
An Adaptive Method for Cross-Platform Browser
History Sniffing

Anxin Huang
Xiamen University

zjkuabjt@stu.xmu.edu.cn

Chen Zhu
Xiamen University

zhuchen@stu.xmu.edu.cn

Dewen Wu
Xiamen University

windwood@xmu.edu.cn

Yi Xie*
Fujian Key Laboratory of Sensing and Computing for Smart City

csyxie@xmu.edu.cn

Xiapu Luo
The Hong Kong Polytechnic University

luoxiapu@gmail.com

Abstract—To accelerate browsing, most browsers keep track of
visited URLs and create a browser history. Unfortunately, history
sniffing attacks exploit the saved state to learn users’ private
information and infer about their visits to other sites. Although
browser developers have taken measures to defend against these
attacks, Smith’s method, a kind of side-channel sniffing attack,
could still work effectively. However, since different devices
perform differently, this method requires that a list of parameters
should be manually set up according to the device platform.
In this paper, we propose an adaptive method that introduces
multiple auxiliary links and adopts a dynamic parameter search
algorithm to improve Smith’s method. Our adaptive method
attains nearly 100% accuracy on most popular browsers in
different operating systems and platforms.

Keywords—Browser history sniffing; Cross-platform attack;
Adaptive method

I. INTRODUCTION

Web applications with rich functions are very popular
nowadays. People can easily and conveniently access websites.
However, along with the rapid development of browsers, many
problems, such as privacy disclosure, have ensued. Browsers
store a user’s browsing history, which can reveal the user’s
gender, behavior, location, even who they are in the real world
[15]. Thus, a great threat to a user’s privacy is that, using
various methods, attackers can sniff the browsing history. The
existing methods for sniffing browsing history can be divided
into the following three categories: vulnerability attacks, inter-
active attacks, and side-channel attacks.

Vulnerability attacks. To sniff the history of a browser,
vulnerability attacks, which usually focus on one or a few
design weaknesses in the browser, use methods like harvesting
the visited status of a link by reading its color [2]. By doing
so, a malicious site can effectively check thousands of URLs

*Corresponding author: Yi Xie, Fujian Key Laboratory of Sensing and
Computing for Smart City, School of Informatics, Xiamen University, Xiamen,
China, csyxie@xmu.edu.cn.

per second to see if a user has visited it. However, browsers
have already been enhanced to defend against such attacks by
adopting the solutions proposed by David Baron [1].

Interactive attacks. Interactive attacks, by styling links in
clever ways, such as CAPTCHAs and game pieces, trick users
into revealing what they see on the screen and then rely on
the users to visually identify visited links by clicking on them
[15]. However, these methods are time-consuming.

Side-channel attacks. Side-channel attacks are based on
information gained from the use of computer systems rather
than the weaknesses of browsers. Side-channel attacks are
of great concern because of the advantages of stealthiness,
flexibility, and convenience. For example, the method of timing
attack [13], a kind of side-channel attack, leaks information
by measuring the computational time required for system
operation when a browser renders one frame. Although this
attack became invalid, Smith et al. [11] proposed an improved
method that still works in some devices.

However, our experimental results show that Smith’s
method lacks robustness and practicability, because it works
well only under carefully adjusted parameters, which heavily
depend on the platform and operating system of the device.
In this paper, to address the limitation in Smith’s method, we
propose an adaptive method for browser history sniffing, which
uses multiple auxiliary links to amplify the frame-number
difference instead of one and adopts a dynamic parameter
search algorithm to determine the optimal number of auxiliary
links for the current browser. Our major contributions include:

• We analyze the limitations of Smith’s method and
design a new approach1 using multiple auxiliary links
to improve its accuracy and robustness.

• We propose an adaptive method that adopts a dynamic
parameter search algorithm to rapidly determine the
optimal number of auxiliary links for the most popular
browsers in different operating systems and platforms.

