covertly hide traces of their compromise
from the logs recorded at any time t.

• Log Deletion. An attacker cannot delete arbitrary events
from a node’s log records. Removing a subset of events for
a block will invalidate its integrity proof, which cannot be
forged. An attacker also cannot remove an entire log block
because that will invalidate the chronologically-ordered se-
quence of block IDs. A truncation attack on the log will
similarly be detected by validating the sequence of block
IDs against a new block committed by the logger.

• Log Insertion / Modification. An attacker cannot insert or
modify events into a committed log block without invali-
dating its integrity proof. An attacker also cannot re-order
blocks because that will still invalidate the chronologically-
ordered sequence of block IDs.

• Protocol Termination. An attacker with root privilege is able
to terminate the logger process at any time. An attacker
may use this ability to try to prevent a block’s commitment
by terminating the logger, but will then need to restart the
logger so it can respond to future challenges. Because the
current block is committed during the logger’s shutdown
phase, the attacker will have to force kill the process.
However, if the attacker does so then there will not be sealed
data on disk that will unlock to the TEE’s current state.
Because the attacker cannot forge such data, the logger will
detect such tampering and raise an error. By the same logic,
the attacker is also unable to launch rollback attacks while
the logger is shutdown because this will cause parameter
unsealing to fail during the Startup Phase.

IV. EVALUATION

a) Setup: We implement our system on top of the Linux
Audit project using Intel SGX as a TEE, and configure Linux
Audit to log all system calls that are of potential interest
for forensic analysis. We measure the performance of our
implementation on a bare metal server-class machine with an
Intel Core i7-7700K processor at 4.20GHz (4 hyper-threaded
cores) and 64GB RAM.

TABLE I. MICROBENCHMARKS ON LOGGER OPERATIONS. WE RUN
EACH PHASE 100 TIMES AND REPORT THE MEDIAN EXECUTION TIME.

Phase Time

Initialization 94.55 ms
Startup 109.10 ms
Logging (ecalls) 4.71 µs
Logging (Hotcalls) 0.92 µs
Commitment 128.87 µs
Shutdown 188.98 µs

b) Results: We manually invoke each logging routine
100 times and include in the measurement the time required to
context switch into and out of the enclave. Table I shows the
results. The phases that involve interaction with a hardware
counter, Initialization and Startup, are the most costly. This is
because SGX monotonic counter operations are notoriously
slow [2], but these operations typically occur only once
per session. The next most costly phases, Commitment and
Shutdown, involve cryptographic signatures. However, these
operations will occur orders of magnitude less frequently
than the Logging operation. Fortunately, Logging is the most
efficient at 4.71µs per log event generated. Furthermore, using
Hotcalls [4] results in a significant speed-up (0.92 µs).

To evaluate how our modifications to Linux Audit affect the
time required to record a single log event, we also instrument
auditd to measure the average times in nanoseconds that
both Vanilla and modified Linux Audit take to process a single
event. After observing the processing of 40,000 identical log
events, we discover that the modified auditd takes an average
of 6.61µs/event whereas Vanilla auditd takes an average
of 5.67µs/event. Our modifications thus impose an average
16.6% overhead on auditd. This 0.9µs overhead compares
favorably to prior work on SGX-based logging, which reports a
median overhead of 215µs per event [1]. We conclude that our
tamper-evident logging protocol imposes reasonable overheads
on Linux Audit’s log processing time.

V. CONCLUSION

In spite of the central importance of system logs in respond-
ing to modern security incidents, today’s commodity operating
systems fail to assure for the integrity of logs beyond the
use of typical user space access controls. In this poster, we
introduced a viable approach to tamper-evident logging that
supports standard operating system abstractions. Our system
can be integrated with enterprise logging framework to detect
the anti-forensic activities of system intruders.

REFERENCES

[1] V. Karande, E. Bauman, Z. Lin, and L. Khan, “SGX-Log: Securing
system logs with SGX,” in Proc. of the ACM Asia Conference on
Computer and Communications Security (ASIA CCS), 2017.

[2] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer, A. Gervais,
A. Juels, and S. Capkun, “ROTE: Rollback protection for trusted execu-
tion,” in Proc. of the USENIX Security Symposium (USENIX), 2017.

[3] Rapid7, “Metasploit, the world’s most used penetration testing frame-
work,” https://www.metasploit.com/, last accessed 11-06-2018.

[4] O. Weisse, V. Bertacco, and T. Austin, “Regaining lost cycles with
HotCalls: A fast interface for sgx secure enclaves,” in Proc. of the Annual
International Symposium on Computer Architecture (ISCA), 2017.

2

