
Metamorph: Injecting Inaudible Commands into
Over-the-air Voice Controlled Systems

Tao Chen
City University of Hong Kong

tachen6-c@my.cityu.edu.hk

Longfei Shangguan
Microsoft

longfei.shangguan@microsoft.com

Zhenjiang Li
City University of Hong Kong

zhenjiang.li@cityu.edu.hk

Kyle Jamieson
Princeton University

kylej@cs.princeton.edu

Abstract—This paper presents Metamorph, a system that
generates imperceptible audio that can survive over-the-air trans-
mission to attack the neural network of a speech recognition
system. The key challenge stems from how to ensure the added
perturbation of the original audio in advance at the sender side
is immune to unknown signal distortions during the transmission
process. Our empirical study reveals that signal distortion is
mainly due to device and channel frequency selectivity but with
different characteristics. This brings a chance to capture and
further pre-code this impact to generate adversarial examples
that are robust to the over-the-air transmission. We leverage this
opportunity in Metamorph and obtain an initial perturbation
that captures the core distortion’s impact from only a small set
of prior measurements, and then take advantage of a domain
adaptation algorithm to refine the perturbation to further im-
prove the attack distance and reliability. Moreover, we consider
also reducing human perceptibility of the added perturbation.
Evaluation achieves a high attack success rate (90%) over the
attack distance of up to 6 m. Within a moderate distance, e.g.,
3 m, Metamorph maintains this high success rate, yet can be
further adapted to largely improve the audio quality, confirmed
by a human perceptibility study.

I. INTRODUCTION

Driven by deep neural networks (DNN), speech recognition
(SR) techniques are advancing rapidly [46] and are widely used
as a convenient human-computer interface in many settings,
such as in cars [4], on mobile platforms [3], [48], in smart
homes or cyber-physical systems (e.g., Amazon Echo/Alexa
[1], Mycroft [7], etc.), and in online speech-to-text services
(e.g., SwiftScribe [10]). In general, SR converts an audio clip
input I to the corresponding textual transcript T being spoken,
denoted SR(I) = T .

In the context of the extensive research effort devoted to
SR, this paper studies a crucial problem related to SR from a
security perspective — given any audio clip I (with transcript
T ), by adding a carefully chosen small perturbation sound δ

(imperceptible to people), will the resulting audio I + δ be
recognized as some other targeted transcript T ′ ( 6= T ) by a
receiver’s SR after transmission of I+δ over the air? In other
words, can I + δ (an adversarial waveform that still sounds
like T to a human listener) played by a sender fool the SR
neural network at the receiver?

Figure 1: 1 Transcript T of audio clip I is “this is for
you”. 2 By adding a small δ , the adversarial example
I + δ can be correctly recognized as “power off” without
transmission [17]. This target transcript T ′ is selected by the
attacker. 3 After over-the-air transmission, however, I + δ

is no longer adversarial. Recognized transcript is similar to the
original T , instead of T ′.

If so, consequences are serious, since this introduces a
crucial security risk that an attacker could hack or deploy a
speaker to play malicious adversarial examples, hiding voice
commands that are imperceptible to people, for launching a
targeted audio adversarial attack (i.e., a T ′ chosen by the
selection of δ ). Such malicious voice commands might cause:

1) Unsafe driving. Malicious commands could be embedded
into the music played by a hacked in-car speaker to fool the
voice control interface and cause an unsafe driving potentially,
e.g., tamper the navigation path to disturb the driver’s driving,
suddenly change personalization settings (like volume up), etc.

2) Denial of service. The attacker could inject hidden com-
mands to turn on the airplane mode of a mobile device and
disables its wireless data, switch off the sensors in cyber-
physical systems, etc.

3) Spam and phishing attacks. The attacker may delete or
add appointments in the victim’s calendar, update the phone
blacklist or visit a phishing website on the victim device.

Recent studies [17], [46] have investigated the first step
of this attack, i.e., generating an adversarial example I +δ to
directly fool a SR without actual over-the-air audio transmis-
sion. As Figure 1 depicts, the transcript T (“this is for you”)
of the input audio I can be recognized as T ′ (“power off”)
after adding a small perturbation δ . However, these works
also find that the proposed technique fail after over-the-air
transmission (e.g., the recognized transcript becomes “this is
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fo youd” instead of “power off” in Figure 1). This is because
after the transmission, the effective audio signal received by
SR is H(I +δ ), where H(·) represents signal distortion from
the acoustic channel, e.g., attenuation, multi-path, etc., and also
distortion from the device hardware (speaker and microphone).
Due to H(·), the effective adversarial example may not lead to
T ′ any more. There are also follow up works [56], [57] try to
compensate the channel effect by directly feeding the channel
state information collected at other places into the training
model. However, these proposals are far from becoming a real-
world threaten primarily due to the short attacking range (e.g.,
< 1 m) and physical presence of the attack device (e.g., fail in
none-line-of-sight conditions).