• We conduct extensive experiments to evaluate our
adaptive method and study the influence of important
parameters . The experimental results show that our

1The code is available at https://github.com/onlyvae/Browser-History-
Sniffing

Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb) 2020
23 February 2020, San Diego, CA, USA
ISBN 1-891562-63-0
https://dx.doi.org/10.14722/madweb.2020.23006
www.ndss-symposium.org

method can obtain nearly 100% accuracy when de-
tecting visited URLs and outperform Smith’s method.

The rest of the paper is organized as follows. In Section
II, we introduce Smith’s method in detail and analyze its
limitations. In Section III, we propose an adaptive method
for sniffing browser history as a cross-platform improvement,
and present a detailed procedure for the dynamic parameter
search algorithm. In Section IV we evaluate the performance
of our proposed adaptive method. In Section V, we discuss the
limitations of our method and propose the possible methods for
defending against browser history sniffing. In Section VI, we
introduce related works on browser history sniffing. Finally, in
Section VII, we conclude the paper.

II. BACKGROUND

A. Smith’s Method

Smith’s method is a kind of side-channel attacks. First, it
applies a complicated style, such as adding text shadows or
making 3D transforms, to a hyperlink element whose address
is an unvisited URL [7]. For this complicated style, a browser
will require a lengthy computation. But, when it initially draws
this element, a browser will perform this computation only
once and then reuse the rendered result unless the computed
style of the element is changed. Then, for hyperlinks that the
user has already visited, Smith’s method defines a different
style, which makes a browser experience a tough re-paint
when the visit status of a link changes from unvisited to
visited. Therefore, an attacker can switch the address of a
hyperlink element from an unvisited URL to a target URL
and measure the time of rending frames. If an obvious delay
occurs due to the re-paint, the attacker will learn that the
target URL has been visited. In the old version of browsers,
attacker can use the API requestAnimationFrame() [8] to
measure the accurate time of rending frames. But the latest
version browsers reduce the precision of the timestamp that
can be obtained through requestAnimationFrame(). To solve
this problem, Smith et al. [11] improved the timing attack by
introducing many re-paints and measuring the frame rate rather
than the re-paint time of a single frame. Here, an attacker
repeatedly switches the address of a hyperlink element between
a target URL and an unvisited URL over a fixed time window
and records how many times the browser invokes the callback
function in requestAnimationFrame(). This number equals
approximately the number of frames rendered by browsers over
this time. If this number is obviously lower than the value
measured by toggling the address of the hyperlink element
between two unvisited URLs, then the target URL is identified
as a visited URL.

B. Analysis

One key step in Smith’s method is to require a browser take
much time to re-paint a hyperlink element by setting a very
complex style for the hyperlink element whose address points
to an unvisited URL. Then, the attacker repeatedly switches the
address of the hyperlink element between a target URL and
an unvisited URL and records the number of rendered frames.
If the target URL has not been visited before, the browser
will render more frames over a fixed time window. Therefore,
because the number of frames for an unvisited target URL

is larger than that for a visited target URL, Smith’s method
recognizes target URLs by observing rendered frames. How-
ever, recognition accuracy highly depends on the difference
between these two numbers, hereafter called the frame-number
difference. The larger the frame-number difference, the higher
the accuracy of the browser history sniffer. To amplify the
frame-number difference, Smith’s method requires different
complex styles oriented towards the browsers in different
OSs and hardware configurations. This obviously limits the
reliability and practicability of the method.

We improve on Smith’s method by using many auxiliary
links, whose addresses simultaneously point to the target URL,
to amplify the frame-number difference. Our new approach
introduces a new problem: how many auxiliary links are
needed for a given browser?

