
Genotype Extraction and False Relative Attacks:
Security Risks to Third-Party Genetic Genealogy

Services Beyond Identity Inference
Peter Ney, Luis Ceze, Tadayoshi Kohno

Paul G. Allen School of Computer Science & Engineering
University of Washington

{neyp, luisceze, yoshi}@cs.washington.edu

Abstract—Customers of direct-to-consumer (DTC) genetic
testing services routinely download their raw genetic data and
give it to third-party companies that support additional features.
One type of analysis, called genetic genealogy, uses genetic
data and genealogical methods to find new relatives. While
genetic genealogy is quite popular, it has raised new privacy
concerns. Genetic genealogy services can be leveraged to find
the person corresponding to anonymous genetic data and have
been used dozens of times by law enforcement to solve crimes. We
hypothesized that the open design and broad API offered by some
genetic genealogy services raise other significant security and
privacy issues. To test this hypothesis, we analyzed the security
practices of GEDmatch, the largest third-party genetic genealogy
service. Here, we experimentally show how the GEDmatch API
is vulnerable to a number of attacks from an adversary that only
uploads normally formatted genetic data files and runs standard
queries. Using a small number of specifically designed files and
queries, an attacker can extract a large percentage of the genetic
markers from other users; 92% of markers can be extracted
with 98% accuracy, including hundreds of medically sensitive
markers. We also find that an adversary can construct genetic
data files that falsely appear like relatives to other samples in the
database; in certain situations, these false relatives can be used
to make the re-identification of genetic data more difficult. These
attacks are possible because of the rich set of features supported
by the API, including detailed visualizations, that are meant to
enhance usability. We conclude with security recommendations
for genetic genealogy services.

I. INTRODUCTION

At-home direct-to-consumer (DTC) genetic testing is now
commonplace; more than 25 million people have taken DTC
genetic tests and over 100 million are expected to be tested in
the next few years [34]. The dramatic rise in DNA testing
has given consumers unprecedented access to their genetic
information so they can learn about their health, ancestry,
and family history. A popular feature offered by DTC testing
companies is to let customers download their raw genetic
results into genetic data files (GDFs) so they can analyze their
own data. This feature has created a demand for specialized
third-party analysis companies to help users analyze these
raw GDFs. Third-party services do not generate genetic data
directly; rather, they offer databases and tools to store and

analyze it. In this paper, we focus on third-party services that
specialize at the intersection of genetics and genealogy, known
as genetic genealogy.

The main goal of genetic genealogy is to predict new famil-
ial relations using genetic information. This technique, known
as relative matching, relies on algorithms that can predict the
relatedness of two individuals by comparing their two GDFs.
Intuitively, these algorithms rely on the fact that contiguous
DNA segments are passed from parents to their children in a
predictable manner, and thus, the number and length of shared
DNA segments between two individuals can be used to predict
their relatedness. This pair-wise matching algorithm can be
scaled to query all individuals in a large genetic database to
find all potential relatives for a given individual and is reliable
for relatives as distant as 3rd cousins [22].

The growing size of genetic genealogy databases has chal-
lenged assumptions about the inherent anonymity of genetic
data because relative matching can be used to re-identify
anonymous DNA samples. The largest and most prominent
of these third-party services is GEDmatch, which maintains a
database with over 1 million GDFs [32]. In April 2018, it was
revealed that analysis on GEDmatch played a crucial role in
identifying the suspected Golden State Killer [7], [15]. Since
then, private companies, like Parabon Nanolabs, have created
“genetic genealogy” units to identify potential suspects using
GEDmatch; over 25 cold cases have been solved with relative
matching on GEDmatch [19]. However, there are no technical
restrictions preventing anyone from applying these same re-
identification techniques to other genetic data or samples,
including anonymous research subject data [3], [14]. Current
estimates predict that a genetic genealogy database containing
2% of a target population will produce a 3rd cousin or closer
relative for over 99% of individuals, the same relative degree
used to identify the Golden State Killer [14].

To summarize, open-access genetic genealogy services
contain large amounts of privacy sensitive genetic data, can
be effectively used to identify the source of genetic samples,
have been used extensively by law enforcement, and may soon
be large enough to identify individuals from entire countries.
Therefore, it is essential that we understand the security
practices of major genetic genealogy services.

A. Motivation

Open-access genetic genealogy services offer a rich set
of analyses and have complex APIs. Most importantly, the
genetic genealogy API allows users to upload and compare

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA
ISBN 1-891562-61-4
https://dx.doi.org/10.14722/ndss.2020.23049
www.ndss-symposium.org

GDFs to other users in the genetic database to find relatives.
In some services the API gives the user a high degree of
flexibility to query specific GDFs. Ideally, a query would not
reveal unintended information about the state of the database.
However, we hypothesize that a feature rich API, like the
one supported by GEDmatch, will be challenging to secure.
Specifically, we suspect that such services may be vulnerable
to maliciously crafted queries that leak private information or
data uploads that poison the genetic database.

Here, we do a focused security analysis of the GEDmatch
API to better understand how security threats might manifest
in the genetic genealogy ecosystem. We find that GEDmatch
has significant privacy and data integrity issues that compound
existing identity inference concerns. These results highlight the
tension between the feature richness of a genetic genealogy
service and the potential for security and privacy issues.1

B. Overview

In this paper, we explore the possibility of attacks against
GEDmatch from an adversary that only uses the standard
API (i.e., uploads normally formatted GDFs and runs standard
queries). We make the following contributions:

• In Section III we threat model an open-access genetic
genealogy API using the design of GEDmatch as a
guide. We discuss what types of attacks are possible
and how certain design choices can contribute to
security risks.

• In Sections VI and VII we show how the results
returned from GDF comparisons (i.e., genetic coor-
dinates and visualizations) can be used by adversaries
to extract raw genetic markers of any targeted user
in the GEDmatch database. This attack is sufficiently
powerful that it could be used to steal large portions
of the genetic database.

• In Section VIII, we discuss how an adversary might
poison the genetic database with spoofed or falsified
GDFs to create spurious relationships. We then show
how these GDFs can be easily constructed and up-
loaded to GEDmatch.

• In Section IX, we discuss possible mitigations to these
security issues and other recommendations for the
genetic genealogy industry.

II. BACKGROUND AND RELATED WORK

In this section we present background information on DTC
genetic testing and relative matching. We then survey related
work on genetic identity inference and genome privacy.

A. Direct-to-Consumer Genetic Testing

DTC genetic testing is marketed directly to consumers
without going through an intermediary, like a healthcare
provider. The most popular type of test uses dense genotyping
arrays that probe between 0.5-1 million genetic markers. DTC
testing kits are inexpensive (< $100 USD) and are mailed to
customers to be returned with a DNA sample (usually saliva).

1An earlier version of this work appeared in [33].

#rsid chr pos genotype
rs548049170 1 69869 TT
rs13328684 1 74792 AG
rs9283150 1 565508 GG
rs116587930 1 727841 GG
rs3131972 1 752721 GG
rs12184325 1 754105 CA
...

Fig. 1. An example DTC generated GDF. Each line corresponds to a single
SNP and includes a SNP identifier, chromosome number, base position within
the chromosome, and the genotype of the SNP.

Customers use the DTC genetic tests to get information on
their genetic ancestry, genealogy, and health. Users can also
download files from DTC companies, called genetic data files
(GDFs), that contain their raw genetic results.

GDFs contain an individual’s genetic information at spe-
cific one-base-long positions in the human genome, which are
known to vary within the human population. These positions
are referred to as single nucleotide polymorphisms (SNPs).
The possible DNA bases found in the human population at
a particular SNP are known as alleles, and the specific bases
a person has at a SNP constitutes that individual’s genotype.
The genotype of each SNP in the GDF contains two DNA
bases because chromosomes come in pairs (one from each
parent). GDFs are encoded in a simple ASCII format, with
each SNP recorded on a separate line (see Figure 1). The
SNPs are first sorted by chromosome and then by position
within each chromosome.

Since the rise of DTC testing, customers have wanted
to interpret their own genetic data using additional online
third-party services. To upload data to third-party services,
customers usually download their GDF from the DTC testing
company and then upload it to the third-party website. In some
cases, third-party services also support file transfers via APIs
or uploads with less common file formats (e.g., VCF).

B. Relative Matching

Relative matching algorithms rely on the fact that more
closely related individuals tend to share more of their DNA
and that the degree of relationship can be predicted by the
amount of DNA sharing (e.g., siblings share more DNA than
first cousins, and first cousins share more DNA than second
cousins). At a high level, relative matching algorithms attempt
to identify large DNA segments that are the same between two
individuals, called matching segments. Closer related individu-
als will, on average, share longer and more numerous matching
DNA segments. SNP-based GDFs can be used to locate these
matching segments because they contain the genotype of an
individual at positions throughout the genome.

Except for close relatives, like siblings, or when individuals
descend from a small number of people, it is typical for
each matching segment to be shared on only one of the two
chromosomes in a pair. This is because one chromosome
comes from the mother and the other from the father, and
most people are related through one branch of their family.
When a DNA segment matches on only one chromosome, it
is called a half-match and on both a full-match.

2

C. Identity Inference of Genetic Data

Genetic genealogy services are designed to find relatives
from genetic data. If the genetic data is from an unknown
source, then any relatives identified via relative matching can
be combined with genealogy information, like family trees, to
identify the source (person) of the genetic data. This approach
is known as identity inference or identity tracing and is used by
law enforcement to identify suspected criminals from unknown
DNA samples [13], [14], [19].

To perform identity inference the genetic genealogist must
have or be able to construct GDFs for an unknown target
individual and have access to genealogy information to con-
struct family trees. The genealogist then queries the third-party
service with the DTC profile to find the target’s relatives and
uses the genealogical information to determine the identity of
the target.

