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Jesús Solano, Lizzy Tengana, Alejandra Castelblanco, Esteban Rivera, Christian Lopez and Martı́n Ochoa
AppGate Inc.

first.last@appgate.com

Abstract—Risk based authentication has been advocated as
complement to traditional authentication mechanisms in order to
raise the bar against attackers in possession of stolen credentials.
Behavioral biometrics has received attention in the literature in
the past decade, however the best results have been obtained
in the so-called continuous setting and with enough training
data, usually spanning several hours of user interaction. In this
paper we explore the more challenging scenario of behavioral
biometrics as an effective risk-based authentication technique
using both mouse and keyboard information at login time (static
authentication), assuming only between 3 and 7 login sessions per
user for training. In a controlled but realistic experiment with
89 subjects we achieve a FRR of 10.73% and FAR of 23.34% for
a model trained using only 5 login attempts, each performed in
less than 30 seconds on average. We also evaluate our prototype
with 2000 users from production data in the banking domain.

I. INTRODUCTION

Password-based authentication in web-based services is
widely popular, however it suffers from various security draw-
backs [7], [39]. In many implementations, and for usability
reasons, users can still choose relatively simple passwords that
are prone to brute-forcing or guessing. Even when passwords
are relatively secure, if not properly stored, they are prone
to be lost in data breaches [27]. Moreover, domain-specific
malware [31] often targets credentials of financial services.

Risk-based Authentication [19], [34] has been advocated to
complement password-based authentication and raise the bar
against attackers impersonating victims via traditional creden-
tials. One technique that has been studied extensively in the
literature and that has lately also found its way in commercial
implementations is behavioral biometrics [22], [23], [37]. This
technique has shown promise in various contexts, perhaps the
most studied is the behavior of mouse movements [16] and
keystrokes [25]. However, the best results in terms of False
Acceptance Rate (FAR) and False Rejection Rate (FRR) have
been obtained in the so-called continuous setting [1][8], which
refers to interactions of users for long periods of time with a
machine. Also, for those techniques to work, it is necessary
to collect hours of interaction before building a model which
captures the user’s behavior.

In the context of web applications it is challenging to use
some of the published results on continuous authentication
for several reasons. First, the length of a session might be
relatively small (i.e. a few seconds), for instance in domains
such as banking, where users typically login to perform one or
two transactions. Also, in such scenarios many users typically
login rarely, so it might take months to gather sufficient
sessions to train a model. So on the one hand, one would
need many sessions in order to train a robust model and on
the other hand, the model should be good enough to decide
whether the session is legitimate or not for a very brief window
of user interaction. The best published results in behavioral
biometrics for logins achieve good accuracy (over 95% [21],
[4]) but require at least 50 sessions for training, which is not
acceptable in many practical scenarios.

Moreover, the best results are usually obtained by training
one model per user, which might be difficult to scale to settings
with millions of users. Furthermore, there are multiple prac-
tical questions that have been so far not studied deeply, such
as how to best evaluate models against realistic attacks (i.e.
an attacker typing exactly the same credentials as the victim)
and how to design models that can operate on aggregated data
(due to the sensitivity of passwords) among others.

In this paper we tackle thus the issue of building a robust
and scalable static authentication solution for web applications
using a few-shot training scheme that considers the historical
behavioral pattern from the user to verify his/her identity. We
discuss the design criteria of our solution and present the
results of an in-depth evaluation in a controlled setting with 89
users. In order to evaluate our model in a realistic setting, we
measure its precision in a production environment with over
14000 distinct sessions belonging to ca. 2000 distinct users
that have more than 5 login sessions each.

Note that in this work, given the difficulty of the task (short
interaction and few-shot learning), we consider practical an
accuracy close to 80%, where one might privilege a low FRR
over a low FAR depending on risk appetite and usability
considerations. For instance a model that incorrectly classifies
a legitimate login session as malicious once out of every
10 login attempts, while correctly classifying 3 out of 4
attacks, is of practical value since a) suspicious login sessions
can be challenged by means of two-factor authentication,
while keeping friction relatively small, b) several risk-based
authentication factors can be taken into consideration to build
an even more precise model, as exemplified in [30] and c) there
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is a trade-off in terms of risk acceptance when minimizing the
number of sessions needed to build a risk assessment model,
given that an unnoticed attack can happen before the model is
trained and potentially poison the model trained if the attack
is not properly identified by other means. In other words,
although a more accurate model could be achieved by training
with several login attempts, with that strategy there is a higher
the risk that an attack can go potentially unnoticed.

Our contributions are in sum:
• A novel machine-learning technique for static authentication

using between 3 and 7 login sessions for training that
achieves a FAR between 23.51% and 22.67%, and a FRR
between 18.16% and 7.64%, in an experiment with 89 users.

• A detailed evaluation design for static authentication.
• Evidence of scalability and practicality from a production

implementation with 2000 users.

II. BACKGROUND

Researchers have proposed several risk-based authentication
strategies to improve security of web-based environments and
other applications. One approach is the use of factors that
describe user behavior as a complementary feature [15]. This
approach is known in the literature as behavioral biometrics
[2]. The main advantage of this approach is that whoever wants
to impersonate a given user must not only possess the victim’s
credentials, but also imitate the victim’s behavior during a
given time window, demanding a much deeper knowledge to
perform an attack.

