
Lessons Learned from SunDEW:
A Self Defense Environment for Web Applications

Merve Sahin, Cédric Hebert and Anderson Santana de Oliveira
SAP Security Research

{merve.sahin, cedric.hebert, anderson.santana.de.oliveira}@sap.com

Abstract—Securing web applications is a tedious task: Current
best practices range from the secure development lifecycle to
the use of a wide variety of detective and reactive measures
after deployment. Yet, these measures are not always sufficient to
secure the applications. A recent idea is to provide the application
with self-defense capabilities, by enhancing it with deceptive
components and adding application specific detection points that
will be used in runtime. While the idea has been partially explored
before, it is not widely adopted in the industry, because of the lack
of an end-to-end comprehensive solution, among other reasons.

In this paper we introduce SunDEW, a multi-layer deception
framework to provide self-defense capabilities to web applica-
tions. We discuss the main technical challenges when prototyping
this idea and we validate its design through a CTF based
experiment. We also evaluate how the participants respond to this
defense mechanism, together with a user study. We make a num-
ber of observations to develop more robust deception techniques
even when the attackers are aware of deception. In particular,
we find that deceptive elements should be well intertwined with
the application and mimic real functionality to be more effective.
Moreover, when the attackers are informed about deception, they
are likely to deviate from their regular attack path, to not interact
with the application elements they find suspicious. On the other
hand, attackers’ initial reaction is to avoid automated attacks
and brute-forcing the application. Instead, they prefer to be
cautious and take the time to understand the application flow first.
Overall, we observe that even if deception awareness decreases the
effectiveness of deceptive elements, it adds a deterrent factor by
causing attackers to self-restrict their actions. While our study is a
first step to evaluate the robustness of application layer deception
against informed attackers, our results suggest that notifying the
attackers may bring several advantages to the defenders in any
case.

I. INTRODUCTION

Deception, one of the oldest concepts in military strat-
egy [56], has recently been gaining popularity in information
security field, as an extra layer of defense. Several commercial
solutions proposed as part of Moving Target Defense (MTD)
or Run-time Application Self Protection (RASP) technologies
provide easy-to-deploy deception elements at the network,
data, or application levels [20], [54], [24], [11], [34], [3].
These elements are then monitored for malicious or anomalous
behavior. Such deceptive elements are expected to result in less
false positives compared to traditional defense mechanisms

(e.g., IPS/IDS), reducing the efficiency of attackers by wasting
their time and increasing the difficulty of attack planning [58],
[44]. At a first glance, the idea of deception may seem to
contradict Kerckhoff’s principle that a security mechanism
should not rely on secrecy or obscurity [38]. However, as long
as the security of the system is not dependent on obscurity,
addition of deceptive elements and misdirection still provides
many advantages [6].

Deception has also been studied by the academic com-
munity since more than 20 years, however, as the concept
of deception can be applied to different system security
areas (e.g., at the network [14], data [52], or application
layers [30]), each of these remains under-explored in terms of
deployment methods, effectiveness, or lifecycle of deceptive
techniques [31]. Several survey papers on deception attempt
to systematize the knowledge, and draw attention to the need
for further research [31], [27], [48], [43].

In this paper we focus on the use of deception and self-
defense techniques to help secure web applications. Web ap-
plications are often the public facing components of enterprise
systems, and they are exposed to a wide range of attacks.
Symantec recently reported a 56% increase of attacks on Web
service endpoints in 2018 [53]. With the rise of social engineer-
ing, phishing attacks (spear phishing, email compromise, email
impersonation [32], [17], [59]) and credential stuffing [55],
attackers often start with valid credentials to access the web
application [19]. Moreover, it often takes several months before
a security breach is discovered [25]. The actions that the
attacker will take during this time (exploring the system,
looking for vulnerabilities) are the motivation for planting the
deceptive elements for detection. For such cases, deception can
provide an extra layer of defense in addition to the traditional
security measures (such as web application firewalls) that often
implement generic measures against known attack vectors.
The advantage of deception is that it can be designed to be
specific to the application, addressing all of its capabilities and
features [61].

Existing studies on application layer deception mostly
focus on adding deceptive elements via a proxy [30], [28],
which is an approach that we also adopt in this work. We
extend this concept by adding further deception layers to cover
the post-detection phase, to provide a better response action
once a malicious request is detected. A naive response action
adopted in previous studies [30], [28] is to just log the attack
while returning a valid looking response. Note that, certain
actions like terminating the session, adding timing delays or
temporarily blocking the application [47], [35] might tip off
the attacker.

Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb) 2020
23 February 2020, San Diego, CA, USA
ISBN 1-891562-63-0
https://dx.doi.org/10.14722/madweb.2020.23005
www.ndss-symposium.org



In contrast to the previous work, we redirect the malicious
requests to a clone of the application that serves synthetic
data. This allows to monitor the attacker’s behavior (without
putting the application data at risk) in an effort to learn his real
purpose, as well as to identify the vulnerabilities he might
find in the application. The idea of using “clone” systems
was previously explored in different domains [7], [9], and was
briefly discussed in the web application context [42], [47].
Based on this idea, our first contribution is to present a
multi-layer deception framework for web applications, and
to analyze the technical and research challenges related to
this approach. We named our framework SunDEW (Self
Defending Environment for Web applications), inspired from
the carnivorous sundew plant that attracts and traps insects
with its sticky leaves1.

In the second part of the study, we focus on the robustness
of deception - that is, when the attacker is aware of this
countermeasure - to see how to improve our framework. As
deception technologies gain more popularity and commercial
solutions become more widely adopted, the assumption that
deceptive techniques are obscure/hidden will not remain true
for long. For deception to be relevant in the long term,
it should remain effective even if the attacker is aware of
it. In fact, deception can be considered as a cryptographic
algorithm, where the deceptive elements themselves are the
secret keys [13], [36]. Previous work measures how attackers
react to deception in different domains (such as data or
system layer deception) [31]. On data layer, Shabtai et al.
find that awareness does not have an impact on attacker
behavior [52]. On system layer, studies find that awareness
makes the defense mechanism even more powerful because it
increases the cognitive load of the attacker (such as increasing
stress and reducing the belief in success [23], [18], [24]). To
the best of our knowledge, our study is the first to analyze the
impact of deception awareness on web application layer. For
this, we first implement a proof-of-concept of the SunDEW
environment, and employ it in a Capture The Flag (CTF)
competition on an enterprise CTF platform (that is used for
internal security training). Our experiment aims to answer the
following questions:

• How do the attackers perceive and react to the deception
technology?

• Does deception technology remain effective even when
the attacker is aware of its use?

• How can the proposed framework be improved?

We find that, among the participants who were able to
solve the challenge, 85% have changed their attack strategy
due to being aware of deception. While 60% of participants
had difficulty to work around it, the most common reaction
was to avoid scripted attacks as well as using known attack
automation tools. We also find that the effectiveness of decep-
tive elements decreases when the participants are aware of it.
One lesson learned is that, for a more robust defense system
we need to design the deceptive elements well intertwined with
the application, as well as to design response actions that are
realistic and that makes the deceptive elements look functional.

