
Shepherd: a Generic Approach to
Automating Website Login?

Hugo Jonker
Open Universiteit Nederland

Radboud Universiteit
hugo.jonker@ou.nl

Stefan Karsch
TH Köln

stefan.karsch@th-koeln.de

Benjamin Krumnow
TH Köln

Open Universiteit Nederland
benjamin.krumnow@th-koeln.de

Marc Sleegers
Open Universiteit Nederland

marc.sleegers@gmail.com

Abstract—To gauge adoption of web security measures, large-
scale testing of website security is needed. However, the diversity
of modern websites makes a structured approach to testing
a daunting task. This is especially a problem with respect to
logging in: there are many subtle deviations in the flow of
the login process between websites. Current efforts investigating
login security typically are semi-automated, requiring manual
intervention which does not scale well. Hence, comprehensive
studies of post-login areas have not been possible yet.
In this paper, we introduce Shepherd, a generic framework for
logging in on websites. Given credentials, it provides a fully auto-
mated attempt at logging in. We discuss various design challenges
related to automatically identifying login areas, validating correct
logins, and detecting incorrect credentials. The tool collects data
on successes and failures for each of these.
We evaluate Shepherd’s capabilities to login on thousands of sites,
using unreliable, legitimately crowd-sourced credentials for a ran-
dom selection from the Alexa Top websites list. Notwithstanding
parked domains, invalid credentials, etc., Shepherd was able to
automatically log in on 7,113 sites from this set, an order of
magnitude beyond previous efforts at automating login.

I. INTRODUCTION

Security of online services must be regularly tested. This
is not only needed to improve security of specific services,
but also to gauge the state of adoption of security measures.
For websites, an interesting paradox presents itself: a major
security aspect is the login process, with further security
aspects of interest accessible only to logged-in users. However,
the login process may vary from website to website. Thus
logging in automatically across a wide variety of sites is a
daunting challenge – one we address in this paper.

Websites offer users the option to login, typically for one of
two reasons: to access protected resources (such as a personal
mailbox), or to participate in the website’s community under a
specific identity. In either case, security of the authentication
process is of fundamental importance. Websites should ensure
that an unauthorised attacker cannot steal or overtake the login
(session hijacking). However, websites are often vulnerable to
simple session hijacking attacks.

? Authors listed in alphabetic order.

For example, in 2010, the Firesheep browser plugin for
Firefox [But10] trivialised one class of (already known) session
hijacking attacks. While this one attack can easily be pre-
vented, authentication cookies can still be stolen or leaked in
a number of other ways. Nowadays, several simple mitigation
measures exist which can be used to prevent a whole range
of simple attacks against authentication. These include cookie
flags that restrict when a browser sends a cookie, HTTP
headers that enforce secure communications for all subsequent
visits, etc. Sites that lack these measures are vulnerable to
simple session hijacking, while sites that do have them will
offer a base line of security. Manually assessing the security
of a specific site is straightforward. Indeed, due to manual
verification, we know that the sites affected by Firesheep
shored up their defences. However, applying this process to all
websites does not scale and is thus typically not performed.
Case in point: we do not even know how many other sites are
still open to the Firesheep attack – or simple variations thereof.

A similar open question concerns the uptake of modern
security measures. For example, we do not know how many
sites lack basic security measures (proper cookie flags and
HTTP headers) for logged in users. Other open questions
concern adoption of security and privacy-enhancing measures
beyond those affecting session security, for which logging
in is a prerequisite. To study such questions requires two
ingredients:

1. a set of valid credentials,
2. successfully submitting those credentials.

While several efforts have investigated specific security
aspects on a handful of sites, to date, most studies that
evaluated the security of the authentication process relied
on a combination of automation and manual labour or (like
Firesheep) tailored their measurement to specific websites.
Typically, the manual aspect focused on actually logging in.
This presents a barrier to scaling up these investigations and
addressing the aforementioned questions. To the best of our
knowledge, the largest manual study to date that successfully
reaches post-login stages used manual logins to evaluate 149
sites. Initial attempts at automating the login process relied on
single sign-on (SSO) credentials (such as Facebook login) and
reported success on 912 websites.

Contributions. The goal of our work is to study the
feasibility of large-scale post-login studies without tailoring
the automation to a specific login flow. The only automated
approach previously reported is tailored to the Facebook single

Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb) 2020
23 February 2020, San Diego, CA, USA
ISBN 1-891562-63-0
https://dx.doi.org/10.14722/madweb.2020.23008
www.ndss-symposium.org

lacks automated login has automated login

vAHS17 GRC18 MFK16 RB14 CTC15 ZE14 Shepherd
Automation:
- finding login area X X – – X X 4
- submitting credentials – – – X X X 4
- verifying logins – – X – X X 4
website languages supported 10 ? ? ? ? 1 19
sites scanned 100K 1M 149 203 215 20K 49K
reached post-login areas n/a n/a 149 203 215 912† 7.1K

? number of supported languages unknown.
† computed, as [ZE14] does not explicitly state this number.

n/a not applicable.

TABLE I: Comparison of manual and (semi-)automated login studies.

sign-on process. As such, it is unknown to what extent it is
possible to automate the login process in general. To that end,
we make the following contributions.

• We present Shepherd, a framework for automatically
logging in on websites and executing a scan.

• We identify challenges in identifying login areas, on
validating correct logins, detecting invalid credentials, and
provide approaches to handling each of these.

• We perform a scan to illustrate Shepherd’s potential.
Using credentials gathered from a legitimate, crowd-
sourced effort, we successfully login on 7,113 websites.
The case study shows Shepherd is able to study a number
of sites an order of magnitude beyond any previous study.