Recent work has demonstrated that anonymous genetic data
in public datasets can be de-identified using GEDmatch [14].
The ability to de-identify DNA data using third-party services
largely depends on the number of individuals — and, in partic-
ular, the number of relatives — already in the genetic database:
identification is easier with more matches. Using a database
that includes 1.28 million individuals, researchers estimated
that 60% of all individuals would be able to identify a third
cousin or closer, the same level of relationship that was used
in the Golden State Killer case; a database covering just 2% of
the population would suffice to find a third cousin for nearly
every person [14], [25].

D. Genome Privacy

To our knowledge, we are the first to experimentally
explore the specific attacks surfaced and studied in this paper.
However, there is extensive literature in the computer security
community on privacy, security, and genomics, which we
survey here. Early studies at the intersection of these domains
focused on privacy-respecting methods for processing genetic
data [4], [24], [36]. The field has continued to expand, as
captured by surveys such as Akgün, et al. [2], Mittos, Malin,
and De Cristofaro [30], and Naveed, et al. [31]. The surveyed
privacy concerns and associated defenses range from privacy
risks with genetic testing services, to data storage, to the
computation over genetic data by untrusted parties.

One critical and emerging sub-field leverages knowledge at
the intersection of both genetics and computer security, as cap-
tured by Erlich and Narayanan [13] in their survey. Work at this
intersection exploits genetic facts to compromise privacy. As a
simple example, because paternal information passes through
the Y chromosome, the knowledge of a target’s Y chromo-
some can yield paternal information and the target’s possible
surname [21]. Other works, such as [12] and [14], leverage
the underlying biology of familial relationships, as well as
genealogical databases, to de-anonymize DNA samples. This
area of research is growing in breadth and depth, and our
work contributes both conceptual and experimental analyses of
threats that, hitherto, have not been deeply explored. As early
as 2009, Goodrich observed that cryptographic approaches for
computing over genomic data would not prevent information
leakage resulting from those computations [17]. Essentially,
knowing the output of a computation over two DNA sequences

(even if computed cryptographically), and knowing one of
those two DNA sequences, can leak information about the
other sequence.

III. GENETIC GENEALOGY ATTACK SURFACES

Open-access genetic genealogy services, like GEDmatch,
are feature rich and have complex APIs. In this section, we
consider the security implications of GEDmatch’s design. The
GEDmatch API lets users interface with the genetic database
to upload data and run over twenty different genetic genealogy
queries. The API is typically accessed via a web interface, but
an open source command line interface is also available [23].

A. Genetic Database

The core function of the service is to mediate access
between users running relative matching queries and the sen-
sitive, raw genetic data that needs to be stored and accessed to
return results. The GDFs uploaded by users — referred to as
kits on GEDmatch — are stored in a database and assigned a
unique kit-identifier that references kits in subsequent queries.
Each GDF is also associated with metadata like name and
email address, so it is tied to an individual’s identity. Since
the genetic database stores large quantities of privacy sensitive
GDFs, it is a high risk target; for example, individual GDFs
contain medically relevant markers. If the entire database was
stolen, an adversary might have significant and permanent
identity inference capabilities.

The way the database is structured also has important
security implications. In the case of GEDmatch, the kits appear
to be compressed with a lossy compression scheme, likely
applied when the GDF is uploaded (Section V). Intuitively,
compression might lower the risk of data theft because the
raw genotype data is not stored; however, it actually creates
new security issues because it makes it significantly simpler
to extract genetic markers from other users through repeated
querying (Section VI and VII).

B. GDF Uploads

One of the most significant API functions is to let users
upload new GDFs to populate the genetic database. GDF
uploads are necessary for a user to find new relatives or make
other comparisons. GEDmatch supports GDFs produced by
the largest DTC testing companies, but will accept any file
as long as it conforms to the GDF format with a sufficient
number of SNPs. This fact is significant because there are
no current mechanisms to ensure that the uploaded GDFs
actually originated from a DTC service (see Section IX for a
discussion of possible solutions). Law enforcement has already
leveraged this capability to upload GDFs that came from
DNA processed outside of the DTC ecosystem [15]. However,
the ability to upload unauthenticated GDFs opens services to
additional security issues. For example, an attacker can upload
falsified GDFs or use pathological GDFs in malicious queries
to extract private genetic markers from other users. The lack of
authentication also means that GDF uploads could be a vector
for malware.

3

C. Relative Matching

A relative matching query, called a one-to-many compari-
son on GEDmatch, takes a kit identifier as input and returns a
list of potential relative kits, sorted by relatedness. The details
on the relative kits include name, contact information, kit-id,
and properties of the match. This list can be expanded to view
over 2,000 matches with standard accounts and 100,000 with
premium [8]. This lets an attacker scrape large numbers of
kit-ids and user information for use in subsequent attacks.
Attackers can recursively run additional relative matching with
each identified kit to scrape even more kit-ids. Overall, this
design makes it quite easy for an attacker to identify large
numbers of users if they have uploaded GDFs.

D. Direct Comparisons

The API also lets users make direct GDF-to-GDF com-
parisons, known as one-to-one comparisons on GEDmatch, to
investigate potential relatives in detail; all that is required is
the kit-ids of the two kits being compared. This is important
because it lets an attacker target anyone with a known kit-
id if there are vulnerabilities in direct comparisons. One-
to-one comparisons return visualizations called chromosome
paintings that show differences between the kits on each
chromosome and the genetic coordinates flanking the shared
segments. These results are common in genetic genealogy
because they let users understand precisely how they are ge-
netically related to potential relatives. The segment coordinates
are often maintained by “power users” in large spreadsheets,
which are helpful to understand the inter-relatedness of dif-
ferent matches [10]. In Section VI and VII we show how
both the chromosome paintings and segments coordinates on
GEDmatch leak too much information about the underlying
SNPs being compared. Using adversarially crafted kits, we
were able to extract the majority of SNPs from a targeted kit.

E. Additional Utilities

GEDmatch offers 18 additional tools to upload additional
data or query the genetic database. Each of these is a possible
attack vector that could have security implications. However,
in this work, we limited our focus to the most common genetic
genealogy features.

IV. ETHICS AND RESPONSIBLE DISCLOSURE

In the subsequent sections we describe a number of ex-
periments we did to understand the feasibility of different
attacks on GEDmatch service. We took great care to perform
these experiments ethically and legally and to disclose any
vulnerabilities we uncovered responsibly. We elaborate on the
specific precautions we took below.

Since GEDmatch is a live service, we had to ensure that all
our experiments were not only legal, but that they respected
the privacy of GEDmatch users and had minimal impact to the
GEDmatch service. The GEDmatch Terms-of-Service allows
raw data uploads from artificial DNA kits as long as they are:
(1) intended for research, and (2) not used to identify anyone
in the GEDmatch database. We ensured that we complied with
both terms.

Further, to protect the privacy of any individual (both
GEDmatch users and non-users), we derived all DTC profiles

used in this study from publicly available, anonymous genetic
datasets — datasets explicitly designated for research use (the
1000 Genomes Project and OpenSNP). Further, to protect the
privacy of real individuals, and to ensure that our profiles
were “artificial” (as stipulated in the GEDmatch terms of
service), each kit that we uploaded used data composed from
two separate individuals (i.e., did not correspond to any real
human). The privacy setting for each kit we uploaded was set
to “Research” instead of the default “Public” (two settings
offered by GEDmatch). The “Research” designation meant
that our kits would not appear in the matching results of
other users. Furthermore, to avoid any risk of de-anonymizing
the anonymous donors in the 1000 Genomes Project and
OpenSNP datasets, we analyzed only DNA matches between
the experimental kits we uploaded and did not view any
matching results containing real GEDmatch users.

Our University IRB determined, through written review,
that our research did not require IRB oversight because all
data used in our experiments was derived from public data and
had no identifiers. Nevertheless, we exercised extreme caution
with all our experiments, as discussed above.

Vulnerabilities we uncovered have been disclosed to GED-
match who is actively developing mitigations to these prob-
lems. We also reached to US government stakeholders before
the paper’s release.

V. REVERSE ENGINEERING ONE-TO-ONE COMPARISONS
ON GEDMATCH

In subsequent sections, we show how the results from
matching queries can be used to steal data or poison the ge-
netic database. Experimenting with these attacks first required
significant reverse engineering of one-to-one comparisons on
GEDmatch. Here, we describe our experimental setup and an
overview of reverse engineering results. We leave a detailed de-
scription of our reverse engineering procedure to Appendix A.

We created a free GEDmatch user account that was used
for all experimentation in the following sections. All analysis
was done with custom Python scripts and standard libraries.
We used the Python Imaging Library (PIL) to process visual-
ization images. All experiments on GEDmatch were conducted
between 01/16/19 and 06/14/19.

A. Artificial Kit Design

To generate kits for experimentation, we combined genetic
data from the 1000 Genomes project and DTC data files
from OpenSNP [1], [18] using a modified methodology that
Erlich et al. [14] used in their study of identity inference
attacks on GEDmatch. To generate each target DTC file, we
used data from two 1000 Genomes individuals in the CEU
population and one OpenSNP DTC file generated by 23andMe
with the v5 chip. The 1000 Genomes individuals were used
for the autosomal genotype data; we alternated chromosome
data from the two individuals (chromosome 1 came from the
first individual, chromosome 2 from the second, chromosome
3 from the first, etc.). Note that GEDmatch primarily does
matching using autosomal data (chromosomes 1-22). The non-
autosomal genotype, SNP IDs, and positions came from the
OpenSNP DTC genetic file. We used two 1000 genomes
individuals for the genotype data to ensure that the kit did

4

Fig. 2. One-to-one autosomal comparison results (default parameters) shown for chromosome 3. There is one matching segment between 2,233,338 - 41,017,070
(build hg37) with genetic distance 59.2 cM that includes 8212 SNPs. The image bars are compressed with at 1:35 ratio. On the marker indication bar (top bar):
green represents base pairs with a full match, yellow with a half match, and red with no match. On the matching segments bar (bottom bar): blue represents the
matching segment, black no match, and tan a large gap between adjacent SNPs.

not correspond to any real individual and to conform to the
GEDmatch ToS.