1https://www.britannica.com/plant/sundew

II. RELATED WORK

A. Deception in web application layer:

Deceptive elements for web applications have been pro-
posed to be deployed via a proxy in front of the application,
via modifying the web server, or built in the application source
code [31]. For instance, Fraunholz et al. present a reverse
proxy framework that implements various deceptive techniques
and evaluate the performance overhead of the framework [28].
Han et al. also propose to implement deceptive elements via
a reverse proxy [30]. Moreover they use a CTF exercise to
evaluate the effectiveness of deceptive elements, and deploy
these elements in a real-world application to measure the false
positive rate. Among 150 CTF participants, 56% triggered at
least one of the deceptive traps. In addition, over 7 months
of period, there were no false positive alerts triggered in
the real-world deployment. Another study [26] focuses on
the reconnaissance phase of web attacks to identify deceptive
countermeasures, such as delaying responses to scanning at-
tempts. The countermeasures are implemented in a web server,
and evaluated against several vulnerability scanners. In our
work, we propose to use deception in multiple layers, and to
focus on the attackers’ perception and on the robustness of the
approach.

B. Use of duplicate systems for deception

The idea of deceiving attackers with a fake environment
that is a copy of the real environment has been explored in
a number of studies. For instance, Anagnostakis et al. aim to
reduce the false positive rate of anomaly detectors by routing
the potentially dangerous requests to an instrumented clone of
the application (called a shadow honeypot) [7]. The shadow
application is instrumented to detect certain failures such as
memory violations, and able to rollback to a known good state
after an attack. Similarly, Urias et al. propose to duplicate pos-
sible compromised machines and place them in a deceptive en-
vironment to further observe attacker behavior [57]. Kontaxis
et al. propose to duplicate the entire application server multiple
times, so that the adversary cannot know if he compromised
the real server [40]. Araujo et al. [9] propose to implement
honey-patches for known vulnerabilities. A honey-patch can
detect an exploitation attempt and redirect the attacker to a
decoy environment (that is a copy of the original environment
with redacted sensitive data), while the attacker thinks the
exploit was successful. This approach can be complementary
to other forms of deception, as it is only effective for known
vulnerabilities. In a further study, authors experiment with
honey-patches in an educative CTF environment [10]. The
closest idea to our study in terms of the deception framework
is presented in [42]. We enrich this idea with application
layer deception, discuss the technical and research challenges
it brings, provide a prototype implementation, and evaluate it
with a CTF exercise.

C. Impact of deception awareness

Several studies in data and system layer deception analyze
how deception awareness affects the attackers’ decision mak-
ing process and cognition. Cohen et al. conduct controlled red
teaming experiments in a network of multiple machines, where
they gradually inform the participants about deception [18].

2



They find out that deception awareness reduces the belief in
success and makes participants more likely to get frustrated
and to give up early. Although most of the research questions
of the study yields in statistically insignificant results, the
authors conclude that the quality of deception is very impor-
tant for its effectiveness, and that creating content-oriented
deceptions will be necessary to deceive skilled attackers in
the long term. Shabtai et al. [52] analyze user behavior in an
experiment where the participants act as bank employees who
need to approve loan requests. They can approve the loans in
a legitimate or illegitimate way from which they obtain 10%
or 20% commission respectively. The purpose of participants
is to maximize their profit, however they risk to be detected if
they approve a honey-loan in an illegitimate way. Half of the
participants know that honey-loans were planted in the data,
while the other half only knows without details that they can
be detected if they make an illegitimate approval. The study
finds out that, awareness of the honeytokens had no significant
impact on the ratio of illegal actions taken. In other words,
deception awareness does not decrease the attack detection
rate. While this result is counter-intuitive, the paper states
two possible reasons: The honey-loans may be so realistic
that participants could not differentiate, and there were no
significant consequence for illegal behavior, except losing a
bonus. This study shows the difficulty of experiment setup for
evaluating deception. Yuill et al. [62] analyze the psychological
vulnerabilities while facing deception, that can be used in
the context of computer security. They note that deception
awareness might cause the attackers to believe that real security
vulnerabilities are deceptive methods. One study that confirms
this theory is [23]. In this study the authors conduct network
penetration testing experiments with red team members. The
experiment has four groups where deceptive elements are
present or not, and where the participants are informed about
deception or not. After each experiment, the authors conduct a
survey that aims at finding cognitive, emotional and physiolog-
ical effects of deception. They find that being informed about
the presence of deception can cause self-doubt and reduce self-
confidence. Moreover, only telling attackers that there might
be deception (even if the network does not have deceptive
elements) can make them more suspicious and drive them to
change their attack strategy. In our study, we aim at answering
similar questions for the web application defense: We analyze
how attackers perceive deception and if being informed about
deception affects their attack strategy.

III. SUNDEW: A MULTI-LAYER DECEPTION
FRAMEWORK

In this section we present SunDEW, a self defense envi-
ronment for web applications. We propose to use deception
in three layers (application, system and data [31]) so that the
attacker’s user experience remains consistent, while the attack
is detected and contained. An overview of the framework is
given in Figure 1. Next, we explain each architectural layer of
SunDEW.

A. Application layer

The simplest type of deception applied to web applications
is to embed deceptive elements in the application source code
or via a reverse proxy in front of the application [30], [28].

Proxy

Web Application

Real Database

Web Application
Clone

Database with
 honey-data

      Monitoring & reporting
attacker’s actions 

Identifying & redirecting the
complete attack session 

Identifying & deploying detection
points and realistic honeytokens

 Synchronization of 
 already exposed data

Generation of 
realistic fake data

Fig. 1. Overview of our deception framework and technical challenges.

These elements (such as a hidden HTTP POST parameter,
or a URL in HTML comments) are only expected to be
interacted with by attackers, not interrupting the normal us-
age. Furthermore, it is also possible to implement IDS-like,
application-specific detection points to monitor any anomalies
in the application behavior. To the best of our knowledge,
the OWASP AppSensor project is the first to propose such
detection points [46], [30]. Although detection points do not
provide straightforward deception, they can be very useful
in runtime application self defense. Application-specific de-
ceptive elements and detection points can be determined via
a threat modeling exercise [60], which will help to define
believable decoys as well as relevant monitoring points. In this
work we propose to combine deceptive elements with attack
detection points to provide more extensive defense capabilities
to the application. Combining the existing classifications and
related work [31], [30], [28], [26], [46], [60], we list several
examples of such elements in Table I.2 For a complete picture,
we also add the behavior based anomaly detection points.
However, we believe that behavior based detection is more
prone to false positives and should be treated more carefully.

A note on accuracy and false positives: One purpose of
deceptive elements and application specific detection points is
to reduce the false positive rates compared to more generic
defense methods such as Web Application Firewalls (WAF).
Indeed, the few studies that attempt to measure false positives
report zero or very low false positive rates [15], [30], [51].
Note that detection points and deception do not provide 100%
protection per se, but they can provide an improvement over
only using a generic WAF or IDS. How they should be
combined with generic defenses is also an open research
topic [31].

B. System layer

On the system layer, we propose to deceive the attackers
by redirecting them to an exact copy of the web application.
Depending on the architecture, this application can run in a
separate container or virtual machine that is well monitored.
Once an attack is detected, we aim to keep the attacker in the
clone application as long as possible by tainting the malicious
session and by redirecting all the subsequent requests. The
redirection can be implemented via a reverse proxy, as part

2The elements listed in bold have been implemented in our CTF challenge
for experimentation (See Section IV).