II. RELATED WORK

Various related work has studied web login systems and
session security. Some studies proposed solutions to secure ses-
sion cookies [dRND+12], [NMY+11], [BCFK14], [TDK11].
However, lacking the ability to automatically log in, none
of these studies could test their solutions on authentication
cookies. They all evaluated their solutions against cookies set
prior to logging in. Tang et al. [TDK11] explicitly shy away
from automated logging in, and even see it as infeasible. Where
previous studies needed to log in, they typically relied on
manual intervention. While this approach enables studies to log
in, manual intervention does not scale well and is an obstacle
to repeatability.

For example, Mundada et al. [MFK16] use manual logins
to automatically analyse security of the login process of 149
sites with a browser extension. They found several security
risks in well-known sites such as Yahoo. However, their
approach is not repeatable without their volunteer corps.

Various steps towards more automated approaches to log-
ging in have been made. Both the study by Van Acker et
al. [vAHS17] and the work of Ghasemisharif et al. [GRC+18]
needed to identify the login area. Van Acker et al. studied the
security of the login area, while Ghasemisharif et al. counted
the prevalence of single sign-on (SSO) providers. Both stud-
ies automated the identification of login areas, using similar
methods. Van Acker et al. evaluated the Alexa Top 100K
and found 32K login pages vulnerable to man-in-the-middle

attacks. Ghasemisharif et al. evaluate the Alexa Top 1M and
found 58K websites offering SSO login.

To the best of our knowledge, only three previous studies
achieved some success in automatically logging in on web-
sites. Calzavara et al. [CTBO14] used a crawler that submits
credentials on websites by taking an URL and a pair of
username and password. The crawler then searches for login
pages and assess if the login was successful based on the
presence of the username or absence of login forms. This
gave them access to 70 websites and at that time largest
dataset of authentication cookies. They extended this dataset
to 215 websites in an extended version of their previous work
[CTC+15]. The two other studies used Facebook as single
sign-on (SSO) provider to login in on websites. Robinson
and Bonneau [RB14] manually performed the step of finding
login pages. For their study, they collected sites that offer
Facebook connect and automatically logged in on them by
using Facebook credentials. Their focus was on what permis-
sions a visited site obtains to the user’s Facebook profile. As
such, they did not check whether the login was successful,
nor did they evaluate aspects of the visited site. In contrast,
Zhou and Evans [ZE14] designed an approach to automatically
log into websites with Facebook and scan for SSO-related
implementation flaws. Their scanner “SSOScan” automates
the search for a Facebook login button, the submission of
credentials, the eventual filling on registration forms and the
evaluation if a login was successful on English-speaking sites.
On the U.S. Top 20K websites they found 1,660 sites providing
Facebook login, which they investigated. For the Top 10K, the
authors report 80% success rate for their method.

Table I presents a comparison between case studies from
related work and our case study with Shepherd. Thus, the given
number reached post-login areas in the table is an extrapolation
from the success rate and websites with SSO login areas found
by the authors.

In conclusion, in related work we see a variety of ap-
proaches to studying login systems, and we find several venues
to explore this. First of all, we could choose to focus on single
sign-on (SSO) logins. The benefit is that the login processes
for any specific SSO provider would be mostly uniform. The
downsides are that automating logins for one SSO provider
does not necessarily help for automating a second one, and
that SSO logins are not that common (5.8% of the Alexa Top

2

1M, according to [GRC+18]). On the other hand, Van Acker
et al. [vAHS17] found that about 51% of websites in the Alexa
Top 100K offer the option to log in. A generic framework for
logging in thus should primarily focus on site-specific logins,
although SSO logins may provide an interesting addition (see
Appendix A).

This does introduce the problem of acquiring credentials.
This could be addressed by automatic account creation. How-
ever, the abilities needed for automating logging in (e.g.,
finding and identifying correct form, applying workflows to
submit such forms, etc.) are part of the abilities needed
for automating account creation. Finally, automatic account
creation is a different subject with its own challenges, not
to mention ethical considerations. Thus, Shepherd requires
a supply of credentials. Such a supply may be manually
constructed, e.g. from volunteers, or may be acquired from
a legitimate source, such as BugMeNot1.

III. AUTOMATING LOGGING IN

Logging in is basically a sequential process, consisting
of a number of steps. To automatically log in on a website,
Shepherd follows the following steps:

1. identify the login starting point,
2. submit credentials,
3. check response to login attempt,
4. verify whether login was successful.

In addition to these steps, Shepherd also detects and keeps
track of certain errors. This is because Shepherd uses a
generic approach, which is not tailored to any specific login
process. As such, it may make mistakes (login field not found)
or encounter errors from external sources (site unreachable,
CAPTCHA, invalid credentials). In effect, the process acts like
a funnel, with each step acting as an imperfect filter. To
gauge the accuracy of the filters themselves, Shepherd includes
routines to detect a variety of errors.

In the rest of this section, the steps and error detection are
discussed in more detail.

A. Identifying the login starting point

First, the login starting point of the target website must be
found. Zhou and Evans [ZE14] approached this by relying
on click events on release to trigger SSO login dialogues.
In contrast, domain-specific logins may also be found by
visiting URLs. From previous studies [CTC+15], [vAHS17],
[GRC+18] five search strategies emerge: scanning the landing
page, visiting URLs filter by login keywords, querying search
engines, and scanning clickable DOM elements. We found that
using multiple search engines can lead to a better coverage,
thus we expanded Van Acker et al.’s approach on this point.

