
Protecting Users from Compromised Browsers and
Form Grabbers

Sirvan Almasi
Imperial College London

sirvan.almasi17@imperial.ac.uk

William J.Knottenbelt
Imperial College London

w.knottenbelt@imperial.ac.uk

Abstract—With the increasing use of the internet we are
always in reach of a browser and a website. Users are continu-
ously feeding sensitive information (such as passwords, personal
and credit card information) to websites. These browsers and
websites are susceptible to attacks from compromised client-
side code, the browser and the operating system itself. Such
threats emanate from Man-in-the-Browser (MitB) malware and
form grabbers that are able to steal information from HTML
forms and manipulate the forms at the cost of the user, resulting
in the loss of sensitive information and financial costs. Whilst
defensive techniques such as detection and prevention have their
own merits, an out-of-band system can have superior security
and user experience benefits. In this paper we explore the idea of
circumventing the threats through a mobile phone-based system
that can protect the user from compromised browsers and form
grabbers. We build on the work of deeID, a blockchain-based
and out-of-band identification and authentication system. Our
contributions are the design of an out-of-band system dubbed
FormL3SS, a standardised messaging for information request and
the novel combination of existing techniques with a blockchain-
based identity system. Our implementation of FormL3SS demon-
strates the capabilities of sending data securely to a trusted server.

I. INTRODUCTION

Form grabbers and Man-in-the-Browser (MitB) malware
attacks are an effective method of stealing sensitive informa-
tion and web traffic data. They can be used to steal credit
card details, personal information and passwords, which are
then either auctioned off [1] or directly used for fraud and
the financial benefit of the attacker. Once the user’s machine
is infected, there is little modern browsers can even do. The
Trojans and form grabbers act silently as the user interacts with
the web page. One method of circumventing compromised
browsers and operating systems is by using another device
to submit the data (an out-of-band system).

In this paper we are concerned with a secure method of
submitting data (typically done via a web form) by the user
to the web server (which is hosting the website). We present
a design, called FormL3SS, and a proof-of-concept imple-
mentation of an out-of-band form submission technique that
can securely transfer required data (e.g. payment information)
to the trusted server hosting the web application. We design

and implement the proposed system on top of a blockchain-
based identification and authentication system, deeID. deeID
already offers a password-less and out-of-band authentication.
Moreover, deeID offers the ability to send messages to the user
via a secure communication channel.

Form grabbers and MitB attacks are channelled through
via various methods. In this paper we focus on two: Trojans
and malicious third-party JavaScripts injected into the page.

Man-in-the-Browser (MitB) Trojans or financial malware
silently infect a device and monitor outgoing communication
before it is encrypted. Targeted Trojans attack online banking
and e-commerce websites. ZeuS and SpyEye are two famous
examples of such Trojans. Recent examples such as BackSwap
[2] tailor their code to target specific banks, in this case
Spanish banks.

Trojans are inherently form grabbers but in this context
we will refer to form grabbers to scripts that infect third
party libraries. It is common for most web applications to
use third party libraries, mostly JavaScript, to enhance the
functionality of the web page. Compromised libraries once
loaded into a web page can scrape forms and steal information
as they are entered into HTML forms. The most prominent
example of such form grabbing attack is the British Airways’
(BA) 2018 breach [3] where 380,000 customer payment details
(including the CVV numbers) were stolen as they were typed
into the page between Aug 21 and Sep 5. The attackers did
not compromise the BA’s servers but managed to compromise
a third party library called modernizr.js. The attackers
injected 22 lines of JavaScript code [4] that sent form data as
they were submitted to a rogue phishing server.

The financial and economic cost of these attacks are to
be taken seriously. Not only do the victims can face financial
losses but services providers such as British Airways can also
be fined for putting their customers in danger. BA faces a
£183m fine by the UK regulators (ICO) [5].

With increasing number of individuals using the internet
for online banking, shopping, etc. the pool of potential victims
is only increasing in size. The importance of protecting users
whilst enhancing their experience is evident and thus we shall
propose a method to circumvent these attacks and allow the
user to transact securely even if the browser or the operating
system is untrustworthy.