We were primarily interested in understanding privacy
risks to users that had their kits set to the default “Public”
privacy setting on GEDmatch. This setting provides the most
functionality and allows kits to appear in the results of relative
matching queries from other users (but is not supposed to
reveal any raw genetic information)2. However, for our ex-
perimental purposes, to prevent the target kits from interfering
with real user matches, we set the kits to the more restrictive
“Research” privacy setting. This setting prevents kits from
appearing in database-wide one-to-many queries but still lets
the user run one-to-one comparisons if kit-ids are known.

B. Query Requirements

The precise SNPs in a GDF vary by the DTC company and
chip version used to genotype the DNA sample. It is important
that the adversary use kits that match the same DTC company
and chip as the kit corresponding to the target individual so
that as many SNPs as possible overlap between them. The
adversary can find these details for a particular target using the
one-to-many matching results, which reveals the DTC testing
company and chip version of all matching kits.

When comparing two kits in a one-to-one comparison, both
kit-ids are needed. Therefore, an adversary attempting to attack
a specific target needs to know that target’s kit-id. The kit-id
of a specific individual can be found using a few methods:

• Email via User Lookup Tools: GEDmatch provides a
“User Lookup” tool that can find a user’s kit-ids via
email address or genealogy ID (GEDCOM ID).

• Relative Matching Queries: As described in Sec-
tion III-C, the results from relative matching queries
can be used to scrape thousands of kit-ids.

• Publicly Available Information: A user may reveal
a kit-id publicly, something we have seen numerous
times on blog posts, Internet forums, and videos.

C. One-to-One Comparison Details

One-to-one comparisons are highly configurable: the user
can adjust the minimum matching size, windowing thresholds,
genome build version, and resolution of the chromosome
visualizations; see Appendix B for possible configurations.

2In mid-May 2019, GEDmatch split the public setting into a public opt-in
and public opt-out for kits related to law enforcement searches. This change
does not impact our analysis.

Each query returns a set of 22 matching results and comparison
images, one for each of the autosomal chromosomes (see
Figure 2 for chromosome 3 results). At each chromosome, the
user is shown a table with the precise genetic coordinates of
matching segments and two colored bars encoding information
about the comparison at different positions along the chromo-
some. One color bar represents how markers compare (i.e.,
how SNPs compare), and the other represents large matching
DNA segments. We refer to these two colored bars as the
marker indication bar and matching segment bar, respectively.

We paid particular attention to the marker indication bar
because it seemed to encode the most information about the
underlying SNPs. Each bar is a 1-dimensional pixel vector
encoded in the GIF image file format. We were able to collect
these 22 GIF images by downloading the web files containing
the visualizations in the Chrome web browser. Four colors
appeared in the 22 marker indication bars: green, yellow, red,
and purple. According to a color key, green represents base
pairs with a full match, yellow base pairs with a half match, red
base pairs with no match. Occasionally, the final pixel would
be purple, which according to the key, represents a match with
phased data. (When this was the case, we ignored that pixel
in subsequent analysis.)

At full resolution, each pixel in the marker indication bar
corresponds to a single SNP. This bases of a SNP in the first
kit are compared to the bases of the same SNP in the second
kit. If the genotype is the same in both kits at that SNP, then
it generates a green pixel (full-match) in the marker indication
bar; one base off and it produces a yellow pixel (half-match);
and if both bases are different than it produces a red pixel (no-
match). Moreover, the bases at each SNP are not compared in
any order, since the genotyping process produces unordered
data. However, this is further complicated by the fact that
the genotype of each SNP appears to be compressed from
2-bit (i.e., {A,C,G,T}) to 1-bit (i.e., {0,1}) when making a
comparison. Specifically, A/T are interpreted as one-bit (which
we denote 0) and C/G as the other bit (which we denote 1).
This means that A’s are treated identically to T’s and C’s
identically to G’s when making a comparison, and so it is
the ‘one-bit’ bases of the two kits that are being compared.

To make this concrete, consider an arbitrary SNP where
the genotype of the first kit is AT and the second kit is CA.
First, the two genotypes are compressed to 1-bit (00 vs 10),
and then the one-bit bases are compared, which results in a
one base match and generates a yellow pixel.

We also uncovered the following facts about one-to-one
comparisons that were necessary in our subsequent attacks.

5

• GEDmatch filters out most SNPs with a low minor
allele frequency (MAF) — the frequency of the second
most common SNP variant.

• GEDmatch ignores SNPs containing non-standard
bases (like I/D or – –) in either of the compared kits.

• Only SNPs present in both compared kits are used in
the comparison. In other words, only the SNPs that
are in the intersection of the two kits are compared.

• The marker indication pixel bar on any chromosome
is displayed at a lower resolution if generates more
than ˜32,000 pixels.

VI. GENETIC MARKER EXTRACTION USING
CHROMOSOME VISUALIZATIONS

Here, we experimentally explore whether an adversary
could use direct comparisons as an oracle to extract the DNA
profile (raw SNPs) of another user of that service.

A. Generating Targets

We created a second GEDmatch user account (represent-
ing a targeted user) and constructed and then uploaded five
different genetic data files using the procedure described in
Section V-A. We denote these files as target(1)-kit-
target(5)-kit. The adversary’s goal was to extract the
genotype of as many SNPs as possible from the five target
profiles using another GEDmatch account.

B. Extraction Overview

Our goal was to discover whether the genotype of a
target could be extracted using just marker indication pixels
from one-to-one comparisons. This attack is broken up into a
number of phases, which are described in detail below.

To begin, the binary genotype of the target can be extracted
by making a small number of one-to-one comparisons with
˜10–20 specially designed extraction kits. The resulting marker
indication pixels leak too much information about the target’s
SNPs; an adversary can use the pixels to infer the underlying
raw genotype of the target kit. However, recall that GEDmatch
compares kits in a binary form, so in this case, the adversary
can only extract the binary genotype of the target. In our
experiments, we recovered the binary genotype for 61.0% of
the SNPs in the target.

Next, the adversary can decompress the binary genotype
into normal DNA bases using known allele frequency data. We
were able to convert the binary genotype of the compressed
SNPs 90.1% of the time. Finally, the adversary can fill in many
of the missing SNPs using a well known genetic technique
called imputation. After imputation, we extracted a total of
92.6% of the SNPs with 98.4% accuracy from our five targets.

C. Binary Genotype Extraction: Determining the Correspon-
dence Between Pixels and SNPs

At full resolution, each marker indication pixel corresponds
to the comparison of a single SNP. Therefore, if we know both
which SNP corresponds to which pixel and a method to convert
from pixel color to binary genotype, we can extract the binary

genotype of each corresponding SNP. (See Figure 3 for an
overview of the binary genotype extraction procedure.) In this
section, we show how to find the pixel-to-SNP correspondence.

Recall from Section V that when two kits are compared,
SNPs may be ignored for a number of reasons, including: the
SNP is pre-filtered by GEDmatch (e.g., the SNP has a low
MAF); the SNP is missing in one of the two kits; or the
genotype of the SNP in one of the kits has a non-standard base,
e.g., a dash or I/D. In all these cases, the pixel corresponding
to ignored SNPs will be missing in the marker indication bar
because that SNP was never used in the comparison. In some
of these cases, the adversary does not directly know which
SNPs are present or have non-standard bases in the target kit.
Therefore, our goal is to infer the pixel-to-SNP correspondence
for the SNPs that are compared given that the genotype of the
target kit is unknown.

To begin, we uploaded a new kit to GEDmatch, called
ext-kit, which is a standard experimental kit except for
three changes. First, all SNPs with a MAF less than 1% were
removed. Second, any SNP with a genotype that was binary
encoded as 01 (e.g., AC, AG, CT, GT) was rewritten to AA (00
in binary encoding). Finally, every other SNP was removed on
chromosomes 1, 2, 3, and 6 to prevent more than 32,000 pixels
from being generated, which lowers the marker indication
bar resolution. The resulting kit contained 363,164 autosomal
SNPs and resulted in 347,511 unfiltered SNPs when uploaded
to GEDmatch, which left a substantial number of SNPs that
were still being filtered.

We can identify the pixel corresponding to specific SNPs
by making small modifications to ext-kit. If the genotype
of any SNP is replaced with AC (01 in binary), then the
color of the corresponding pixel will change in a one-to-
one comparison with any other kit. To understand why the
pixel color always changes, consider the following: the binary
genotype of the other kit is (1) homozygous (00 or 11), or (2)
heterozygous (01). In case (1), every SNP in the unmodified
ext-kit is 00 or 11, so 00/11 will be compared to 00/11,
which results in a green or red pixel. However, when the
SNP is modified to 01, 01 is compared to 00/11, which
always produces in a yellow pixel. Similarly, in case (2),
00/11 compared to 01 results in a yellow pixel, but when the
SNP is changed to 01, 01 is compared 01, which results in a
green pixel. We leverage this insight to find the correspondence
between a large number of pixels and SNPs.