Unfortunately, none of these studies provide insight in the
efficiency nor reasoning about the order of these methods. To
test the success of each method for finding login elements, we
applied each to a random sample of 5,000 sites from the Alexa

1A legitimate, crowd-sourced service to circumvent free-but-mandatory
registration. Website inclusion is subject to certain legal restrictions (no age-
restricted sites, no banks, etc.). Moreover, it offers site owners a simple
interface for removing their site from the data set.

Top 1M (cf. Table II). We found that landing pages rarely
contain login elements. However, all other methods rely on the
actual domain of the site (after any redirects). Therefore, the
method of scanning the landing page should be executed first.
Furthermore, some methods are more successful in finding
login pages than others. Interestingly, the results of the various
methods are sufficiently disjoint that combining them leads to
highest success rate.

Success Avg. Time
Method (n=5000) (in sec)

1 Landing page 225 7.17
2 URLs with login terms (depth 1) 1,119 10.86
3 Clickable Elements 1,149 18.84
4 standard URLs 1,366 18.79
5 Search engines 1,948 50.08

- Startpage.com 1,378 32.66
- Bing.com 342 9.17
- Ask.com 1,216 18.04
All combined 2759 36.43

TABLE II: Performance overview of methods to locate a login
page of a website

Based on the evaluation, we arrived at the following order
to search for login elements:

1. Landing page,
2. URLs with login-based terms2 found on the landing page,
3. Clickable elements with login-based terms,
4. Standard URLs3,
5. Search engines,
6. URLS with login-based terms found on pages from step 2.

The order of these methods is important. Shepherd looks for
login elements on the landing page first, since that page needed
to be loaded anyway. Only when method 2 and 3 fail, Shepherd
uses more generic methods. We gave standard URLs a lower
priority, as these can lead to admin login pages. Shepherd only
uses search engines if prior methods fail to reduce the risk of
blocking and reliance on external parties. Finally, if none of
these methods work, Shepherd scans each of the pages found
in step 2 for URLs with login-related terms and visits these.

Once a method claims success, Shepherd stops searching
for the login. If none of the search method worked, Shepherd
finishes the scanning process and marks that a login page could
not be found.

When Shepherd encounters a visible input element of type
password which is not part of a registration form, it assigns the
status login found. A form is considered a registration form if
it contains more than 3 visible input elements (including the
found password field).

B. Submitting credentials to login

Once the login element has been found, the credentials
must be submitted. There are two common types of logins:

2Shepherd contains a dictionary with multiple translations for keywords
from native speakers and Google translations.

3Specifically: http(s)://base url/login, http(s)://base url/account and
http(s)://base url/signin.

3

Fig. 1: Steps of the login process after connecting to a target site.

• one-step: where username and password can be supplied
simultaneously; and

• two-step: first request username, and only after the user-
name was submitted is the password entry field shown.

By combining logging in with scanning for login areas, we
are able to cover both types. To the best of our knowledge,
submitting credentials for two-step login has not been explored
in previous work.

If fully submitting the credentials (in either one-step or
two-step fashion) causes the password input element to disap-
pear, the website status is set to submitted. This status indicates
that the site responded to the input, but does not claim that
login was successful. Websites can also stop showing password
fields in other cases, such as when the user is blocked or an
error results in a 404 page. To separate such cases from actual
logins, the submission process is followed by a verification
process.

Shepherd can use multiple credentials per domain (there
is also limited support for Facebook SSO credentials, cf. Ap-
pendix A). If it is not successful with the first set of credentials
(i.e., the password field remains), Shepherd will try logging in
anew with the next set of credentials. In case all available
credentials for a specific domain fail, the website is assigned
the status logging in failed, after trying all credentials.

Finally, in some login forms, the username is an email
address. If the input element is of type “email”, Shepherd
avoids submitting strings that are not valid email addresses.
For cases, where Shepherd can ensure that an email address is
required to login, given credentials without an email address
will be ignored.

C. Checking the response to a login attempt

Shepherd checks the website response after submitting
credentials in order to perform some error detection. For
example, many websites signal a failed login attempt with
a message like “username or password invalid.” Shepherd
detects such messages and marks the credentials as invalid.
More specifically, Shepherd assesses a website’s language and

searches for visible strings containing sets of keywords, such as
“invalid” and “username” or “password”. Only if these terms
appear combined in a single string, Shepherd marks the creden-
tials as invalid. In practical tests, failure messages occasionally
appeared in English on non-English sites, so Shepherd always
scans for English keywords concerning invalid credentials.
Besides invalid credentials, Shepherd also detects CAPTCHAs
and blocking messages to recognise countermeasures against
automated visitors. To do so, Shepherd scans visible ele-
ments for blocking or CAPTCHA related keywords in multiple
languages, and checks the HTML source for code fragments
pertaining to CAPTCHAs. The code fragments Shepherd detects
are derived from the HTML code fragments used to invoke one
of five CAPTCHA libraries (including ReCaptcha).

D. Verifying login status

After detecting that the website reacted to the submission
of credentials, Shepherd evaluates whether logging in was
successful. For this, we use previous approaches [CTC+15],
[ZE14], [MFK16] with a few differences. In previous studies,
trusted credentials or manual logins were used. In this work,
we assume credentials to be unreliable. Moreover, we also
do not assume that the occurrence of a string that matches
the username on a page is sufficient to verify login – strings
occurring in usernames may also occur on the page due to
other reasons.

To verify a login, Shepherd runs a verification method
twice: once on the potentially logged-in site, and once without
cookies. Login is only successfully verified if the first check
succeeds and the second fails.