To study the relationship between the frame-number differ-
ence and the number of auxiliary links, we record the frame-
number differences on the latest desktop and mobile versions
of Chrome and Firefox2 when the fixed time window is 1
second and the number of auxiliary links ranges from 1 to
1000. Fig.1 shows the results. In general, the frame-number
difference increases steeply when the number of auxiliary
links is small, and the peak or the sub-peak appears quickly.
When the number of auxiliary links further increases, the
browsers in the two devices have different tendencies. The
frame-number difference for Chrome fluctuates near the peak
in the desktop device, but shows an obvious downtrend for
the mobile phone. The frame-number difference for Firefox
fluctuates strongly with a decreasing trend in both devices.
Both Chrome and Firefox have a similar tendency on mobile
device, while have a different behavior on desktop device.
One possible reason is that Chrome for desktop has a better
performance optimization than Firefox. We cannot simply
chose a big number of auxiliary links because the frame-
number difference is not keeping increase with the number
of auxiliary links increases. Therefore, we need to find the
optimal number of auxiliary links that initially leads to the
largest frame-number difference. It is worth noting that this
optimal number should not be large; otherwise, it will cost the
browsers much computational time to deal with many auxiliary
links, thus weakening the concealment of our sniffing method.

We first consider a simple search algorithm (i.e., Hill climb-
ing [10]), which searches the optimal number of auxiliary links
by increasing the number from a small value until the frame-
number difference decreases. But, because the frame-number
difference does not increase monotonically when the number
of auxiliary links is small, this algorithm may not always work.
For example in Fig.1(b), the algorithm ceases at the second
largest frame-number difference and mistakenly selects a local
optimal number of auxiliary links. Therefore, to make our
method works for different browsers and different platforms,
we propose a new dynamic parameter search algorithm (see
III-B) to determine the optimal number of auxiliary links.

2The desktop configuration: Windows 10, Intel Core i7, 16GB memory,
Chrome 79.0.3945.79, Firefox 70.0.1; the mobile phone configuration: An-
droid 7, Qualcomm 636, 6GB memory, Chrome 77.0.3865.116, Firefox 68.2.2

2

(a) Chrome (b) Firefox

Fig. 1. The frame-number difference when the fixed time window is 1 second and the number of links ranges from 1 to 1000.

Sniffing Stage

Preparation Stage

Start

Input a fixed time, T

Call the dynamic parameter search

algorithm to determine N*

Obtain two criteria of history sniffing:

Fvisietd and Funvis ited

 For each target URL, record its Ftarget

Visited Unvisited

target visited

target unvisited

1
F F

F F

-
<

-

Fig. 2. Flow chart of the adaptive method of browser history sniffing

III. METHODOLOGY

A. Overview of the adaptive method

To overcome the deficiencies in Smith’s method, we pro-
pose an adaptive method of browser history sniffing (see
Fig.2), which consists of two stages: preparation and sniffing.

Preparation stage. In the preparation stage, a dynamic
parameter search algorithm is used to find an optimal number
of auxiliary links, N∗, which introduces an adequate frame-
number difference within a fixed time, T , given a browser
on some platform. Then N∗ auxiliary links are generated to
obtain two criteria for history sniffing: Funvisited, the number
of frames when repeatedly switching the addresses of the
auxiliary links between two random unvisited URLs within

T , and Fvisited, the number of frames repeatedly switching
the addresses of the auxiliary links between a given visited
URL (denoted as URLvisited) and a random unvisited URL
within T .

Sniffing stage. In the sniffing stage, for each target URL,
we measure the number of frames, Ftarget, by switching the
addresses of the auxiliary links between the target URL and
a random unvisited URL within T . If Ftarget is closer to
Fvisited, i.e. | Ftarget−Fvisited

Ftarget−Funvisited
| < 1, then the target URL has

been visited and vice versa.

