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Abstract—A common method for helping users select stronger
authentication secrets, e. g., passwords, is to deploy a visual
strength meter that provides feedback to the user while per-
forming password selection. Recent work considered the accuracy
of strength meters for passwords, but there is limited work
on understanding the accuracy of strength meters for other
knowledge-based authentication types, particularly Android’s
graphical pattern unlock, despite there being multiple strength
meters proposed for patterns in the literature. In this work, we
present a preliminary analysis of the accuracy of strength meters
for Android patterns, applying the same set of techniques from
previous work. Using datasets of patterns collected in several user
studies as a baseline, we compare strength meter estimations using
weighted Spearman correlation. Overall, we find that strength
estimations based on visual properties of the patterns (such as
length, intersections, overlapping nodes, and similar) provide
strength estimations that have low correlation with the real
guessability of Android patterns. Motivated by these findings,
we describe a set of research questions and experiments that
are in progress that question whether the accuracy of a meter
should even be the driving factor for nudging users to more secure
choices.

I. INTRODUCTION

Strength meters are commonplace during password selec-
tion, and studies have shown that user choice is influenced by
them [40]. Sometimes, users are forced to achieve a high meter
score, especially for high-value accounts [20]. Some meter
designs take into account estimations of strength based on our
understanding of how users select passwords [47] or provide
feedback for improving user choice [38]. However, many
password meters, particularly those currently deployed across
the Web, do not well relate with our current understanding of
password strength [42], [9], which considers large guessing
attacks where the attacker has some knowledge of likely
passwords. Meanwhile, most meters are prescriptive [17], e. g.,
only considering if a password is of sufficient length with the
appropriate number of special, upper and lower case letters,
which does not correlate well with guessing strength [24].
Meter inaccuracy may even cause more harm than good by
providing users with a false sense of security [41], [39].

In the mobile authentication domain, strength meters have
also been proposed for Android’s graphical unlock scheme [1],
[33], [31]. As a graphical knowledge-based authentication
scheme, users select patterns by traversing a grid of 3x3 nodes
without lifting, avoidance, or repetition (cf. Figure 1). All cur-
rently proposed pattern meters are based on visual properties,
i. e., the shape of the pattern, rather than statistical features
involved in the non-uniform selection of patterns by users, e. g.,
users tend to start in the upper left and end in the lower right.
A number of studies have shown that human pattern choices
are far simpler to guess and predict than selecting uniformly
from the set of all possible 389, 112 patterns [37], [3], [31],
[36], [15], [45].

In this work in progress paper, we analyze the strength
meters proposed for Android patterns. Using a large data
set of patterns collected in a number of different studies
(summarized by Aviv and Dürmuth [5]), we evaluate each
strength meter under realistic guessing attack conditions. The
large data set, to which we refer to as “All,” consists of
4, 637 patterns that are merged from four different user studies.
Based on their statistical properties, we divided the dataset into
three groups consisting of “Weak,” “Medium,” and “Strong”
patterns. Overall, we find that meters based on visual properties
greatly misrepresent the strength of a pattern and have low
correlation with the real strength. In contrast, we recommend
using a data-driven approach by using Markov models trained
on user-chosen patterns to build an accurate meter.

However, a well-tuned strength meter must also well influ-
ence users, and based on these results, we propose a new set of
studies to understand better what makes a good strength meter
design. While we consider the approach recently proposed by
Ur et al. [38], which tells users what is wrong with their
password and how to improve it, a good starting point, we think
that due to the different attack surface of patterns (namely,
being a throttled attack) and the mobile setting it might not
be the right solution for this setting. We also acknowledge
that even the presence of any strength meter, regardless of
accuracy, may positively influence users to select patterns
differently. On the other hand, a more obtuse, strictly-enforced
blacklisting approach without any user interaction may lead to
user frustration and might not increase security [25].

Instead, we argue that a pattern strength meter does not
need to be accurate as long as it will drive users away from
weak and ineffective authentication choices. Motivated by prior
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work in understanding perceptions of pattern strength [7], we
will design a new, trained placebo meter that is tuned to
best influence users. However, as the perception of security
is not real security, we will also make use of a non-enforcing
blacklisting approach to help users avoid selections of very
common patterns. In summary, our paper consists of two parts:

(i) Completed: We implement and analyze the strength
meters proposed for Android patterns and our proposal
based on a Markov model. Using a large dataset of
patterns collected in a number of different studies we
measure the similarity between the various strength meter
outputs and an ideal reference.

(ii) Work in progress: We plan to conduct a user study
to evaluate a trained placebo meter that is tuned to
best influence users by following users’ perception of
strength. While avoiding too common patterns via a non-
enforcing blacklisting approach, we like to investigate the
influence of strength meter accuracy.

II. BACKGROUND AND RELATED WORK

Android unlock patterns remain a popular mobile device
lock mechanism [44], [19], [26]. It was first introduced in
2008 and is based on the Pass-Go scheme [34]. While there
exist some minor vendor specific variations, the patterns are
typically “drawn” using 9 nodes arranged in a 3x3 grid as
visualized in Figure 1. A valid pattern consists of 4 to 9 nodes,
only straight lines are allowed, no node can be selected more
than once, and all nodes along a path are connected (unless a
node was selected before).