A. Contributions

Our aim to contribute to the security and usability of
web applications, especially when the application processes

Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb) 2020
23 February 2020, San Diego, CA, USA
ISBN 1-891562-63-0
https://dx.doi.org/10.14722/madweb.2020.23016
www.ndss-symposium.org



sensitive data.

• Design of FormL3SS: An out-of-band form and data
transmission system.

• Implementation of the proposed system that can cir-
cumvent untrustworthy browsers and operating sys-
tems with respect to sending sensitive information to
a trusted web server.

• Standardising form requests: We introduce a mes-
saging standard that currently supports payment and
sensitive information. Other type of information can
be requested by signing the message’s form_type
as custom.

• Adding to deeID: deeID is a blockchain-based and
out-of-band authentication system, we add an out-of-
band form-submission functionality to it.

• Introducing the use of blockchain via deeID in man-
aging secure interactions with the user and secure web
servers.

B. Paper Organisation

We explain the basics and some history of Man-in-the-
Browser threats in Section II. This section also includes an
explanation of deeID - the blockchain identity and PKI system.
In Section III we provide an overview of the proposed system
and its key components. We then implement and show its
working in Section IV. The process of sending data from
the user to the trusted web server can be done via numerous
methods; we explain them in Section V. In Section VI we
discuss the system and its limitations. In Section VII we layout
related literature. Lastly we conclude and provide future work
in Section VIII.

II. BACKGROUND

In this section we will go through Man-in-the-Browser
threats, the decentralised PKI system (deeID) and out-of-band
systems.

A. Man-in-the-browser

The primary focus of this paper is on Man-in-the-Browser
(MitB) threats. MitB is usually a Trojan that infects a system
and its applications (typically a browser). Once it infects a
browser or an operating-system (OS) it can read network
traffic, inject code into web pages, change HTTP headers,
and generally manipulate the web page for the benefit of
the attacker. MitB Trojans are also referred to as Financial
Trojans because (typically) their aim is commit fraud and
steal money from their victims. Such malicious actions are
done by form grabbing banking details, personal details and
changing transaction details (if the user is using online banking
to transfer money).

One of the oldest and most famous MitB Trojan is ZeuS
[6], also known as Zbot. First discovered in 2006, it has caused
vast amount of financial damages. Its creator reportedly retired
in 2010 and released [7] its source code to ZeuS’ competitor,
SpyEye [8].

Despite improvements in browser and OS security, crim-
inals are finding creative ways in penetrating user systems
in order to commit malicious activities. The British Airways
example [3] in the introduction is a clear example.

Mobile phones are not safe either. A variant of ZeuS known
as Zitmo [9] or The-Zeus-in-the-Mobile targets mobile phone
devices.

B. deeID System

deeID [10] is a password-less and mobile phone-based
identification and authentication system. It uses blockchain
technology to create a network of unique identities for the
participants. It also acts as a decentralised public-key infras-
tructure (PKI); allowing individuals to link public-keys to
their identity. It has two main components: 1) Mobile phone
application and 2) Blockchain contracts and functionalities.

The main use of deeID in this application is its identifi-
cation and PKI tool. This allows us to independently verify a
given domain and any content signed by that domain (public-
keys associated with the domain. As you can see in Figure 1,
the deeID contract has an array of public-key associated with
the identity.

owner = 0xe3AA85...
type = ’org’
domains = { }
keys = {PubKey, Type, Name}
msg server = ’www.deeID.com’

deeID Contract
User’s device

Fig. 1. Overview of the deeID system. Ownership of the deeID contract
(identity contract) can be proven via private-keys stored on the user’s mobile
phone device.

The use of blockchain as a decentralised PKI is a new
topic with ongoing research. There are numerous implemen-
tations and examples both in research and in industry. Our
choice of deeID has been down to ease of development and
the abstraction it provides. This is a replaceable component.
Models of blockchain-based PKIs can be referred to in [11];
varieties of implementation include the likes of Namecoin [12],
CertLedger [13] and Blockstack [14]. Other useful and related
material include [15] [16] [17] [18].