B. Dynamic parameter search algorithm

Algorithm 1: Dynamic parameter search
Output: The optimal number of auxiliary links N∗

1 i←− 0, increment←− 1, stop←− False
2 N[i]←− N0

3 diffList←− getFrameDifference(N[i])
4 D[i]←− average(diffList), V[i]←− variance(diffList)
5 while True do
6 N[i+1] ←− N[i] + increment / D[i]

N[i]

7 diffList←− getFrameDifference(N[i+ 1])
8 D[i+ 1]←− average(diffList)
9 V[i+ 1]←− variance(diffList)

10 if stop = True then
11 break
12 endif
13 if D[i+ 1] > D[i] then
14 increment←− increment∗2
15 else
16 increment←− 1
17 stop←− True
18 endif
19 i++
20 end
21 search the largest and the second largest elements in D,

whose indexes are denoted as I1 and I2
22 if V[I1] < V[I2] then
23 N∗ ←− N[I1]
24 else
25 N∗ ←− N[I2]
26 endif
27 return N∗

3

Function getFrameDifference(x)
1 Generate x auxiliary links
2 for j ←− 1 to 4 do
3 Repeatly switch these auxiliary links’ address in T
4 diffList[j] = frame-number difference
5 end
6 return diffList

The dynamic parameter search algorithm (Algorithm1) is
designed to quickly find the optimal number of auxiliary links,
N∗, which makes the frame-number difference as large as
possible, while avoiding excessive fluctuations. This algorithm
uses an iterative technique, where N[i] records a candidate
value of N∗ in the ith iteration, i = 0, 1, 2, The algo-
rithm begins with initialization: N[i] (i = 0) equals a small
number of auxiliary links, N0

3; an increment size is set as
1; a stop flag is set as False. Then we use the function,
getFrameDifference(N[i]) to obtain a vector diffList, which
records four experimental results of the frame-difference4. In
the jth experiment, we generate N[i] auxiliary links and, to
calculate the frame-difference diffList[j], repeatedly switch
their addresses within T . The average and variance of diffList
are calculated and recorded in the ith element of two vectors,
D and V, respectively.

In the (i+1)th iteration, N[i] increases by increment/D[i]

N[i]
,

where D[i]

N[i]
is used to estimate the current frame-

difference caused by one auxiliary link. Then we caculate
getFrameDifference(N[i + 1]), D[i + 1] and V[i + 1]. If the
average frame-number difference continues to increase (i.e.
D[i+1] > D[i]), the increment size is doubled to increase the
frame-number difference rapidly. Otherwise, the increment
size returns to 1 and the same process is repeated once before
the iterations are stopped.

Next, we search the largest and the second largest elements
in D, whose indexes are denoted as I1 and I2, respectively.
Then, the optimal number of auxiliary links, N∗ is selected
between N[I1] and N[I2] by comparing their variances. To ob-
tain a stable frame-number difference, we prefer to choose N∗

with a smaller variance. If V[I1] < V[I2], then N∗ = N[I1];
otherwise, N∗ = N[I2].

C. Implementation

A sniffer tool, based on a simple HTML page with
JavaScript, has been implemented to evaluate the adaptive
method for sniffing the browser history of a victim browser.
As shown in Fig.3, our adaptive method can automatically
determine the optimal number of auxiliary links N∗ and
requires only one input, T . For comparison, Smith’s method
also has been implemented. In this paper, the same CSS
complex style recommended by Smith’s paper [11] (shown
below), and the same T , are applied in two methods. In
general, the sniffer tool has higher accuracy using a longer

3We set N0 = 50 for the desktop platform and N0 = 10 for the mobile
platform by default, which are determined according to extensive experiments.

4The experiment is repeated multiple times to get a precise value of the
frame-number difference. We empirically choose 4 times.