Android’s graphical password has been studied in many
contexts, including for security (e. g., smudges [8], [13], shoul-
der surfing [43], [4], [18], other side-channel attacks [50], [14],
[48], [49]), user choice [37], [1], [28], selection aids [36], [15],
and under modifications [3], [35]. As mentioned, there has
been a number of proposals for pattern strength meters [1],
[33], [31], which we will describe in more detail in the
following section. From this prior work on Android patterns, it
is known that users tend to select non-uniformly in the space of
the possible 389,112 possible patterns. There exists a common
set of preferences, e. g., starting in the upper left and ending
in the lower right, that make user-selected patterns highly
predictable, repetitive, and easily guessed using methods such
as Markov models [37]. Even then, if an attacker were to
guess only the set of most common patterns, such as the Z-
shaped pattern (as depicted in Figure 1), the attacker would be
successful in many circumstances.

These facts motivated the design of strength meters for
Android patterns. However, all of these designs are based on
visual features (e. g., the length, or intersections of a pattern)
rather than statistical properties; as a result, the accuracy and
usefulness of these meters have been questioned. Closest to
our work in analyzing the accuracy of pattern meters is a
poster presented by Heidt and Aviv [27] in 2016. There, the
authors compared the strength reported by meters measured
across all patterns to a data-driven estimation of strength
based on Markov modeling. Here, we expand greatly on this
effort by adopting the techniques of Golla and Dürmuth [24]
in evaluating the accuracy of text-based password strength
meters. These methods are described in detail in the later
sections.

Fig. 1. Example Z-shaped Android unlock pattern 0.1.2.4.6.7.8. Like
42 % of all analyzed human-chosen patterns, this pattern starts in the upper
left corner and continues over the nodes 1 and 2 and ends in 8. (The numbers
and small arrows are added only for illustrative purposes.)

III. PRELIMINARIES

In this section, we present three strength meters proposed
for Android unlock patterns. Additionally, we describe our
attacker model and the four different datasets of patterns used
in our evaluation.

A. Pattern Strength Meters

We implemented three Android unlock patterns strength
meters: Andriotis et al. [1], Sun et al. [33], and Song et al. [31].
Each of the pattern meters is referred to by the first author’s
last name. Each of these meters is based on different formulas
and slightly different visual features; each will be described in
the context of the meter. For consistency, we use the term node
to refer to a contact point in the grid, and the length of a pattern
is defined as the total number of nodes used in its definition.
When referring to specific nodes in the grid, we use the
numeric labeling, starting with 0 in the upper left and ending
with 8 in the lower right, as depicted in Figure 1. A pattern P
is defined as a sequence of nodes, e.g., 0.1.2.4.6.7.8 for
the Z-shaped pattern. We use cardinality to define the length of
a pattern, like |P |, which is the total number of nodes needed
to draw the pattern. For example, the Z-shaped pattern is of
length 7, and the T-shaped pattern of 7.4.1.0.2 is of length
5. Additionally, we use the term segment to refer to connected
lines of the pattern. For example, the Z-shaped pattern has six
segments, while the T-shaped pattern only has four segments.

1) Andriotis Meter: In 2014, Andriotis et al. [1] proposed
an Android unlock pattern strength meter. The heuristic-driven
meter is based on five visual properties: starting node, length,
direction changes, knight moves, and the existence of overlap-
ping nodes.

1A: Starting Node s: s = 1 if the starting node is not the
top-left corner (node 0), else s = 0.

1B: Minimum Length l′: l′ = 0 if the length l = |P | of the
pattern is five or shorter, else l′ = |P | − 5.

1C: Direction Changes c: c = 1 if the number of direction
changes (when three consecutive nodes are not on a
straight line but form an angle different from 180 degrees)
is at least 2, else c = 0. (For example, 2.4.3.5 has two
direction changes).
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1D: Knight Moves k: the number k of segments with Eu-
clidean distance

√
5 (e. g., 0.7, or 1.8), like the knight

moves in chess.
1E: Overlapping Nodes o: the number o of nodes that are

retraced (e. g., the pattern 1.4.0.2 has one overlapping
node, namely 1 is retraced when connecting 0 with 2).

The score SAndriotis (ID: 1F/1G) is then defined as:

SAndriotis = s+ l′ + c+ k + o

Quantization (Q3): The score SAndriotis is divided into 3
strength categories: Weak (0 ≤ score ≤ 1), Medium (score =
2), and Strong (score ≥ 3).

2) Sun Meter: Also in 2014, Sun et al. [33] proposed
the following strength meter construction. Again, the meter
is based on four visual properties: length, physical length,
intersections, and overlaps. The authors motivated their con-
struction, by following (the nowadays outdated) NIST’s SP
800-63-2 [12] to calculate the entropy for a randomly selected
password, which makes length the overall driving factor for
strength estimation.

2A: Length l: is the length |P | of the pattern.
2B: Physical Length le: is the Euclidean distance of the

pattern (drawn on a unit grid).
2C: Intersections i: is the number of intersections, where

segments cross each other. For example, the pattern
4.0.1.3 has one intersection where 4.0 crosses 1.3.
More evolved is the pattern 1.4.5.3, which has one
intersection where 1.4 touches 5.3 in node 4.

2D: Overlapping Segments o: the number o of segments
that are retraced. For example, the pattern 1.4.0.2
has no overlapping segments, but the T-shaped pattern
7.4.1.0.2 has one overlapping segment, namely 1.0
which is retraced when connecting node 0 with node 2.

The score SSun (ID: 2E/2F) is defined as

SSun = l · log(le + i+ o)

Quantization (Q5): The normalized score SSun is divided
into 5 equal intervals that correspond to the strength categories:
Very Weak, Weak, Medium, Strong, and Very Strong.