C. Out-of-band Transactions

Out-of-band (OOB) authentication or transaction verifica-
tion is a method whereby a secondary device and communi-
cation channel is used to carry out a process securely (such
as authentication). Most of the literature is focused around
authentication with examples including [19] [20]. Not all OOB
authentication schemes are the same. Some are less secure
than others, e.g. using SMS versus OOB push authentication
mechanism; SMS can be subject to interception and redirection
via SIM swap attacks.

2



III. DESIGN

The goal of the proposed system, FormL3SS, is to circum-
vent compromised operating systems, browsers and malicious
third party JavaScript libraries (form grabbers), thus creating
a secure link between the user and the trusted server (the
server hosting the website that the user is interacting with)
in order to send sensitive data (e.g. payment information). We
are countering two types of attacks: 1) Man-in-the-Browser
Trojans such as ZeuS and SpyEye (also known as financial
malware). 2) Form grabbers: Malicious third party libraries
that scrape the web page and send the data to a controlled
server. Malicious browser extensions fall between those two
forms of attack. Therefore, we assume that all interactions and
data on the web page displayed on the infected client can be
manipulated and altered. The proposed system, FormL3SS, is
shown in Figure 2.

FormL3SS: Design of the proposed system

Play Shopping Homepage

Payment information
Scan the QR code below to submit
your payment info.

Compromised web browser and operating system

Servers
HTTP &
WebSocket

deeID blockchain
Identity and PKI

Read
QR code

Verify veracity
of QR code signature

Send
data

1
2

3

Fig. 2. Visualisation of the proposed system. The web server communicates
the required information (to be sent to the server by the user) to the client
which is then displayed as a QR code. The mobile app scans the QR code,
verifies the veracity of the signature. If verified, the mobile app sends the
required data directly to the server.

Given that the user’s computer (OS and browser) is as-
sumed to be compromised we are using an out-of-band system
to send sensitive information to the trusted web server. A
mobile phone is a common device that has the ability to carry
out the necessary cryptographic and networking operations.
Thus, a mobile phone is used to send the data securely to
the web server. The data from the client (web browser) is
transferred to the mobile phone via a QR code. We have
built on top of the deeID system because it already provides
password-less and out-of-band authentication and thus this
extends deeID for out-of-band transfer of other data.

We ensure that the QR code is not manipulated by the
compromised browser and client-side code. We do this as
follows: a) the trusted server (hosting the website) signs the
data, b) the user scans the QR code, c) the user then types in
the website’s domain into the mobile phone app upon being
asked for it, d) the domain names are cross checked with the
scanned one from the QR code, e) the mobile phone app can
now connect to the WebSocket server (given via the QR code)
and ask for the authenticity of the signature, f) upon successful
verification, the user will send the data. Asking the user to
manually enter the domain name ensures there are no phishing

attacks in play.

If the user has already registered with the website using
deeID then the link created upon registration, we assume,
is already persisted on the mobile phone. The mobile phone
application will use this to guard against phishing attacks. The
website’s deeID blockchain contract should also contain the
domains associated with the website’s deeID which the mobile
phone app can cross check with. This is shown in Figure 1.

Just like humans, fictional entities like websites can also
have verified identities. This is most important if the website is
supposed to have a legal identity. If the user has come across
a website then they can attempt to get proof of identity of the
website if another person or organisation has verified it. Then
it is up to the user to trust the person or organisation that has
verified the website’s identity. This means that an attacker has
to fake a web server, an identity contract and an identity proof
to carry out a successful attack. These are strong barriers that
the attackers have to overcome.

FormL3SS consists of the following components:

• Client-side or front-end code: JavaScript code is used
to transform the data from the server into a QR image.

• WebSocket and server functions: A WebSocket con-
nection is used so that the client can be updated upon
confirmation (from the server) of receipt of the correct
data from the mobile phone.

• Mobile app: We build on top of the deeID application
to add out-of-band form transactions.

• Blockchain (deeID): In section V we will see alter-
native designs and solutions which will utilise the
blockchain and deeID functionalities. We use the
messaging function, proof of identity and its PKI
functionalities.

A. Form types

For payment and personal information the server does not
have to send a full HTML form to be filled in by the user.
For payment and personal information, we have standardised
it so that the server only has to identify a form_type in
the QR code (or any medium of message). For payment the
form_type is card_info and for personal information the
form_type is pers_info.