Fig. 3. Adaptive browser history sniffer tool

T . How to choose a suitable T to gain a satisfied sniffing
result will be discussed further in Sub-section IV-B.

a {
transform: perspective(100px) rotateY(37deg);
filter: contrast(200%) drop-shadow(16px 16px 10px

#fefefe) saturate(200%);
text-shadow: 16px 16px 10px #fefffe;
outline-width: 24px;
font-size: 2px; text-align: center;
display: inline-block;
color: white;
background-color: white;
outline-color: white;

}
a:visited {

color: #feffff;
background-color: #fffeff;
outline-color: #fffffe;

}

For testing, the sniffer tool focuses on a set of target
URLs, whose visiting signs have been labeled with colors:
half are visited (violet) and half are unvisited (blue). In each
experiment, the sniffer tool lists these URLs at random and
operates according to the input T . Two criteria for history
sniffing (Fvisited and Funvisited), the total elapsed time, and
the sniffing result of each target URL (with its Ftarget) are
shown. For example, in Fig.3, https://Qq.com is judged to
have been visited, because its Ftarget = 17 is closer to
Fvisited = 16. This judgement is consistent with its violet
label, denoted to be correct with green check. To evaluate
the performance of browser history sniffing, this sniffer tool
calculates the accuracy of browser history sniffing, which is the
ratio of the number of green checks to the number of visited
target URLs (violet).

IV. EXPERIMENTAL RESULT

In this section, we evaluate our method by answering two
Research Questions (RQs).

A. RQ1: Can our new method work effectively on different
devices?

Motivation. Through this RQ, we examine whether our new
method can effectively work on the most popular browsers
[12] and different operating systems.

4

TABLE I. The sniffing results of our and Smith’s methods

Platform OS Browser Average accuracy
Ours Ours,Nd = 200 Ours,Nm = 10 Smith’s

Desktop

Win10 1. Chrome 79.0.3945.79 99.84% 99.71% 74.90% 6.99%
2. Firefox 70.0.1 98.36% 95.23% 69.03% 38.81%

macOS
3. Chrome 78.0.3904.108 99.15% 99.80% 39.25% 15.3%
4. Firefox 71.0 99.86% 100% 27.39% 36.46%
5. Safari 12.1.1 99.75% 100% 30.26% 87.4%

Ubuntu 6. Chrome 79.0.3945.79-1 99.45% 99.96% 43% 51.79%
7. Firefox 71.0 99.62% 100% 30.89% 50.04%

Mobile

Android
8. Chrome 77.0.3865.116 99.8% 89.21% 99.07% 0.23%
9. UC Browser 12.7.9.1059 99.41% 64.79% 100% 10.75%
10. Samsung Internet 10.2.00.53 99.78% 68.62% 99.60% 1.48%

iOS
11. Chrome 75.0.3770.103 100% 100% 100% 0.26%
12. Firefox 18.1 100% 100% 100% 0.12%
13. Safari 12.1.1 100% 100% 100% 8.06%

Approach. We evaluated and compared our adaptive method
and Smith’s method using the most popular browsers [12]:
Chrome, Firefox, Safari, UC Browse, and Samsung Internet,
those operate on two different platforms. The desktop platform
includes three devices with different operating systems5: Win-
dows 10, macOS Mojave, and Ubuntu 18. The mobile platform
includes two devices with different operating systems6: iOS 12
and Android 7. The sniffer tool selects 100 target URLs, and
a given browser has visited fifty target URLs in advance. To
obtain reliable performance metrics, the sniffer tool repeats
each experiment 100 times and then calculates the average
accuracy.

We operated the sniffer tool in thirteen situations where
two platforms, five operating systems and five browsers were
involved. For a fair comparison between our adaptive method
and Smith’s method, the same value of T was adopted. For
further studying the importance of multiple auxiliary links, two
variants of our adaptive method are also compared, whose
numbers of auxiliary links are fixed as Nd = 200 and
Nm = 10 respectively. These selected numbers of auxiliary
links can obtain nearly 100% accuracy for Chrome in Windows
(Situation 1) and Chrome in Android (Situation 8). Then, suf-
ficient experiments were launched to compare the performance
of our method, our method fixing Nd = 200, our method fixing
Nm = 10 and Smith’s method.

Result. From the sniffing results in Table 1, we have the
following findings.