Of course, if we can measure H(·) from the sender to
the victim receiver, δ can be trivially pre-coded, by satisfying
SR(H(I+δ )) = T ′. However, the channel measurement is not
practical because it requires the attacker to hack the victim
device in advance and then programs it to send a feedback
signal conveying H(·). To create a real-world threat, the open
question is whether we can find a generic and robust δ that
survives at any location in space, even when the attacker may
not have a chance to measure H(·) in advance.

To answer this question, we first conduct micro-
benchmarks to understand how the over-the-air transmission
affects acoustic adversarial attack. Our micro-benchmark re-
sults reveal that the signal distortion is mainly due to the
frequency selectivity caused by both multi-path propagation
and device hardware. Specifically, we first experiment in an
acoustic anechoic chamber (avoiding multi-path) and find that
as devices are optimized for humans’ hearing, the hardware
distortion on the audio signal shares many common features
in the frequency domain cross devices and undermines the
over-the-air adversarial attack already. In practice, the problem
is naturally more challenging since the channel frequency
selectivity will be further superimposed, which could become
stronger and highly unpredictable as the distance increases. Al-
though it is difficult to separate these two frequency selectivity
sources and conduct precise compensation, as the multi-path
effect varies over distance and the hardware distortion shares
similar features cross devices, this inspires that (at least) within
a reasonable distance before the channel frequency selectivity
dominates and causes H(·) to become highly unpredictable, we
can focus on extracting the aggregate distortion effect. Once
the core impact is captured, we can factor it into the sound
signal generation.

With these considerations, we develop Metamorph with
a “generate-and-clean” two-phase design. In phase one, we
collect a small set of H(·) measurements as a prior dataset,
to generate an initial δ that captures the major impact of the
frequency-selectivity from these measurements (including both
device and channel frequency selectivity) collected in different
environments with different devices. The first phase achieves
an initial success for the over-the-air attack, but this primary
δ inevitably preserves some measurement-specific features,
still limiting the attack performance. Therefore, in the second
phase, we further leverage domain adaptation algorithms to
clean δ by compensating the common device-specific feature
and also minimizing the unpredictable environment dependent
feature from these H(·) measurements to further improve the
attack distance and reliability.

We finally consider the impact on audio quality of the
generated adversarial example and minimize perceptibility by
people with two mechanisms. First, we customize the added δ ,
so that the resulting noise heard is like a real-world background
sound, e.g., music. We call this as a “acoustic graffiti”, so that
the audience may believe this is part of the original audio clip.
Second, we find we only need to add δ to a part of audio I that
contributes most to the SR recognition, reducing the volume
of perturbation bits added to I.

We include all above design elements in a prototype system
named Metamorph. Similar to other recent attacks [17], [46],
this paper also focuses on the white-box setting (detailed in
§II-A), and we utilize the state-of-the-art speech recognition
system, DeepSpeech [27] developed by Baidu, as a concrete
attack target. Even with Metamorph, we believe that plenty
of research opportunities remain possible in the future, while
this paper already serves as a wake-up call to alarm people
to the potential real-world threat from the useful and appar-
ently non-detrimental speech recognition techniques. The key
experimental results are as follows.

• Metamorph achieves over 90% attacking success rate at the
distance up to 6 m (when prioritized to reliability) and 3 m
(when prioritized to audio quality) in a multi-path prevalent
office scenario. The attacking success rate slightly drops to
85.5% in most none-line-of-sight settings on average.
• Metamorph performs consistently for different victim re-

ceivers and is robust to the victim movement with a mod-
erate moving speed, e.g., 1 m/s.
• The user perceptibly study on 50 volunteers shows up to

99.5% imperception rate to identify any word (content)
change over 2000 adversarial example instances. Adversarial
samples generated by Metamorph are released in [9].

Contribution. This paper makes following contributions. We
empirically understand the factors that limits prior audio
adversarial attacks with the over-the-air setting. We propose
a series of effective solutions to address the identified design
challenges and enable the over-the-air attack in both LOS and
NLOS environment. We develop a prototype system and con-
duct extensive real-world experiments to evaluate performance.