There are two user authentication scenarios: static and
continuous. Static authentication (SA) represents the process of
user identification at a single point in time in a session, usually
at the beginning (login process). During this stage, the user
provides information (e.g. username and password) which will
be stored and then compared with a signature profile stored in
a database. Such comparison is performed, in order to verify
that the user is who he claims to be, ultimately granting or
denying access to the required service.

A distinctive characteristic of static authentication is that the
tasks performed by users are fixed and limited, representing
a case which would facilitate the construction of a behavioral
user classification model. Nevertheless, the amount of infor-
mation gathered during login time is usually too scarce to
perform a deep behavioral analysis, so static authentication
through behavioral biometrics still represents a challenge.

The constant verification of user identity is known as contin-
uous authentication (CA). During this process, the user has the
freedom allowed by the application or system, leading in most
cases to free text and free mouse movement characteristics.
These conditions require the monitoring of user identity to
be independent from the task performed. The hypothesis of
CA is that the attacker managed to bypass the login security
barrier. Therefore, CA is carried out repeatedly throughout the
session, collecting users behavioral information and constantly
verifying their identity.

Among the main challenges presented by behavioral biomet-
rics is that of adaptability to changes in user patterns, which

could be treated through comprehensive datasets, artificial
intelligence tools and online learning models [32].

A. Features used for mouse and keyboard dynamics

Keystroke and mouse biometrics are proposed as a viable
behavioral authentication solution, considering the widely ac-
cessible and non-intrusive nature of such interaction. Recent
studies have tried to evaluate the feasibility of mouse, key-
board and other biometric information for static and contin-
uous authentication in several real word applications, details
can be found in section V. Consequently, better understanding
of the feature extraction methods for mouse and keyboard
dynamics has been gained in the field.

Features of mouse interaction relevant for classification
models include: spatial information of the trajectory between
mouse events described as curves [39] and statistical descrip-
tors over raw mouse movements dynamics [2]. On the other
hand, keystroke features are generally computed from the
sequence of key events, such as key-down and key-up [6].
Digraph or trigraph latency models are good estimators of
behavioral characteristics, where an n-graph is estimated with
the latency between n keystroke events [25].

Fusion of multimodal biometric data can be performed at
the feature, matching and decision levels [26]. In feature level
fusion, calculated features are integrated early in the model
and the same classification model integrates all biometric
inputs [21]. Matching score fusion schemes use independent
classification models for each biometric trait and then fuse
the output scores to create a risk estimator [11]. Finally, the
highest level of fusion integrates the decisions of multiple
classifiers into a single classifier.

B. Few-Shot Learning

Machine learning algorithms require large amounts of data
in order to succeed. As a result, most techniques usually
lack the ability of learning from a low number of examples.
To address this problem, Few-Shot learning is proposed by
researchers for many applications in the field [36]. The fun-
damental idea is to rapidly generalize a task from a limited
supervised experience. A natural solution to alleviate this
scarcity of training samples is to augment synthetically the
existing samples for each training class [38], [13]. In order to
augment data, researchers have invoked invariant transforma-
tion in feature space [9], [35], [3]. Section III explains in detail
our approach on few-shot learning using a Random Forest
algorithm with data augmentation.

C. Attacker model

For the scope of our work, we assume an attacker has
compromised the user’s credentials (login/password) and then
attempts to impersonate the victim using the stolen credentials.
We assume an attacker does not have information about
behavioral patterns of a victim and uses mouse and keyboard
naturally or can use a script (i.e. Selenium). In our solution,
we will assume a JavaScript monitor will collect mouse and
keyboard events and compute aggregations on the client side.
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We assume this monitor is not compromised by an attacker,
and is protected using orthogonal countermeasures from the
software protection domain. Completely disabling the monitor
should trigger alarms, and we do not focus on those attacks
as it is out of the scope of this paper.

III. APPROACH

The main goal of our work is to design a model which is
capable of learning from unique human-computer interactions
in login scenarios to verify user identity implicitly. As men-
tioned above, we consider in our work two different sources of
information, namely mouse and keyboard events. From those
events we build dynamic features for each user and feed a
supervised machine learning model. With our approach we
aim to answer fine-grained research questions that help in
understanding the stability and robustness of our technique.
The general research question of our work is:

RQ: Is it possible to design an accurate, fast and scalable
behavioral biometrics model with a few number of training
sessions in static authentication scenarios?

Additionally, one of the main concerns in behavioral bio-
metrics has to do with the question of whether the trained
model has learned abstract behavioral patterns from user
independently of what the user typed or it has learned some-
thing about the particular recorded interaction. To address this
concern, we propose the following questions to be answered
using our experiments’ evaluation:

RQ-A: Is it possible to capture targeted attacks against victims
by training with non-attack login attempts from other users
typing different credentials to those of the victim?
RQ-B: What is the impact on the model performance if the
user changes his/her password?
RQ-C: How does the number of logins n needed for training
affect the model performance in terms of FRR and FAR for
some small values of n?

Each one of these research questions is considered and
answered in section IV.

A. Design considerations of the machine learning model

The general idea behind the analysis of user interaction
with mouse and keyboard is that timing and movement di-
rections can be used to build a user profile that complements
traditional authentication systems. As we stated in section II,
most systems require the user to interact many times and/or
for long periods of time in order to learn those behavioral
patterns. However, typically login interactions are very short.
Our proposed solution aims to address this shortcoming by
considering a few-shot machine learning model to detect a
given user in static authentication environments.