3



Examples Goal

Deceptive
Elements

Data

- Honey HTTP GET/POST parameters [30], [28]
- Honey cookies [30]
- Honey HTML elements (hidden form fields, commented out URLs / account
credentials) [46], [30], [28]
- Hyperlinks to track attacker [29]

Detection

Configuration - Honey disallow entries in /robots.txt [28], [26]
- Honey permissions and accounts [37]

Weakness - Honey vulnerability patches [30], [9], [8]

Response
- Web server version trickery [28], [26]
- HTTP response status code tampering [28], [26]
- Upload sinkholing (e.g., 200 response to PUT requests) [46]

Confusion

Performance - Latency adoption [28], [26]

Detection points

Request Exception

- Unexpected HTTP method [46]
- Unsupported HTTP Method [46]
- Missing/duplicated request data [46]
- Unexpected type/quantity of characters in the request [46] Detection

Authentication - Utilization of common passwords (e.g., ”123456”) and usernames
(e.g., ”admin”) [46]

Session - Use of another user’s session ID or cookie [46]

Input/Output

- Unexpected/deleted/modified cookie [46]
- Violation of input data integrity [46]
- Violation of black lists (e.g., SQLi or XSS patterns) [46]
- Abnormal output data (length, format, structure) [46]

Access Control - Forced browsing attempts for a non-existent / not authorized URL [46]
- Direct object access attempts with modified GET/POST parameters [46]

Behavior analysis User Trend - Deviation from normal GEO location [46]
- Abnormal speed or frequency of use [46] Detection

Authentication - High rate of logins/logouts to the application [46]
- Multiple failed login attempts [46]

TABLE I. LIST OF RUNTIME APPLICATION DEFENSE TECHNIQUES.

of the application, or via a dedicated micro service in a cloud
environment.

The advantages of redirecting to a clone are multi-fold:
it provides a seamless transition between the real application
and the honey-environment, it enables the use of extensive
monitoring tools (which may slow down the application in
normal use), and most importantly, it allows the attacker to
continue in his attack stages, which may reveal any unknown
vulnerabilities and help us learn the ultimate objective of the
attack. Moreover, this architecture allows to react to attacks
immediately, rather than just logging (as proposed in some
of the previous work [30], [28]) or blocking the requests.
Note that the framework can also trap pentesters and legitimate
vulnerability scanners in the application clone. However, the
vulnerabilities they find will still be valid, as the application
clone is no different than the real application.

C. Data layer

To protect the real application data, we propose to use
a separate database instance in the application clone, with
exactly the same schema, but containing synthetic data. Several
previous works explore how to generate realistic fake data for
deception or for application testing purposes. Most of the syn-
thetic data can be automatically created using a deep learning
generative model with differential privacy, as suggested in [4],
and demonstrated in [21]. This approach is well adapted to
produce most of the volume from the transaction data of the
real application. In contrast to approaches using generative
models, [33] can populate empty databases by taking user input
or computing the data distribution from existing databases, to

further generate test data. It would not be suited for deceptive
purposes though, because it would leak sensitive data in the
clone application. In [12], the goal is to understand data
distribution by mining rules, then to sanitize sensitive data
using a constraint solving anonymization method to generate
honeydata. The issue with the latter is that it is not known
to be resistant to re-identification and membership inference
attacks, as is the case for differential privacy.

In this study we do not intend to provide an exhaustive
tool with all data generation capabilities, but to provide some
guidelines and draw attention to the need for more research in
this area. In practice, to produce realistic data, several steps
are required. For instance:

• Identifying publicly available information contained in
database tables, such as organization names and ad-
dresses. Such elements can be copied as is to the clone
database.

• Identifying the sensitive attributes, whose values shall
never appear among the fake data items (e.g., values that
depend on the user input).

• Identifying the objects with related and independent
columns in order to maintain relationships in the gen-
erated data.

• Recreating all attributes of all tables considered sensitive
in a completely synthetic manner.

Note that for direct identifiers (such as SSNs, passport
numbers, license plate numbers, etc.), it is possible to use ex-
isting libraries for test data generation. For instance, Faker [22]
provides a variety of pre-built data generation templates,

4



enables localizing the data (e.g., selecting specific languages or
countries for names and addresses), and it is easily extensible.

D. Technical Challenges and Research Questions

Our framework brings several challenges and open up new
research areas.

1) Generating realistic deceptive elements: Deceptive el-
ements added to the application should look and feel as part
of the application, well integrated in the application context,
which is not an easy task. Currently, there is no automated
way of generating such elements specific to an application.
For instance, while [30] automates the embedding of deceptive
elements via a reverse proxy, authors still needed to go
through the application to carefully select the names of the
deceptive elements according to the content. The most relevant
study in this context, [49], focuses on automatically creating
honey HTML form fields for web applications. The authors
collect the form field names from Alexa Top 10,000 websites
and present an algorithm to select the most plausible field
names for a given application. They then make a user study
where they ask 75 students to look at 50 HTML forms and
identify which of those have honey form fields. The results
are significantly close to random selection, which means the
participants were not able to identify the honey fields. While
this study provides a good basis, more techniques need to be
developed to automate the generation of different types of web
honeytokens, which are content-specific, realistic, and blend in
well with the application logic.

2) Fake data generation: As mentioned in Section III-C,
automating the generation of synthetic data is another research
challenge. For instance, finding out the data periodicity in the
real application (to send “fresh” data to the clone database),
as well as managing the data volume over time are some of
the problems. We also need to have a good estimation of the
longevity of attacks from the same individual or group as
to present them with consistent data, when they return with
the same leaked credentials. Another challenge is to faithfully
reproduce the unstructured data (including the sensitive parts)
to appear realistic.

3) Smart data exposure: In their book, Sushil et al. [36]
state that the behavior of an intelligently deceptive system
should be indistinguishable from the normal behavior, even
if the user has interacted with the system before. While we
propose to redirect a malicious session to the clone of the
application on the fly, we need to ensure that the attacker’s
user experience will not be affected by this diversion and that
there won’t be discrepancies in the data visible to the attacker.
Thus, we need a mechanism to remember which part of the
application data was already visible to the attacker before he
was detected and redirected. This can be implemented with a
monitoring service running on the real system which transfers
a copy of the data that was made visible to the user during
the current session. Once the session expires, or after a certain
amount of time, the data can be deleted.

4) Keeping the attacker trapped: To maintain the target
application protected, the attacker should be kept trapped in the
application clone during the whole attack session, and better,
across multiple attack sessions. While it may not be possible to
have a perfect solution, we believe that incorporating browser

and device fingerprinting in the authentication process [41],
[16], [5] can be useful, at least to distinguish legitimate users
from attackers and to avoid sending a legitimate user to a
clone. Note that, in any case, the reverse proxy would need
to be well integrated with the authentication procedure of the
application, to track the current active and blacklisted sessions,
and to recognize the authentication failures and logout/login
events.

5) Remediation: If a malicious activity is detected on one
user’s account, this account is likely to have been compro-
mised, and any further connection with these credentials should
be treated carefully. On the one hand, users should not be
prevented from accessing the application and the system should
avoid sending a legitimate user to the application clone. On the
other hand, attackers may initiate parallel sessions from several
browsers or scripts, leading them to being connected to both
the application and its clone (serving different data) at the same
time. One approach could be to immediately lock the victim’s
account [47] and to find a way to contact the real user as
quickly as possible for a password change. Once the password
is changed, the old password can be used as a detection point,
ensuring all further initiated sessions via this password will be
consistently diverted to a clone. This approach also provides a
remediation for the possible false positives, where a legitimate
user has been redirected to the application clone.