II. PRELIMINARIES

A. Attack Model

The attacker’s goal is to launch a targeted adversarial attack
on a victim receiver, by fooling the neural network of its
speech recognition system without the owner’s awareness. The
attacker adds a perturbation waveform δ to the owner’s audio
clip I (transcript T ) to generate a voice command recognized
as T ′ by the receiver. We consider the attack model regarding
to the following aspects in the paper.

Speaker device. Attacker can either directly play or hack
a deployed speaker device (e.g., in-car speaker or Amazon
Echo in a room) in the vicinity of the victim receiver to play
the adversarial audio I +δ . Because the speaker is controlled
by the attacker, the frequency selectivity introduced by the
transmitter device can be compensated by the training if the
attacker adds some channel impulse response measures from
this device, or the attacker can simply select a high-quality
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device to minimize the impact from the transmitter’s frequency
selectivity and skip such an explicit compensation.

Perturbation δ . For each audio clip I, the generated δ only
works for this audio I, not for other audio clips.

Measurement-free for audio distortion. Attacker can play
any targeted sneaky commands to the victim receiver, while
we do not assume that she can measure the audio signal
distortion H(·) at the victim side, e.g., no prior measurement or
information is needed in advance to launch this attack, because
the attacker may not be able to enter into the room or the
receiver’s location may change.

Victim device. Attacker can launch the attack when the
receiver device is not in use by the owner, or the owner is
temporarily away from the device. In addition, the attacker
does not need to know the specific victim device to be used
in this attack, because our design considers and compensates
this diversity in the adversarial example generation.

Ambient noise. Attacker can tune the speaker volume accord-
ing to the noise level around the victim device, and our current
design mainly works with moderate noise levels, e.g., SNR
(Signal-to-Noise Ratio) is greater than 25, which is available
in many indoor scenarios (e.g., office or home).

Audio quality. The perturbation δ should be imperceptible to
human beings. Although encoding the perturbation δ on the
high-frequency band (> 20 kHz) by a common speaker could
be inaudible to human beings, it fails to initiate adversarial
attack since the speech recognition system analyzes the voice
input mainly on the audible frequency, e.g., < 8 kHz [27].

White-box setting. Similar as recent attacks [17], [46], we
also focus on the white-box setting, assuming the awareness of
the speech recognition system’s particulars. Similar to recent
works [17], [27], [56], we adopt DeepSpeech [8], [27] as a
concrete attack target. DeepSpeech is an end-to-end speech
recognition system that has been widely adopted by a bunch of
voice assistant products (e.g., Mycroft [7]) and online speech-
to-text services (e.g., SwiftScribe [10]), as a concrete target.

B. Primer on Audio Adversarial Attack

Before we elaborate the Metamorph design in §III, we first
provide a brief primer on audio adversarial attack. First, to
convert one audio clip I to its transcript T , there are two major
steps in the speech recognition (SR) system:

• Step one: The audio input I is divided into short frames
(e.g., 20 ms) [17]. The neural network of SR then takes these
frames as input and extracts the Mel-Frequency Cepstral
Coefficients (MFCC) feature for each frame, based on which
each frame will be recognized as one of the following
tokens [26]: 1) English letters: ‘a’ to ‘z’; and 2) two special
characters: ‘space’ and a predefined token ‘ε’, which means
“empty” corresponding to the frames without meaningful
contents, e.g., voiceless consonants.

• Step two: The recognized raw token sequence can be then
reduced to the final recognized transcript, according to two
Connectionist Temporal Classification (CTC) rules [17],
[23]: a) merge all the consecutively duplicated tokens as one

attenuation

reflection

Attacker
Victim 

noise

hardware heterogeneity Attacker 

Victim 

Figure 2: An illustration of in-field audio adversarial attack.
The voice command sent from the attacker experiences distor-
tion, attenuation, and multi-path propagation before arriving at
the victim’s microphone.

token; and b) then exclude all the ε tokens. For instance,
the raw token sequence “n n d ε ε s s ε s” will be reduced
to “n d s s”.

Formulation. With the SR principle aforementioned, the state-
of-the-art adversarial attack [17] can be formulated as:

minimize dBI(δ ), (1)
such that SR(I) = T, (2)

SR(I +δ ) = T ′, (3)

where T 6= T ′, T ′ is chosen by the attacker and dBI(δ ) is
the audio sound distortion measured in Decibels (dB), i.e.,
dBI(δ ) = dB(I +δ )−dB(I).