3) Song Meter: In 2015, Song et al. [31] proposed another
meter based on visual properties. In contrast to previous work,
their proposal introduces weights that are adjustable and can
be used to change the importance of different visual features.

The meter is defined as follows:

3A: Length in Maximum Norm l∞: is the length of the pattern
wrt. the maximum norm (where the distance between two
nodes (x, y), (x′, y′) is max{|x− x′|, |y − y′|}).

3B: Intersections (Restricted) i: is the number of intersections,
where segments cross each other but restricted by not
counting intersections that occur at the start or the end
of a segment. Following this interpretation, the afore-
mentioned pattern 1.4.5.3 has no intersections, as the
“touch” happens at the end of the 1.4 segment.

3C: Ratio of Non-Repeated Segments n: is described loosely
by Song et al. as “the number of times a segment does
not appear in the longest repeated sub-pattern” to “the
total number of segments in an input pattern p.” We

understand this to imply how many uniquely directed
segments (considering only the absolute direction) ap-
pear in the pattern compared to the total segments. The
Z-shaped pattern has two uniquely directed segments,
the horizontal (0.1;1.2;6.7;7.8) and the diagonal
uniquely directed segment (2.4;4.6). Furthermore, it
has six segments in total resulting in a ratio of 2/6 = 1/3.

The score SSong (ID: 3D/3E) is defined as

SSong = wL ·
l∞

15
+ wN · n+ wI ·

min{i, 5}
5

.

After conducting a 101 participants user study, Song et
al. suggested to use the following weights: wL = 0.81,
wN = 0.04, and wI = 0.15. Sadly, their description of the
meter is not complete, and leaves some room for interpretation
around the “Ratio of Non-Repeated Segments,” leading to the
interpretation presented above, even after multiple attempts
to get more precise descriptions from the authors. Thus, our
implementation of their meter follows our interpretation based
on their description [31] and related work [27].

Quantization (Q3): The normalized score SSong is divided
into 3 strength categories: Weak (0.00–0.40), Medium (0.41–
0.56), and Strong (0.57–1.00).

TABLE I. ANDROID GATEKEEPER: RATE-LIMITING

Accumulated Waiting Time
Guesses Android 6 Android 7, 8, 9

1 guess 0 s 0 s
3 guesses 0 s 0 s

10 guesses 30 s 30 s
30 guesses 10 m 30 s 10 m 30 s

100 guesses 45 m 30 s 10 h 45 m 30 s
200 guesses 1 h 35 m 30 s 67 d 2 h 45 m 30 s
300 guesses 2 h 25 m 30 s 167 d 2 h 45 m 30 s

B. Threat Model

We consider a throttled guessing attack [10]. In such an
attack, the n most common secrets are guessed in decreasing
order of success. It follows the idea that an attacker will
always guess the most common secrets first to maximize the
overall success probability of the attack. Currently, in contrast
to passwords, datasets of Android unlock patterns are not easy
to get. Obtaining a ranking from frequent to infrequent patterns
is even more difficult. Depending on the OS version, Android
implements guessing throttling which rate-limits the number
of guesses an attacker can make on the device before time-
outs and, eventual, lockout. The accumulated time following
timeouts at various guess numbers are shown in Table I. For
Android 6 (which has the highest market share of 21.6% [32]
currently), 200 guesses is a reasonable assumption for a throt-
tled attacker, especially considering one of our datasets has 199
example patterns. For the more modern Android 7 through 9
(accumulated market share of 48.5% [32]) we consider up to
100 guesses (10 h 45 m 30 s [2]) to be reasonable.

One instance that we evaluate requires a more advanced
attacker in possession of the top 20 patterns of the respective
distribution. Whether or not such an attacker is a realistic
assumption is open to speculation. It is known that the pattern
distribution is significantly influenced by underlying demo-
graphic factors such as age, gender, and experience in IT [28],
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TABLE II. DATASETS: GUESSING DIFFICULTY

Throttled Guessing (Success in %)
Dataset Samples Unique ∅ Length H∞ λ1 λ3 λ10 λ30 λ100

3x
3

Pa
tt

er
ns

St
ro

ng

ABK-MP-adv-defensive [3] 113 105 6.11 5.82 bits 1.77 5.31 15.93 33.63 95.58
UDWH-defensive [37] 106 103 6.55 5.73 bits 1.89 5.66 12.26 31.13 97.17
Combined: Strong 219 199 6.32 6.19 bits 1.37 3.65 10.05 22.83 54.79

M
ed

iu
m

LDR-banking [28] 837 554 5.92 5.62 bits 2.03 5.73 11.59 21.98 42.41
ZEBOdLAH [45] 507 350 5.03 5.40 bits 2.37 6.51 14.79 28.60 50.69
ABK-MP-adv-offensive [3] 378 248 6.34 5.39 bits 2.38 7.14 17.20 35.19 60.85
ABK-MP-self [3] 440 298 6.05 4.69 bits 3.86 8.18 17.73 32.05 55.00
Combined: Medium 2,162 1,067 5.81 5.79 bits 1.80 4.86 11.24 21.88 41.26

W
ea

k

LDR-shopping [28] 841 442 5.54 5.02 bits 3.09 8.44 19.62 34.01 57.07
LDR-unlock [28] 842 419 5.40 4.96 bits 3.21 8.55 17.46 31.95 57.60
UDWH-offensive [37] 573 339 6.30 4.52 bits 4.36 10.12 19.02 35.60 58.29
Combined: Weak 2,256 886 5.68 5.05 bits 3.01 7.80 16.98 30.90 53.06