We created a new kit, called extmod(n)-kit, which
is the same as ext-kit except on each chromosome the
genotype of every nth SNP is replaced with AC; we refer
to these altered SNPs as modified SNPs. If we separately
compare ext-kit and extmod(n)-kit to any other kit,
the resulting marker indication bars will be identical except
for the pixels that correspond to the SNPs that were changed
to AC in extmod(n)-kit; we refer to the pixels that differ
between the marker indication bars as changed pixels.

At a high level, we can estimate the pixel-to-SNP corre-
spondence for the changed pixel by counting the number of
intervening pixels between the changed pixels. We can repeat
this for differing values of n to find the correspondence for
a large number of SNPs. Since the details of our method,
while involved, are not critical to understanding the rest of

6

ext-kit

target-kit

A 11 12 B

1

ext-kit

extmod(2)-kit

extmod(4)-kit

extmod(8)-kit

extmod(16)-kit

extmod(32)-kit

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

10 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 20 21 22 23 24 25 31 32

ext-kit

extmod(2)-kit

extmod(4)-kit

extmod(8)-kit

extmod(16)-kit

extmod(32)-kit

10 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 20 21 22 23 24 25 31 32

ext-kit comparison

00 00 00 00 00 00 00 00 00 0001 01 01 01 01 01 0111 11 11 11 11

target-kit binary genotype

Changed Pixel

Unchanged Pixel

C D

3

14

extmod(2)-kit

extmod(4)-kit

extmod(512)-kit

15

Fig. 3. (A): One-to-one comparison of extraction kits to the target kit. (B): Theoretical comparison when no SNPs are ignored. Changed pixels are at multiples
of n. SNP indexes are listed above ext-kit. (C) Comparison when SNPs at indexes 3, 18, 19, and 26-30 are ignored. The correspondence could be determined
for the SNPs at indexes shown in red. (D): Extraction of the target kit binary genotype from the ext-kit marker indication pixels. Workflow to extract
compressed genotype from a targeted kit. Step (1): Compare each extraction kit to the target with a one-to-one comparison. Step (2): Gather the resulting 22
marker indication bars from each comparison. Step (3): Use the number of intervening pixels between changed pixels to inductively compute the correspondence
between changed pixels and SNPs. Step (4): Recursively infer the SNP correspondences for more changed pixels if less than half the intervening pixels are
missing. Step (5): Compute the binary genotype of the target kit with the ext-kit comparison pixels for every SNP that has a known corresponding pixel.

this paper, we leave a detailed description of the pixel-to-SNP
correspondence algorithm to Appendix D.

We generated a total of 9 kits based on ext-kit us-
ing n = {2, 4, 8, 16, 32, 64, 128, 256, 512}, resulting in kits
extmod(2)-kit,..., extmod(512)-kit. Recall that when
constructing ext-kit, half of the SNPs were removed on
chromosomes 1, 2, 3, and 6 to ensure the marker indication
pixel bar was at full resolution. Therefore, we had to repeat
this procedure by constructing a different ext-kit where we
alternated which SNPs were removed on chromosomes 1, 2,
3, and 6; we did this to find the correspondence of all SNPs
on those chromosomes. In total, we constructed and uploaded
20 kits to GEDmatch.

These 20 kits were all compared to target(1)-kit,
and, using the pixel-to-SNP correspondence algorithm, we
found the corresponding pixel for 374,418 of the SNPs. We
next show how the binary genotype can be extracted for each
of these SNPs.

D. Binary Genotype Extraction: Pixel Color to Binary Geno-
type

Recall that ext-kit is homozygous in the binary geno-
type encoding at every SNP (i.e., it is 00 or 11 at every SNP). If
ext-kit were compared to any other kit, we could use the
color of the resulting marker indication pixels to determine
the binary genotype of SNPs in the other kit. For simplicity,
assume all SNPs in ext-kit have a binary genotype of 00

(the experiment will work similarly when a SNP has a binary
genotype of 11). If the pixel is green, then the binary genotype
of the matching SNP in the other kit must also be 00, since
00 vs 00 is the only way to generate a green pixel. Similarly,
if the pixel is yellow, then the matching SNP must be 01 (00
vs 01), and, if red, the matching SNP must be 11 (00 vs 11).

To test this extraction method, we attempted to extract
the binary genotype of SNPs from target(1)-kit. In the
previous section, we already compared the 20 extraction kits
to target(1)-kit and identified 374,418 pixel-SNP pairs.
Using the same method, we extracted the binary genotype of
these SNPs. We predicted the binary genotype of all SNPs in
target(1)-kit directly from the normal base-2 genotype
and used this information to confirm that the binary genotypes
from all of these SNPs were extracted correctly.

E. Decompress the Binary Genotype

Previously, we extracted the compressed binary genotype
of over 374,418 SNPs in target(1)-kit. However, our
objective is to extract the uncompressed, normal genotype.
The 1-bit compression is lossy, so we cannot directly infer the
genotype of any SNP. However, we can use allele frequency
data to infer certain SNPs. Depending on the binary genotype
of a SNP, there some situations where each bit only corre-
sponds to a single allele. For example, if a SNP were known
to have only alleles A (0 in binary) and C (1 in binary), then
we know that a binary genotype of 01 corresponds to AC.

7

If a SNP has only two alleles that each correspond to
different bits, then all binary genotypes can be decompressed.
This situation is common because the least common single
base pair mutations in the human population are A/T and
C/G substitutions, which together account for only around
16.5% of all possible single base pair substitutions [39].
Such substitutions are the only ones that lead to ambiguous
decompression; therefore, we expected to be able to decom-
press many SNPs. Of the 374,418 binary SNPs we extracted
from target(1)-kit, over 90.1% (337,468 SNPs) could
be unambiguously decompressed. We decompressed each of
these SNPs into the normal DNA bases and compared them
to bases in the target(1)-kit, which confirmed that all
these SNPs were predicted correctly.

Of the 9.9% of SNPs that could not be decompressed, all
but one corresponded to a SNP with three or more alleles.
Therefore, we suspected that GEDmatch was additionally
filtering two-allele SNPs with genotypes that were inherently
ambiguous (i.e., A/T and C/G). This is sensible because these
SNPs would not vary, in binary, between individuals and are
thus not useful for comparisons.

F. Impute the Remaining SNPs

At this stage, we have inferred 337,468 of the 613,878
SNPs in the target(1)-kit. The last step is to predict
the remaining SNPs in the target kit. To do this, we used
a statistical technique called imputation which is designed
to predict missing genotypes [28]. Imputation works more
effectively when more data is available, and, since we already
extracted a large number of SNPs, we expected it to work well.

We used the Sanger Imputation service to impute the
missing SNPs in the target(1)-kit [29]; we pre-phased
the SNPs with EAGLE2 and used the Haplotype Reference
Consortium (r1.1) as the reference panel [27]. This imputed
231,126 additional SNPs with 96.0% accuracy.

G. Experiments with the Targets

To study the efficacy of this attack against targeted users,
we extracted the five target kits from different accounts; the
extraction kits were uploaded to one account and compared
to the target kits uploaded to a different account. We ran the
end-to-end extraction procedure on the five kits: we extracted
55.0% deterministically with 100% accuracy by decompress-
ing the binary genotype (Sections VI-C, VI-D, and VI-E), then
predicted an additional 37.7% of the SNPs using imputation
with 96.0% accuracy (Section VI-F). In total, we extracted an
average of 92.6% of the SNPs with 98.4% accuracy.

After the extraction kits have been uploaded (a one time
cost), the extraction takes around 10-20 seconds of comparison
time on GEDmatch. Therefore, this attack could easily be
scaled up to extract the genotype from large numbers of kits,
which would only be limited by the kit identifiers that could
be scraped.

Finally, we quantified the risk of genotype extraction
to medically relevant SNPs. Using the ClinVar archive — a
dataset that links human genetic variants and phenotypes —
we selected all SNPs from the target(1)-kit that were
categorized as either ”pathogenic” or ”likely pathogenic”. The

privacy risks were indeed significant: of the 608 medically
relevant SNPs in the target(1)-kit, we were able to
correctly extract 264 of these.

VII. GENETIC MARKER EXTRACTION USING MATCHING
SEGMENTS

We previously described how the marker indication bar can
be used to extract the genotype of a large number of SNPs
from some target kit. One defensive response might be simply
to remove that bar. Anticipating that possible response, in this
section we explore how other information revealed in one-to-
one comparisons, like the matching segments bar and matching
segments table, leak enough information to extract specific
SNPs of interest. (See Figure 2, and note the significantly
lower resolution of the Matching Segments bar compared to
the Marker Indications bar that we used in Section VI.)

Take matching DNA segments as an example. If an ad-
versary can construct a matching segment around a specific
SNP, then by changing the genotype of that SNP, the matching
segment may split or disappear. This happens because the SNP
will no longer match in the two kits, which cuts the matching
segment in half. Therefore, an adversary may be able to use
the presence or absence of a matching segment as an oracle to
extract individual SNPs. Here, we show how this can be done
on GEDmatch.

A. Constructing Matching DNA Segments

Recall that GEDmatch uses a 1-bit compression scheme
when comparing SNPs. A segment, or run of SNPs, is con-
sidered a matching segment in GEDmatch if it contains a
long enough run of half- or full-matching SNPs (i.e., one or
both bits match in each SNP). The precise parameters, like
minimum segment length, are configurable by the user when
running a one-to-one comparison.

We know that a run of SNPs where every SNP has a
genotype of AC will half- or full-match any other kit (see
Section VI-C for an explanation). Therefore, we can construct
a matching segment in any given chromosome region by
setting all SNPs in that region to AC.