Solving δ . The formulation above can be further rephrased as
follows to solve the perturbation δ [17]:

argminδ dBI(δ )+α ·L(SR(I +δ ),T ′), (4)

where L(·) and α are the loss function and the weighting factor,
respectively. Two points are worth noting:

• As each divided short audio frame (e.g., 20 ms) further
contains multiple sampling points (e.g., 320), the obtained
δ is a set of values indicating the perturbations to be added
to the amplitude of each frame’s sampling points in I.
• To solve Eqn. (4), we need to know the working particulars

of the target SR for computing the exact loss (i.e., a white-
box attack). After δ is resolved, the adversarial example
I +δ can be inherently achieved [17].

With the preliminary information above, the next section
reports our empirical understanding of the acoustic channel,
followed by the Metamorph design.

III. DESIGN

A. Understanding Over-the-Air Audio Transmission

When an attacker initializes an audio adversarial attack,
the audio clip first goes through the transmitter’s loudspeaker,
then enters the air channel, and finally arrives at the victim’s
microphone, as shown in Figure 2. Overall, the adversarial
audio clip is affected by three factors: device distortion,
channel effect, and ambient noise. To survive the adversarial
examples from the over-the-air transmission, we need to first
carefully understand the effects of these three factors.
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Figure 3: (a) Experiment setup in the anechoic chamber. (b)
Device frequency-selectivity curves from four receivers.

1) Device Distortion: Both the attacker loudspeaker and
the victim microphone introduce frequency-selectivity1 to the
transmitted audio signal, which can distort the audio adver-
sarial example and undermine this attack after the over-the-air
transmission. To separate the device frequency-selectivity and
focus on its effect, we setup a loudspeaker-microphone pair
in an anechoic chamber (avoiding noise and multi-path), as
Figure 3(a) shows. In practice, the attack can be initiated on
attacker’s own device (loudspeaker), hence the loudspeaker can
be selected with small device frequency-selectivity to avoid
an explicit compensation of transmitter’s hardware distortion
and facilitate the attack. Thus in Figure 3(a), we use a high-
end speaker HiVi M200MKIII [5] that has a relatively flat
frequency response over the audible frequency band, to mini-
mize the effect of the transmitter and focus on the receiver’s
(victim device) frequency-selectivity. The speaker transmits a
swept sine wave [21] to multiple receivers at 0.5 m, ranging
from 20Hz to 20kHz, and we cut it up to 8 kHz to analyze the
frequency selectivity (SR, e.g., DeepSpeech, uses this range).

Figure 4: Character success rate (CSR) for the adversarial
examples transmitted in the anechoic chamber and office.

Result. We plot the frequency response curve of each receiver
in Figure 3(b). We observe that these frequency response
curves exhibit a similar profile in 0–8 KHz frequency band.
This is understandable since the microphone on smart de-
vices is typically optimized for human speech, hence their
frequency response should be similar to each other. However,
due to the hardware heterogeneity, each curve exhibits different
frequency-selectivity details. For example, we observe 6 dB
frequency selectivity on 2–4 kHz frequency band for iPhone
8, while only 3 dB for SAMSUNG S7 is on the same
frequency band. We further transmit the adversarial examples
generated by Carlini et al. [17] in the chamber and observe that
the device frequency-selectivity alone could fail this attack2,

1Frequency-selectivity refers to the non-uniform frequency response across
the frequency band [38], e.g., 0–8 kHz in the audible band.

2The attack proposed in [17] is outlined in Section II-B.
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Figure 5: Tx-Rx pairs in office, corridor and home.

e.g., character success rate (CSR) is low in Figure 4 (“0.5
m, chamber”), and incorrect characters always exist in each
recognized transcript from all the receivers.

However, as depicted in Figure 3(b), the device frequency-
selectivity overall is not extremely strong (some characters are
still correct in Figure 4) and these frequency-selectivity curves
share many similarities. Moreover, device frequency-selectivity
is hardware’s inherent feature, not related to the transmission
distance. So the device frequency selectivity in principle can
be measured and compensated. In fact, with a proper design
(§III-B), this device effect can be implicitly considered when
we deal with the acoustic channel, which also causes frequency
selectivity. Since the channel’s effect varies over distance, we
next examine the acoustic channel.

2) Channel Effect: The impact of acoustic channel on the
transmitted signal is mainly from the attenuation and the multi-
path two aspects.