A
ll Combined: All 4,637 1,635 5.77 5.61 bits 2.05 5.95 13.56 24.93 45.03

Uniform 389,112 389,112 7.97 18.57 bits 0.00 0.00 0.00 0.01 0.03
Comparison

PI
N

s 4-
di

gi
t iPhone (Amitay) [11] 204,432 9,888 4.00 4.52 bits 4.35 9.24 14.45 20.63 29.27

RockYou 1,780,587 10,000 4.00 4.75 bits 3.72 8.04 16.63 29.66 40.12
Uniform 10,000 10,000 4.00 13.29 bits 0.01 0.03 0.10 0.30 1.00

6-
di

gi
t RockYou 2,758,490 448,185 6.00 3.10 bits 11.69 12.76 14.77 17.33 19.95

Uniform 1,000,000 1,000,000 6.00 19.93 bits 0.00 0.00 0.00 0.00 0.01

PW M
ob

ile 3class8MM [29] 273 273 10.36 8.09 bits 0.37 1.10 3.66 10.99 36.63
3class12MM [29] 248 248 13.65 7.95 bits 0.40 1.21 4.03 12.10 40.32

Min-entropy (H∞): Is a worst-case metric for user-chosen secrets, considering an attacker who only guesses the most likely secret before giving up.
β-success-rate: Measures the expected guessing success for an adversary limited to β-guesses per account (λ1 = 1 guess).

and potentially more such as cultural background and writing
style [6]. We think a reasonably invested attacker might have
access to a generic pattern dataset and its top 20 patterns, but
most likely is not able to determine the exact order of the most
common 20 patterns of the respective population.

C. Datasets

To measure the accuracy of the strength meter proposals
(cf. Section III-A), we selected four datasets. The datasets
contain patterns collected in various user studies by:

• Aviv et. al [3] (ABK-MP) in 2015
• Løge et. al [28] (LDR) in 2016
• Uellenbeck et. al [37] (UDWH) in 2013
• Von Zezschwitz et al. [45] (ZEBOdLAH) in 2016

An overview of the datasets is given in Table II. A more
detailed description on how the data was collected, their statis-
tical and visual properties, and their indented use case is given
by Aviv and Dürmuth [5]. While a larger corpus of studies
exists [5], only a minority shared their datasets or collected
variants of the classical patterns that are not comparable.
Overall, we evaluated 4, 637 human-chosen Android unlock
patterns.

We report the throttled guessing resistance in terms of
β-success-rate and Min-entropy (H∞). The β-success-rate
measures the expected guessing success for an adversary lim-
ited to β-guesses per account (λ1 = 1 guess). The Min-entropy
is a worst-case metric for user-chosen secrets, considering an
attacker who only guesses the most likely secret before giving
up. An introduction to the two metrics is given by Bonneau [9]
and Wang et al. [46].

The 4, 637 patterns are merged from the four different user
studies, and we will refer to them as “All” in the following
sections. Based on their statistical properties we sorted the
datasets from the individual studies into three groups, consist-
ing of “Weak,” “Medium,” and “Strong” patterns, similar to
what was done by Aviv and Dürmuth [5]. Due to the limited
number of samples, guessing 100 patterns (in perfect order),
for the two individual datasets ABK-MP-adv-defensive and
UDWH-defensive results in very high λ100 values. However,
the merge of the datasets consists of 199 unique samples,
explaining the very different (albeit more realistic) λ100 value
reported for the “Strong” dataset.

To better understand the overall level of protection offered
by Android unlock patterns, we added statistics for 4-digit [11]
and 6-digit [46] PINs and passwords that were created
on mobile devices [29] as alternative mobile authentication
schemes. For 4-digit PINs, we used Daniel Amitay’s iPhone
PIN dataset [11]. As there is no real-world 6-digit PIN data
available, we contacted Wang et al. [46] to obtain a copy of
their artificially crafted 6-digit PIN dataset. Unfortunately, they
were not allowed to share their PINs with us. However, as their
dataset has been generated by extracting PINs from password
leaks, they recommended us to do the same. By following their
PIN extraction method [46], we extracted 4 and 6-digit PINs
from the RockYou password leak [16]. The β-success-rate and
Min-entropy numbers of our extracted data are the same as the
numbers reported by Wang et al. (requires the conversion from
bits to percentages). However, one must be careful in drawing
conclusions from the 6-digit artificial dataset, as the extracted
data may not follow the same distribution as “normal” 6-digit
PINs. For example, we observed that especially “123456” (the
most common PIN) is overrepresented in this generated dataset
(the PIN is up to 20x more frequent) resulting in a relatively
high λ1 value.
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Besides PINs, passwords created on mobile devices are
another common knowledge-based authentication mechanism.
In 2016, Melicher et al. [29] studied the strength and usability
of passwords that were created on mobile devices. We report
the β-success-rate and Min-entropy for two conditions they
studied. While both datasets of passwords were created and
used on mobile devices (MM), they differ by their password
composition policy. The first, 3class8MM, loosely follows the
nowadays outdated NIST recommendation [12], by requiring
at least 8 characters and at least three character classes. Fur-
thermore, Melicher et al. tested a more usable and more secure
alternative that requires at least 12 instead of 8 characters and
also at least three character classes, called 3class12MM.

IV. MARKOV MODELS STRENGTH ESTIMATION

In this section, we outline how to calculate pattern strength
based on Markov models, as a form of a data-driven meter.

To estimate the strength of patterns, Markov models have
been used by Aviv et al. [3], Uellenbeck et al. [37], and Løge
et al. [28]. Furthermore, the authors of pattern-creation guiding
systems like SysPal [15] and TinPal [36] and alternative
layouts like Pass-O [35] used Markov models to evaluate their
proposals.