B. Using DNA Matches to Extract Individual SNPs

We can configure the one-to-one comparison so that a
single mismatched SNP will break a matching segment; in
other words, the matching segment must be a contiguous run
of half- or fully-matched SNPs. Assume a SNP of interest
called Si. The adversary can extract the compressed genotype
of Si in a target kit by uploading an extraction kit where
Si−j , Si−j+1, ..., Sj , ..., Si+j−1, Si+j are all set to AC; j is
made large enough so the region (Si−j ,Si+j) is at least as
large as the minimum matching segment size.

The adversary then uploads three additional extraction kits,
identical to the first, except that Si is AA (00 compressed)
in one, Si is CC (11 compressed) in the second, and Si is
set to dashes in the fourth. All four extraction kits are then
compared to the target. There are three possible outcomes we
must consider based on the genotype of Si in the target: (1)
Si is missing or contains a non-standard allele, (2) Si is 00 or
11, or (3) Si is 01.

8

• Case (1): Si is missing or contains non-standard
alleles in the target. GEDmatch reports the number
of SNPs in each matching segment. The number of
SNPs reported in the matching segment will drop
when compared to the extraction kit where Si = –
– if the target has a standard genotype. Otherwise,
the number of SNPs in the segment will remain
unchanged because the SNP is missing or it contains a
non-standard allele. Therefore, this fact can be used as
a method to tell if Si is missing or has a non-standard
allele in the target.

• Case (2): Si is 00 or 11 when compressed. In one of
the extraction comparisons, the matching segment will
break into smaller matching segments or disappear
entirely if the resulting smaller segments are below
the minimum matching length. This will correspond to
the extraction kit that set Si to the opposite genotype
of the target (e.g., 11 if Si is 00 in the target).

• Case (3): Si is 01 when compressed. If the segment
is unchanged in the three extraction kits where Si

is set to 00, 01, and 11, then we know the target
has genotype 01 because it is the only genotype that
matches to all three kits.

At this point, an adversary could decompress the geno-
type using allele frequency data as before. Unlike the SNP
extraction described in the previous section, this attack does
not require pixels to be shown at high resolution or the
correspondence between pixels and SNPs to be known. Hence,
this attack further highlights the challenges of completely elim-
inating information leakage through genetic matching results.

C. Experiments with a Target

To experimentally demonstrate SNP extraction attacks us-
ing matching DNA segments, we attempted to extract the bi-
nary genotype of four specific SNPs in the target(1)-kit.
To test the four possible situations, the target SNPs were
00, 01, 11, and the final one was missing entirely from the
target(1)-kit. Each targeted SNP was on a separate
chromosome so we could attempt to extract all at once.

We constructed the four extraction kits using the ext-kit
as a base and included 400 SNP matching segments around
the four target SNPs. In the extraction kits the target SNPs
were set to AA in the first kit, AC in the second, CC in the
third, and -- in the fourth. As expected, we were able to use
the presence or absence of a matching segment as an oracle
to extract individual SNPs.

VIII. SPOOFED RELATIONSHIPS

In this section we explore our hypothesis that an attacker
can upload spoofed or falsified GDFs to create spurious relative
matches and forge familial relationships. We first demonstrate
that an adversary can upload GDFs to GEDmatch that produce
false relative matches and then consider how false relationships
can be used maliciously.

A. Constructing False Relatives on GEDmatch

Recall that relative matching works by identifying match-
ing segments between two GDFs, and the degree of relatedness

is proportional to the total length of the matching segments.
Resources like the Shared cM Project can help users find
matching segment estimates for each type of relationship [6].
Suppose an adversary wants to spoof a 2nd cousin for some
target on GEDmatch. The adversary can do this by uploading
a GDF that produces the expected number and length of
matching segments for a 2nd cousin; this can be extended to
any desired relationship. An easy way to accomplish this is to
replicating the matching segment coordinates of real relative
pairs on GEDmatch — the adversary can view matches for any
kit in the database if the kit ID is known. Since GEDmatch
does not verify the identity of its users, the adversary is free
to assign any metadata (e.g., name or email address) to the kit
and user account.

From our investigation in Section V, we know that a SNP
is half- or full-matching on GEDmatch if one or two of
the compressed genotype bits match, respectively; a matching
segment is a long run of half- or full-matching SNPs. An
adversary can spoof a matching segment by copying one or
two of the compressed bases from a run of SNPs in the target.
Arbitrary matching segments can be spoofed whenever the
binary genotype of the target kit is known; this can be found
for any kit (with known kit-id) using the method described in
Sections VI-C and VI-D. In the simple case when the adversary
already has access to the target’s GDF, they can copy SNPs
directly from that GDF to duplicate matching segments.

We experimentally tested the above method to make a
false child for the target(1)-kit. We first extracted
the binary genotype of the target(1)-kit as usual and
then set all SNPs in the false-child GDF to half-match the
target(1)-kit; note, a parent-child relationship is ex-
pected to have half-matching segments on all chromosomes
(approximately 3,400 cM of shared DNA). We uploaded the
false relative GDF to GEDmatch and compared it to the
target(1)-kit. This resulted in 3,411.1 cM of half match-
ing segments and a most recent common ancestor estimate of
1 — the estimate expected for a parent-child relationship.

Our experiment shows that an adversary can create artificial
half- and full-matching segments to spoof different relations;
however, there are ways to make spoofed relatives appear
more realistic, especially if the matches are scrutinized (as
would be expected in a forensics investigation). Take the
half-matching segments we constructed for the false child
above. These were constructed by half-matching every SNP in
target(1)-kit, however, in real parent-child relationships,
half-matching segments will contain mixtures of half- and
full-matching SNPs. The adversary could instead copy the
distribution of half and full-matching SNPs from a real parent-
child comparison to make a more realistic match.

In other cases the adversary may want to spoof a relative
of a target who has other existing relatives in the database.
Depending on where those existing relatives are in the family
tree, the adversary may need the spoofed GDF to be related
to both the target and the other existing relatives (i.e., two
relatives of a target may be related to each other). In cases
of genetic triangulation, the target, existing relatives, and the
spoofed relative may need to match on some of the same
segments. To solve both issues, the adversary can extract
the binary genotype of the target’s matches, in addition to

9

SuspectSiblingSibling

ParentParent

G-ParentG-Parent

Great-GPGreat-GP

Great-A/UGreat-A/U

1C 1R

2nd Cousin2nd Cousin Synthetic

2nd Cousin

Synthetic

Cousin
Synthetic

2nd Cousin

Flasely Predicted

Parents of Suspect

Average Relatedness

of Pro le to Suspect

Pro le in Database

a b

Falsely Predicted

Great-A/U of Suspect

Search occurs in

the wrong direction

Fig. 4. Example attacks that disrupt genetic identify inference. A, An adversary wants to avoid identification when their 2nd cousin is already in a third-party
database. The adversary uploads a falsified second cousin under the identity of a second individual that is related to the 2nd cousin but not the adversary. This
falsely implies that the adversary is on a different branch of the family tree. B, The adversary uploads two falsified relatives on different branches to falsely
imply that a couple was the adversary’s parents.

the target. Then the spoofed GDF can be designed to have
matching segments for both the target and the target’s relatives.

B. Security Implications of False Relatives

Having confirmed that it is possible to spoof relations on
GEDmatch, we now consider how an adversary can use this
capability maliciously.

Commit fraud or harm reputation: The cultural and legal
significance of family relations brings significant security
implications. There are many reports of genetic genealogy
users finding unexpected relative matches due to misidentified
parentage or adoption [5], [9]; estimates put the non paternity
rate in Switzerland and Germany at around 1% [35], [37].
Normal users are not likely to consider the possibility that
matches can be spoofed, and therefore, may believe that an
unexpected, spoofed match is legitimate. An adversary could
use this capability to gain the trust of the victim or damage
their reputation.

Method: The adversary identifies a target and then generates
and uploads a spoofed descendent of the target to GEDmatch
using the procedure described above. From the target’s per-
spective, the spoofed relative will appear like an authentic
relative match.

Disrupt genetic identity inference: To identify the person
corresponding to an unknown genetic sample, a genetic ge-
nealogist will first find all the relative matches for the unknown
sample and work through genealogy records to generate a
large set of potentially thousands of possible identities. The
genealogist will sift through these identities using the expected
demographic information (e.g., age, gender, location, and eth-
nicity) and genetic triangulation to narrow the set of possible
identities to a manageable number [19]. The adversary’s goal
is to use spoofed relations to disrupt or prevent this type of
analysis. Note that when identity inference is used in a law
enforcement context, the possible identities are treated as leads
that are re-tested with traditional tests, like short tandem repeat
fingerprinting [19]; therefore, the adversary can only prevent
discovery.

Method: It is difficult to experiment with attacks against
genetic identity inference in an ethical manner, especially
in the forensics context, due to the unique nature of each
search — which is a manual and expert driven process. Below
we describe a number of theoretical attacks that may disrupt
or make identity inference more challenging. However, we
emphasize that further research is needed to confirm the
effectiveness of these attacks in real searches.

Recall that falsified relatives can be uploaded under falsi-
fied or fictitious identities on GEDmatch. In Figure 4 we show
two simplified scenarios where an adversary implies a false
identity inference using spoofed relative under an assumed
identity. Figure 4(A) depicts a scenario where an adversary
wants to avoid identity inference with a second cousin already
in the database. The adversary uploads a spoofed second cousin
under the identity of an individual that is not related to the
adversary but is related to the second cousin. This falsely
implies that the adversary is on a different branch of the
family tree. Note, that to be consistent with the topology of
the family tree, the spoofed second cousin should be a second
cousin of the adversary and a first cousin of the true second
cousin already in the database. In a second attack, shown
in Figure 4(B), the adversary uploads spoofed relatives to
different branches of a family tree to falsely imply that the
adversary is a descendent of an unrelated couple.