6) Deployment and scalability: Automated deployment of
a self defense environment for a given web application would
be the best way to reduce the overhead for application develop-
ers and to increase the usability of this solution. However, the
large variety of Web technologies and frameworks makes this
task very difficult. Moreover, on a cloud environment where
each part of the application is served via a different micro
service, spawning clones for all services and for each attack
session may be impractical. Relying on a single clone for each
application, where to send all attackers, may be a potential
solution, at the cost of exposing to all caught attackers the
real data seen by each of them before detection.

Another aspect to consider is the performance overhead
of the framework. As the application or the reverse proxy
will need to parse and analyze all requests and responses, the
framework will increase the communication latency. Previous
work [28] analyzes the performance overhead of the reverse
proxy (without any performance optimization) and finds that
the effect depends on the type of tampering performed by the
proxy, while combining multiple deceptive elements does not
necessarily increase the overhead additively. In a real world
deployment, performance overhead of the framework should
be well tested not to degrade the user experience. For high
latency operations, it could be possible to delegate them to a
separate component.

IV. PROTOTYPING AND EXPERIMENT DESIGN

In this section we explain how we develop a prototype
for the SunDEW framework and use it for our CTF exercise.
We started by implementing a small web application with the
Spring Boot framework [1], following the best practices for
the available security features such as session management,
access control and authentication [2]. Our application mimics a
hospital management software where the patients and doctors

5



Web Application Database

Web Application
Clone

Proxy
flag.txt (real)

flag.txt (fake) Docker network

Fig. 2. Overview of our deception architecture and technical challenges.

can view and modify various data, protected by role based
access control. We then made a small threat modeling exercise
to decide on the deceptive elements and detection points.
We have considered possible attacks on reconnaissance (e.g.,
directory bruteforcing), privilege escalation, insecure direct
object reference, and weak account passwords. In contrast to
the previous work [30], [28], we also consider the response
actions in case a deception or detection element is tampered
with. Table II lists all the elements, how they are monitored
and the application’s reaction upon a malicious action.

We implemented these elements partially in the application,
and partially via a reverse proxy written in Node.js3. The
proxy uses several packages that allows to manipulate the
HTTP messages, such as cookie-parser4 and body-parser5.
Monitoring of the elements and the redirection procedure
is also handled by the proxy. Moreover, the proxy keeps a
database of session cookies together with the login-logout
events for each user, besides the triggered deceptive elements
and the sessions that must be redirected to the clone. All of
the components (the reverse proxy, applications, database) are
run in separate Docker containers in a Docker network, with
a single interface for external communications.

In the next step, for the sake of the CTF challenge, we
added an XXE (XML eXternal Entity [50]) vulnerability to the
application, which will be triggered when a profile picture is
uploaded with a specific payload. In a nutshell, the application
uses a third party JAVA library that converts an uploaded
SVG file (which is represented as XML) into a PNG file.
However the parsing routine of the library is flawed, which
makes it possible to read arbitrary files on the server via an
XXE attack [39]. Note that we chose the vulnerability after
deciding on the deception and detection elements. Moreover,
we were careful that the exploitation of the vulnerability does
not require interaction with these elements. Finally, we added
a hint for the participants: The /notes/todo URL commented
out in HTML source points to a todo file, which mentions a
hint about the implementation of profile picture upload. This
URL is not a deceptive element.

Finally, in the challenge description we give participants a
valid username/password combination. The scenario is that the
attacker obtained valid credentials from a phishing attack and
can reuse them to access the application like a legitimate user.
We then warn the participants that the application is protected
by deception technology and runtime detection points, and if

3https://www.npmjs.com/package/http-proxy
4https://www.npmjs.com/package/cookie-parser
5https://www.npmjs.com/package/body-parser

Fig. 3. Screenshot of the SunDEW challenge description.

they get caught, their flag will worth less points. A screenshot
of the challenge description can be found in Figure 3.

Note that, we plant different flags in the real and clone
applications. Once a participant triggers a deception/detection
element, his session will be redirected to the clone and if then
he exploits the vulnerability, he will access the flag in the clone
application (i.e., the fake flag), which worths only half of the
challenge points (100 points instead of 200). This provides the
incentive to care about the defense mechanism employed.

To avoid the challenges related to the smart data exposure,
we develop the CTF challenge using a simplified deception
architecture: We use a single database instance for both the real
and clone applications. This makes sure that the participants
will not see any discrepancies in the data, when their session is
redirected to the application clone. The challenge architecture
can be found in Figure 2. Moreover, to be able to monitor the
participants individually and to avoid the issues related to using
a single database for both applications, we create a separate
docker network instance for each player. Finally, for analysis,
we collect httpry6 logs from the applications and the proxy,
for each user.

Evaluation strategy. Ideally, the best way to evaluate par-
ticipants’ reaction to deception would be to make a controlled
experiment and inform only half of the participants about
deception. However, we avoided this for several reasons. First,
it would be unfair for the informed group as the challenge
difficulty increases. Second, dividing participants would mean
having less participants in each category, which could affect
the significance of the results. Finally, the CTF continues for
one month and participants have means to communicate about
challenges. Thus, we instead decided to conduct a survey
on the participants who are able to solve the challenge. In
addition, we compare the detection rates with another, similar
web challenge on the CTF platform to see if participants
behaved differently when they are informed about deception.

Post-challenge survey. We designed this survey to analyze
participants’ experience with the challenge, how they perceive
deception technology, and how they change their attack behav-
ior. The survey is presented as another challenge on the CTF
platform, and it is worth 50 points. However, this challenge
is only available to the participants who were able to get one
of the flags (real or fake) in the SunDEW challenge. As the
SunDEW challenge is part of a large CTF competition that

6https://github.com/jbittel/httpry

6



Deception/Detection Element Monitored Against Reaction/Response Detection rate
Honey “Username” cookie Tampering Reset to original value 1%
Honey “Role” cookie Tampering Reset to original value 4%
Honey hidden POST parameter Tampering No effect on the response (not vulnerable) 10%
GET parameter of /view patient/id IDOR attempts HTTP 403 Unauthorized 50%
Password blacklist on authentication Blacklist of weak passwords HTTP 302 Authentication failed 8%
URL blacklist for GET requests Blacklist from dirbuster HTTP 404 Not Found 14%
SQLi blacklist for all input fields Blacklist from sqlmap No effect on the response (not vulnerable) 6%

TABLE II. LIST OF THE DECEPTION & DETECTION ELEMENTS USED IN THE CTF EXPERIMENT, AND THE INDIVIDUAL DETECTION RATES.

continues for one month and open to all employees globally,
we had to make sure that the participants who did not work on
the challenge will not be answering the survey. Moreover, this
allows for a more refined analysis: The participants should
have spent enough time and efforts on the challenge, to be
able to capture the flag. In addition, they are likely to be
more experienced in information security, which allows us
to evaluate our framework against stronger attackers. The
questionnaire includes 17 questions, including single-answer,
open-ended and multiple-answer ones.

V. RESULTS

A. Overview

The CTF competition continued for 4 weeks in October,
2019. It included 50 challenges in various categories (e.g.,
web, binary analysis, forensics, cryptography). More than 400
participants was able to solve at least 1 challenge.