For card_info the user will return an array containing
the card type, number, expiry date and the CVV number. For
pers_info the user will return an array containing the user’s
first name, surname, address (line 1, line 2, city, country and
postcode), and date of birth.

Other forms will require a form_type being custom.

B. Custom form type

The custom form type indicated by custom currently sup-
ports the following input types: text, number, email
and date. The advantage of this is that the added func-
tionalities on deeID will do some form validation before
being sent over to the trusted server. This will minimise the
communication steps between the mobile phone and the trusted
server.

3



IV. IMPLEMENTATION

We created a proof-of-concept that demonstrates the capa-
bilities of the idea. The acting server was created using the
flask [21] web framework. The front end of the dummy
website used HTML and JavaScript. The front-end connected
to another WebSocket library built on Python. The mobile
phone functionalities extended those of deeID, with our proof-
of-concept the mobile phone application can read a QR code
that has a type called deeIDForm.

We will now go into further detail for the implementation
and some of the data structures that are passed around. Figure
3 shows the interface of the acting payment web page and the
mobile phone after scanning the QR image.

Client and Mobile app Screenshots

Fig. 3. Interface design of the web page and the mobile phone app. Upon
scanning the image the mobile app will ensure the QR code’s data is not
manipulated by verifying the domain and its cryptographic signature.

A. Back-end functionalities

The acting server (trusted web server) in our implemen-
tation picks up a user journey where the input of a user is
required. In our context, we want the user to send a debit or
credit card detail to the trusted server. Listing 1 shows the
data structure sent from the server, it is requesting payment
information from the user.

qr_msg = json.dumps({

'type': 'deeIDForm',

'domain': '',

'uID': '', #Unique client & WS connection ID

'form_type': 'card_details',

'y': y, #Variable to link to a user session

'exp_time' : '',

'deeID': deeID, #Websites deeID address

'sig' : str(sig), #Signature

'ws_url': ws_url, #WebSocket URL

})

Listing 1: The data behind the QR code which is signed and
sent from the trusted server hosting the website.

B. Front-end functionalities

The front-end functionality is simply a QR code encoder.
The client receives the data (signed) from the server and the
JavaScript will create a QR image out of that data.

C. Mobile application functionalities

Upon reading the QR code from the compromised com-
puter, the mobile application will attempt to verify the content
and its signature. At this point the threat is that malicious
actors could have a phishing server setup and have completely
changed the content of the QR image to point to the phishing
server. To mitigate this we ask the user to type in the domain
of the site they have visited; then cross check it with the one in
the QR image. The mobile app will then verify the public-key
from the server.

Note, phishing threats are minimised through the deeID
ecosystem if we have already established a connection with a
service. This relationship is stored and any incoming commu-
nication is always verified with the stored information.

D. WebSocket functionalities

The purpose of the WebSocket server is to create a dynamic
and user friendly application; that is to connect the client,
server and the mobile phone. It is to allow each device to
be updated upon state changes in other devices.

E. Custom form

We implemented a simple custom form functionality. This
functionality allows the developer to request information that
is not in the standardised form requests (currently payment and
personal information). In the request data we have a custom
form_type. This also requires another field named form;
which is an array of the form fields required. As you can
see in the Listing 2, we have requested a secret question and
answer from the user. This then allows the mobile application
to display the right form inputs as seen in Figure 4. This figure
shows the two form fields requested by the trusted web server.

4



{

'type': 'deeIDForm',

'form_type': 'custom',

'form': [

['text', 'Secret question', 'sec_ques_1'],

['text', 'Answer', 'sec_ans_1'],

],

...

}

Listing 2: Snippet of the QR code’s data when a custom form
is implemented. An extra form field to insert an array of
required form fields.

Custom form implementation

Fig. 4. Custom form interface design. Implementation example showing a
server requesting two pieces of information.

V. ALTERNATIVE DESIGNS

In section III we described a simple design based on the
objective of circumventing MitB threats and form grabbers. In
this section we will explore different designs and architectures
that have different benefits and can be more suited to a given
web application. These alternative designs utilise more of the
deeID functionalities: messaging server (being able to send
messages to the user’s mobile phone without using SMS),
encryption and alternative keys stored on the user’s deeID and
the deeID mobile phone app itself.