Attenuation. Attenuation leads to a signal strength reduction.
It would not undermine the adversarial attack, because the SR
system usually normalizes the amplitude of the input audio in
the MFCC feature extraction [51]. In our experiment, we have
also validated that when we scale the amplitude of an audio
input I +δ , the same transcript can be always obtained from
the speech recognition system.

Multi-path. Multi-path is environment-dependent. It also in-
troduces frequency-selectivity to the received signal due to
the constructive and destructive interference [55], and may
potentially impact the adversarial attack.

To understand the impact of mult-path in acoustic channels,
we setup a transmitter-receiver pair (e.g., M200MKIII loud-
speaker sends the swept sine wave to the smart phone receiver)
in three typical indoor attacking scenarios: an office, a corridor
and a home apartment, as shown in Figure 5. We first look at
channel state information (CSI) in these three environments
and plot the result in Figure 6(a)–(b). CSI is the frequency
domain response, which can unveil the frequency-selectivity
directly. Ideally, CSI can be accurately obtained by FFT (y(t))

FFT (x(t)) ,
where x(t) and y(t) are the transmitted and received signal,
respectively. However, as the acoustic signal will go through
the hardware (loudspeaker and the microphone) during trans-
mission, the frequency selectivity from the CSI measurement
is the combined one from both channel and device.

From Figure 6(a), we observe a moderate frequency se-
lectivity in office, corridor and home environments when the
receiver is in close proximity to the transmitter, e.g., 0.5 m.
These three CSI curves exhibit a similar frequency selectivity.
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Figure 6: Frequency spectrum (a–b) and their channel impulse
responses (c–d) measured over both short and long acoustic
links in three typical indoor environment. We do not measure
long link channel at home due to the space limit.

To better understand this result, we plot the channel impulse
response (CIR3) of these three channels in Figure 6(c). All
these three CIR curves exhibit a huge power gap between the
line of sight (LOS) path and reflection paths, indicating that the
LOS path dominates the signal transmission over such short
acoustic links. This unequal power distribution over different
paths renders the superposition of multi-path signals resemble
to the LOS signal, as shown in Figure 7(a). Accordingly, the
channel along would not cause significant frequency selectivity
over such short links. The slight CSR declination in Figure 4
(“0.5m, office”) also confirms this.

LOS signal

Reflection 
signal 1

Reflection 
signal 2

Superimposed 
signal

I

Q

LOS signal

Reflection 
signal 1

Reflection 
signal 2

Superimposed 
signal

I

Q

Figure 7: Superposition of multi-path signals in (a) short and
(b) long acoustic link settings.

As we expand the link distance, e.g., 8 m, the CSI
profiles (we skip the long link setting at home due to the
space limitation) exhibit a stronger and dissimilar frequency
selectivity in Figure 6(b). We further plot their CIRs and
observe a decreased power gap between the LOS path and
reflection paths (Figure 6(d)). This result indicates that signals
propagate among these paths, when adding together, would
cause significant frequency selectivity due to the constructive
and destructive interference, as shown in Figure 7(b). We
further play the adversarial examples generated by [17] in
the long acoustic link settings (8 m) and observe that these
adversarial attacks never succeed in Figure 4 (“8m, office”).

Observation. Above results reveal that the frequency selec-
tivity due to channel fundamentally challenges the over-the-

3CIR is similar to the concept of room impulse response (RIR) in the audio
signal processing domain [13]. Both describe signal’s time domain response.

air audio adversarial attack. For long links, the multi-path ef-
fect becomes more significant and unpredictable (environment
dependent). For short links, the multi-path effect itself may
not be very strong, but the tightly glued device frequency-
selectivity still affects. Fortunately, the hardware’s distortion on
audio signal will not change over distance and shares similar
frequency selectivity features (§III-A). The key inspiration
to us is hence that within a reasonable distance (before the
channel frequency selectivity dominates and causes the overall
signal distortion to become highly unpredictable), if we have a
chance to capture the core impact of the overall distortion from
both channel and device, we can pre-code it in the adversarial
example generation.

Although deriving a theoretical model to describe the feasi-
ble attack distance is still open, in this paper, we demonstrate
that the attacker can leverage learning algorithms to launch
the over-the-air adversarial attack within a reasonably long
distance, e.g., 6 m, that can achieve both a high successful
rate (§III-B) and a good audio quality (§III-C).

3) Ambient Noise: We finally investigate the impact of the
ambient noise on the adversarial attack. We collect three types
of typical background noises: ambient human voice, back-
ground music, and engine noise. We then tune the volume of
these three background noises to different levels and synthesize
them with the adversarial example. To avoid the frequency
selectivity introduced by the device hardware and the acoustic
channel, we feed these synthesized adversarial examples to the
speech recognition system directly.