In total, 98 participants attempted to solve our SunDEW
challenge. 51% of them have triggered at least one deception
or detection element. Table II presents, for each element, the
ratio of users who has triggered this element at least once.
Note that the “id” GET parameter alone was able to trick 50%
of participants to tamper with it. 18% of the participants have
triggered more than one element.

Overall, 28 participants were able to exploit the vulner-
ability. 19 (68%) of them triggered a deceptive or detection
element at least once, while 9 (32%) did not trigger any of the
traps and accessed the real flag. These 28 participants were
able to answer the survey later on. Thanks to the survey, we
understand that the 9 participants who accessed the real flag
have focused on the picture upload feature straightaway, by
following the hints that we provided in the challenge: The
/notes/todo URL, and SVG listed as a supported file type (see
Section IV).

In the next section, we will analyze the survey results to
see how participants perceived deception.

B. Survey results

1) Participants’ profile: We start the survey with a few
questions to learn about participants’ profile and experience.
Most of the participants have developer or engineer roles in
their daily job, except two MSc students and a pentester.
Participants rate their information security experience as 3.7±1
on a scale from 1 to 5. Moreover, they rate their knowledge on
deception technology before solving the challenge as 2.3±1.
Overall, the participants seem to be quite experienced in infor-
mation security field, and already familiar with the deception
technology.

We then ask a single-answer question about how much
time participants spent to research about deception technology
before starting to solve the challenge. Figure 4 shows the
results: only 25% of the participants researched about it for
more than 15 minutes, while 28% did not do any prior
investigation.

None
0-15 min

15-30 min
30-60 min More

0%

10%

20%

30%

40%

Ra
tio

 o
f p

ar
tic

ip
an

ts

Fig. 4. How much time participants spent to research about the deception
technology before starting the challenge.

2) Participants experience with the challenge: In an open-
ended question, we ask participants to report any anomalous
behavior they experienced during the challenge. Except few
platform related issues, they did not report any anomalous
behavior in the application. This shows that the redirection
mechanism worked well in tricking the participants. When
we ask participants whether they think they interacted with
a honeypot server (instead of the real application server) at
some point in the challenge, 89% of participants answered
“No”, while in reality 68% did interact with a honeypot.

3) Participants’ perception of the deception technology:
To evaluate how the participants perceive the deception tech-
nology, we first ask an open-ended question about whether
knowing about deception and runtime defense had any impact
on their attack strategy. 57% of participants answered yes and
43% answered no. Table III summarizes the additional expla-
nations the participants report on this open-ended question.
We can see that the participants whose strategy were affected
by deception take different precautions depending on how they
interpret the technology: Some of them avoid scanning the web
server, while some avoid tampering with cookies or trying out
XSS attacks.

We then ask a multiple-choice and multiple-answer ques-
tion, where we list some of the possible strategies to avoid
detection and ask the participants whether they adopted any
of those behavior. Table IV lists all the answers and their
popularity. Overall, 75% of participants reported to avoid brute
forcing. Other popular answers was to avoid automation tools

7



Yes, deception had an impact on my strategy (57%) No, deception did not have any impact (43%)
– I was very careful / cautious,

- I avoid to use brute force attack.
- especially I didnt try tampering with the cookies .
- I investigated everything client side and interacted normally
in the beginning.
- I tried not to access .git and stuff, but finally still used
dirbuster as I wasnt successful otherwise after some hours.

– At the beginning, I tried to be quiet, without scanning the webserver
and focused purely on the svg upload. But after a while, none of my
payload worked out, so I started with the scanning, which might be
loud on server side.
– I avoided automated attacks/scanning (like port scan).
– I tried not to access things that I was sure wasn’t authorized, like
an ID that didn’t appear. Also, avoided XSS in the text fields.
– I was focusing only on the target file, not other files in the system.
– I used the URL of a colleague to try riskier stuff
– It scared me.

– I did not search about deception.

– My idea was to first solve the challenge without taking
the honeypot into account.

– I was fairly certain I will have another option to solve the
challenge once again. (But in real life I would have been
very scared not to be detected if I attacked the application
in a way that could identify me.)

– I did not find any honeypot so I am no affected.

– TBH, I only read up a little and was not sure about the
technique.

TABLE III. ANSWERS TO THE OPEN-ENDED QUESTION: “DID KNOWING ABOUT DECEPTION AND RASP HAVE ANY IMPACT ON YOUR ATTACK
STRATEGY? PLEASE EXPLAIN?”

and scripted attacks, as well as to find the vulnerability with
the least amount of interaction. Indeed, when we search for
the user-agent strings for known attack tools (e.g., Nikto, Dir-
Buster, sqlmap, Postman) or scripting languages (e.g., python-
requests, go-http, curl) in HTTP logs, we only found 13% of
survey participants to use such tools (This ratio is 15% among
the whole population of 98 participants). Thus, we observe that
deception technology is likely to push the attackers towards
manual work (rather than using automation tools) and to
be more careful in their interactions with the application.
Moreover, participants seem to perceive deception technology
similar to the signature based attack detection methods. On the
other hand, strategies that avoid the actual deception/detection
points that we monitored (e.g., hidden HTML elements, forced
browsing, GET parameters) were less popular.

While in the previous open-ended question 43% of partic-
ipants reported that knowing about deception did not have an
effect on their attack strategy, in this multiple-answer question,
two thirds of those participants have selected at least one
strategy they used to avoid detection. In fact, overall, the
behavior of 85% of survey participants were affected by
the notion of deception. An interesting comment was the
following:

Although I wanted to ignore the deception, I would
say knowing about it still determined my attack
path. I started to read all received files carefully (i.e.
html for every page the normal user can use), and
refrained mostly from wildly changing parameters. I
also started by simulating a real doctor to see how
the application is supposed to behave and to see the
normal flow of the application.

However we also observe that, even if the participants take
some precautions initially, they are likely to fall back to
regular attack strategies if they cannot find an attack
vector. In particular, one participant reports that he “gave up
on most of these” precautions, and two other participant states
that (Table III) after not being successful for a while, they
started using scanning tools.

Finally, we observe that only a small number of participants
have changed their browser user-agent and session cookies.
This means that browser fingerprinting can be a good way
to track the attacker across different sessions.

Later, we ask another multiple-choice, multiple-answer
question to understand why the participants did not try avoid
detection. Note that, we again allow all participants to answer
this question, considering they may agree with some of the
options even if they initially answered “Yes” for the strategy
change. 43% of the participants reported they “did not know
what to do to avoid detection”, while 28% reported they
“thought it was not possible to avoid detection”. Combining
these answers, overall 60% of participants had trouble to
identify a strategy against deception. Moreover 28% stated
they “did not understand what is deception technology”, while
only 7% stated they “did not care about earning less points
from the challenge, if they are caught”.

It is interesting to note that, even though the participants
reported to be already familiar with the deception technology
and they have spent time to research about it prior to the
challenge, most of them still could not determine how to
circumvent it. This can become an important advantage on
the defense side, as the defense strategy becomes opaque and
ambiguous to the attacker.

4) Participants’ perception of deceptive elements : In the
next part of the survey, we focus on how the participants
perceive and interact with the deceptive elements. For each
element, Table V summarizes the ratio of participants who
considered it deceptive (observed from the survey), and who
have interacted (e.g., modified) with this element (observed
from the HTTP logs).