1. Smith’s method fails in the mobile platform because its
average accuracy is extremely low, such as 0.12% in Situation
12. On the Desktop platform, Smith’s method is unstable. It
is valid in Situation 5 with the average accuracy of 87.4%,
but fails in other six situations where the average accuracy is
near or less than 50%. The sniffing results of Smith’s method
confirm the analysis in Subsection II-B, the frame-number
difference due to one single link, may not be large enough to
correctly recognize visited URLs, and a fixed complex style
can not adapt to different browsers, OSs and platforms.

2. Our adaptive method achieves much higher accuracy than
Smith’s method in all situations when using 200 auxiliary
links. By employing 10 auxiliary links, our adaptive method

5Windows 10 (Intel Core i7, 16GB memory, NVIDIA GeForce GT 330),
macOS Mojave (Intel Core i7, 16GB memory, Intel HD Graphics 4000) and
Ubuntu 18(Intel Core i7, 8GB memory, Intel HD Graphics)

6iOS 12 (Apple A10 Fusion, 2GB memory) and Android 7 (Qualcomm
636, 6GB memory, Adreno 509 GPU).

also achieves higher accuracy than Smith’s method in nine sit-
uations. These experimental results suggest that using multiple
auxiliary links is helpful to increase the accuracy of browser
history sniffing. However, the number of auxiliary links may
have a great influence on our method, which shall be changed
according to different situations. For example, when fixing
Nm = 10, our method is valid in Situation 8, but basically
fails in Situation 3 through Situation 7, because of the average
accuracy less than 50%.

3. Our adaptive method is superior to its variant methods
and Smith’s method, because it detects visited target URLs
in all situations, where the average accuracy is nearly 100%
or even exactly 100%. These excellent sniffing results were
obtained, because an optimal number of auxiliary links, N∗,
were automatically found by our dynamic parameter search
algorithm in each situation, thereby leading to high-quality
criteria of history sniffing.

Conclusion. Our adaptive method, which attains nearly 100%
accuracy on the most popular browsers in different operating
systems and platforms, works well in real scenarios.

B. RQ2: How does the fixed time window T influence the
performance of browser history sniffing?

Motivation. The fixed time T , the input of our adaptive
method, plays an important role to the performance of browser
history sniffing. In general, the longer T , the higher precision
it can get, also more slowly to sniff. However, if T is too
large, the sniffing process is revealed easily, because it costs
too much time and resources. We explore how the fixed time
T influences the sniffing results and decide a good value for
T in this RQ.

Approach. We set the fixed time T from 200 to 1000 ms with
a step size of 200 ms and obtain the sniffing results on different
situations, and then select an appropriate value of T .

Result. Taking the Chrome browser in Windows OS as an
example, as shown in Fig.4, when T is as small as 200ms,
the average accuracy is less than 80%. The reason might is
because the difference between the two criteria using a small
T may be insufficiently large to correctly differentiate the
visited and unvisited target URLs. It is obvious that the average
accuracy increases with T and researches nearly 100% when
T is equal to or greater than 400ms. Experimental results for
other browsers show a similar tendency.

Conclusion. Therefore, we recommend an appropriate T of
400ms or slightly larger value (e.g.500ms in Fig.3).

5

Fig. 4. The average accuracy vs. T , Chrome on Windows

V. DISCUSSION

Our method achieves very high accuracy for sniffing
browser history in the browser family of Chrome and Firefox
under different operating systems and devices. However, it also
has some limitations. First, because the time cost in sniffing
each target URL is controlled by the fixed time, T , our sniffing
method is not fast enough. For example, as seen in Fig.3, it
requires approximately 50 seconds to detect 100 target URLs,
where the average time consumed for each target is near
T = 500ms. That is, our method is effective for sniffing a set
of target URLs but the time cost increases with the number
of targets. Second, a few immune browsers, such as Edge and
IE, still exist, according to the security error code of Microsoft
Edge (SEC7115) [9] — :link and :visited styles on Edge and
IE can differ only by color, and other styles were not applied
to :visited.