Result. We vary the signal-to-noise ratio (SNR) from 14 to
28 dB in Figure 8(a) and calculate the character success rate
(CSR) for these three types of synthesized adversarial attacks.
We observe that when the SNR is reasonably large (noise is
small), e.g., > 26 dB (such as playing an adversarial example
(76 dBSPL) in a normal human conversation (40-50 dBSPL)
environment), the CSRs are all close to one for these three
synthesized adversarial examples. This is reasonable since the
weak noises are easily overwhelmed by the voice commands.
In §IV, we also have a similar observation from the real-world
attack. CSR decreases slightly as we tune up the volume of
the noise (a lower SNR). In particular we find CSR with the
human voice noise drops rapidly as we slightly decrease the
SNR from 26 dB to 22 dB.

To understand the reason behind, we further plot the
frequency spectrum of these three kinds of noises in Fig-
ure 8(b). Compared with the engine and background noises,
the human voice shows more significant frequency selectivity,
and thus should have a higher impact on the adversarial attack.
However, as the attacker can decide when to launch the attack,
the loud noise can be avoided. Therefore, we mainly focus on
the frequency-selectivity introduced by the hardware and the
acoustic channel in the Metamorph design.

B. Practical Audio Adversarial Examples

From the empirical study, our key insight is to cope with
the frequency-selectivity introduced by both the device and
channel. The device frequency-selectivity is more predictable,
while the channel’s impact varies over distance. However,
even within a reasonable attacking distance (when the chan-
nel frequency-selectivity is moderate), it is still unfeasible
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Figure 8: (a) Character success rate (CSR) in different noise
levels. (b) Frequency responses of three typical noises.

to enumerate all possible frequency-selectivity curves in the
adversarial example generation. Therefore, in Metamorph, we
will conduct a small set of prior frequency-selectivity mea-
surements and further leverage learning algorithms to extract
the core impact from these measurements, so that we can
factor it into the adversarial example generation, achieved by
a “generate-and-clean” two-phase design.

• In phase one (§III-B1), we generate an initial δ that mines
and considers the major impact of frequency selectivity from
these measurements conducted in different environments
with different devices. Of course, it may also preserve some
measurement-dependent features (to minimize the optimiza-
tion loss), still limiting the attack performance.

• In phase two (§III-B2), we further leverage learning algo-
rithms to clean δ by compensating the common device-
specific feature and also minimizing the unpredictable envi-
ronment dependent feature from these frequency selectivity
measures to further improve the attack performance.

1) Generating Initial Examples: Motivated by Expectation
Over Transformation (EOT) method invented by vision-based
adversarial attack [15], we introduce the following three steps
to generate the initial audio adversarial examples.

Step 1. When we transmit the swept sine wave and
receive it over the air, the derived channel impulse response
(CIR) includes the frequency-selectivity from both device
and channel. Therefore, we can collect multiple (M) such
measurements from M sender-receiver transmission pairs with
different distances in arbitrary environments. To simplify this
measurement process and include more device heterogeneity,
we can directly leverage some public acoustic CIR datasets. We
utilize four such datasets, including AIR [28], MARDY [53],
REVERB [32] and RWCP [37], and adopt M as 370 in
our current design (the description of these datasets and our
configuration is in §IV).

Step 2. Next we train δ by minimizing the following
optimization, subjected to M constraints SR(Hi(I + δ )) = T ′,
where i = 0, . . . ,M. Mathematically, δ can be obtained by
extending the formulation in Eqn. (4) to:

argminδ α ·dBI(δ )+Lctc, (5)

= argminδ α ·dBI(δ )+
1
M ∑i L(SR(Hi(I +δ )),T ′),

where dBI(δ ) is the sound quality distortion in dB and L(·) in
the second line of Eqn. (5) is the CTC loss [23] to quantify the
difference between the target transcript T ′ and SR’s recognition
result by taking Hi(I + δ ) as input. In Eqn. (5), the hyper-
parameter α trades off the audio quality and attack success.