The first thing we notice is that the participants interact
less with the elements that they find more suspicious. While
most participants thought that the cookies were deceptive,
they are more likely to tamper with the Role cookie, as its
misconfiguration might lead to a privilege escalation attack.
On the other hand, GET and POST parameters created less

8



Strategy Ratio of participants that agree
I avoided brute-forcing the application. 75%
I tried to find the vulnerability with the least amount of interaction with the application. 60%
I did not try to login as admin/admin nor tried similar default passwords. 60%
I avoided using known automation tools (like sqlmap, dirbuster). 60%
I avoided launching scripted attacks. 53%
I searched online about deception technology to learn what kind of detection methods are used. 50%
I avoided fuzzing. 43%
I refrained from trying SQL injection. 39%
I avoided forced browsing. 32%
I avoided modifying hidden POST parameters. 28%
I avoided modifying GET parameters such as the patient ID in the URL. 25%
I used automated tools but modified them. 10%
I changed the browser user agent frequently to avoid detection. 7%
I changed the session cookie frequently to avoid detection. 3%

TABLE IV. ANSWERS TO THE MULTIPLE CHOICE QUESTION: “WHICH OF THE FOLLOWING STRATEGIES (IF ANY) YOU ADOPTED TO AVOID THE
DETECTION METHODS THAT WE EMPLOYED (RASP AND DECEPTION TECHNOLOGY)?”

Considered deceptive
(survey)

Interacted with
(HTTP logs)

Username cookie 53% 3%
Role cookie 61% 14%
Hidden POST parameter 28% 21%
GET parameter id 7% 61%

TABLE V. ANSWER TO THE QUESTION: “WHICH OF THE FOLLOWING
APPLICATION ELEMENTS YOU CONSIDERED TO BE DECEPTIVE?”” VS. THE
RATIO OF PARTICIPANTS WHO INTERACTED WITH THE ELEMENT DURING

CTF.

suspicion among the participants. We then ask an open-
ended question about the reasons why these elements were
considered deceptive. 21% of participants state that the cookies
were overwritten each time, and/or the changes to the hidden
POST parameter had no impact. Thus, these participants have
identified the deceptive elements only after interacting with
them. While this is a good property for deceptive elements
according to the previous work [30], we find that it may not
be enough for preserving the deception, as it may tip off the
attacker about being detected. Thus, we believe that design-
ing realistic responses is as important as designing the
deceptive elements. Moreover, our results show that, adding
deceptive elements that “do not interfere with the normal
behavior of application” [30] may not be useful anymore when
the attacker is aware of deception. Instead, deceptive elements
should be designed to intertwine with the application logic
and functionality to be resistant to attackers’ deception
awareness. The fact that the GET and POST parameters were
found less suspicious than the cookies supports this hypothesis.

On the other hand, if such simple-looking elements (e.g.
Role cookie) were due to bad implementation practices and
were actually vulnerable, deception awareness could deter
attackers from tampering with them. Moreover, naive deceptive
elements might obscure the more advanced ones by exploiting
the attackers’ expectations and cognitive biases [62]. Thus,
deploying simple deceptive elements combined with more
sophisticated ones can be a good defense strategy.

Furthermore, 28% of the participants just stated that the
selected elements were looking “too suspicious” or “it is
the feeling” they had, without giving specific reasons. 14%
stated that manipulating these elements would be a “too easy”
solution for this challenge.

5) Robustness of the redirection mechanism: In our proof-
of-concept implementation, we redirect the attackers to the
clone application by blacklisting their session cookie, once
they trigger a deception/detection element. Our proxy tracks
the subsequent changes to the session cookie (e.g., due to
login/logout events) and keeps the attacker trapped in the clone
application seamlessly. However, if the attacker modifies or
deletes the session cookie, he will be able to escape the clone
application.

As we mentioned in Section III-D4, one possible way to
make the redirection mechanism more robust would be to use
browser fingerprinting. However this is not a perfect solution:
Indeed, in the survey, one participant reported to connect from
a different browser and in incognito mode to verify his flag
before submitting.

To learn more about participants’ perception of deception,
we ask two Yes/No questions about whether they think the
use of a VPN and the modification of the browser user-agent
would help them mitigate detection or would make them easier
to get caught. Respectively, 75% and 64% of participants think
that these actions would make them more suspicious. Thus,
being informed about deception can make the attacker less
likely to deviate from normal usage, which could make
fingerprinting more effective.

Overall, we believe that more research is needed to track
attackers across different attack sessions, by incorporating
fingerprinting mechanisms or other means.

C. Effect of deception awareness in comparison to another
challenge

In the last part, we compare the detection rates of our
CTF challenge (Challenge #1) with another web challenge that
has an SSRF (Server Side Request Forgery [45]) vulnerability
(Challenge #2). As opposed to Challenge #1, Challenge #2
is not protected by the SunDEW environment, and there is
no deception related information mentioned in the challenge
description. However, we still added an additional, honey
cookie to Challenge #2, and collected the httpry logs to see
if any of the URL/Password/SQLi blacklists were violated.
Thus, in this section we only compare the detection rates of
the common deceptive elements that were applicable to both
of the challenges.

9



Challenge #1
(deception informed)

Challenge #2
(no deception)

URL blacklist 13.1% 25.0%
Password blacklist 7.8% 10.5%
SQL blacklist 6.5% 0%
Cookie tampering 3.9% 5.3%
Cumulative 18.4% 36.8%

TABLE VI. COMPARISON OF DECEPTION EFFECTIVENESS WHEN THE
PARTICIPANTS ARE INFORMED ABOUT IT OR NOT.

In total, 76 CTF participants attempted to solve both of
these challenges, with 3̃0% of success rate (23 and 24 flaggers,
respectively). Thus, we can say that the difficulty levels of
both challenges were similar. Table VI summarizes the ratio
of participants who triggered each deception/detection element,
and the cumulative results. We find that the effectiveness of
deception is lower when the participants are informed about
it (18%) in comparison to not being aware of it (37%). We
also apply a two proportion z-test to see if this difference is
statistically significant. For the significance level of 0.05, p-
value of the test is 0.0088, which means the detection ability
of deceptive elements significantly differ when the participants
are aware of the use of deception.

Note that this result contradicts the previous work on data
layer deception: In their study, Shabtai et al. [52] finds that
“the knowledge about the existence of honeytokens did not
have a significant influence on the percentage of illegal actions
performed using honeytokens”. However, in this study, use of
a honeytoken brings an immediate benefit to the participants
(increasing profit) while in our study the participants may not
gain immediate benefit (e.g., launching a certain attack may
or may not help with reaching the flag).

D. Discussion

Our experiment is conducted as a CTF exercise, and with
a web application that is quite small-scale, far from how a
real world hospital management application would look like.
This means the participants know that there must be a vulner-
ability and they receive hints about where it could be located,
compared to a real attack where the attacker does not know
whether there is a vulnerability that is exploitable. Moreover,
the participants are only information security enthusiasts, not
real attackers. Thus, the 51% detection rate we reported in
this study may not be a good indication of the real-world
effectiveness of deception. However, the CTF setup is one of
the best available methods to evaluate deception [31] and the
several observations we make helps to improve the quality and
robustness of the existing deceptive techniques.