Markov models are based on the observation that subse-
quent tokens, such as letters in normal text or nodes in the
pattern, are rarely independently chosen by humans and can
often be quite accurately modeled based on a short history of
tokens. For example, in English texts, the letter following a t is
more likely to be an h than a q. For Android pattern unlock,
a similar process occurs by which users are more likely to
choose some transitions over others based on prior state, e. g.,
starting in the upper left, a user will more likely move to the
right as opposed to the center node.

Using these observations, one can construct an n-gram
Markov model that estimates the likelihood of a pattern by
considering the probability of a transition from the previous
n− 1 nodes to the next node. For a given sequence of nodes
for a pattern p = {c1, . . . , cm}, an n-gram Markov model
estimates its probability as

P (c1, . . . , cm) (1)

= P (c1, . . . , cn−1) ·
m∏
i=n

P (ci|ci−n+1, . . . , ci−1).

The required initial probabilities P (c1, . . . , cn−1) and
transition probabilities P (cn|c1, . . . , cn−1) can be determined
empirically from the relative frequencies from training data.
One commonly applies further post-processing to the raw
frequencies: So-called smoothing tries to even out statistical
effects in the transition matrix and initial probabilities. In
particular, smoothing avoids relative frequencies of 0, as these
would yield an overall probability of 0 regardless of the
remaining probabilities. We use additive smoothing, i. e., the
frequency of each n-gram is incremented by one.

To determine the strength of an individual pattern, we
trained an n-gram Markov model using all 4, 637 available
patterns with one instance of the pattern being measured left
out. This process ensures the independence of training and

evaluation sets while preserving information about pattern
frequencies. For example, the pattern may be very frequent, but
only a single instance is removed. While we have evaluated
n-gram sizes from 2 to 5-grams (ID: 4A), we have decided
to use 3-grams as the foundation for more advanced models
based on the limited number of patterns in the training set and
its use in previous works [37], [3].

We tested two advanced models (ID: 4B/4C): In the first
(ID: 4B), we train individual Markov models per pattern
length, motivated by previous work [23]. This approach typ-
ically yields better approximations and has been used be-
fore in the context of pattern security [3]. The latter vari-
ant (ID: 4C), follows the normal construction and training
as described above, but additionally hard-codes the top 20
most frequent patterns of the respective datasets, i. e., “All,”
“Strong,” “Medium,” or “Weak.” Guessing those 20 patterns
in perfect order (without any approximation errors owed to
the Markov model) improves accuracy. However, it requires
an attacker that is in possession of this top 20 data, in contrast
to an attacker that only trains a more generic Markov model
based on all patterns available.

V. METER ACCURACY

We now present the results of measuring the accuracy of
each of the strength meters (cf. Section III-A) and our proposed
Markov model-based meter approach (cf. Section IV). From
that, under our attacker model (cf. Section III-B), we show
how the meters that rely on visual features inaccurately reflect
the real strength of patterns.

A. Measuring Strength Meter Accuracy

The accuracy is a vital component for the overall perfor-
mance of a strength meter, particularly for text-based pass-
words. Recent work by Golla and Dürmuth [24] systematically
studied what constitutes a fair comparison of strength meters.
The preferred method to measure the accuracy of a strength
meter is to compare it to an ideal reference, measuring the
similarity between the reference and the meter output. In
their work, the authors suggest the weighted Spearman’s rank
correlation coefficient to be a useful candidate to measure the
accuracy of a strength meter compared to the ideal reference.

In the following, we try to give an intuitive explanation of
this coefficient. The “weighted” part means that some patterns
are more important than others. For example, misjudging
common patterns as “strong” is considered very bad, as such
patterns are usually guessed early in an attack. In contrast,
incorrectly over- or underestimating rare patterns is considered
less problematic. A suitable weight could be the frequency of
a pattern, as it is a direct indicator for the “importance” or
commonness of a pattern. Furthermore, the “Spearman’s rank”
part means that the metric operates on the relative ranking
instead of the direct meter output. Meters report strength values
in different formats. Most common are home-grown scores,
bits, probabilities, guess numbers, or the time required to guess
the secret. To avoid any issues arising from the different output
formats the metric operates on the relative ranking only. Thus,
it is interested in whether pattern A is stronger than pattern B,
but not by how much. Finally, the metric is a correlation
coefficient thus it correlates two data points with each other.
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In our case, the ground truth (sometimes called reference) is
correlated with the meter output. We use the frequency (i. e.,
how often a pattern occurs) in a given dataset as the reference.
Using the frequency, thus how likely a secret is, is the standard
metric in throttled guessing scenarios. It follows the idea that
an attacker will always guess in decreasing order of success,
thus will guess very likely/common patterns first.

Implementation: All strength meters are implemented using
the Kotlin programming language. This allows to run them
natively on Android devices and enables us to transpile it to
JavaScript to run them in a Web browser, too. The accuracy
evaluation is implemented using R v3.5.1 (July 2018). For the
weighted Spearman correlation we use the wCorr package1.
All meter implementations and evaluation scripts are available
online [30].

B. Results

An overview of the results is given in Table III. If the
reported weighted Spearman correlation is close to 1.0 (high
positive correlation), the meter accurately estimates pattern
strength. If the correlation is close to 0.0 (no correlation), the
meter is randomly guessing and does not estimate strength.
Such meters have the potential to guide users in the wrong
direction or confuse them. If the correlation is close to −1.0
(high negative correlation), the meter is accurate, but “strong”
patterns are in fact “weak” and the other way round, mis-
guiding users into choosing weak patterns instead of strong.
In cases where the evaluated feature does not occur within
the 200 most frequent patterns of the respective dataset, we
display a hyphen (-).