To defend against this attack, one possible solution is that
the browser does not reuse previous calculation results and
recalculates every element every time. But this will increase
the burden of browsers and decrease performance, leading to
a bad user experience. Alternatively, the browsers may use
a temporary variable to store and search the browser history
during the current session, and append the temporary variable
to place for saving browser history when the user closes the
browser. In this way, the attacker can only sniffer a small
number of URLs. It can significantly reduce the probability
of being attacked.

VI. RELATED WORK

This section describes the existing methods of browser
history sniffing. We divided them into the three categories.

A. Vulnerability attacks

There have been found several browser vulnerabilities due
to design flaws, which may leak a user’s access status. The
most classic vulnerability is based on the different colors of
the links for different visiting status. Cascading Style Sheets
(CSS) has a selector :link that matches unvisited links and a
selector :visited that matches visited links [7]. These selectors
are used to set different colors for the links in different visiting
statuses. Thus, a user can conveniently recognize which links
he has visited. But, because browsers provide the function,
getComputedStyle(), to obtain the CSS style property of any
element [6], it is also convenient for attackers who want to steal

the browser history. Therefore, an attacker can obtain the visit
status of a link by simply calling this JavaScript function to
read its color [2]. In fact, not only the color of the link, but also
the position, background image, and some other CSS attributes
of the link can be revealed [1]. Another typical vulnerability
exists in the browsers, which are required to use HTTP Strict
Transport Security (HSTS) [4] when visiting websites [5] [14].
HSTS can sniff a user’s browser history because it utilizes the
different ports between HTTP and HTTPS. That is, an attacker
can detect some HSTS-enable websites those do not exist in
the HSTS preloading list [3].

In general, because vulnerability attacks exploit some
browser flaws directly, they are easy to defend. For exam-
ple, Baron et al. [1] proposed a defense scheme with some
simple changes to the browsers. First, the scheme modifies the
function, getComputedStyle(), to return a definitive result for
each attribute query of one link, no matter whether or not this
link has been visited. Second, it makes some limitations, such
as forbidding the :visited selector to set background images.

B. Interactive attacks

Interactive attacks use special ways to trick users into
revealing what they see on the screen. For example, an attacker
places several links on the screen, with the color of the
unvisited link as background and the color of the visited link
highlighted and then prompts that these highlighted links are
CAPTCHAs [15]. When entering highlighted texts in an input
box, a user reveals to the attacker which links have been visited
before. Because it is quite difficult to defend, we believe that
this kind of interactive attack is effective to sniff browser
history for quite a long time. But, the obvious shortcoming
of an interactive attack is that it aims only at a small number
of links at once. If testing many links simultaneously, attackers
must design more complex interactions, which easily reduces
users’ experiences or even arouses users’ suspicions.

C. Side-channel sniffing attacks

Side channel attacks leak information through a mechanism
not intended to provide that information. For example, a side-
channel attack [15] found visited links by using a webcam to
detect the color of the computer screen from the reflected light,
because the dominant color of the screen depends on whether
the link was visited before. However, as users are careful about
granting access to webcams, this attack may not be practical.

VII. CONCLUSION

The protection of user privacy, such as browser history,
has become a rising concern. So far, most existing methods
for browser history sniffing have been prevented. Although
Smith’s method is still effective, due to parameter sensitivity, it
lacks robustness. We proposed an adaptive method for sniffing
browser history, which is applicable to different browsers,
operating systems, and hardware devices. This cross-platform
method improves Smith’s method by automatically searching
the optimal number of auxiliary links using the dynamic
parameter search algorithm. The experimental results show
that on the five major browsers in the most popular operating
systems and platforms, our adaptive method attains nearly
100% precision.