The upper part (dashed box) of Figure 9 illustrates this
audio adversarial example generation procedure. The original

Adversarial Example Generator
Perturbation ᵟ 

LSTM ⊕ 

Audio Clip I

 RNN (freezed)
F

MFCC

Logits  Concat

Back Propagation

Domain Discriminator

FC Layers FC Layers

H( )

DeepSpeech

Figure 9: Illustration of initial adversarial example generator
and the domain discriminator, where Lg represents all the loss
factors except the loss Ld from domain discriminator.

audio clip I and the perturbation δ (which is the variable to
be optimized) are processed by the M measurements of Hi(·).
The resulting audios Hi(I + δ ) are then passed to the neural
network of our attacking target DeepSpeech. DeepSpeech will
first extract the MFCC feature of each audio input Hi(I +δ ),
denoted as Fi, based on which its recurrent neural network
(RNN) can recognize the transcript Ti for the current input
Hi(I +δ ). As stated in Eqn. (5), the loss function here is the
CTC loss Lctc, which quantifies the distance between the target
transcript T ′ and Ti, and the optimization of δ aims to minimize
the overall CTC loss cross all M audio Hi(I+δ ) inputs. Note
that in this process, only δ will be trained and DeepSpeech
already has a fixed neural network. We use it for the calculation
of the CTC loss merely.

Step 3. After step 2, the composed audio I + δ is not
only an adversarial example. The obtained δ already considers
the future impact from the frequency-selectivity due to the
transmission. We can then play I +δ over the air to fool the
receiver’s SR at the new locations.

Result. With the primary design above, the generated ad-
versarial example has pre-coded the impact from frequency-
selectivity, it can thus potentially fool SR after the transmis-
sion. Figure 10(a) shows an encouraging result. TSR measures
the success rate of the entire transcript and we can see that the
adversarial examples generated by this initial design now can
survive after short-range over-the-air transmissions, e.g., < 1m.

However, TSR rapidly drops when the distance increases.
This is because the received signal suffers from frequency
selectivity that varies over different channels, while the limited
CIR datasets used for training fail to cover all channel con-
ditions. To better understand the performance achieved by the
initial design, in Figure 10(b), we also plot the success rate
of the recognized characters in the target transcript. Result
shows that when TSR dramatically decreases as the distance
varies from 1 m to 2 m, the character success rate (CSR)
remains relatively high, e.g., 0.9. Even the distance is 4 m,
CSR is still above 0.5, which indicates that most characters
can survive from the over-the-air transmission. However, due
to the more severe frequency selectivity over longer distances,
more characters in T ′ fail to be recognized.
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Figure 10: Performance of initial adversarial example gen-
eration. (a) Transcript success rate (TSR) and (b) Character
success rate (CSR) in different attack distances. Our final
design further extends the effective attacking distance to 6 m.

2) Enhancing Adversarial Examples: As the perturbation
δ obtained from the initial adversarial example generation
inevitably contain some device- and environment-specific fea-
tures from the M channel measurements (to minimize the
optimization loss), its performance will be limited at new
locations, especially when the attacking distance is long and
the multi-path’s impact becomes stronger. To alleviate this
issue, we plan to clean the initial δ by excluding its embraced
measurement-specific features. After this operation, a more
generic and robust perturbation δ can be obtained, which can
improve the attacking distance and accuracy at new locations.

Inspired by the huge success in domain adaptation tech-
niques [22] for object detection [39], semantic segmenta-
tion [61] and person re-identification [24], we introduce a
domain discriminator as depicted in Figure 9 to clean the
initial δ . The term “domain” here refers to the acoustic signal
transmissions using different devices and settings (distances
and environments). The goal of the discriminator alone is to
distinguish different domains in the M prior measures. How-
ever, with a proper loss function design (below), the device-
and environment-specific features can be further removed.

Domain discriminator. To design the domain discriminator,
we classify the M measurements into 21 different environ-
ments, according to different transmission distances (with the
one-meter step size), different rooms used in these measure-
ments and different devices (different datasets use different
devices). The discriminator then takes the MFCC feature
vector F as input in Figure 9 to recognize these domains.

In particular, the MFCC feature vector F is first processed
by two fully-connected layers of the discriminator to extract
the measurement-dependent features. Since the audio file is
a temporal sequence, the extracted features will be then
processed by a RNN module, e.g., Long Short-Term Memory
(LSTM). To further ensure the recognition of both the initial
adversarial example generator and the domain discriminator,
as suggested by [29], [60], the feature vector (before the
loss calculation in the generator) can be integrated into the
discriminator. Therefore, we apply this integration after the
LSTM in Figure 9. After the integration, we insert one more
fully-connected layer to extract their overall feature before a
soft-max for the domain recognition.