Shepherd has three different verification methods used for
this:

1. detect a logout button or user identifier on the page
received following submission of credentials,

2. detect a logout button or user identifier on the landing
page,

3. attempt to re-open the login area4.

4In well-designed sites, this should not be possible for logged-in users.

4

A login is only claimed to be verified if at least one of
these verification methods is successful when visiting the site
with cookies, and fails when visiting the site without cookies.

E. Perform post-login scan

Finally, following successful verification of logged-in sta-
tus, Shepherd will execute any scans (see Section IV-D).

IV. IMPLEMENTATION

Shepherd uses Chrome as a designated browser, and runs
on Linux and on MacOS systems. A configuration setting
determines whether a headful or headless browser is used for
scanning. The instrumentation is achieved through usage of
Selenium.

A. Base HTTP platform

There are several possible platforms on which to build
Shepherd. Not all are suitable. Commandline tools and HTTP
libraries lack engines to interpret JavaScript and construct
DOMs, which is necessary for web sites with dynamic content.
More advanced tools, such as high-level browser automation
libraries (e.g., NightmareJS) or headless browsers (e.g., Phan-
tomJS), are an improvement on this but nevertheless still lack
some of the functionality of full browsers (e.g., plugins). This
poses two problems: firstly, they do not necessarily provide
a faithful rendition of what a regular user would experience
(cf. [EN16]); secondly, such deviations will (also) affect log-
ging in (cf. [JKV19]). Thus, for this project we require an
automated way to use a regular (full) browser. Shepherd is
based on the standard tool for this, Selenium. Selenium allows
programmatic access to a variety of browsers.

B. Optimisation

Logins are typically slow and can easily take several
seconds. When attempting to login on unknown sites, using a
form which may or may not be the login form, with credentials
that may or may not be valid, several passes have to be taken.
When executing a study over many sites with all these factors
in mind, performance becomes an important factor.

With respect to optimisation, we found that Selenium’s
built-in functions are slow compared to executing the same
functions in JavaScript. For example, we measured that access-
ing the plain HTML content of elements takes 14 msec using
Selenium functions. When operating with a large number of
elements, this becomes a time-consuming operation. Another
example is Selenium’s function to query multiple elements
find elements by css selector(), which takes 1 sec per query.
Combining that with additional filtering based on an element’s
attributes or content results in a large overhead. Therefore, we
switched from using Selenium’s functions to using in-browser
JavaScript.

To this end, Shepherd provides two JavaScript functions,
href scanner() and element scanner(). These functions allow
efficient selection of anchor and other elements. The former
function searches amongst anchor elements with HREF at-
tributes, while the latter can select any element through a
custom CSS3 selector. Both scripts take a regular expression

to filter selected elements based on their HTML content (e.g.,
login-related keywords).

Using these in-browser functions instead of Selenium func-
tions provided a noticeable speedup. For one site, switching to
JavaScript functions improved time for accessing and filtering
elements from 16.8 sec to 50 msec.

C. Performance

With the above measures in place, Shepherd needs about 75
sec to scan a site. Thus, Shepherd can scan and login to
about 1,500 sites per browser instance per day. In our exper-
iments, we found that a regular end-user machine can run 5
browser instances, so Shepherd can scan about 7,500 sites per
day per computer.

D. Post-login scanning

Following login, payload scans (implemented as Python
modules) are executed. Shepherd provides an interface to
interact with the browser and detect effects of interactions. This
interface is a wrapper of Selenium commands, but streamlines
error handling and ensures performance-optimised commands
are used by the scanning module. In addition, Shepherd offers
functionality to determine which cookies are authentication
cookies based on algorithms used in earlier work [MFK16],
[CTBO14]. Furthermore, additional modules can be hooked
into Shepherd. This allows for sequential execution of several
scanning modules. Scan results are determined on the fly and
stored in CSV files for a posteriori analysis.

V. EVALUATION: LOGGING IN ON WEBSITES IN THE WILD

In this section, we evaluate Shepherd’s ability to log in by
means of a large-scale experiment.

A. Acquiring credentials

We created a specific crawler to extract credentials from
BugMeNot. The crawler uses a list of domains and for each
domain, extracts the credentials. Moreover, for each set of
credentials, it also stores meta-information supplied by Bug-
MeNot (success rate and number of votes). We seeded our
crawler with the Alexa Top 1 Million sites of October 2018.
This resulted in the extraction of 129,252 accounts for 49,846
unique domains.

The collected dataset covers over 37% of the Alexa Top
10K domains and around 18% of the Top 100K, respectively
(see Figure 2). The concentration of websites decreases with
the rankings and appears to converge around 2K domains per
100K websites.

B. Shepherd’s login performance

Using dataset with credentials from BugMeNot, we can
measure success rate and error causes. Starting with credentials
for 49,846 sites, Shepherd was able to automatically detect
that all available credentials for 23,088 sites were rejected by
the site as invalid. This leaves 26,758 sites to attempt login.
Shepherd could verify successful login on 7,113 sites, i.e.,
26.6%. This is a lower bound: there will be external sources
of errors that Shepherd failed to detect. For example, it is

5

Fig. 2: Relative frequency of domains with credentials of our
testing database within the Alexa Top 1 Million.

not certain that all websites in the set offered the option to
login. Moreover, in some of the 3,950 cases where Shepherd
managed to submit credentials, it may have been successful
but failed to verify this.

While this leaves ample room for improvement, this case
study is of unprecedented scale – easily an order of magnitude
beyond any previous studies.