In the following, we report the accuracy of various strength
meters and their considered features by providing the total
range from smallest to highest correlation value “(smallest-
highest)” observed across all four datasets. Unsurprisingly all
meters that rely on visual features fail to estimate strength
accurately, given a throttled guessing scenario. Most promising
are the visual features:

• 1A Starting Node (0.160-0.405),
• 1C Direction Changes (0.249-0.406).

Thus, especially the ID: 1F Andriotis meter that relies on
both of those features performs most accurate among the me-
ters considering only visual features. For the ID: 2E Sun meter
we find results close to zero (−0.030-0.051). ID: 3D Song
meter performs similarly inaccurate (−0.050-0.034). We found
that both, Sun’s as well as Song’s meter do not estimate
strength accurately in the considered throttled guessing sce-
nario.

This result is not completely surprising, as similar ob-
servations have been made before in the context of LUDS-
based password strength meters, counting the different char-
acter classes. A more intuitive explanation, about what is
wrong with the meters, could be the following: Considering
the aforementioned visually very complex pattern in Z-shape
(0.1.2.4.6.7.8). The pattern is the second most com-
mon pattern in the datasets, thus has a guess number of 2.

1Package: wCorr (Weighted Correlations), Version 1.9.1, May 2017,
https://cran.r-project.org/package=wCorr, as of January 15, 2019

TABLE III. WEIGHTED SPEARMAN CORRELATION

Throttled Attacker - Top 200
ID Meter Quant. All Strong Medium Weak

1A Starting Nodes 0.395 0.160 0.405 0.397
1B Minimum Length -0.034 0.018 -0.026 0.044
1C Direction Changes 0.335 0.249 0.292 0.406
1D Knight Moves - 0.053 0.068 0.061
1E Overlapping Nodes 0.139 0.110 0.089 0.148
1F Andriotis 0.277 0.091 0.236 0.355
1G Andriotis Q3 0.121 0.132 0.111 0.214

2A Length -0.085 0.021 -0.038 -0.022
2B Physical Length -0.024 0.034 0.017 0.052
2C Intersections 0.161 0.139 0.139 0.184
2D Overlapping Segments 0.067 0.054 - 0.064
2E Sun -0.030 0.051 0.014 0.041
2F Sun Q5 -0.056 0.034 -0.032 0.018

3A Length (Max. Norm) -0.075 0.025 -0.028 -0.015
3B Intersections (Rest.) 0.090 0.097 0.150 0.110
3C Ratio NR Segments 0.166 0.089 0.135 0.110
3D Song -0.050 0.034 0.001 0.012
3E Song Q3 0.094 0.105 0.094 0.061

4A Markov (2-grams) 0.313 0.176 0.325 0.396
4A Markov (3-grams) 0.627 0.349 0.595 0.663
4A Markov (4-grams) 0.684 0.371 0.645 0.709
4A Markov (5-grams) 0.742 0.415 0.704 0.751
4B Markov (3-grams - Length) 0.843 0.396 0.818 0.824
4C Markov (3-grams - Top 20) 0.880 0.655 0.870 0.916

Quantization: Q3–Q5 = Number of bins, e. g., Q3 = [Weak, Medium, Strong];
Weighted Spearman correlation: 1.0 (high positive correlation); the meter accurately
estimates pattern strength. 0.0 (no correlation); the meter is randomly guessing, and does
not estimate strength. -1.0 (high negative correlation); the meter is accurate but “strong”
patterns are in fact “weak” and the other way round.

ID: 2E Sun and ID: 3D Song both assign it very high scores,
due to its visual complexity that results in the guess numbers
161 and 153 out of a set consisting of the top 200 patterns. The
same observation can be made in the password space, where
the password “Password1” results in a very high score using
a LUDS-based meter approach, while security experts know
that it is a very weak password.

In contrast, our results show the potential of using proba-
bilistic approaches like Markov models to estimate the strength
of a pattern. Our suggested generic Markov model (ID: 4A)
reproduces the pattern ranking of the reference quite well
(0.176-0.751). While one can observe an increasing accuracy
with increasing n-gram size (2-grams: 0.176-0.396, 5-grams:
0.415-0.751), one needs to consider the sparse data situation
and the risk of overfitting. Like previous work, we find the
approach to train a separate model per pattern length (ID: 4B)
to improve the accuracy (3-grams: 0.396-0.843). However, the
performance degrades if not enough samples per length are
available, as one can observe for the “Strong” dataset. As
expected, hard-coding the top 20 patterns (ID: 4C) performs
best (3-grams: 0.655-0.916) but requires a stronger attacker
that is in possession of the top 20 patterns for each evaluated
dataset.

The adverse effects of quantization, i. e., decreasing ac-
curacy once the meter output is binned, for example into 3
bins (Q3) [Weak, Medium, Strong] has been found be-
fore [24]. The lower the number of bins, the more information
in the relative ranking is lost; thus the weighted Spearman
correlation degrades. This effect can be observed across all
binning meters (ID: 1G, 2F, 3E).
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VI. WORK IN PROGRESS: METER INFLUENCE

Next, we outline our current effort towards understanding
the influence of strength meters on users’ pattern choices.