There are other circumstances that can make identifica-
tion more challenging. For example, international genealogy
records can be hard to find [19]; therefore, an adversary
could upload spoofed matches under the identity of individuals
that are located internationally or deceased. People from en-
dogamous populations — those that are highly interrelated —
can be harder to identify because they typically have a high
number of matches and complex family trees. Companies
like Parabon Nanolabs believe an individual is likely from
an endogamous population if they have at least ten, 70cM
or greater matches (3rd cousin or closer) [19]. An adversary
could leverage this fact by uploading a large number of distant
spoofed matches, similar to what is expected in an endogamous
population, to make the search space intractable. Finally, if the

10

adversary controls the identity of the spoofed matches (e.g.,
email address or other contact information) then they could
be contacted by investigators — as was done with a second
cousin in the Golden State Killer search — which would alert
the adversary that they are being actively searched [16].

IX. DISCUSSION

Third-party genetic genealogy analysis has been a useful
tool for millions of customers; however, as this study demon-
strates, vulnerabilities in these services can raise significant
security and privacy risks. Here, we reflect on these issues to
make a number of security recommendations and discuss how
these attacks might generalize to other services.

A. Genetic Data File Authentication

All of the attacks we identified were possible because
there are no technical restrictions preventing an adversary
from uploading falsified or pathologically designed GDFs.
Therefore, we strongly suggest that relative matching queries
and direct comparisons be restricted to data that was generated
by a DTC testing company, which we call DTC-authentication.
Erlich et al., proposed a possible DTC-authentication scheme
to prevent unauthorized identity inference [14]. They proposed
that DTC testing companies digitally sign GDFs and include
the signature in the GDF header so the file can be verified by
third-parties.

Such a scheme would also be effective at preventing the
vulnerabilities we uncovered because an adversary could not
make comparisons with arbitrary data, which was required to
extract genetic markers, or generate falsified relatives. We fur-
ther suggest that the genotyping instrument itself digitally sign
the data it generates so it can be traced to a single instrument,
company, and time. This DTC-authentication scheme is also
flexible because it gives third-party services the control to
decide when to verify GDFs and can allow for exemptions
like approved law enforcement use.

B. API Fixes and Security Mitigations

First, we suggest that all direct comparisons require that
one of the GDFs was uploaded by the user. This way a user
cannot compare arbitrary GDFs to one another only using GDF
identifiers. Moreover, we suggest limiting direct comparisons
to GDFs with a minimum degree of relatedness. This will
restrict the possible set of GDFs an adversary can target but
does not significantly affect usability because unrelated GDFs
are rarely compared.

As a second defense-in-depth strategy, we suggest that
third-party services rate limit queries, especially against the
same GDF, because repeated querying was necessary to extract
raw SNPs. Moreover, services should consider implementing
some form of anomaly detection; both the artificial GDFs and
query results from our experiments were highly anomalous and
should be detectable with a simple classifier.

Services should also consider implementing deterrent mea-
sures as well. For example, services could alert users whenever
their kits are queried by someone else in a direct comparison,
which could give advanced notice of an attack.

Chromosome visualizations and other details returned from
matching queries are important features to help users un-
derstand how they are related to each other, and so we do
not recommend eliminating these features entirely. However,
services should be very wary of returning fine grained visu-
alizations and precise genetic coordinates because they may
leak unintentional information. System designers will have to
find a balance between the precision of matching results with
the possibility of data leakage.

Finally, the data storage method and matching algorithm
should be scrutinized. In the case of GEDmatch, genotype
compression during comparisons made it much simpler to
construct half- and full-matching segments. This design may
also contribute to other risks we did not explore, like denial-of-
service attacks, because an adversary may be able to construct
pathological kits that match all GDFs in the genetic database.

C. Generalizability of Attacks

This work focused on a security analysis of GEDmatch,
but an important question is how these results might generalize
to other genetic genealogy services. GEDmatch is somewhat
unique because of its size (largest third-party genetic geneal-
ogy service), the breadth of its API, and its prominent use in
criminal forensics. However, many of the features, like relative
matching, chromosome visualizations and segment coordinates
in results, and raw GDF uploads are common among third-
party and DTC services.

The other most significant third-party genetic genealogy
service is an academic research effort called DNA.Land3,
which maintains a genetic database with over 160,000
GDFs [38]. Similar to GEDmatch, DNA.Land supports relative
matching that returns chromosome visualizations and precise
matching segment coordinates [11]. However, DNA.Land has
a much more restrictive API than GEDmatch, which we
suspect makes marker extraction attacks much more difficult
in practice.

DNA.Land does not support direct comparisons between
arbitrary kits, so it is more difficult to target specific users, and
the resolution of the chromosome visualizations is much lower,
which obfuscates SNP level details. The matching coordinates
appear to be high resolution, so single SNP extraction (like
that shown in Section VII) may still be possible. However,
DNA.Land does significant preprocessing of each kit before
analysis, including imputation, and uses a different matching
technique based on the GERMLINE algorithm, which further
complicates these attacks [20], [38]. Thus, we think the risk
from marker extraction is much less severe on DNA.Land
because of its significantly restricted API compared to GED-
match and different algorithms used in comparisons.

Without DTC-authentication, it will be difficult to prevent
false relative GDFs from being uploaded to any service as long
as the attacker has access to a target’s genetic sample or GDF.
Therefore, an adversary should still capable of uploading false
relatives to DNA.Land. However, this attack is much more
severe on GEDmatch than DNA.Land because the attacker can

3DNA.Land is currently transitioning from an academic to commercial
service, which requires all previously collected user information and GDFs
be deleted.

11

first extract the target’s genotype, and thus, target anyone in the
database. It may also be possible that vulnerabilities in another
service, like GEDmatch, could help bootstrap relative spoofing
attacks on DNA.Land because the attacker could gather more
information about the target, like the underlying genotype,
using the vulnerabilities in the other service.

To summarize, while we did not experiment with
DNA.land, we believe the more restrictive API and algorithmic
differences makes DNA.Land significantly less vulnerable to
the security issues raised in this paper. Further, if security
issues were to manifest, they would be much harder to target
and scale. This highlights how variations in APIs and other
design choices can lead to significant differences in security,
but that improved security may come at the cost of reduced
functionality to users. Further, we suspect that feature-rich
APIs provide value to the genetic genealogy community, and
might contribute in part to GEDmatch’s popularity. Hence,
should new services emerge, we conjecture that they may face
security challenges if they also provide broad APIs that appear
favored by customers.

X. CONCLUSION

In this paper, we explored new threats to genetic genealogy
beyond identity inference attacks. As this work demonstrates,
genetic genealogy services can be difficult to secure because of
their open nature and the rich set of features they support. We
hope this contributes to a discussion in the computer security
and broader genetics community about emerging security risks
to genetic genealogy services and spurs future research on the
secure design of genetic genealogy systems, especially as these
services continue to be used in high-stakes applications, like
criminal forensics.

ACKNOWLEDGEMENTS

This research was supported in part by the University of
Washington Tech Policy Lab, which receives support from:
the William and Flora Hewlett Foundation, the John D. and
Catherine T. MacArthur Foundation, Microsoft, and the Pierre
and Pamela Omidyar Fund at the Silicon Valley Community
Foundation. It was also supported by a grant from the DARPA
Molecular Informatics Program. We thank Ryan Calo, Bill
Covington, and Elena Ponte from the UW Law School for
giving us legal insights on drafts of this paper. We thank
Franziska Roesner from the UW Security and Privacy Lab
for early feedback on the paper and Sandy Kaplan for editing
advice. We thank Stefan Katzenbeisser for shepherding this
paper, and all our reviewers for insightful comments and
feedback, all of which helped improve this paper.

REFERENCES

[1] 1000 Genomes Project Consortium and others, “A global reference for
human genetic variation,” Nature, vol. 526, no. 7571, p. 68, 2015.

[2] M. Akgün, A. O. Bayrak, B. Ozer, and M. S. Sağiroğlu, “Privacy pre-
serving processing of genomic data: A survey,” Journal of Biomedical
Informatics, vol. 56, pp. 103–111, 2015.

[3] P. Aldhous, “We tried to find 10 BuzzFeed employees just like cops
did for the Golden State Killer,” https://www.buzzfeednews.com/article/
peteraldhous/golden-state-killer-dna-experiment-genetic-genealogy.

[4] M. J. Atallah, F. Kerschbaum, and W. Du, “Secure and private sequence
comparisons,” in WPES, 2003.

[5] A. Author, “With genetic testing, I gave my parents the
gift of divorce,” https://www.vox.com/2014/9/9/5975653/
with-genetic-testing-i-gave-my-parents-the-gift-of-divorce-23andme.

[6] B. T. Bettinger, “The Shared cM Project 3.0 tool v4,” https://dnapainter.
com/tools/sharedcmv4.

[7] K. V. Brown, “DNA website had unwitting role in Golden State
manhunt,” Bloomberg, 2018.

[8] L. Coakley, “Tips for using GEDmatch,” http://www.genie1.com.au/
blog/78-tips-for-using-gedmatch, 2016.

[9] ——, “DNA success stories,” http://genie1.com.au/blog/
80-dna-success-stories, 2018.

[10] K. Cooper, “Taking it to the next level — DNA
spreadsheets,” https://blog.kittycooper.com/2016/09/
taking-it-to-the-next-level-dna-spreadsheets/.