We find that, adding and removing the deceptive elements
only at the proxy level (like proposed in [30], [28]) may not
be adequate in the long term. For more realistic and robust
deception, it is also necessary to develop reasonable response
actions, and mimic functionality for the deceptive elements (for
example, by adding a broken admin panel to the user interface
when a honey role cookie is set to “admin”). In fact, combining
naive elements with more sophisticated ones can be the best
approach to increase the ambiguity of the defense mechanism.
More experiments are needed on a larger application with

more deceptive elements that are better integrated with the
application.

As the deception technology becomes more popular, attack-
ers may assume its existence by default, or may know about
it. We find that, being informed about deception is likely to
decrease the effectiveness of deceptive elements (at least the
naive ones); however, it still adds a deterrent factor and pushes
the attackers away from their regular attack path.

VI. CONCLUSIONS

In this paper we propose a self-defense mechanism for
web applications, that relies on using deceptive techniques on
several layers. We aim to detect an attacker via application
layer deceptive elements, redirect him to an application clone
seamlessly, and serve him fake application data while we
monitor his actions. We develop a prototype of this framework
and experiment with it during a Capture-The-Flag exercise.
Our results show how the attackers perceive deception, how
they would try to mitigate it, and how existing deceptive
elements can be improved. Although implementing such a
complete deception framework in real world would bring many
challenges (that we also discuss in the paper), we believe that
deception has the potential to become an effective defense
layer even if it is not perfectly executed. In the future work,
we aim to address the open challenges we list, evaluate the
performance overhead of our framework, and conduct more
experiments in a real-world deployment.

ACKNOWLEDGMENTS

We thank Elton Mathias, Julian Schoemaker, and the rest of
the SAP Security Education team for providing the support to
deploy our CTF challenge on their platform. We also thank the
CTF participants for enabling this research, and the anonymous
reviewers for their valuable feedback.

REFERENCES

[1] “Spring Boot,” https://spring.io/projects/spring-boot, 2019.
[2] “Spring Security Architecture ,” https://spring.io/guides/topicals/spring-

security-architecture, 2019.
[3] Acalvio, “Shadowplex autonomous deception,”

https://www.acalvio.com/why-acalvio/, 2019.
[4] E. Al-Shaer, J. Wei, K. W. Hamlen, and C. Wang, “Using deep learning

to generate relational honeydata,” in Autonomous Cyber Deception.
Springer, 2019, pp. 3–19.

[5] F. Alaca and P. C. van Oorschot, “Device fingerprinting for augmenting
web authentication: Classification and analysis of methods,” in Proceed-
ings of the 32Nd Annual Conference on Computer Security Applications,
ser. ACSAC ’16. New York, NY, USA: ACM, 2016, pp. 289–301.

[6] M. Almeshekah and E. Spafford, Cyber Security Deception, 07 2016,
pp. 25–52.

[7] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. Markatos,
and A. D. Keromytis, “Detecting targeted attacks using shadow hon-
eypots,” in Proceedings of the 14th Conference on USENIX Security
Symposium - Volume 14, ser. SSYM’05. Berkeley, CA, USA: USENIX
Association, 2005, pp. 9–9.

[8] Andrew Useckas, “Why security teams need to virtual patch,”
https://blog.threatxlabs.com/why-security-teams-need-to-virtual-patch/,
2019.

[9] F. Araujo, K. W. Hamlen, S. Biedermann, and S. Katzenbeisser, “From
patches to honey-patches: Lightweight attacker misdirection, deception,
and disinformation,” in Proceedings of the 2014 ACM SIGSAC Confer-
ence on Computer and Communications Security, ser. CCS’14. New
York, USA: ACM, 2014, pp. 942–953.

10



[10] F. Araujo, M. Shapouri, S. Pandey, and K. Hamlen, “Experiences with
honey-patching in active cyber security education,” in 8th Workshop
on Cyber Security Experimentation and Test (CSET 15). Washington,
D.C.: USENIX Association, aug 2015.

[11] Attivo Networks, “Threat detection,”
https://attivonetworks.com/solutions/threat-detection/, 2019.

[12] M. Bercovitch, M. Renford, L. Hasson, A. Shabtai, L. Rokach, and
Y. Elovici, “Honeygen: An automated honeytokens generator,” in Pro-
ceedings of 2011 IEEE International Conference on Intelligence and
Security Informatics, July 2011, pp. 131–136.

[13] B. M. Bowen, S. Hershkop, A. D. Keromytis, and S. J. Stolfo, “Baiting
inside attackers using decoy documents,” in Security and Privacy in
Communication Networks, Y. Chen, T. D. Dimitriou, and J. Zhou, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 51–70.

[14] B. M. Bowen, V. P. Kemerlis, P. Prabhu, A. D. Keromytis, and
S. J. Stolfo, “Automating the injection of believable decoys to detect
snooping,” in Proceedings of the Third ACM Conference on Wireless
Network Security, ser. WiSec ’10. New York, NY, USA: ACM, 2010,
pp. 81–86.

[15] D. Brewer, K. Li, L. Ramaswamy, and C. Pu, “A link obfuscation
service to detect webbots,” in 2010 IEEE International Conference on
Services Computing, July 2010, pp. 433–440.

[16] E. Bursztein, A. Malyshev, T. Pietraszek, and K. Thomas, “Picasso:
Lightweight device class fingerprinting for web clients,” in Proceedings
of the 6th Workshop on Security and Privacy in Smartphones and
Mobile Devices, ser. SPSM ’16. New York, NY, USA: ACM, 2016,
pp. 93–102.

[17] A. Cidon, L. Gavish, I. Bleier, N. Korshun, M. Schweighauser, and
A. Tsitkin, “High precision detection of business email compromise,”
in 28th USENIX Security Symposium (USENIX Security 19). Santa
Clara, CA: USENIX Association, 2019, pp. 1291–1307.

[18] F. Cohen, I. Marin, J. Sappington, C. Stewart, and E. Thomas,
“Red teaming experiments with deception technologies,”
http://all.net/journal/deception/RedTeamingExperiments.pdf, 2001.

[19] CrowdStrike, “Global Threat Report: Adversary Tradecraft and the
Importance of Speed,” 2019.

[20] Cymmetria, “Deception services,” https://cymmetria.com/products/deception-
services/, 2019.

[21] L. Dymytrova, L. Frigerio, and A. S. de Oliveira, “Differentially private
generative models,” https://github.com/SAP-samples/security-research-
differentially-private-generative-models, 2019.

[22] D. Faraglia, “Faker: a python package that generates fake data for you,”
https://github.com/joke2k/faker, 2019.

[23] K. Ferguson-Walter, T. Shade, A. Rogers, E. Niedbala, M. Trumbo,
K. Nauer, K. Divis, A. P. Jones, A. Combs, and R. G. Abbott, “The
tularosa study: An experimental design and implementation to quantify
the effectiveness of cyber deception,” in HICSS, 2019.

[24] Fidelis Cybersecurity, “Fidelis deception,”
https://www.fidelissecurity.com/wp-content/uploads/2019/04/Fidelis-
Deception-1905.pdf, 2019.

[25] Fireeye, “Fireeye Mandiant Services Special Report,” 2019.

[26] D. Fraunholz and H. D. Schotten, “Defending web servers with feints,
distraction and obfuscation,” in 2018 International Conference on
Computing, Networking and Communications (ICNC), March 2018, pp.
21–25.