As discussed before, logging in is a sequential process,
which means that an automated approach must execute se-
quentially. Imperfections in each step result in a funnel-alike
propagation through the login sequence, depicted in Figure 3.
The rates shown in Figure 3 were automatically detected (see
also Table III). Of course, not all failures can be automatically
attributed; for example, failing to reach the step submitted can
be due to CAPTCHAs or invalid credentials, both of which
are automatically detected by Shepherd. These error sources
account for the bulk of the failures for moving from login
page found to submitted. Nevertheless, there are 2,783 websites
where this transition failed, yet the built-in failure attribution
did not detect a cause.

Some of the failures are due to external causes, while other
causes denote potential areas for improvement of Shepherd.
Failures on 25,561 sites (51.3%) were attributable to external
factors: site unreachable, no valid credentials, or CAPTCHAs.
The major area for improvement is identifying the login
starting point, which failed on 10,439 sites (20.9%).

VI. VALIDATION OF SHEPHERD

Note that due to the untrustworthy source of credentials, it
is not certain that a website for which we possess credentials
actually has a login facility. Also, our underlying heuristics are
not 100% perfect and may occasionally fail to determine the
status correctly. To determine bounds on the error rates, we
manually evaluated the following five cases:

A. Failure to find login page,
B. not having reached status submitted,
C. detecting invalid credentials,
D. not reaching status verified,

Fig. 3: Funnel of the login process for domain-specific cre-
dentials.

sites out of
Total 49,846 –
Sites not reached 976 49,846 (2.0%)
Login page not found 10,439 48,870 (21.4%)
Login failures:
- Invalid credentials detected 23,088 38,431 (60.1%)
- CAPTCHAs 1,497 38,431 (3.9%)
- Unaccounted failure 2,783 38,431 (7.2%)

TABLE III: Failures detected by Shepherd. Failures caused by
external factors are marked in bold.

E. reaching status verified.

We validate manually Shepherd’s login procedure by cre-
ating five sets of 100 websites. In the first case, we manually
visited sites, while for cases 2–5 we reviewed automatically
created screenshots. In all cases, the evaluator was at liberty to
skip sites containing adult content5. These cases give insight
into performance of the heuristics and suggest which gains can
still be made by improving heuristics.

A. Finding login pages

This case concerns websites where Shepherd was unable
to find login areas. We evaluated 100 such sites and manually
identified login areas on 44 sites. On not all of these, it
was clear that the login area would provide a login for the
initially visited site. One site was not manually evaluated,
as it contained adult content. We did not discover login
elements on the other 55 sites. Shepherd thus failed to identify
login fields that were present on 44 out of 99 sites where it
did not find login elements. Optimistically viewed, this can
be generalised, which means that at most 9.5% more sites
could be reached. For this dataset, that means that at best,
10, 439 · 44/99 = 4, 640 more sites could be included.

B. Submission failures

This case concerns sites where Shepherd found a login
area and submitted credentials, but could not detect success.

5as such sites are more likely to contain illicit material.

6

We reviewed 100 screenshots of login areas of such sites. On
85 screenshots we derive that Shepherd found the correct login
area. Another 8 show indications but raised uncertainties, as
the login area was covered by a CAPTCHA or pop-ups in
a different language. Another 5 cases were failures, where
Shepherd focused elements belonging to registration elements
(3) or ended up on age verification pages (2), instead of login
elements (which were also present)6. Two cases could not be
evaluated due to overlaid content or the site’s language.

C. Detecting invalid credentials

This case concerns Shepherds ability to identify invalid
credentials. We used the 100 screenshots from our second
case 2. In 87 screenshot Shepherd correctly noted messages
signalling invalid credentials (66) or the absence of such
signals (21). In 8 cases Shepherd misclassified the responses
from websites. The remaining 5 screenshots were not used, as
these showed registration fields, were overlaid with pop-ups or
not interpretable due to the language. We conclude that given a
login area, the process of credential submission and evaluation
of the success of that step performs reasonably well.

D. Submitted, but unverified

This case concerns sites where Shepherd successfully sub-
mitted credentials, but failed to verified it. Note that veri-
fication is supposed to fail when login was not successful.
In 76 out of 100 cases, this was the case, underscoring the
need to verify whether login is indeed successful. 21 cases
showed clear signs that Shepherd entered the post-login stage,
while 3 cases could not be verified. In other words: in at
least 21% of the examined cases, this process resulted in a
false negative. In the experiment, of the sites where credentials
were successfully submitted, on 3,950 sites this could not be
verified. 21% of this is 829 sites. These 829 sites are sites
where logins were potentially successful, but not detected by
Shepherd. Additional or improved verification methods thus
may lead to hundreds of sites more evaluated.

E. Verified

This case concerns 100 sites which passed verification. Of
these, only one site could not be checked. Two other screen-
shots showed that the user account was banned. Nevertheless,
Shepherd was clearly logged in on these sites. For that, we
find the verification process to have high accuracy (≥97%) and
therefore have high confidence in all findings on sites marked
verified.

F. Performance of login-finding methods

Finally, we zoom in on the detection of the login area.
In particular, we investigated the success rate of the different
approaches to finding login elements. We remark once again
that these methods are executed sequentially: only if methods
1–5 fail, method 6 is executed. Of the 38,431 domains where
a login area was found, method 2 was most successful, finding
more than 40% of login areas.

6This sometimes happens when sites offer login elements outside of a form
element. For such cases, other input elements can be confused with the login
elements. Shepherd will use heuristics to select the most likely login related
elements.