[11] “Relative finder information,” https://dna.land/relative-finder-info.
[12] P. M. Ellenbogen and A. Narayanan, “Identification of anonymous DNA

using genealogical triangulation,” bioRxiv, Tech. Rep., 2019.
[13] Y. Erlich and A. Narayanan, “Routes for breaching and protecting

genetic privacy,” Nature Reviews Genetics, vol. 15, no. 6, p. 409, 2014.
[14] Y. Erlich, T. Shor, I. Pe’er, and S. Carmi, “Identity inference of genomic

data using long-range familial searches,” Science, vol. 362, no. 6415,
pp. 690–694, 2018.

[15] T. Fuller, “How a genealogy site led to the front door of the Golden
State Killer suspect,” New York Times, 2018.

[16] M. Gafni, “The woman behind the scenes who helped capture the
Golden State Killer,” The Mercury News, 2018.

[17] M. T. Goodrich, “The mastermind attack on genomic data,” in IEEE
Symposium on Security and Privacy, 2009.

[18] B. Greshake, P. E. Bayer, H. Rausch, and J. Reda, “OpenSNP–a
crowdsourced web resource for personal genomics,” PLoS One, vol. 9,
no. 3, p. e89204, 2014.

[19] E. Greytak and C. Moore, “Closing cases with a single SNP array:
Integrated genetic genealogy, DNA phenotyping, and kinship analyses,”
International Symposium on Human Identification, 2018. http://docs.
parabon.com/pub/Parabon Snapshot Scientific Poster-ISHI 2018.pdf.

[20] A. Gusev, J. K. Lowe, M. Stoffel, M. J. Daly, D. Altshuler, J. L. Breslow,
J. M. Friedman, and I. Pe’er, “Whole population, genome-wide mapping
of hidden relatedness,” Genome research, 2009.

[21] M. Gymrek, A. L. McGuire, D. Golan, E. Halperin, and Y. Erlich,
“Identifying personal genomes by surname inference,” Science, vol. 339,
pp. 321–324, 2013.

[22] B. M. Henn, L. Hon, J. M. Macpherson, N. Eriksson, S. Saxonov,
I. Pe’er, and J. L. Mountain, “Cryptic distant relatives are common in
both isolated and cosmopolitan genetic samples,” PLOS ONE, vol. 7,
no. 4, pp. 1–13, 04 2012.

[23] N. Homer, “Gedmatch tools,” https://github.com/nh13/gedmatch-tools.
[24] S. Jha, L. Kruger, and V. Shmatikov, “Towards practical privacy for

genomic computation,” in IEEE Symposium on Security and Privacy,
2008.

[25] J. Jouvenal, “To find alleged Golden State Killer, investigators first
found his great-great-great-grandparents,” Washington Post, 2018.

[26] L. Kessler, “The benefits of combining your DNA raw data,” http://
www.beholdgenealogy.com/blog/?p=2717, 2018.

[27] P.-R. Loh et al., “Reference-based phasing using the haplotype reference
consortium panel,” Nature Genetics, vol. 48, no. 11, p. 1443, 2016.

[28] J. Marchini and B. Howie, “Genotype imputation for genome-wide
association studies,” Nature Reviews Genetics, vol. 11, no. 7, p. 499,
2010.

[29] S. McCarthy et al., “A reference panel of 64,976 haplotypes for
genotype imputation,” Nature Genetics, vol. 48, no. 10, p. 1279, 2016.

[30] A. Mittos, B. Malin, and E. D. Cristofaro, “Systematizing genome
privacy research: A privacy-enhancing technologies perspective,” Pro-
ceedings on Privacy Enhancing Technologies, vol. 2019, no. 1, pp. 87
– 107, 2019.

[31] M. Naveed, E. Ayday, E. W. Clayton, J. Fellay, C. A. Gunter, J.-P.
Hubaux, B. A. Malin, and X. Wang, “Privacy in the genomic era,”
ACM Computing Surveys, vol. 48, no. 1, pp. 6:1–6:44, 2015.

12

[32] S. C. Nelson, D. J. Bowen, and S. M. Fullerton, “Third-party genetic
interpretation tools: A mixed-methods study of consumer motivation
and behavior,” The American Journal of Human Genetics, 2019.

[33] P. M. Ney, “Securing the future of biotechnology: A study of emerging
bio-cyber security threats to DNA-information systems,” Ph.D. disser-
tation, University of Washington, April 2019.

[34] A. Regalado, “More than 26 million people have taken an at-home
ancestry test,” MIT Technology Review, 2019.

[35] G. Sasse, H. Müller, R. Chakraborty, and J. Ott, “Estimating the
frequency of nonpaternity in Switzerland,” Human Heredity, vol. 44,
no. 6, pp. 337–343, 1994.

[36] D. Szadja, M. Pohl, J. Owen, and B. Lawson, “Toward a practical data
privacy scheme for a distributed implementation of the Smith-Waterman
genome sequence comparison algorithm,” in NDSS, 2006.

[37] M. Wolf, J. Musch, J. Enczmann, and J. Fischer, “Estimating the
prevalence of nonpaternity in Germany,” Human Nature, vol. 23, no. 2,
pp. 208–217, 2012.

[38] J. Yuan, A. Gordon, D. Speyer, R. Aufrichtig, D. Zielinski, J. Pickrell,
and Y. Erlich, “DNA.Land is a framework to collect genomes and
phenomes in the era of abundant genetic information,” Nature genetics,
vol. 50, no. 2, p. 160, 2018.

[39] Z. Zhao and E. Boerwinkle, “Neighboring-nucleotide effects on single
nucleotide polymorphisms: A study of 2.6 million polymorphisms
across the human genome,” Genome Research, vol. 12, no. 11, pp.
1679–1686, 2002.

APPENDIX A
REVERSE ENGINEERING ONE-TO-ONE COMPARISONS

We began our investigation of one-to-one comparisons by
running a comparison between two kits. See Table I for a
description of the kits we used during experimentation.

To construct these two kits, which we denote as
match(1)-kit and match(2)-kit, we copied short runs
of SNPs of varying lengths (ranging from 25 to 10,000 SNPs)
from match(1)-kit and replaced them in match(2)-kit
to simulate small matching DNA segments. In some cases, we
copied just one base from each SNP to replicate half-matches;
other times, we copied both bases to replicate full-matches
(recall that each SNP has two bases, one from each parent).

A. Interpreting the Marker Indication Bar: Filtering SNPs

To better understand the relationship between SNPs and
the 22 marker indication bars, we uploaded a third kit, called
marker-ind-kit, and ran an additional one-to-one com-
parison at full resolution between marker-ind-kit and
itself. (GEDmatch allows a kit to be compared to itself.) As
anticipated, this returned 22 marker indication bars that were
all green pixels — at every SNP, you are comparing the same
DNA bases because marker-ind-kit is being compared
to itself. Below the colored bars for chromosomes 1, 2, 3,
and 6, it was printed: “Image Size Reduction: 1

2”. For each
chromosome, the number of pixels in the marker indication
bar was substantially less than the number of SNPs.

We used the GEDmatch “DNA file diagnostic utility” to get
additional details about the marker-ind-kit. Most impor-
tantly, this utility reports the number of “Tokens” per chro-
mosome. The number of marker indication pixels, henceforth
referred to simply as pixels, for each chromosome matched the
number of tokens exactly — the exceptions were chromosomes
1, 2, 3, and 6, which had twice as many tokens as pixels (to
account for the 1/2 image size reduction). This suggested that
after a kit is uploaded to GEDmatch, certain SNPs are removed

Fig. 5. Screenshot of GEDmatch’s web form for one-to-one autosomal
comparisons.

when a kit is tokenized (a procedure that happens soon after
uploading a kit). Furthermore, it indicates that each token
has a one-to-one correspondence with each marker indication
pixel; therefore, each tokenized SNP is compared individually
between the two kits.

Our investigation of public discussions on GEDmatch led
us to an online blog post suggesting that GEDmatch might
discard SNPs with a low MAF [26]. To test this hypothesis,
we used allele frequency data from the 1000 Genomes project
to filter out SNPs in marker-ind-kit with a MAF of less
than 1% and re-uploaded this kit to GEDmatch. We call this
new kit filtered-kit. After filtering, the percent of SNPs
missing dropped precipitously from 19.3% to 2.1%. Therefore,
GEDmatch seems to be filtering out many SNPs with a low
MAF in one-to-one comparisons.

B. Additional Comparison Details

This describes additional experiments that were necessary
to fully understand GEDmatch’s one-to-one comparisons.

• Only SNPs which are present in both of the kits are
compared. We also hypothesized that only SNPs that
are present in both kits will be used in a comparison.
To test this we uploaded two kits overlap(1)-kit
and overlap(2)-kit that were identical to
filtered-kit except that 10 SNPs were re-
moved from chr22 in overlap(1)-kit and
10 different SNPs were removed from chr22 in

13

overlap(2)-kit. As expected, each of the two kits
had 10 fewer tokens on chr22 than filtered-kit.
However, when overlap(1)-kit was compared to
overlap(2)-kit there were 20 fewer pixels on
chr22. This indicated that only SNPs in the intersec-
tion of both the two kits are used in the comparison.

• SNPs with non-standard bases are ignored. 23andMe
DTC genetic data files contain alleles other than
the standard DNA bases. With 23andMe files, a
no call is represented by two dashes (--), inser-
tions by (II), deletions by (DD), and deletion/inser-
tions by (DI). We hypothesized that SNPs with non-
standard genotypes are ignored by GEDmatch and
not tokenized. This was confirmed by uploading a
final kit nonstandard-alleles-kit, same as
filtered-kit, except that we replaced the geno-
type of 10 SNPs on chr19 with dashes, 10 SNPs on
chr20 with II, 10 SNPs on chr21 with DD, and 10
SNPs on chr22 with DI. The resulting kit had 10 fewer
tokens on each of chr19, chr20, chr21, and chr22 than
filtered-kit, confirming that SNPs containing
dashes insertion, and deletions are ignored.