[27] D. Fraunholz, S. D. Antón, C. Lipps, D. Reti, D. Krohmer, F. Pohl,
M. Tammen, and H. D. Schotten, “Demystifying deception technology:
A survey,” CoRR, vol. abs/1804.06196, 2018.

[28] D. Fraunholz, D. Reti, S. Duque Anton, and H. D. Schotten, “Cloxy: A
context-aware deception-as-a-service reverse proxy for web services,”
in Proceedings of the 5th ACM Workshop on Moving Target Defense,
ser. MTD ’18. New York, NY, USA: ACM, 2018.

[29] D. Gavrilis, I. Chatzis, and E. Dermatas, “Flash crowd detection
using decoy hyperlinks,” in 2007 IEEE International Conference on
Networking, Sensing and Control, April 2007, pp. 466–470.

[30] X. Han, N. Kheir, and D. Balzarotti, “Evaluation of deception-based
web attacks detection,” in Proceedings of the 2017 Workshop on Moving
Target Defense, ser. MTD ’17. New York, NY, USA: ACM, 2017.

[31] ——, “Deception techniques in computer security: A research perspec-
tive,” ACM Comput. Surv., vol. 51, no. 4, pp. 80:1–80:36, Jul. 2018.

[32] G. Ho, A. Cidon, L. Gavish, M. Schweighauser, V. Paxson, S. Savage,
G. M. Voelker, and D. Wagner, “Detecting and characterizing lateral
phishing at scale,” in 28th USENIX Security Symposium (USENIX
Security 19). Santa Clara, CA: USENIX Association, 2019, pp. 1273–
1290.

[33] K. Houkjær, K. Torp, and R. Wind, “Simple and realistic data gener-
ation,” in Proceedings of the 32Nd International Conference on Very
Large Data Bases, ser. VLDB ’06. VLDB Endowment, 2006, pp.
1243–1246.

[34] Illusive Networks, “Attack detection system,”
https://www.illusivenetworks.com/technology/platform/attack-
detection-system, 2019.

[35] M. Izagirre, “Deception strategies for web application security:
application-layer approaches and a testing platform,” MSc Thesis at
Lulea University of Technology, June 2017.

[36] S. Jajodia, V. Subrahmanian, V. Swarup, and C. Wang, Cyber deception:
Building the scientific foundation, 01 2016.

[37] P. Kaghazgaran and H. Takabi, “Toward an insider threat detection
framework using honey permissions,” J. Internet Serv. Inf. Secur., vol. 5,
pp. 19–36, 2015.

[38] A. Kerckhoffs, “La cryptographie militaire,” Journal des Sciences
Militaires, pp. 161–191, 1883.

[39] Kevin Schaller, “XML External Entity (XXE) Injection in Apache
Batik Library [CVE-2015-0250],” https://insinuator.net/2015/03/xxe-
injection-in-apache-batik-library-cve-2015-0250/, March 2015.

[40] G. Kontaxis, M. Polychronakis, and A. Keromytis, “Computational
decoys for cloud security,” Secure Cloud Computing, pp. 261–270, 11
2013.

[41] P. Laperdrix, G. Avoine, B. Baudry, and N. Nikiforakis, Morellian Anal-
ysis for Browsers: Making Web Authentication Stronger with Canvas
Fingerprinting, 06 2019, pp. 43–66.

[42] J. Lin, C. Liu, X. Cui, and Z. Jia, “Poster: A website protection
framework against targeted attacks based on cyber deception,” 2017.

[43] M. A. E. Mohd Efendi, Z. Ibrahim, M. N. Ahmad Zawawi, F. Abdul
Rahim, N. A. Mohamad Pahri, and A. Ismail, “A survey on decep-
tion techniques for securing web application,” in 2019 IEEE 5th Intl
Conference on Big Data Security on Cloud (BigDataSecurity), IEEE
Intl Conference on High Performance and Smart Computing, (HPSC)
and IEEE Intl Conference on Intelligent Data and Security (IDS), May
2019, pp. 328–331.

[44] NTT Security, “The rapid evolution of deception technologies,”
https://www.nttsecurity.com, 2018.

[45] OWASP, “Server Side Request Forgery,” 2019.
[46] OWASP Foundation, “Appsensor detection points,”

https://www.owasp.org, 2015.
[47] ——, “Appsensor response actions,” https://www.owasp.org, 2015.
[48] J. Pawlick, E. Colbert, and Q. Zhu, “A game-theoretic taxonomy and

survey of defensive deception for cybersecurity and privacy,” CoRR,
vol. abs/1712.05441, 2017.

[49] C. Pohl, A. Zugenmaier, M. Meier, and H.-J. Hof, “B.hive: A zero
configuration forms honeypot for productive web applications,” in 30th
IFIP International Information Security Conference (SEC), May 2015,
pp. 267–280.

[50] PortSwigger Ltd., “XML external entity (XXE) injection,”
https://portswigger.net/web-security/xxe, 2019.

[51] M. B. Salem and S. J. Stolfo, “Decoy document deployment for
effective masquerade attack detection,” in Proceedings of the 8th
International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, ser. DIMVA’11. Berlin, Heidelberg:
Springer-Verlag, 2011.

[52] A. Shabtai, M. Bercovitch, L. Rokach, Y. K. Gal, Y. Elovici, and
E. Shmueli, “Behavioral study of users when interacting with active
honeytokens,” ACM Trans. Inf. Syst. Secur., vol. 18, no. 3, Feb. 2016.

[53] Symantec, “Internet Security Threat Report,”
https://www.symantec.com/content/dam/symantec/docs/reports/istr-
24-2019-en.pdf, February 2019.

[54] ThinkstCanary, “Canarytokens,” https://canarytokens.org, 2019.

11



[55] K. Thomas, J. Pullman, K. Yeo, A. Raghunathan, P. G. Kelley, L. Inv-
ernizzi, B. Benko, T. Pietraszek, S. Patel, D. Boneh, and E. Bursztein,
“Protecting accounts from credential stuffing with password breach
alerting,” in 28th USENIX Security Symposium (USENIX Security 19).
Santa Clara, CA: USENIX Association, aug 2019, pp. 1556–1571.

[56] S. Tzu, The Art of War, ser. Dover Military History, Weapons, Armor.
Dover Publications, 2002.

[57] V. E. Urias, W. M. S. Stout, and H. W. Lin, “Gathering threat intelli-
gence through computer network deception,” in 2016 IEEE Symposium
on Technologies for Homeland Security (HST), May 2016, pp. 1–6.

[58] V. E. Urias, W. M. S. Stout, J. Luc-Watson, C. Grim, L. Liebrock,
and M. Merza, “Technologies to enable cyber deception,” in 2017
International Carnahan Conference on Security Technology (ICCST),
Oct 2017, pp. 1–6.

[59] A. van der Heijden and L. Allodi, “Cognitive triaging of phishing
attacks,” in 28th USENIX Security Symposium (USENIX Security 19).
Santa Clara, CA: USENIX Association, 2019, pp. 1309–1326.

[60] C. Watson, M. Coates, J. Melton, and D. Groves, “Creating attackaware
software applications with real-time defenses,” September/October
2011.

[61] C. Watson, J. Melton, and D. Groves, “Appsensor application-specific
real time attack detection & response,” July 2015.

[62] J. Yuill, D. Denning, and F. Feer, “Psychological vulnerabilities to de-
ception for use in computer security,” in DoD Cyber Crime Conference,
January 2007.

12