Method 1 - Landing page: 6,311
Method 2 - URLs (first level): 15,438
Method 3 - Clicking elements: 4,004
Method 4 - Try standard URLs: 3,745
Method 5 - Search Engines: 8,875
Method 6 - URLs (second level): 76

In conclusion, Shepherd managed to successfully login
on 7,113 sites (submitted and verified). We found that the
heuristics used in Shepherd an also be improved. Main areas
for internal improvement are:

• improving identification of login elements.
This can lead to (at most) 44% more sites reached, or
4,640 additional sites in this experiment.

• reducing false negatives for verification.
This can lead to (at most) 21% sites where submission
was successful, or up to 829 additional sites in this
experiment.

However, the number one area for improvement is: valid
credentials for more sites. Shepherd’s detection of invalid
credentials found that for 60.1% of sites where login elements
were found, no valid credentials were available (in the exper-
iment: 23,088 sites).

VII. POTENTIAL USE CASES

In this section, we highlight use cases for Shepherd. In
general, we see two potential areas where Shepherd can boost
security and privacy research. These are the investigation of
post-login features across multiple websites, and the compar-
ison of pre- vs. post-login aspects.

A. Measuring post-login features

By logging in, Shepherd receives authentication tokens
from websites, which allows studying the security of such
tokens. Shepherd possesses an implementation to extract au-
thentication cookies, facilitating investigations into properties
of these. Furthermore, Shepherd could be extended to identify
sites whose login system exhibits specific behaviour. One
example could be sites that store session identifiers in local
storage instead of using cookies; another is looking for sites
vulnerable so sub-session hijacking [CRB19] (which relies on
presence of multiple authentication cookies).

Moreover, the automatic identification of authentication
cookies enables construction of a ground truth for machine
learning purposes (e.g., [CTBO14]). The most extensive set of
authentication cookies reported in literature amounts to cookies
from 215 sites (332 authentication cookies) [CTC+15]. Using
the authentication cookie identification mechanism of Shep-
herd, we collected a set of authentication cookies for 6,335
sites – the automated mechanism failed to identify cookies
on 778 out of the 7,113 sites where login was successfully
verified.

Finally, Shepherd enables measuring adoption of security
measures for logged-in users, such as cookie flags such as
SameSite, Secure, etc.; HTTP-headers such as HSTS; CSRF-
tokens [CCF+19]; etc.

7

B. Anonymous visitors vs. logged-in users

The above suggestions for measurements can also be
applied before logging in. Hereby, Shepherd enables studying
the contrast between anonymous visitors and logged-in users
on a large scale. For example, logged-in users may face less
trackers than anonymous users. An additional direction is to
use Shepherd to create authentic user profiles by gathering
cookies from several sites. User profiles have already been
used in earlier research to analyse ads [CMC+15] or evade
bot prevention measures [SPK16]. Finally, Shepherd could be
extended to automate logging out. This would enable a large-
scale study comparing the session state while logged-in with
the state after logging out, including e.g. identifying flaws in
session invalidation.

VIII. ETHICAL CONSIDERATIONS

For our study, we aimed to achieve an unprecedented scale
in entering restricted areas of websites. As this led to concerns,
we sought and received approval from our ethical review board.
Nevertheless, we wish to highlight the various ethical concerns.

The primary concern was acquiring a large set of cre-
dentials from a legitimate source. Fortunately, the BugMeNot
database is exactly this: a large set of login credentials with
strict (and enforced) policies to ban a site from inclusion upon
request of the site owner.

Secondly, the experiments must not exceed their mandate
and break things. As Shepherd is designed to interact with
websites as human do - To trigger elements human clicks are
simulated, timeouts are used between each action, sites are not
crawled in parallel, only visible elements are considered for
interacting with a site - the risk of overburden or accidentally
confusing the websites logic is reduced. We worked on this by
testing Shepherd on a small number of domains and resolving
any issues. The results are not 100% perfect, but the fraction
of mistakenly pressed buttons we detected is very small.

Thirdly, the tools created can easily be misused, e.g., to
apply credential stuffing or password guessing attacks. There-
fore, we cannot and will not publicly release Shepherd. On
the other hand, we welcome interest from fellow researchers.
Thus, we will make Shepherd available for followup studies
by other bona fide researchers upon request.

IX. CONCLUSIONS AND FUTURE WORK

Many previous works have studied the web. Most of these
were limited to the public areas of websites. This implies that
post-login aspects were hidden for such studies or could not be
measured at scale. Research that attempted to address the post-
login world, mostly fell back on manual intervention, to avoid
the many challenges with an automatic approach [TDK11].
Only three previous studies had access to post-login areas
of larger set of websites. All these used means to automate
logging in, but were bound to certain type of logins. In this
work, we took a generic approach to login on websites. For
that, we designed and developed Shepherd, a tool that en-
ables post-login measurements of unknown websites. As login
processes are very diverse, automated logins cannot achieve
full coverage. Moreover, the variety in login processes implies
many design challenges. Shepherd accounts for this by several

failure modes. The study conducted with Shepherd shows that
large-scale automated login is feasible. Previous best efforts
using a semi-automated approach [MFK16] managed 149 sites,
while automated approaches reached 912 sites [ZE14] using
single sign-on (SSO) credentials.

In contrast, Shepherd can use either domain-specific or
SSO credentials. In a case study with domain-specific creden-
tials, Shepherd achieved 7,113 successful logins, an order of
magnitude beyond previous best effort at logging in automati-
cally. In a limited experiment with Facebook SSO credentials,
Shepherd achieved 383 successful logins.