As we are interested in static authentication, we define a
session as the time window in which a user is performing the
login process. In order to describe user behavior, we gathered
mouse movements and keyboard strokes for all sessions. Raw
mouse movements are represented as tuples of timestamp
and Cartesian coordinate pairs. To analyze mouse data, we

Fig. 1: Different mouse directions considered to build mouse
dynamics [30].

define five different sets of point-by-point based features. The
first and second set of features are inspired by Ahmed et
al. [2]. They proposed a split of the movements’ space into
eight different directions as shown in Figure 1. In order to
capture this usage pattern, we calculate (1) the average speed
in each of the eight movement directions as well as (2) the
movement direction histogram which tell the percentage of
movements performed by the user in each direction during the
login session. The remaining three features are inspired by the
work of Zheng et al. [39]. They proposed a set of angle-based
metrics: direction, angle of curvature and curvature distance.
The direction is related to the angle of direction between two
consecutive points (3). The angle of curvature is the angle
formed by the two straight lines connecting three consecutive
points(see angle y in figure 2) (4). The curvature distance is the
ratio between the length of the line AB to the perpendicular
distance from point B to line AB (5). These sets of angle-
based metrics are not based on a user’s environment (i.e. screen
size, resolution, brand of mouse, pointer sensitivity) and thus
they are relatively independent of the user’s platform [39].
From each session we thus extract a vector of mouse features
consisting of 272 features.

On the other hand, to analyze keystrokes we define a set
of timing features which are focused on building a unique
typing rhythm for a specific user. Such features focus on
the time when each key is pressed or released as the user
types. Raw keyboard events are represented as tuples of
timestamp, key and action (Press/Release). Since users type
sensitive information at login time, the data is analyzed in
an anonymized fashion. The keyboard was unified into one
unique zone, which abstracts away from particular sets of
possible keys typed. In our work we define four different

A

B
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y

x

Fig. 2: Illustration of angle-based metrics. Adapted from [39].
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Fig. 3: Illustration of keyboard timing features.

timing metrics: Down-Up, Up-Up, Down-Down and Up-Down
time. The (1) Down-Up keyboard feature is the duration of
time from a released key until the next key release. The (2)
Up-Up feature is the latency from one release until the next
key is released. The (3) Down-Down feature is the latency
between two key-pressed events. The (4) Up-Down feature
is the duration of time from the previous key-release until
the next key is pressed. Figure 3 illustrates timing metrics
for keyboard events. Over these metrics we calculate mean,
standard deviation and median for each session. From each
session’s raw keyboard data, we extract a vector of keyboard
features consisting of 12 features.

We then combine both mouse and keyboard feature vectors
into a single vector in a feature-level fusion fashion. We thus
obtain a vector of 284 values per login attempt, that abstracts
the behavioral biometric profile of the user.

As we mention in Section II common algorithms implement
some of the previously discussed features, but require several
authentication attempts (up to 50) to train a robust model.
For this reason, we aimed to work on how to increase the
difference between the features coming from a legitimate
user compared to the attacker incoming features. As we are
dealing with a sequence of authentication tries, where users
perform very similar actions, it is natural to think that historical
patterns are important and they can be exploited to improve
the prediction accuracy of our classifier.

There are several ways to consider data from previous
sessions in machine learning frameworks [10], most of them
with prominent results. In our use case, the inclusion of user
history is an effective way to increase the separation of user-
attacker in the feature space. We propose to compare the
associated feature vector of an incoming login with the mean
behavior of the user in the last n logins in a feature-wise way.
The history vector at session t is calculated as follows:

ht(n) =

∑t−1
i=t−n fi

n
(1)

where ht is the history vector, n is the number of sessions
to consider from the past and fi is the feature vector of each
of the previous iterations. The comparison of a new incoming
session behavior against the history is given by equation:

ft = |ft − ht(n)| (2)

where ft is the incoming calculated feature vector and ht

is the mean of the last n features. The idea is that if a
new incoming session is performed by the same subject, the

absolute difference should be small. Otherwise, the difference
should be large, highlighting attacks.

Once the keyboard and mouse features have been extracted
and absolute differences created, classification is performed
using a supervised machine learning classifier. Since we want
to maximize accuracy detection, we propose to train a inde-
pendent model per user. Since scalability is also a requirement
in this setting, a fast training algorithm is needed.

For the stated reasons, we have chosen a Random Forest
(RF) classifier to discriminate legitimate users from attackers.
After parameter tuning of the model, we propose to train a
RF with 100 estimators. Furthermore, we train each RF in a
few-shot fashion. This means that for each training process we
are expecting between 3 and 7 sessions of about 30 seconds
each one. The method we used to perform few-shot learning
works by augmenting only the legitimate user sessions while
attacker sessions are learned without augmentation. Notice
that we do not need to augment attacker sessions because
we have enough attacks, all of those extracted randomly from
login attempts performed by other users (for further details
refer to Section III-B). Augmentation of the minority class
is performed by over-sampling with multiple copies (10x)
of the original positive features. In this way, we increase
the information of legitimate users in the training set. This
oversampling method has proven to keep the model robustness
in classification tasks [18].