A. Motivation

Considering the stringent rate-limiting (cf. Table I) de-
ployed in modern Android versions 7+, and a reasonably
determined throttled attacker, there is no need for patterns to
repel much more than 100 guesses. Forcing users to create
very strong patterns above this threshold, will lead to patterns
falling into the so-called “don’t care” region, as introduced by
Florêncio et al. [21] in the context of password strength. Even
worse, in contrast to passwords, there is no chance for a pattern
to survive an unthrottled guessing attack, due to the small
theoretical keyspace. Generally speaking, every pattern in this
“don’t care” region must be considered a waste of cognitive
effort.

All three proposed pattern meters were evaluated in user
studies [1], [33], [31]. For example, Sun et al. tested their meter
with 81 participants and found: “. . . the presence of a visual
indicator of pattern strength did encourage users to create
visually complex patterns.” It seems that the mere presence of
a strength indicator that follows the intuitive thought process
is enough to motivate users. We can imagine that as long as
the meter follows users’ perception of strength [39], [41], it
might be enough to nudge them toward choices outside the
easily guessed threshold, but below the “don’t care” chasm.

Based on this scenario we claim that while a high accuracy
is important for meter developers, it certainly is not the driving
factor for users. Instead, we like to explore whether a meter
should engage more with users’ perception of strength while
still preventing too common, thus, very dangerous pattern
choices. To this point, there is little known about user per-
ception of pattern security. One study investigating this issue
was conducted by Aviv and Fichter [7] in 2014. They identified
the length (Euclidean distance) as one of the most influential
visual features in user perception of pattern strength.

Based on those observations we developed the following
questions that we like to answer by conducting a user study:

RQ1: How important is the accuracy of a strength meter
to nudge users towards more secure patterns?

RQ2: Can a new strength meter that follows perceived
instead of actual pattern strength, actively reduce
the number of too common patterns, while not
wasting users’ cognitive effort in the “don’t care”
region?

B. Methodology

Our prospective study design follows previous work by
Aviv and Fichter [7] and Ur et al. [39]. In the study, users
are presented with an animation that shows the creation of a
pattern, as one can see in Figure 2. As patterns can be very
complex and hard to follow given a static image, we use CSS
animations to visualize the pattern creation process and provide
a button to replay this animation. In contrast to previous work,
we display two interactive strength meters below the pattern.
Users are then asked to judge the strength of the pattern by
deciding which of the two strength meter bars is more accurate.

Fig. 2. Comparison of an accurate (left) and intuitive strength estima-
tion (right). Participants need to judge which of the two strength estimates
is more accurate. The pattern 1.2.5.8.7.6.3.0.4 is a common pattern,
but typically outside the reach of throttled guessing attacks. Thus, the trained
placebo meter should estimate it (based on its visual complexity) as “Strong.”

Fig. 3. Imagined warning dialog that tries to encourage users to reconsider
their pattern choice, if a too common pattern is chosen. The dialog is based on
Apple iOS’s Passcode warning that implements a non-enforcing blacklist [22].

The two meters displayed in Figure 2, are very different.
The first meter (left) is an accurate estimation of strength based
on our Markov model-based proposal. The second meter (right)
follows the intuitive idea of pattern strength of users based on
the results from previous work [7] (which is mainly driven by
visual complexity) but prevents too common choices like the
Z-shape (0.1.2.4.6.7.8) pattern.

The idea of using this approach is to understand what is
more influential for users: the highly accurate meter, or a
trained placebo meter that behaves intuitively for users but
prevents dangerous choices. After deciding which meter is
more accurate, we will ask users about why they believe one
meter gives more accurate feedback than the other. This way,
we hope to learn more about their decision process that could
help us to determine the importance of actual accuracy over
perceived pattern strength accuracy.

To prevent users from choosing too weak patterns, we
imagine a dialog (cf. Figure 3) similar to Apple iOS’s Passcode
warning that implements a non-enforcing blacklist [22]. At the
same time, the trained placebo meter will estimate the strength
of the pattern as “Too Weak,” while showing an empty strength
bar.
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We believe that the approach of using a trained placebo
meter is more intuitive than strength estimations and will
become easier to comprehend for users. At the same time, the
design promises the same security by preventing too common
choices using a non-enforcing blacklist approach combined
with a strength meter.

VII. CONCLUSION

In this work, we explored the accuracy of pattern strength
meters using multiple datasets. Our results indicate that current
proposals from the literature, which are solely based on visual
features, do not estimate pattern strength and are a potentially
dangerous substitute for statistical estimators, such as those
based on Markov models. However, we acknowledge that the
sheer presence of a meter, regardless of accuracy, is likely
beneficial in the throttled guessing attacker model in which
Android patterns exist. The primary goal should be to ensure
that users do not select very common patterns, but are also
not overburdened with attempting to select overly complex
patterns.

To this end, we are in the process of designing a future
study to investigate how vital meter accuracy is to nudge
users towards more secure patterns. We will explore the use
of a strength meter that follows perceived pattern strength
instead of actual strength while maintaining security via a
non-enforcing blacklist of too common patterns. It is our goal
to actively reduce the number of patterns that are at risk in
a throttled guessing attack while not wasting cognitive user
effort.
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[23] M. Golla, B. Beuscher, and M. Dürmuth, “On the Security of Cracking-
Resistant Password Vaults,” in ACM Conference on Computer and
Communications Security, ser. CCS ’16. Vienna, Austria: ACM, Oct.
2016, pp. 1230–1241.
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[37] S. Uellenbeck, M. Dürmuth, C. Wolf, and T. Holz, “Quantifying the Se-
curity of Graphical Passwords: The Case of Android Unlock Patterns,”
in ACM Conference on Computer and Communications Security, ser.
CCS ’13. Berlin, Germany: ACM, Oct. 2013, pp. 161–172.