Future work

We are redesigning Shepherd’s SSO component to use a
more generic approach for SSO logins, which will lead to
supporting more single sign-on frameworks and make the SSO-
related procedures more robust. Given that there are various
SSO providers commonly used in non-Western countries, this
enables various types of detailed comparison studies between
countries. Secondly, we are planning to extend previous studies
of cookie security for post-login cookies. Related to this, inte-
grating Shepherd-alike capabilities into a privacy measurement
framework such as OpenWPM would allow to study whether
logged-in users gain or lose privacy compared to anonymous
visitors. Similarly, a combination with an existing security
scanner could allow remote security scans (e.g., SQL injection,
XSS, CSRF) in the members-only area of websites.

ACKNOWLEDGMENT

The authors would like to thank the MADWEB’20 organis-
ers for their travel support. In addition, we extend our thanks
to Jun Pang, Olga Gadyatskaya, Agnieszka Jonker and Jana
Polednovà for translating keywords. Finally, we are grateful
for comments we received on earlier versions of this work
from Marko van Eekelen and Greg Alpár.

REFERENCES

[BCFK14] Michele Bugliesi, Stefano Calzavara, Riccardo Focardi, and
Wilayat Khan. Automatic and robust client-side protection
for cookie-based sessions. In International Symposium on
Engineering Secure Software and Systems, pages 161–178.
Springer, 2014.

[But10] Eric Butler. Firesheep. http://codebutler.com/firesheep/, 2010.
[CCF+19] Stefano Calzavara, Mauro Conti, Riccardo Focardi, Alvise

Rabitti, and Gabriele Tolomei. Mitch: A machine learning
approach to the black-box detection of CSRF vulnerabilities. In
Proc. 4th IEEE European Symposium on Security and Privacy
(EuroS&P’19), pages 528–543. IEEE, 2019.

[CMC+15] Juan Miguel Carrascosa, Jakub Mikians, Ruben Cuevas, Vi-
jay Erramilli, and Nikolaos Laoutaris. I always feel like
somebody’s watching me: Measuring online behavioural ad-
vertising. In Proceedings of the 11th ACM Conference on
Emerging Networking Experiments and Technologies, CoNEXT
2015, Heidelberg, Germany, December 1-4, 2015, pages 13:1–
13:13, 2015.

[CRB19] Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi. Sub-
session hijacking on the web: Root causes and prevention.
Journal of Computer Security, 27(2):233–257, 2019.

[CTBO14] Stefano Calzavara, Gabriele Tolomei, Michele Bugliesi, and
Salvatore Orlando. Quite a mess in my cookie jar! Leveraging
machine learning to protect web authentication. In Proceedings
of the 23rd international conference on World wide web, pages
189–200, 2014.

8

[CTC+15] Stefano Calzavara, Gabriele Tolomei, Andrea Casini, Michele
Bugliesi, and Salvatore Orlando. A supervised learning ap-
proach to protect client authentication on the web. TWEB,
9(3):15:1–15:30, 2015.

[dRND+12] Philippe de Ryck, Nick Nikiforakis, Lieven Desmet, Frank
Piessens, and Wouter Joosen. Serene: Self-reliant client-side
protection against session fixation. In IFIP International Con-
ference on Distributed Applications and Interoperable Systems,
pages 59–72. Springer, 2012.

[EN16] Steven Englehardt and Arvind Narayanan. Online tracking: A
1-million-site measurement and analysis. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1388–1401. ACM, 2016.

[GRC+18] Mohammad Ghasemisharif, Amrutha Ramesh, Stephen Check-
oway, Chris Kanich, and Jason Polakis. O single sign-off,
where art thou? an empirical analysis of single sign-on account
hijacking and session management on the web. In Proc. 27th
USENIX Security Symposium (USENIX Security’18), pages
1475–1492. USENIX Association, 2018.

[JKV19] Hugo Jonker, Benjamin Krumnow, and Gabry Vlot. Fingerprint
surface-based detection of web bot detectors. In Computer
Security - ESORICS 2019 - 24th European Symposium on
Research in Computer Security, Luxembourg, September 23-27,
2019, Proceedings, Part II, pages 586–605, 2019.

[MFK16] Yogesh Mundada, Nick Feamster, and Balachander Krishna-
murthy. Half-Baked Cookies: Hardening cookie-based authen-
tication for the modern web. In Proc. 11th Asia Conference
on Computer and Communications Security (ASIACCS), pages
675–685, 2016.

[NMY+11] Nick Nikiforakis, Wannes Meert, Yves Younan, Martin Johns,
and Wouter Joosen. Sessionshield: Lightweight protection
against session hijacking. In International Symposium on Engi-
neering Secure Software and Systems, pages 87–100. Springer,
2011.

[RB14] Nicky Robinson and Joseph Bonneau. Cognitive disconnect:
Understanding facebook connect login permissions. In Pro-
ceedings of the second ACM conference on Online social
networks, pages 247–258. ACM, 2014.

[SPK16] Suphannee Sivakorn, Iasonas Polakis, and Angelos D.
Keromytis. I am robot: (deep) learning to break semantic image
captchas. In Proc. 1st IEEE European Symposium on Security
and Privacy (EuroS&P’16), pages 388–403. IEEE, 2016.

[TDK11] Shuo Tang, Nathan Dautenhahn, and Samuel T King. Forti-
fying web-based applications automatically. In Proceedings of
the 18th ACM conference on Computer and communications
security, pages 615–626. ACM, 2011.