The following factors determine the suitability of a design:

• Complexity of the form: QR code might not be
suitable for a complex form.

• User and web server relationship: Is the user already
registered with the trusted server?

• Whether the user has coupled a messaging server with
their identity contract.

A. User is registered with the website and has a messaging
server

If a user is already registered with the website of interest
and they have a messaging server associated with their deeID
contract then we can use this method.

Remark: We assume the user is able to use the password-
less and out-of-band authentication method with the server.

The server, on request from the client, can send a secure
message to the user’s mobile phone application via their
messaging server requesting a form to be filled in and sent
back. Given that the user is already registered with the service
they can verify whether it is a phishing threat (cross-checking
domain, public-keys used to sign a message, etc.) and its
veracity.

B. User is registered with the website and has no messaging
server

Continuing from previous design but assuming there is no
messaging server on the user’s deeID contract. The trusted
server (hosting the website) can encrypt the QR code data,
send it to the client where it can be read by the deeID mobile
phone application and be decrypted. From hereon the process
continues as per the first design.

C. Send WebSocket server and request form from server

If the form (assuming a custom type form) is complex and
thus cannot be fully transferred via a QR code; or perhaps the
developer is looking for a more dynamic approach to form
filling (e.g. the form is split into sections where an answer to
one section will determine the type and content of consequent
sections) then this method can be used.

Instead of sending all of the form in the QR code, we
only send the URL of the trusted WebSocket server (belonging
to the website of interest). Upon being verified by the user
on their deeID mobile phone application, the user will begin
requesting the form from the WebSocket server. At this point
the process is a simple back and forth conversation between
the two trusted devices.

VI. EVALUATION AND DISCUSSION

Our objective has been to circumvent threats from Man-
in-the-Browser Trojans, form grabbers and threats that fall
in-between these two attack vectors. These types of attacks
have been around for more than a decade and they are here
to stay. They are getting far more sophisticated in targeting
their victims and evading defences. Targeted attacks against
banks and even cryptocurrency exchanges [22] using a mix
of techniques are now becoming more common. MitB Trojans
and form grabbers have primarily targeted web based payment
services and hence commonly referred to as banking or finan-
cial malware. The primary goal of MitB and form grabbers is
to essentially steal information that is being typed into a form
or turn the user’s actions against them (e.g. sending funds to
the attackers bank account if the user is attempting to transfer
funds).

It is clear that the threat from MitB and form grabbers is
significant. The British Airways’ case is evident to the scale
of the threat. We can defend against these threats through
preventive techniques that would guard the user’s machine
from being infected and detection techniques that would detect
and eliminate the threat. However, our method has been to cir-
cumvent the threats, most helpful to a paranoid user. Moreover,
whilst it is hard for the prevention and detection techniques to
guard against form grabbers, our proposed system can defend
the user from such a threat.

5



The proposed system, FormL3SS, is an out-of-band system
that uses a mobile phone device to securely send data to the
trusted server that is hosting the website.

Prevention and detection techniques have their own bene-
fits. However, an out-of-band system can have superior user
experience and security benefits. Typing in the same form data
always detracts from the user experience of a website. With the
proposed system that is combined with deeID the user can store
information that is commonly required from websites, such as
payment and personal information, on the device (in this case a
mobile phone). This stored information can be requested with
the proposed standardisation of requests; e.g. payment infor-
mation is requested by a form_type being card_info.
Standardising data requests is one of the contributions of this
paper. Targeted information such as payment information can
be standardised so that all devices know what data to send
in order to satisfy the server without the server explicitly
stating the input fields required. This reduces communication
overhead.

Given that we have built on top of deeID which in itself is a
form-less and password-less authentication scheme, the system
can defend against phishing attacks too. Moreover, deeID
provides an important role as identification has an important
role when we are dealing with sensitive information online. We
consider commonly shared sensitive information to be personal
information (name, date of birth, address, etc.) and payment
information. These are then interlinked with identity. Hence,
the benefit of using deeID, an identity system with FormL3SS
is that it can increase security with respect to identity theft
and general credit and banking card fraud online. Providing
the information and also proving ones identity on the fly adds
an extra layer of security.