• The pixel image is compressed when there are more
than ˜32,000 pixels. We noticed that whenever a kit
was compared with itself and had more than ˜32,000
tokens on a chromosome that there would be an
image compression message below that chromosomes.
Therefore, we suspected that whenever the number of
pixels was greater than ˜32,000 the color bars were
compressed, even when the pixel window width was
set to full resolution. This accounted for the image
size reduction of 1

2 seen with marker-ind-kit on
chromosomes 1, 2, 3, and 6, all of which had more
than 32,000 tokens.

C. Interpreting the Marker Indication Bar: Reconstructing the
Coding Algorithm

Having removed SNPs with a low MAF in
filtered-kit, the number of SNPs was close enough to
the number of pixels. This let us decipher the information
encoded in the pixels in filtered-kit because most of
the SNPs were being compared. After manually inspecting
the data, we noticed that GEDmatch seemed to treat A’s like
T’s and C’s like G’s. We hypothesized that GEDmatch was
using the following scheme.

GEDmatch compresses the two-bit genotype data (A, C,
G, and T) into one-bit (0 and 1) during tokenization. A’s and
T’s take one value (say, 0) and C’s and G’s the other (say, 1).
At every SNP, GEDmatch stores two bits, one for each of the
two compressed 1-bit DNA bases. When comparing two SNPs,
the bits are compared in no particular order since the order of
bases in DTC genetic data files has no meaning. If both bits are
the same, there is a match (green), only one the same (yellow),
or both different (red). Therefore, the color is determined by
counting the number of identical bits at a given SNP. For
example, AG compared to a GT would be compressed to 10
vs 01, which would be green because there is one 1 and one
0 in both. It is unclear whether GEDmatch actually stores the
genotype of each SNP in this binary encoding or whether the

binary encoding is computed from normal genotype data when
making comparisons; however, it is not necessary to know what
is stored for our attacks to be successful.

APPENDIX B
GEDMATCH SCREENSHOTS

Figure 5 provides a screenshot of the GEDmatch interface
when requesting one-to-one autosomal comparisons.

APPENDIX C
MATCHING PSEUDOCODE

In Section A-C we discussed GEDmatch’s approach to
generating a pixel when comparing two SNPs. We present
pseudocode for the inferred algorithm here.

def compare_snps(f1.snp, f2.snp):
sum1 = 0, sum2 = 0

Sum the bits from the first SNP
sum1 += get_bit(f1.snp.base1)
sum1 += get_bit(f1.snp.base2)

Sum the bits from the second SNP
sum2 += get_bit(f2.snp.base1)
sum2 += get_bit(f2.snp.base2)

if sum1 == sum2:
return "Green"

elif |sum1 - sum2| == 1:
return "Yellow"

elif |sum1 - sum2| == 2:
return "Red"

def get_bit(base):
if base == ’A’ or base == ’T’:

return 0
else if base == ’C’ or base == ’G’:

return 1

APPENDIX D
PIXEL-TO-SNP CORRESPONDENCE ALGORITHM

Let m be the number of SNPs on a particular chromosome
in ext-kit and S0, S1, ..., Sm−1 be a list of the SNPs on
that chromosome, ordered by base position (the same order
that SNPs appear in DTC genetic data files). If no SNPs are
missing, there would be m pixels for that chromosome, and
the pixel at index i would correspond with Si. Similarly, the
pixels at indexes that are multiples of n (i.e., 0, n, 2n, ...) will
be the changed pixels (see Figure 3B). However, since some
of the SNPs are ignored, the indexes of the changed pixels
will shift (Figure 3C).

We can use the number of intervening pixels between
two changed pixels to determine their corresponding SNPs.
Consider any two changed pixels at indexes p and q where
p < q, corresponding to SNPs Sj and Sk, respectively. Let g
be the number of intervening pixels between p and q; in other
words, g = q − p − 1. If the value of j is known, you can
estimate a lower bound for k using:

k ≥ j +
⌈g + 1

n

⌉
× n

14

If fewer than n SNPs are ignored between Sj and Sk, then
this formula becomes an equality:

k = j +
⌈g + 1

n

⌉
× n (1)

A. Proof of Above Equality

To prove the lower bound, we know that k > j because
the corresponding pixel for k is at a higher index than the one
corresponding to j. We also know that k−j is a multiple of n
because only SNPs at multiples of n were modified. Therefore,
we can write k−j = an for some positive integer a. Moreover,
g + 1 ≤ k − j because pixels are only filtered and not added,
and so the gap between two changed pixels will only shrink
when SNPs are filtered. Therefore, we have g+1 ≤ k−j = an.

j +
⌈g + 1

n

⌉
× n ≤ j +

⌈k − j

n

⌉
× n

= j +
⌈an
n

⌉
× n

= j + an

= j + (k − j) = k

Next, we prove that when fewer than n SNPs were filtered
between Sj and Sk, the lower bound becomes an equality. Let
r be the number of SNPs filtered between Sj and Sk. If r < n
(i.e., fewer than n SNPs were filtered), then (k− j− 1)− g =
r < n. g can then be written as g = k − j − 1− r

j +
⌈g + 1

n

⌉
× n = j +

⌈ (k − j − 1− r) + 1

n

⌉
× n

= j +
⌈k − j − r

n

⌉
× n

= j +
⌈an− r

n

⌉
× n

= j + an = j + (k − j) = k

B. Inductively Find the SNPs Corresponding to Changed
Pixels

The first changed pixel will correspond with S0. We can
use that as a basis for Equation 1 to inductively determine
the corresponding SNP for every subsequent changed pixel.
This will work as long as no more than n SNPs are missing
between any two modified SNPs. If this is not the case,
then the predicted corresponding SNP indexes will be lower
than expected. (A boundary case must be considered if S0

is missing and the first changed pixel has index p > 0. Let
x = dp+1

n e × n; then, the first changed pixel corresponds to
SNP Sx. Like Equation 1, this will hold as long as fewer than
n SNPs are missing before Sx; otherwise, x will be a lower
bound on the corresponding SNP index.)

Let Sl be the modified SNP with the highest index and Sf

be the SNP corresponding to the final changed pixel. If Sl was
not missing, then l = f . However, since Sl can be missing,
we can estimate f with f = l−(d c+1

n e−1)×n where c is the
number of pixels after the final changed pixel. This estimate

Experimental Kit Name Purpose

match(X)-kit Simulates half- and full-matching segments
marker-ind-kit Used to reverse engineer marker indication bar
filtered-kit Based on marker-ind-kit; SNPs with a

MAF less than 1% are filtered
overlap(X)-kit For testing kits that do not completely overlap

with the same SNPs
nonstandard-alleles-kit For testing non-standard alleles, like -- --, II,

DD, and ID
ext-kit Initial kit used for genotype extraction
extmod(n)-kit Based on ext-kit; on each chromosome, the

genotype on every nth SNP is changed to AC
target(X)-kit 23andMe-based kits targeted for genotype extrac-

tion
TABLE I. CLASSES OF KITS USED IN GEDMATCH EXPERIMENTS.

will be correct as long as fewer than n SNPs are missing after
Sf ; otherwise, this estimate will be an upper bound for f .

We also have a separate estimate for f using the inductive
procedure from Equation 1. Again, this estimate will be correct
as long as less than n SNPs are missing between changed
pixels, and, if not the case, the estimate will be a lower bound.
Therefore, if the two separate estimates for f are the same,then
we know that less than n SNPs are missing between any two
adjacent changed pixels, which means the inductive estimates
using Equation 1 are correct.

We can keep increasing the value of n until this condition
holds on all 22 chromosomes — in practice, increasing the
value of n makes it less likely that n or more SNPs will
be randomly missing between two modified SNPs. In our
experiments, n = 512 was sufficient.

C. Recursively Find the Correspondence for Additional Pixels

We can now use the known SNP correspondences for the
changed pixels as a basis to determine the SNPs corresponding
to the other, non-changed pixels. Let p and q (with p < q) be
the indexes of two changed pixels corresponding to SNPs Sj

and Sk, respectively, and b be the number of SNPs missing
between Sj and Sk; then, b = (k−j)−(q−p). If no SNPs are
missing between Sj and Sk (i.e., b = 0), then the intervening
pixels correspond one-to-one with each of the SNPs between
Sj and Sk. In other words, the pixel at p+1 corresponds with
Sj+1, the pixel at p+ 2 corresponds with Sj+2, etc.

If SNPs have been missing between Sj and Sk (i.e.,
b > 0), then we can use additional kits to try to find the
correspondence of the intervening, non-changed SNPs. If we
choose an n that is a power of 2, we can construct a new kit,
extmod(n

2)-kit, made by modifying every n
2 SNPs in the

ext-kit with AC. If the extmod(n
2)-kit is compared to

the same kit as before, then the resulting marker indication bars
will have changed pixels corresponding to SNPs at indexes
0, n

2 , n,
3n
2 , 2n, ..., which is a superset of those from the

extmod(n)-kit.

We can use pixels corresponding to SNPs at indexes
0, n, 2n, ... to find the correspondence for the additional mod-
ified SNPs at indexes n

2 ,
3n
2 , As long as the gap between

two changed pixels with known correspondences is less than
n
2 (i.e., b < n

2), then we can identify the SNPs corresponding
of any intervening changed pixels using Equation 1. We can
recursively repeat this procedure between any two changed
pixels using additional kits with smaller values of n (e.g., n

4 ,
n
8 ,

etc.) until more than half the pixels are missing between them.

15