We defined as positive labels the difference vector calculated
from the history of a legitimate user. To create negative
samples, we randomly choose sessions performed by other
users and compare (create the difference vector) against the
history of the legitimate user we are training the model for.
We thus train a model using a balanced data set in which we
oversample the minority class (i.e. legitimate sessions). The
number of positive samples used to train the model is n while
the number of negative samples is n ∗ 10 (random sessions
performed by other users).

B. Experimental Design

In order to evaluate our approach, we propose a set of
experiments with multiple set-up scenarios where model per-
formance is measured. These experiments are inspired by the
research questions stated above.

For the proposed task, each user is requested to login into
a web page using their assigned credentials. As our goal is
to train and test a single model for each user, we would
ideally need attacks for each individual user’s credentials
to evaluate the accuracy of our approach. However, it is
impractical to collect multiple login attacks for every distinct
username and password combination at large (that is, multiple
targeted attacks by different users that are typing a victim’s
particular credentials). To address this challenge, we propose
two different login interactions to generalize the attacks for all
users.

Login type 1: Every user is requested to perform n login
sessions writing the same pre-defined username and password
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TABLE I: Experiment 1 - Ideal Scenario for Biometric
Characterization.

Legitimate user class Attack class
Train n sessions of ui writing

〈U, P 〉fixed

n random sessions from
Uj writing 〈U, P 〉fixed

Test The remaining m sessions
of ui writing 〈U, P 〉fixed

All the remaining ses-
sions from Uj writing
〈U, P 〉fixed

This is the ideal scenario where all users are writing the same
login credentials for both the training and testing phases. The goal
of this experiment is to check if a user’s model can differentiate
between the biometric behavior of the legitimate user and others.
This scenario is crucial to validate that the model is in fact learning
from the user’s biometric behavior and not from different username
and password sequences literally.

TABLE II: Experiment 2 - Pragmatic Training for Targeted
Attacks.

Legitimate user class Attack class
Train n sessions of ui writing

〈U, P 〉fixed

n random sessions from
Uj writing 〈U, P 〉own

Test The remaining m sessions
of ui writing 〈U, P 〉fixed

All sessions from Uj writ-
ing 〈U, P 〉fixed

The goal of this experiment is to simulate the model’s behavior in
a real life scenario where we won’t have targeted attacks to train a
user’s model, therefore other users individual credentials would be
used as the training attack class. As for the testing phase, we use
targeted attacks, which simulate an attacker who owns the user’s
credentials.

〈U,P 〉fixed while the JavaScript monitor is gathering informa-
tion from mouse and keyboard events.
Login type 2: Every user ui is requested to perform n login
sessions writing his own username and password 〈U,P 〉own
while the JavaScript monitor is gathering information from
mouse and keyboard events.

Having all users writing the same character sequence
〈U,P 〉fixed in the Login type 1 makes it possible to simulate
multiple attacks, since we have the same static text typed by
all users. On the other hand, having individual login sessions
in Login 2 with 〈U,P 〉own, makes it possible to define other
experiments and address some of the fine-grained research
questions of Section III.

Let: U = {u1, ..., un} be the set of all users. Given a
legitimate user ui ∈ U we denote the set of all users excluding
the user ui as:

Uj = {uj ∈ U |j 6= i}

The proposed experiments are described in Tables I to IV.

IV. EVALUATION

A. Datasets

The first dataset we analyzed was a pilot dataset with a
small number of subjects. We call this dataset “Small Scale
Pilot Dataset” (SSPD). The dataset was collected among
the employees of a company who were informed about the
experiment; they were asked to login to a monitored dummy

TABLE III: Experiment 3 - Password Change.

Legitimate user class Attack class
Train n sessions of ui writing

〈U, P 〉fixed

n random sessions from
Uj writing 〈U,P 〉own

Test All sessions of ui writing
〈U, P 〉own

All the remaining ses-
sions from Uj writing
〈U, P 〉own

The aim of this experiment is to evaluate how resilient our approach
is to changes of legitimate user credentials in the testing phase
(i.e. change of password). Since we collected two types of login
credentials for each user, we used one for training and one for
testing. For the attack class, in order to simulate the production
environment, random samples from other users credentials are used.

TABLE IV: Experiment 4 - Training and Testing with Indi-
vidual User Credentials.

Legitimate user class Attack class
Train n sessions of ui writing

〈U, P 〉own

n random sessions from
Uj writing 〈U,P 〉own

Test The remaining m sessions
of ui writing 〈U, P 〉own

All the remaining ses-
sions from Uj writing
〈U, P 〉own

To recreate the restrictions of a real production environment,
we consider not having targeted attacks neither for training nor
for testing. To simulate this scenario, we only used individual
credentials from all users (login type 2), to build a valid user’s
model.

website for data collection. The test subjects used their usual
input devices, namely keyboard and mouse, so their typing
behavior was as natural as possible. Each user performed
two experiments as explained in section III: First, the same
username and password 〈U,P 〉fixed was collected for all users,
and second, they were asked to write a username and password
〈U,P 〉own composed of their name and a combination of
unique numbers. 20 attempts were recorded per user, that is,
10 inputs per experiment for each one of the 21 test subjects.

To preliminary test the scalability of our approach to more
users under a controlled environment, the ‘Amazon Mechani-
cal Turk’ service was used. With this service, human workers
perform a certain task following instructions defined by the
task requester. We managed to collect a total of 1374 valid
login attempts from 89 subjects. We call this dataset “Medium
Scale Pilot Dataset” (MSPD). A summary of the average
characteristics of the users interaction for each dataset is
presented in Table V.

