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Abstract—Social graphs derived from online social interactions
contain a wealth of information that is nowadays extensively used
by both industry and academia. However, as social graphs contain
sensitive information, they need to be properly anonymized before
release. Most of the existing graph anonymization mechanisms
rely on the perturbation of the original graph’s edge set. In this
paper, we identify a fundamental weakness of these mechanisms:
They neglect the strong structural proximity between friends in
social graphs, thus add implausible fake edges for anonymization.
To exploit this weakness, we first propose a metric to quantify an
edge’s plausibility by relying on graph embedding. Extensive ex-
periments on three real-life social network datasets demonstrate
that our plausibility metric can very effectively differentiate
fake edges from original edges with AUC values above 0.95 in
most of the cases. We then rely on a Gaussian mixture model
to automatically derive the threshold on the edge plausibility
values to determine whether an edge is fake, which enables us to
recover to a large extent the original graph from the anonymized
graph. Then, we demonstrate that our graph recovery attack
jeopardizes the privacy guarantees provided by the considered
graph anonymization mechanisms. To mitigate this vulnerability,
we propose a method to generate fake yet plausible edges
given the graph structure and incorporate it into the existing
anonymization mechanisms. Our evaluation demonstrates that
the enhanced mechanisms decrease the chances of graph recovery
and reduce the success of graph de-anonymization (up to 30%).

I. INTRODUCTION

The rapid development of online social networks (OSNs)
has resulted in an unprecedented scale of social graph data
available. Access to such data is invaluable for both the indus-
trial and academic domains. For instance, Amazon or Netflix
have leveraged graph data to improve their recommendation
services. Moreover, researchers have been using graph data
to gain a deeper understanding of many fundamental societal
questions, such as people’s communication patterns [1], [2]
and information propagation [3], [4]. These examples demon-
strate that the sharing of large-scale graph data can bring
significant benefits to the society.

On the downside, graph data also inherently contains very
sensitive information about individuals [5], such as their social
relations [6], and it can be used to infer private attributes [7].
In order to mitigate privacy risks, it is crucial to properly
anonymize the graph data before releasing it to third parties.
The naive approach of replacing real identifiers by random
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Fig. 1: Plausibility distributions of fake and original edges in
the NO dataset anonymized by (a) the original k-DA and (b)
by our enhanced k-DA mechanisms.

numbers has been proven ineffective by Backstrom et al.
about a decade ago already [8]. From then on, the research
community has been working on developing more robust graph
anonymization mechanisms [10]–[12]. The majority of the
proposed mechanisms focus on perturbing the original edge set
of the graph (instead of perturbing the node set) by adding fake
edges between users, such that the perturbed graph satisfies
well-established privacy guarantees (such as k-anonymity [14]
and differential privacy [15]).

Contributions. In this paper, we identify a fundamental weak-
ness of the most prominent graph anonymization mechanisms:
When creating fake edges, they do not take into account key
characteristics of the underlying graph structure, such as the
higher structural proximity between friends [16], which results
in fake edges not being plausible enough compared to the
original ones. To exploit this weakness, we first assess the
plausibility of each edge by relying on graph embedding [17],
[18]. We show that this approach can very effectively detect
fake edges (see Figure 1a for an example), and thus can
eventually help recover the original graph to a large extent.
We then demonstrate that our graph recovery attack jeop-
ardizes the anonymization mechanisms’ privacy guarantees.
Finally, we develop enhanced versions of the existing graph
anonymization mechanisms that: (i) create plausible edges
(Figure 1b), (ii) reduce the risk of graph recovery and graph
de-anonymization and (iii) preserve the initial privacy criteria
provided by the mechanisms. We concentrate on two of the
best established graph anonymization mechanisms, which pro-