[38] B. Ur, F. Alfieri, M. Aung, L. Bauer, N. Christin, J. Colnago, L. F.
Cranor, H. Dixon, P. E. Naeini, H. Habib, N. Johnson, and W. Melicher,
“Design and Evaluation of a Data-Driven Password Meter,” in ACM
Conference on Human Factors in Computing Systems, ser. CHI ’17.
Denver, Colorado, USA: ACM, May 2017, pp. 3775–3786.

[39] B. Ur, J. Bees, S. M. Segreti, L. Bauer, N. Christin, and L. F. Cranor,
“Do Users’ Perceptions of Password Security Match Reality?” in ACM
Conference on Human Factors in Computing Systems, ser. CHI ’16.
Santa Clara, California, USA: ACM, May 2016, pp. 3748–3760.

[40] B. Ur, P. G. Kelley, S. Komanduri, J. Lee, M. Maass, M. L. Mazurek,
T. Passaro, R. Shay, T. Vidas, L. Bauer, N. Christin, and L. F. Cranor,
“How Does Your Password Measure Up? The Effect of Strength Meters
on Password Creation,” in USENIX Security Symposium, ser. SSYM ’12.
Bellevue, Washington, USA: USENIX, Aug. 2012, pp. 65–80.

[41] B. Ur, F. Noma, J. Bees, S. M. Segreti, R. Shay, L. Bauer, N. Christin,
and L. F. Cranor, ““I Added ‘!’ at the End to Make It Secure”: Observing
Password Creation in the Lab,” in Symposium on Usable Privacy and
Security, ser. SOUPS ’15. Ottawa, Ontario, Canada: USENIX, Jul.
2015, pp. 123–140.

[42] B. Ur, S. M. Segreti, L. Bauer, N. Christin, L. F. Cranor, S. Komanduri,
D. Kurilova, M. L. Mazurek, W. Melicher, and R. Shay, “Measuring
Real-World Accuracies and Biases in Modeling Password Guessability,”
in USENIX Security Symposium, ser. SSYM ’15. Washington, District
of Columbia, USA: USENIX, Aug. 2015, pp. 463–481.

[43] E. von Zezschwitz, A. De Luca, P. Janssen, and H. Hussmann, “Easy to
Draw, but Hard to Trace?: On the Observability of Grid-based (Un)Lock
Patterns,” in ACM Conference on Human Factors in Computing Systems,
ser. CHI ’15. Seoul, Republic of Korea: ACM, Apr. 2015, pp. 2339–
2342.

[44] E. von Zezschwitz, P. Dunphy, and A. De Luca, “Patterns in the Wild: A
Field Study of the Usability of Pattern and PIN-based Authentication on
Mobile Devices,” in Conference on Human-Computer Interaction with
Mobile Devices and Services, ser. MobileHCI ’13. Munich, Germany:
ACM, Aug. 2013, pp. 261–270.

[45] E. von Zezschwitz, M. Eiband, D. Buschek, S. Oberhuber, A. De Luca,
F. Alt, and H. Hussmann, “On Quantifying the Effective Passsword
Space of Grid-Based Unlock Gestures,” in Conference on Mobile and
Ubiquitous Multimedia, ser. MUM ’16. Rovaniemi, Finland: ACM,
Dec. 2016, pp. 201–212.

[46] D. Wang, Q. Gu, X. Huang, and P. Wang, “Understanding Human-
Chosen PINs: Characteristics, Distribution and Security,” in ACM
Asia Conference on Computer and Communications Security, ser.
ASIA CCS ’17. Abu Dhabi, United Arab Emirates: ACM, Apr. 2017,
pp. 372–385.

[47] D. L. Wheeler, “zxcvbn: Low-Budget Password Strength Estimation,”
in USENIX Security Symposium, ser. SSYM ’16. Austin, Texas, USA:
USENIX, Aug. 2016, pp. 157–173.

[48] G. Ye, Z. Tang, D. Fang, X. Chen, K. I. Kim, B. Taylor, and Z. Wang,
“Cracking Android Pattern Lock in Five Attempts,” in Symposium on
Network and Distributed System Security, ser. NDSS ’17. San Diego,
California, USA: ISOC, Feb. 2017.

[49] G. Ye, Z. Tang, D. Fang, X. Chen, W. Wolff, A. J. Aviv, and Z. Wang,
“A Video-based Attack for Android Pattern Lock,” ACM Transactions
on Privacy and Security, vol. 21, no. 4, pp. 19:1–19:31, Jul. 2018.

[50] M. Zhou, Q. Wang, J. Yang, Q. Li, F. Xiao, Z. Wang, and X. Chen, “Pat-
ternListener: Cracking Android Pattern Lock Using Acoustic Signals,”
in ACM Conference on Computer and Communications Security, ser.
CCS ’18. Toronto, Ontario, Canada: ACM, Oct. 2018, pp. 1775–1787.

9

https://github.com/RUB-SysSec/APC
https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/
https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/
https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/

	Introduction
	Background and Related Work
	Preliminaries
	Pattern Strength Meters
	Andriotis Meter
	Sun Meter
	Song Meter

	Threat Model
	Datasets

	Markov Models Strength Estimation
	Meter Accuracy
	Measuring Strength Meter Accuracy
	Results

	Work in Progress: Meter Influence
	Motivation
	Methodology

	Conclusion
	References