Restrictions on behavior: It is important to note that we
imposed restrictions on the behavior of subjects as follows:
(1) it was not allowed to use Tab to navigate between input
fields, (2) it was not allowed to press enter to complete the
login in order to have more mouse interaction; and finally, (3)
it was not allowed for the subjects to copy-paste the username
or password, to keep the maximal keyboard data.

Although these choices might seem too restrictive when
compared to user behavior on the wild, there are several
reasons why we chose to impose them. First, we wanted to
maximize the keyboard and mouse interactions in order to
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have more information to build a meaningful model, since
the scenario we are tackling its already quite challenging
due to the short term of a login attempt. Second, in certain
domains similar restrictions are common, such as in banking.
In fact, in the banking domain even longer interactions can
be recorded when users are asked to enter their pin numbers
using a randomized keyboard on-screen. Last, if good results
are achieved in spite of the mentioned restrictions, a case can
be made to enforce them in applications that want to integrate
this technology in order to favor security. We believe that in
although these restrictions create some friction with users, they
are still reasonable for critical applications.

TABLE V: Pilot Datasets Description

SSPD N=21 MSPD N=89
Avg. login time [sec] 18.69 26.76

Avg. # of keystrokes/login 46 49
Avg. # mouse events/login 106 129

Privacy considerations: In the pilot datasets we did not ask
participants to introduce their real login information. We simu-
lated a login website interface where they introduced either the
shared artificial credentials, or individually defined artificial
login information. No sensitive information was managed or
stored.

Raw data was then processed in the back-end to compute
features. Note that processed features are relatively hard to
revert into raw data (there is no injectivity in the feature calcu-
lation function), and thus this representation already provides
some degree of privacy. In particular, keystroke features are
considered to be secure in the sense of protecting the inputs
typed, since only speed related averages are computed for
various actions.

Limitations: First, the SSPD test subjects were operational
personnel so they are used to working with a computer
throughout the day, which might not be a representative sample
of users in the wild; secondly, regarding both datasets, it was
expected that all logins collected would have been performed
within a short time frame; this might have caused an artificial
similarity among login attempts. Also, due to privacy reasons
we did not ask the test subjects to type their real usernames
or passwords. It could be argued that the behavior of each
user could change when they write something familiar to them
instead of something new, nevertheless, our hypothesis is that
these datasets provide a meaningful baseline to work with and
approximate login attempts in the wild.

Data validation: In order to increase the number of legiti-
mate sessions tested, and to do cross-validation, we evaluated
several parallel worlds by randomly selecting n sessions out
of the available sessions of a given user to train the model, and
test it against the remaining sessions. Since on average there
are 10 sessions per user, this gives

(
10
n

)
choices of parallel

worlds.
Production dataset: Additionally, in order to evaluate our

approach in a less controlled environment, we have prelimi-
nary evaluated data captured in a production environment from
the banking domain. The data captured corresponds to roughly

one week of activity, where a total of 380.000 login sessions
were performed. Of those, 2.000 users logged in more than 5
times, which allowed us to evaluate the performance of our
method for those users in a total of 14.000 sessions.

In this scenario, for privacy reasons, features are calculated
on the client side, to avoid storing raw credential information
on the server side.

Hardware The machine used in our tests has an x86 64
architecture, Intel R© CoreTM i7-8550U 1.80GHz processor
with 4 physical and 4 virtual cores and 23.3GB of RAM.

B. Results

We used the experiments described in subsection III-B
to evaluate the effectiveness of our model. We perform our
evaluation by measuring (1) the False Acceptance Rate FAR,
which is the proportion of actual users identified as attacks,
and (2) the False Rejection Rate FRR, which is the proportion
of actual attacks identified as users by the model. It is also
important to remark that Lower FAR is generally preferred in
high security applications, whereas Lower FRR is preferred to
in systems which try to improve the user experience.

1) Small Scale Pilot Dataset (users = 21): We first tested
our proposed model in the Small Scale Pilot Dataset (SSPD).
Notice that the SSPD dataset had the most controlled envi-
ronment among the datasets we collected, were we made sure
the users were following the instructions and therefore, SSPD
is the highest quality dataset we had to approach our research
questions. We fully evaluate all of the 4 experiments on the
SSPD dataset to preliminary answer our research questions.
The FAR and FRR with different numbers of login sessions
for training are shown in Figure 4. For the FRR, the larger the
number of login sessions used for training, the more accurate
our model is in detecting legitimate users for all thresholds.
Remarkably, the number of logins sessions for training does
not affect significantly attack accuracy detection (FAR). As
a general trend, we observe that 0.85 is the threshold which
globally minimizes FRR and FAR simultaneously.

The first experiment is the ideal scenario to test the system
capability to learn from the users’ behavior instead of the static
text written by them as stated in Table I. For our selected
threshold, namely 0.85, the difference in the FAR score for
the three tests on the working point is negligible for this
experiment, while the difference in FRR between n = 7
and n = 5 is around 7% (Figure 4c); it can be observed
that considering more users is worth it for this experiment;
however, only with 5 logins the metrics are around 19%, which
is an acceptable value.