6

REFERENCES

[1] D. Baron, “Preventing attacks on a user’s history through css :visited
selectors,” https://dbaron.org/mozilla/visited-privacy, 2010.

[2] A. Clover, “Css visited pages disclosure,” https://lists.w3.org/Archives/
Public/www-style/2002Feb/0039.html, 2002.

[3] Google, “Hsts preload list submission,” https://hstspreload.org.
[4] J. Hodges, C. Jackson, and A. Barth, RFC 6797 - HTTP Strict Transport

Security (HSTS), IETF, https://tools.ietf.org/html/rfc6797, November
2012.

[5] Imfaster, “Remote websites can know which hsts enabled websites
the users have visited,” https://bugs.chromium.org/p/chromium/issues/
detail?id=436451, 2014.

[6] MDN-Web-Doc, “window.getcomputedstyle(),” https://developer.
mozilla.org/en-US/docs/Web/API/Window/getComputedStyle, 2019.

[7] MDN-Web-Doc, css3, https://developer.mozilla.org/en-US/docs/Web/
CSS/CSS3, 2019.

[8] MDN-Web-Doc, window.requestAnimationFrame(), https://developer.
mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame,
2019.

[9] Microsoft, “Devtools - console error and status codes - microsoft
edge development — microsoft docs,” https://docs.microsoft.com/zh-cn/
microsoft-edge/devtools-guide/console/error-and-status-codes.

[10] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited,, 2016.

[11] M. Smith, C. Disselkoen, S. Narayan, F. Brown, and D. Stefan,
“Browser history re: visited,” in 12th USENIX Workshop on Offensive
Technologies, 2018.

[12] StatCounter-Global-Stats, “Browser market share worldwide,” http://gs.
statcounter.com/browser-market-share, 2019.

[13] P. Stone, “Pixel perfect timing attacks with html5,” Context Information
Security, Tech. Rep., July 2013.

[14] V. Tsyrklevich, “Possible to track users visits to servers with partic-
ular hsts configurations,” https://bugzilla.mozilla.org/show bug.cgi?id=
1090433, 2014.

[15] Z. Weinberg, E. Y. Chen, P. R. Jayaraman, and C. Jackson, “I still
know what you visited last summer: Leaking browsing history via user
interaction and side channel attacks,” in Proceedings of the 2011 IEEE
Symposium on Security and Privacy, 2011.

7

https://dbaron.org/mozilla/visited-privacy
https://lists.w3.org/Archives/Public/www-style/2002Feb/0039.html
https://lists.w3.org/Archives/Public/www-style/2002Feb/0039.html
https://hstspreload.org
https://tools.ietf.org/html/rfc6797
https://bugs.chromium.org/p/chromium/issues/detail?id=436451
https://bugs.chromium.org/p/chromium/issues/detail?id=436451
https://developer.mozilla.org/en-US/docs/Web/API/Window/getComputedStyle
https://developer.mozilla.org/en-US/docs/Web/API/Window/getComputedStyle
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS3
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS3
https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame
https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame
https://docs.microsoft.com/zh-cn/microsoft-edge/devtools-guide/console/error-and-status-codes
https://docs.microsoft.com/zh-cn/microsoft-edge/devtools-guide/console/error-and-status-codes
http://gs.statcounter.com/browser-market-share
http://gs.statcounter.com/browser-market-share
https://bugzilla.mozilla.org/show_bug.cgi?id=1090433
https://bugzilla.mozilla.org/show_bug.cgi?id=1090433

	Introduction
	Background
	Smith's Method
	Analysis

	Methodology
	Overview of the adaptive method
	Dynamic parameter search algorithm
	Implementation

	Experimental result
	RQ1: Can our new method work effectively on different devices?
	RQ2: How does the fixed time window T influence the performance of browser history sniffing?

	Discussion
	Related work
	Vulnerability attacks
	Interactive attacks
	Side-channel sniffing attacks

	Conclusion
	References