Malware attacks from banking to ransomware attacks are
becoming more sophisticated. Collaboration between criminal
gangs [23] and targeted attacks [24] enables better penetration
and quicker responses to security guards being put up by
individuals and organisations. IBM predicts [25] that with
the emergence of cryptocurrency, criminal gangs are shifting
to targeted ransomware attacks because they can evade the
security forces and launder their money more effectively.

The proposed system has its own limitations too. Mobile
phones are also susceptible to malware attacks. As the use of
mobile phone devices grows they become more of an attractive
target for malicious actors [26]. The fact that the user has
to use an extra device for form submission is in itself an
extra burden. Though, one can argue that because they are
so common it is less of a burden. Also, because the user is
not continuously typing in the same information, the process
of submitting sensitive information is easier and more user
friendly. The proposed system used deeID, an experimental
technology. This brings about further complexities.

VII. RELATED WORK

As far as we are aware, there are no other similar work
where a general form submission protocol is used with the
use of a mobile phone and a blockchain PKI system. However,
there are similar work with respect to circumventing Man-in-
the-Browser and compromised browser threats.

Software-based solutions that circumvent MitB threats
include the likes of TrustJS [27] and ShadowCrypt [28].
TrustJS enables trust-worthy execution of JavaScript inside
a browser by using trusted hardware (Intel SGX in their
case) and a browser extension. This enables client-side form
input validation. ShadowCrypt enables encrypted input/output
and runs as a browser extension. Whilst it is successful in
preventing the DOM containing sensitive data and thus being
accessible to other extensions and compromised libraries, it
doesn’t prevent key loggers and other sophisticated Trojans.
Privly [29] performs similar functions to ShadowCrypt but also
uses a third party server for encrypted data management.

The work of Saba Eskandarian et al. [30], dubbed Fidelius,
uses additional hardware to completely secure the I/O. In Fi-
delius the entire I/O path is protected by having a trusted don-
gle between monitor/keyboard and the compromised computer.
The drawbacks of Fidelius are page load times and display
response latency; as the additional hardware and operations
from the keyboard and the display effect the user experience.
We think that our proposal enhances the user experience by
eliminating the input of data that is already securely stored on
the mobile phone. Also, given that nothing is required on the
browser there is no impact on page load and response rates.
Bumpy [31] is similar to Fidelius that can be considered a
predecessor to Fedelius.

VIII. CONCLUSION

In this paper we have discussed the threats from Man-
in-the-Browser malware and form grabbers, highlighting the
importance of these threats with recent examples. We propose
a design to protect the user from compromised browsers and
client-side or front-end code.

We have designed an out-of-band solution using a mobile
phone, named FormL3SS. This system can circumvent MitB
and form grabbers safely while improving the user’s experience
whilst interacting with the website. We implemented this
design on top of an out-of-band authentication and blockchain-
based system, deeID. We believe the combination of tech-
nologies used is a novel contribution. Moreover, a first in
proposing a standard messaging format for out-of-band form
submission systems. Developers can request payment and
personal information without explicitly defining the form; this
reduces communication overheads. Other data can be requested
using a custom tag.

Future work include: website identification using deeID,
to add an extra level of security; refining the messaging
standard between the trusted server and the user’s mobile
phone; implementation of the alternative designs that were
proposed; and implementing the encryption functions for the
transmission of the data.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers
for their helpful comments.

REFERENCES

[1] Benoı̂t Dupont, Anne-Marie Côté, Jean-Ian Boutin, and José Fernandez.
Darkode: Recruitment Patterns and Transactional Features of “the Most
Dangerous Cybercrime Forum in the World”. American Behavioral
Scientist, 61(11):1219–1243, October 2017.

6



[2] Limor Kessem. BackSwap Malware Now Targets
Six Banks in Spain. https://securityintelligence.com/
backswap-malware-now-targets-six-banks-in-spain, August 2018.

[3] How Hackers Slipped by British Airways’ Data Defenses | WIRED.
https://www.wired.com/story/british-airways-hack-details.

[4] The British Airways Breach: How Magecart Claimed 380,000 Victims.
https://www.riskiq.com/blog/labs/magecart-british-airways-breach.