In the second experiment, for our selected threshold, a lower
FRR is achieved, meaning that lesser friction for the normal
user is preferred. In this case, the difference in the FRR
between 7 and 5 user logins for training the model is only 2%,
meanwhile, between 5 and 3 logins the difference is almost
11%. On the other hand, the difference in FAR between 7
and 3 logins is only 2% (Figure 4a). Being the differences in
FRR so considerable, 5 logins could be seen as the preferred
case, since the metrics do not fall strongly and fewer logins
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(a) Experiment 1 (Ideal Scenario for Biometric Characteriza-
tion) results for different number of sessions(n) in training.

(b) Experiment 2 (Pragmatic Training for Targeted Attacks)
results for different number of sessions(n) in training.

(c) Experiment 3 (Password Change) results for different num-
ber of sessions(n) in training.

(d) Experiment 4 (Training and Testing with Individual User
Credentials) results for different number of sessions(n) in
training.

Fig. 4: FAR versus FRR plot for different experiments when they are evaluated on the pilot dataset (users=21). Notice that
at a threshold cut-off point of 0.85 both FAR and FRR are simultaneously minimized.

are needed, which is easier to acquire. With a FRR of 13%
and a FAR of 25% for 5 logins, this is preliminary evidence,
regarding RQ-A, that our system is capable to learn user’s
behavior being trained with credentials different to the ones
of the user.

The third experiment aims to show how robust is the system
against password changes from the same user, meaning that no
attacks are involved, but the user’s experience itself. On our
selected threshold point, the FAR of the system is lower than
the FRR: For n = 7 and n = 5 logins the difference in FRR
is 4%, compared to the difference between n = 5 and n = 3
logins of 9% (Figure 4b). The use case parameter of 5 logins
delivers a FAR of 21% and a FRR of 36%. For this experiment,
the model showed certain resilience after the password change.
However, the overall performance decreases in comparison to

the original set-up of the trained model. To answer RQ-B, we
should take into account that for the real-world applications,
the most recent login sessions would include user behavior
with the new password, further experiments on this question
are proposed as future work.

Notice that combining the insights from experiment 1, 2
and 3 we have promising results towards learning accurately
behavioral patterns instead of the user interaction(i.e user
password) with few training sessions, thus, addressing partially
the main RQ.

Finally, the fourth experiment is related to the production
case, where no direct attack data is available, but only logins
from other users. The behavior is quite similar to the second
experiment, where for the FAR there is almost no difference,
but for the FRR the n = 5 and n = 7 are specially close to
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each other, with a difference of 1.5%; the advantage of using
fewer logins outweights the improvement on FRR for n = 7.
The values of 11% and 18% show that in this simulation of
a real environment, the system is capable of distinguishing
between users without attackers data for training.

2) Medium Scale Pilot Dataset (users=89): Next, we tested
our Random Forest model in the Medium Scale Pilot Dataset
(MSPD) in order to check the scalability of our approach. As
the experiments 2 and 4 are related to real training and attack
scenarios, this dataset was only evaluated in those scenarios.
The FAR and FRR results for different numbers of log-in
sessions used for training each user’ model are shown in
figure 5. At this point, the similarities in the test performance
between MSPD and SSPD become evident. In fact, we observe
the optimal threshold for MSPD for the two experiments
evaluated is around 80-85% for 3, 5 and 7 training sessions
(fig. 5), which corroborates the optimal threshold found for
SSPD.

From the second experiment (fig. 5a), training each user
model with 5 logins seams to be enough to maximize their
FAR and FRR at the threshold of 0.85, being 24% and 11%
respectively, without falling to a FRR of 19% as in the case of
3 log-in sessions and being significantly close to the FAR of
23% and the FRR of 8% resulting from training with 7 log-
in sessions. From this analysis, we can get closer to answer
RQ-C given that it is reasonable to evaluate our proposed
framework scalability to thousands of users having 5 log-
in sessions as hinted by our previous results. Therefore, the
tendencies shown by the experiments with SSPD and MSPD
made us go forward into checking if our framework can have
a similar performance even in real production environments.

C. Scalability

In order to implement our approach in a production en-
vironment some scalability aspects must be considered. For
example, execution times and model’s sizes become critical.
In our proposed architecture, one of the highlights is the fact,
that we need only 5 logins per user to be able to identify
legitimate users; however, for every user we need to create and
train a different model. For SSPD (21 users) data preparation
takes approximately 2.67s and training time per user is around
0.094s; for MSPD (89 users) data preparation takes approxi-
mately 6.15s and the training time is approximately the same
as in the first dataset (0.095s). This result is expected because
regardless of the number of users, each model is trained with
5 login sessions (augmented to 50) from the legitimate user
and another 50 randomly selected logins from different users
as the attackers. The execution time to classify a new login is
equally independent of the number of users and around 0.03s.
Finally, regarding storage, each model requires approximately
100KB. So in a scenario with 1 million users, the needed
storage would be of 100 GB, which is a reasonable storage
requirement for such a highly demanded system.

D. Production Environment Evaluation

We note that there are several challenges to correctly eval-
uate the 2000 users and 14.7k sessions of data captured from
the banking domain. Since data is coming from a production
environment, we have no control over several factors that may
impact the results. First, we have no information on how many
of the sessions were in fact performed by the same users.
Although we estimate that attacks are relatively rare, there
could be malicious login attempts that are unknown to us.
Also some accounts might be shared by multiple people (for
instance corporate accounts). Last, in this scenario we cannot
force users to avoid the use of keyboard actions (such as tabs
and enters) and some users might store credentials in password
managers.