vide k-anonymity [9] and differential privacy [10] guarantees,
respectively.
Edge Plausibility. We measure the plausibility of an edge as
the structural proximity between the two users it connects.
In the field of link prediction [16], structural proximity is
normally measured by human-designed metrics, which only
capture partial information of the proximity. Instead, we rely
on graph embedding [17], [18] to map users in the anonymized
graph into a continuous vector space, where each user’s vector
comprehensively reflects her structural properties in the graph.
Then, we define each edge’s plausibility as the similarity
between the vectors of the two users this edge connects, and
postulate that lower similarity implies lower edge plausibility.
Graph Recovery. We first show the effectiveness of our
approach in differentiating fake edges from original ones
without determining a priori a specific decision threshold on
the plausibility metric. For this case, we adopt the AUC
(area under the ROC curve) value as the evaluation metric.
Extensive experiments performed on three real-life social
network datasets show that our plausibility metric achieves
excellent performance (corresponding to AUC values greater
than 0.95) in most of the cases. Then, observing that the fake
and real edges’ empirical plausibility follow different Gaussian
distributions, we rely on a Gaussian mixture model and
maximum a posteriori probability estimate to automatically
determine the threshold on the edge plausibility values to
detect fake edges. Our experimental results show that this
approach achieves strong performance with F1 scores above
0.8 in multiple cases. Deleting the fake edges let’s us recover,
to a large extent, the original graph from the anonymized one.
Privacy Damage. To precisely quantify the privacy impact of
our graph recovery, we propose privacy loss measures tailored
to each mechanism we target. As the first anonymization
mechanism assumes the adversary uses the users’ degrees
to conduct her attack, we evaluate the corresponding privacy
impact as the difference between users’ degrees in the orig-
inal, anonymized, and recovered graphs. For the differential
privacy mechanism, we measure the magnitude and entropy
of noise added to the statistical measurements of the graph.
our experimental results show that the privacy provided by
both mechanisms significantly decreases, which demonstrates
the vulnerabilities of existing graph anonymization techniques.
Enhancing Graph Anonymization. In order to improve the
privacy situation, we propose a method that generates plausible
edges while preserving the original privacy guarantees of each
mechanism. We rely on statistical sampling to select potential
fake edges that follow a similar plausibility distribution as
the edges in the original graph. Our experimental results
show that our enhanced anonymization mechanisms are less
prone to graph recovery (AUC dropping by up to 35%). More
importantly, we show that our enhanced mechanisms reduce
the state-of-the-art graph de-anonymization [19] attack’s per-
formance significantly.

In summary, we make the following contributions in this
paper:

• We perform a graph recovery attack on anonymized
social graphs based on graph embedding that captures
the structural proximity between users and thus unveils
fake edges (i.e., relations) between them.

• We show through extensive experimental evaluation on
three different datasets that our graph recovery attack
jeopardizes the privacy guarantees provided in two promi-
nent graph anonymization mechanisms.

• We propose enhanced versions of these graph anonymiza-
tion mechanisms that improve both their privacy and
utility provisions.
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Plausible edges

• Calculate cosine similarities between 
node’s vectors

• High cosine similarity means high 
edge plausibility

• This allows us to distinguish between 
original and fake edges

 

Each edge we can transform into a 
number that tells us how likely it is 
to be one of original edges

Plausibility Metric

Random Walk

• From one node jump to one of his 
neighbors randomly

• Save traces of such jumps
• Treat them as natural language 

sentences

Word2vec

• Generated sentences feed to 
word2vec algorithm

• which embeds each word (node) into 
a vector based on:

− their semantic similarity 
(neighborhood that given node 
is in)

− gramatical role (structural role 
of a given node)

Each node is embedded into a 
vector based on its proximity to 
other nodes and structural role

Graph EmbeddingGraph Anonymization

Why

• OSN providers share their networks 
with advertisement companies or 
academia

• To protect user’s privacy, graph needs 
to be anonymized

• Replacing user’s names with random 
ids is not enough

How

• k-anonymity each user should share 
her node degree with k-1 other users, 
so add connections between users 
who’s degree is to low

• differential privacy perturb users’ 
degree distribution to achieve DP, add 
edges to the graph to get perturbed 
degree distribution

To anonymize a graph (mostly) add 
fake edges (friendships, followings)

Graph recovery

Removing fake edges

• Use Gaussian Mixture Model to find two bell curves 
(of fake and real edges) and their parameters

• Find a (plausibility) threshold, where the curves 
intersect each other. Different thresholds can be 
used for achieving higher true positives or true 
negatives ratio

• Remove all edges below given threshold

Plausible Graph Anonymization

Fixing graph anonymization

• Find target node degrees or a degree 
distribution to satisfy given anonymity 
definition (no change from original 
designs)

• Sample fake edges following real 
edges plausibility distribution

• Final anonymized graph is resilient to 
our graph recovery attack

Schematic view of the social network graph recovery attack
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