[5] British Airways faces record £183m fine for data breach. https://www.
bbc.com/news/business-48905907, July 2019.

[6] Trojan.Zbot | Symantec. https://www.symantec.com/security-center/
writeup/2010-011016-3514-99.

[7] Zeus and SpyEye hybrid emerges. Network Security, 2011(2):20,
February 2011.

[8] Trojan.Spyeye | Symantec. https://www.symantec.com/security-center/
writeup/2010-020216-0135-99.

[9] Najla Etaher, George R.S. Weir, and Mamoun Alazab. From ZeuS
to Zitmo: Trends in Banking Malware. In 2015 IEEE Trustcom/Big-
DataSE/ISPA, volume 1, pages 1386–1391, August 2015. ISSN: null.

[10] S Almasi and W J.Knottenbelt. Human identity and the quest to replace
passwords continued - manuscript submitted for publication.

[11] Artem S. Konoplev, Alexey G. Busygin, and Dmitry P. Zegzhda. A
Blockchain Decentralized Public Key Infrastructure Model. Automatic
Control and Computer Sciences, 52(8):1017–1021, 2018.

[12] Namecoin. https://www.namecoin.org.
[13] Murat Yasin Kubilay, Mehmet Sabir Kiraz, and Hacı Ali Mantar.

CertLedger: A new PKI model with Certificate Transparency based on
blockchain. Computers & Security, 85:333–352, August 2019.

[14] Blockstack. https://blockstack.org.
[15] L. Dykcik, L. Chuat, P. Szalachowski, and A. Perrig. BlockPKI:

An Automated, Resilient, and Transparent Public-Key Infrastructure.
In 2018 IEEE International Conference on Data Mining Workshops
(ICDMW), pages 105–114, November 2018.

[16] A. Yakubov, W. Shbair, and R. State. BlockPGP: A Blockchain-
Based Framework for PGP Key Servers. In 2018 Sixth International
Symposium on Computing and Networking Workshops (CANDARW),
pages 316–322, November 2018.

[17] E. Karaarslan and E. Adiguzel. Blockchain Based DNS and PKI
Solutions. IEEE Communications Standards Magazine, 2(3):52–57,
September 2018.

[18] Christos Patsonakis, Katerina Samari, Aggelos Kiayias, and Mema
Roussopoulos. On the Practicality of Smart Contract PKI. 2019 IEEE
International Conference on Decentralized Applications and Infrastruc-
tures (DAPPCON), pages 109–118, April 2019. arXiv: 1902.00878.

[19] Longfei Wu, Xiaojiang Du, Wei Wang, and Bin Lin. An Out-of-band
Authentication Scheme for Internet of Things Using Blockchain Tech-
nology. In 2018 International Conference on Computing, Networking
and Communications (ICNC), pages 769–773, March 2018.

[20] Hirotaka Nakajima, Shigeya Suzuki, Tetsuro Tokunaga, Kiyoshi Tanaka,
Yasuhiko Miyazaki, Koichi Maruyama, and Osamu Nakamura. Out-
of-band authentication protocol for digital signage and smartphone
interaction. In 2016 IEEE 5th Global Conference on Consumer
Electronics, pages 1–2, October 2016. ISSN: null.

[21] Flask. https://palletsprojects.com/p/flask.
[22] Ruby Cohen Moshailov, Roy. Gozi Adds Eva-

sion Techniques to its Growing Bag of Tricks.
https://www.f5.com/labs/articles/threat-intelligence/
gozi-adds-evasion-techniques-to-its-growing-bag-of-tricks.html,
January 2019.

[23] The Business of Organized Cybercrime: Rising Intergang
Collaboration in 2018. https://securityintelligence.com/
the-business-of-organized-cybercrime-rising-intergang-collaboration-in-2018,
March 2019.

[24] Remi Sara Boddy Cohen, Roy Moshailov. Gozi Banking
Trojan Pivots Towards Italian Banks in February and
March. https://www.f5.com/labs/articles/threat-intelligence/
gozi-banking-trojan-pivots-towards-italian-banks-in-february-and-march.
html, April 2019.

[25] IBM X-Force Security Predictions for 2020. https://securityintelligence.
com/posts/ibm-x-force-security-predictions-for-2020, December 2019.