For the purpose of our evaluation we assume that all
sessions logins are legitimate. Note that in this scenario the
number of legitimate sessions for testing is vastly unbalanced
against potential attacks, since we have a mean of 2 sessions
left to test after the model has been trained with 5, but for
each user we have around 14.000 simulated attacks (logins
performed by other users).

In order to handle the test data imbalance, we chose the
following strategy. First, we restricted the number of attack
sessions per user to 1000 randomly selected logins (out of
14.7k from other users). On the other hand, in order to increase
the testing surface on the legitimate class, we assembled sev-
eral parallel worlds. These parallel worlds work by randomly
selecting 5 sessions out of the available sessions of a given user
to train the model, and then evaluating it against the remaining
sessions. Since on average there are 7 sessions per user, this
gives

(
7
5

)
= 21 possible choices of parallel worlds. We chose

10 parallel worlds, which transformed the system from having
only 2 legitimate sessions per user to test (on average) into
having 2× 10 = 20 sessions to test.

Given this evaluation setting, we make the following pre-
liminary observations. First, the FRR, which was of ca. 13% in
the controlled pilots, increases up to 25% (1 out of 4 legitimate
sessions) for n = 5 logins and a threshold of 0.85. We
believe that this can be explained by the fact that some users
used shortcuts (Tabs,enter) and password managers, making
sessions much shorter in duration and number of events
compared to the controlled experiments. On the other hand, as
discussed above, some users might be sharing accounts, and
there could be unlabeled attacks in the collected data.

Given this evaluation setting, we make the following pre-
liminary observations. First, the FRR, which was of ca. 13% in
the controlled pilots, increases up to 25% (1 out of 4 legitimate
sessions) for n = 5 logins and a threshold of 0.85. We
believe that this can be explained by the fact that some users
used shortcuts (Tabs,enter) and password managers, making
sessions much shorter in duration and number of events
compared to the controlled experiments. On the other hand, as
discussed above, some users might be sharing accounts, and
there could be unlabeled attacks in the collected data.

The FAR however remains interestingly similar to the one
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(a) Experiment 2 (Real Attack) results for different number of
sessions(n) in training.

(b) Experiment 4 (Production Environment) results for different
number of sessions(n) in training.

Fig. 5: FAR versus FRR plot for different experiments when they are evaluated on the pilot dataset (users=89). Notice that
at a threshold cut-off point of 0.85 both the FAR and FRR are simultaneously minimized.

of experiment 4 in the controlled pilots, reaching 23% (1 out
of 4 attacks is undetected). Note that the FAR of experiment 4
seems to be an upper bound to the FAR of the more realistic
attack of experiment 2, but given that they are close, we believe
this constitutes a good approximation.

Practicality: In sum, although the model performs some-
what worse in production data for the same 0.85 threshold,
the approximate accuracy of 75% for a model based on 5
logins is still reasonably practical in light of the risk vs.
usability discussion of the introduction, that we recap here.
First, suspicious logins can be challenged by means of 2-factor
authentication, and not necessarily manually. This creates
friction once every 4th login attempt in average, but also
possibly prevents 3 out 4 attacks. Second, the score of our
model can be merged with other risk-based models, such as
context (IP, browser, login time etc.) as discussed in [30].
Third, although gathering more logins before building a model
can potentially yield a more accurate prediction, the risk of an
attack being unnoticed and even poisoning data for training
increases with every extra login. We plan to further investigate
available production data, which is being collected daily, in
order to give deeper insights into the generalization of our
approach to less controlled scenarios. We will also evaluate our
approach on environments that enforce more restrictions on
user behaviour (and thus force users to have longer interactions
at login time as we did in our pilots).

V. RELATED WORK

Keystroke Dynamics: Banerjee et al. [6] and more recently
Raul et al. [25] performed comprehensive reviews of keystroke
authentication studies. These reviews mention that n-graphs,
gave better classification results for several studies, and there-
fore these keyboard features were included in our model.
Additionally, studies that used random forest as classification

models, report results as low as 3.2 FAR and 5.5 FRR for
static text conditions, however the amount of data required for
classification in the testing phase is still large, with more than
8000 keystroke samples per user [6]. An interesting example is
the model proposed by Kim et al. [17], which achieved an EER
score of 6.7%, using an RNN with together with an anomaly
detection system. The model required only 10 keystrokes per
user to perform a classification in the testing phase, however,
they still required a set of 500 keystrokes per user for training.
Reviews also mention that environmental factors, such as
the type of keyboard [29] or behavioral changes over longer
periods of time [14] can increase user’s variance. The model
we propose, takes into account a small number of behavioral
records, it would be interesting to explore methods to increase
adaptability to such changes in time.

Mouse Dynamics: Diverse methods to extract features from
free mouse movements have been proposed. Some authors
classify mouse features by registering: distance, action type,
frequency, duration and direction of raw mouse events and
group them into sessions of a predetermined time window.
Studies that implement this approach achieved average EERs
of 2.46% [2] and 3.37% [24]. Others proposed to aggregate
mouse events occurring between two clicks. For instance,
Gamboa et al. analyzed statistical features of the temporal-
spatial information between clicks achieving EERs of 2%
[12]. The idea of segmenting the movement into metrics
that describe a curve has been explored by [28] and [39].
In the proposed model, we process information from both
the trajectories and the temporal-spatial characteristics of raw
mouse data to extract user’s behavioral information.