[vAHS17] Steven van Acker, Daniel Hausknecht, and Andrei Sabelfeld.
Measuring login webpage security. The 32nd ACM SIGAPP
Symposium On Applied Computing, 2017.

[ZE14] Yuchen Zhou and David Evans. Ssoscan: Automated testing
of web applications for single sign-on vulnerabilities. In Proc.
23rd USENIX Security Symposium, pages 495–510. USENIX
Association, 2014.

APPENDIX

A. Facebook extension

In addition to domain-specific credentials, we build an
extension to support single sign-on credentials. The main
benefit of using SSO credentials is that this avoids the need
to acquire a large set of valid credentials. On the face of
it, it would seem that adapting Shepherd’s core functions to
login with SSO would be straightforward. In practice, we
encountered difficulties doing this. As a result, we designed
a further set of functions that allow Shepherd to handle the
specific nature of logging in with SSO intermediaries. The
following focusses on deviations from the domain-specific
login design.

a) Searching for SSO login buttons: SSO login areas
are usually activated by triggering an interactive element.
Hence, the login area cannot be identified by searching for
standard login elements such as a field for username or a
link labelled ‘login’. Rather, SSO-specific elements must be
identified. Unfortunately, these elements are not standardised
between SSO intermediaries and often differ between websites,
even for one intermediary. An additional challenge is that some
SSO intermediaries also provide social media features, such as
a ‘like’ or ‘share’ button. Distinguishing such elements from
the sought-for login elements is difficult. Similar to Zhou and
Evans, we address this by filtering interactive elements based
on a set of keywords. These keywords are also specific to
the SSO intermediary, which poses an additional challenge for
supporting multiple intermediaries. We also encountered that
in a case of insufficient filtering, these elements can lead to
false positives as these produce similar login dialogues. We
avoided these by adding additional checks for URLs.

b) Submitting and verification: A hurdle is that after
logging in with single sign-on, the website requests that the
user fills in an enrolment form of some kind. Access to other
parts of the site is blocked until this form is filled in. This
behaviour does not always occur, but frequently enough that
it affects the success rate. While that presents an obstacle to
achieving the full flexibility that domain-specific credentials
offer, it does not impede gauging the usefulness of single
sign-on for enhancing the coverage of Shepherd. For that,
forms do not have to be filled in. Unlike domain-specific
credentials, SSO credentials can hold additional details (e.g.,
real name or associated phone number), which can be used
in future versions for improved verification procedures or to
finish enrolment.

c) Implementation and performance: We developed an
initial extension to Shepherd’s core functions to login using
Facebook’s SSO service. In our testing set of 50 sites con-
taining SSO logins for Facebook, it was able to identify login
areas on 41 sites. Shepherd missed login areas on 7 sites, while
two scans failed. Once Shepherd has found an SSO login, it
processes the login as a regular login, but with the supplied
Facebook credentials. The current identification process for
Facebook logins is based on domain filtering (of URLs in the
visited page). While this proved to be effective in practice,
this does imply a certain amount of fine-tuning is needed to
support additional SSO providers.

Due to the above mentioned difficulties in identifying the
correct elements for SSO logins, the extension is significantly
slower than regular Shepherd. The extension is able to scan
about 3,000 sites per machine per day.

B. Validation of the Single Sign-On extension

We scanned the Alexa Top 10,000 sites using single sign-
on credentials to validate the extension. We remark here that
these sites do not all support single sign-on with Facebook
credentials. This is intentional, as Shepherd should be able to
scan any site. The scan was carried out with two machines,
each using its own Facebook account, created newly for this
purpose. We further divided the target domains into 4 equal
sets, so that the results can be examined between scanning
these sets. The first machine was used to scan the first 3

9

sites out of
Total 10,000 –
Sites reached 8,829 10,000 (88.3%)
SSO login found 2,057 8,829 (23.3%)
Submitted 1,915 2,057 (93.1%)
Verified 383 1,915 (20.0%)
Auth cookies found 330 383 (86.2%)

TABLE IV: Performance of the Single Sign-On scan

sets, while the second machine scanned only the last set.
The Facebook account for the first machine was blocked at
a certain point while scanning the second set, due to posting
inappropriate content. This was caused by Shepherd clicking
share buttons on visited sites (of an adult nature). We adjusted
the extension to address this by blacklisting certain types of
Facebook URLs. After recovering the blocked account and
scanning the third set, we found 55 shared posts on the account
(each of which must be due to a successful login). Shepherd
misclassified these as logins. The second Facebook account
was also blocked, this time due to ‘suspicious behaviour’.
Recovery of this account was more involved and therefore
omitted. Unlike the other 3 sets, we thus could not verify
Shepherd’s results for this set in the Facebook account.

As shown in Table IV, Shepherd thought it recognised
Facebook-based SSO logins on around 20% of the Alexa Top
10K. While Shepherd was able to submit credentials to 93.1%
of these, verification only succeeded on 20% of the submitted
sites. It could be that Shepherd’s default verification process is
unsuitable for SSO logins, or, perhaps, often an additional reg-
istration form appeared and full site access was not yet granted.
Shepherd set the percentage of sites on which it believed to
have found Facebook Login at 20%, and the percentage of
sites where it successfully verified login at about 4%. Logging
in with Facebook leaves traces in the permission settings of a
user account. We checked this setting four our first account and
found 664 apps with specific permissions. To compare these
numbers, we looked for reliable numbers on the adoption of
Facebook Login. The reported rates we encountered predicted
significantly lower adoption. Nevertheless, we believe that the
SSO login detection algorithm can be further improved to
reduce false positives.

10