[26] Christian Szongott, Benjamin Henne, and Matthew Smith. Evaluating
the threat of epidemic mobile malware. In 2012 IEEE 8th Interna-
tional Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob), pages 443–450, October 2012. ISSN: 2160-
4886.

[27] David Goltzsche, Colin Wulf, Divya Muthukumaran, Konrad Rieck,
Peter Pietzuch, and Rüdiger Kapitza. TrustJS: Trusted Client-side
Execution of JavaScript. In Proceedings of the 10th European Workshop
on Systems Security, EuroSec’17, pages 7:1–7:6, New York, NY, USA,
2017. ACM. event-place: Belgrade, Serbia.

[28] Warren He, Devdatta Akhawe, Sumeet Jain, Elaine Shi, and Dawn
Song. ShadowCrypt: Encrypted Web Applications for Everyone. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’14, pages 1028–1039, New York, NY,
USA, 2014. ACM. event-place: Scottsdale, Arizona, USA.

[29] Privly. https://priv.ly.
[30] Saba Eskandarian, Jonathan Cogan, Sawyer Birnbaum, Peh Chang Wei

Brandon, Dillon Franke, Forest Fraser, Gaspar Garcia, Eric Gong,
Hung T. Nguyen, Taresh K. Sethi, Vishal Subbiah, Michael Backes,
Giancarlo Pellegrino, and Dan Boneh. Fidelius: Protecting User Secrets
from Compromised Browsers. In 2019 IEEE Symposium on Security
and Privacy (SP), pages 264–280, May 2019. ISSN: 1081-6011.

[31] Jonathan M. McCune, Adrian Perrig, and Michael K. Reiter. Safe
Passage for Passwords and Other Sensitive Data. In NDSS, 2009.

7

https://securityintelligence.com/backswap-malware-now-targets-six-banks-in-spain
https://securityintelligence.com/backswap-malware-now-targets-six-banks-in-spain
https://www.wired.com/story/british-airways-hack-details
https://www.riskiq.com/blog/labs/magecart-british-airways-breach
https://www.bbc.com/news/business-48905907
https://www.bbc.com/news/business-48905907
https://www.symantec.com/security-center/writeup/2010-011016-3514-99
https://www.symantec.com/security-center/writeup/2010-011016-3514-99
https://www.symantec.com/security-center/writeup/2010-020216-0135-99
https://www.symantec.com/security-center/writeup/2010-020216-0135-99
https://www.namecoin.org
https://blockstack.org
https://palletsprojects.com/p/flask
https://www.f5.com/labs/articles/threat-intelligence/gozi-adds-evasion-techniques-to-its-growing-bag-of-tricks.html
https://www.f5.com/labs/articles/threat-intelligence/gozi-adds-evasion-techniques-to-its-growing-bag-of-tricks.html
https://securityintelligence.com/the-business-of-organized-cybercrime-rising-intergang-collaboration-in-2018
https://securityintelligence.com/the-business-of-organized-cybercrime-rising-intergang-collaboration-in-2018
https://www.f5.com/labs/articles/threat-intelligence/gozi-banking-trojan-pivots-towards-italian-banks-in-february-and-march.html
https://www.f5.com/labs/articles/threat-intelligence/gozi-banking-trojan-pivots-towards-italian-banks-in-february-and-march.html
https://www.f5.com/labs/articles/threat-intelligence/gozi-banking-trojan-pivots-towards-italian-banks-in-february-and-march.html
https://securityintelligence.com/posts/ibm-x-force-security-predictions-for-2020
https://securityintelligence.com/posts/ibm-x-force-security-predictions-for-2020
https://priv.ly

	Introduction
	Contributions
	Paper Organisation

	Background
	Man-in-the-browser
	deeID System
	Out-of-band Transactions

	Design
	Form types
	Custom form type

	Implementation
	Back-end functionalities
	Front-end functionalities
	Mobile application functionalities
	WebSocket functionalities
	Custom form

	Alternative Designs
	User is registered with the website and has a messaging server
	User is registered with the website and has no messaging server
	Send WebSocket server and request form from server

	Evaluation and Discussion
	Related Work
	Conclusion
	References