Mouse biometric classification still demands large amounts
of training data. For instance, Zheng et al., used a training
dataset consisting of 12500 clicks, with a 0.5 threshold they
obtained classification results of 0.86% FRR and 2.96% FAR,
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they also tested with a smaller training dataset of 500 clicks,
and obtained accuracies of 4.57% FRR and 18.79% FAR
[39]. This study shows that reducing the training dataset is
a challenging problem, since it can rapidly decrease accuracy.
Jorgensen et al., stated that most mouse dynamics studies
require long data collection sessions to achieve acceptable
authentication accuracy [16], which could be impractical for
some real world applications.

Multimodal Biometrics with Keystroke and Mouse Features
a) Constrained Tasks: Neha et al. [21] performed a

study with both static login and continuous authentication
sessions for 60 users. For static authentication, they achieved
an accuracy of 95.66% with J48 classification algorithm.
However, 50 login entries for each of user were required for
the training phase, using a fixed password for login. In this
study the multimodal fusion was performed at the decision-
level.

In a preliminary study, Khan et al. [4] investigated biomet-
rics of website logins. The training data-set consisted of one
user with 65 legitimate dummy website logins and 37 attacks.
The highest average accuracy achieved was 97.3% with SVM,
using 52 legitimate logins for training.

We note that the available studies do not analyze the prob-
lem of static user authentication under real-world constraints
such as limited amount of user data and limited information
on attacks, it was also found that scalability in production
environments was not evaluated.

b) Unconstrained Tasks: In contrast, in a completely
uncontrolled setting, Modal et al. [20] required 471 user
actions to detect an impostor with 62.2% accuracy, with 25
subjects. Traore et al. [33], simulated a social network website,
and performed an experiment with 12 subjects for 8 weeks,
that resulted in a EER of 8.21%, they used separate bayesian
models for keyboard and mouse, and then fused the scores, a
minimum of 200 keystroke records and 2500 mouse dynamics
were required for training.

Bailey et al. [5], combined keyboard, mouse and GUI
interactions; users performed internet based research tasks and
wrote reports. 31 users were tested, samples consisted in 10
minutes sliding windows. With approximately 7 samples for
training and 3 for testing, using SVM and Bayes classification
algorithms, a final outcome of 2.1% FAR and 2.24% FRR was
obtained.

Fridman et al. [11] collected data of 67 users for approxi-
mately 56 hours. The study collected mouse, keyboard and
stylometry features from article writing and web-searching
tasks. They used Naive Bayes classifiers for each feature and
binary local decisions were fused for a final classification.
Training was performed with 60% of gathered data. Overall
they achieved 0.004% FAR and 0.01% FRR after testing
with 30s of user interaction. They also found that the highest
relative contribution to the classification was related to mouse
curve features, which were included in our model.

Other continuous authentication studies were also compared
with our study, we found that, given the unconstrained tasks
that these studies address, the amount of training data required

for the models is much larger, which partially explains why
the reported accuracies are higher.

A summary of comprehensive behavioral biometrics studies
with mouse and/or keyboard is found on Table VI. We
compared samples required for training and testing, number
of users in the data-set and model accuracies.

TABLE VI: Related Work - Mouse and Keyboard Biometrics

Study Input Training Test FAR FRR No.
Users

Kim et
al.1

K 500KS 10KS 6.7%3 6.7%3 120

Zheng
et al.1

M 12500C
500C

500C
1C

0.86%
4.57%

2.96%
18.79%

30P
&
1000F

Traore
et al.1

K,M 200KS,
2500ME

- 8.21%3 8.21%3 12

Bailey
et al.1

K,M,
GUI

70 min 30 min 2.10% 2.24% 31

Fridman
et al.1

K,M,
Styl.

33.6
hours

30 sec 0.04% 0.01% 67

Neha
et al. 2

K,M 50
logins

1 login 0.89% 1.20% 60

Ours2 K,M 7 logins
5 logins
3 logins

1 login 22.77%
23.34%
23.51%

7.65%
10.73%
18.17%

109P
&
2000F

1 Studies with unconstrained tasks.
2 Studies with login tasks.
3 Values obtained from reported EER.

Abbreviations: K- Keyboard, M- Mouse, KS- Keystrokes, C- Clicks,
ME- Mouse Events, GUI- GUI interactions, Styl.- Stylometry, P-
Pilot Controlled Dataset, F- Field or Production Dataset.

To the best of our knowledge our study is the first to
address static behavioral biometric authentication with a highly
restricted amount of training samples. Moreover, compared to
previous studies, we present a new approach that considers
user’s behavioral history. Finally, the evaluation of our study
was performed with a large number of samples for both
controlled and production environments, which also stands out
from previous studies in the field.

VI. CONCLUSIONS

In this work we have presented a novel approach for risk-
based authentication using behavioral biometrics that aims at
having practical accuracy while needing few user sessions to
train. We have evaluated our approach in three independent
datasets ranging from dozens to thousands of users and shown
that the approach is both reasonably accurate and scalable for
a training set as small as 5 logins. In the future we plan to
evaluate the approach on more available production data as
well as to study the consistency of the proposed model against
changes in end-user devices as well as login website layout
changes.
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