Loss function. We denote the loss function of the discriminator
as Ld . With the discriminator, our goal can be achieved by
minimizing the following integrated loss:

Lloss = Lctc−β ·Ld , (6)

where β is the weighting factor for Ld , which is configured in
§IV-A. The goal of the discriminator itself aims to minimize
Ld . But as Lctc and Ld are connected by minus, by minimizing
Lloss, we essentially

• 1) minimize the loss of the adversarial example generator,
i.e., the adversarial example is still functionable.

• 2) try the best to “cheat” the discriminator to maximize
its loss Ld and make it tend to distinguish the domains
incorrectly, so that the measurement specific features can
be gradually removed from the MFCC feature vector, by
adjusting the perturbation δ .

Improving loss to alleviate over-fitting. With the integrated
loss function defined in Eqn. (6), we find that the loss function
can be further improved with the following observation.

For those primary adversarial examples that are failed
to be recognized as the targeted transcript T ′ in Figure 10,
we compare all the intermediate results inside DeepSpeech
when we convert I + δ and H(I + δ ) to their corresponding
transcripts before and after the transmission, respectively. We
observe that for many characters c j that did not survive after
the transmission, the likelihood (calculated by SR) to recognize
their corresponding CTC tokens (i.e., English letters, space
or the special token ε stated in §II-B) is high before the
transmission, e.g., 0.9, but this likelihood becomes very small
at the receiver side after the transmission, e.g., reduced to
0.1, so that another (incorrect) character token with a higher
likelihood is selected in the recognized transcript.

This phenomenon suggests that the primary adversarial ex-
amples are not reliable enough, and the significant confidence
reduction is likely an occurrence of over-fitting in δ for these
inaccurately recognized characters. To address this issue, we
can further improve the loss function in Eqn. (6), by adding a
term Lo f to alleviate the over-fitting [29]. The key idea is to
introduce certain (N) “noises”, so that before and after adding
these noises, the recognized CTC token sequences, denoted as
s and sn respectively, should be similar (otherwise it is likely
an over-fitting). Its similarity can be measured by

Lo f =
1

MN ∑
M
i=1 ∑

N
n=1 JSD(si||sn

i ), (7)

where JSD(·) is the Jensen-Shannon divergence [29]. Putting
them all together, the improved integrated loss function is

Lloss = Lctc + γ ·Lo f −β ·Ld , (8)

based on which robust adversarial examples can be generated.
As shown in §IV, transcript success rate after enhancement
can be .95 when the attack distance is even up to 6 m.

C. Improving Audio Quality

With the practical audio adversarial example generated in
§III-B that can survive from the over-the-air transmission, in
this subsection, we further consider its audio quality. In partic-
ular, we propose two mechanisms to minimize the perception
of the added perturbation δ by human’s ear. First, we propose
to customize the perturbation shape, so that it sounds more
similar as some real-world sound, e.g., bird’s chirp. We name
it as a “acoustic graffiti”. With this design, the audience may
believe that the added perturbation is a part of the original

7



audio clip (§III-C1). Second, we find that we only need to
train δ for covering a part of the original audio clip I (in the
time domain), which could further reduce the percentage of
contents in I to be modified by δ (§III-C2).

1) Acoustic Graffiti: To alleviate the perception of the
target command information (which might be leaked by the
added perturbation δ ), we propose to customize (or reshape)
the added perturbation, so that it sounds similar as some real-
world background noise. In particular, the attacker can visit the
nearby environment of the victim receiver, identify the noises
that could appear in this environment, and then record them. If
the on-site visit is not possible, the attacker can instead select
any other audio template that would not raise the victim’s
concern, such as the soft music, the source audio itself, general
ambient sounds (traffic sound for example), etc.

For one selected acoustic graffiti template, the attacker
first normalizes the amplitude of both the perturbation δ and
the template audio (scaling them to the same unit) and then
computes the loss introduced by the shape difference between
the perturbation and the template audio N̂. The optimization
loss will be updated as follows:

Lloss = (Lctc + γ ·Lo f −β ·Ld)+η ·dist(δ , N̂), (9)

where dist(·) measures the MFCC difference between δ and
N̂. With this updated loss, δ is customized to be similar as the
acoustic graffiti template.

2) Reducing Perturbation’s Coverage: As stated in §II-B,
the audio clip I is divided into frames (e.g., 20 ms) by SR for
processing and each frame contains multiple sampling points
(e.g., 320), the perturbation δ essentially alters (increases
or decreases) the amplitude of each sampling point. In the
formulation to train δ in Eqns (1)-(3), the objective is to
minimize the sampling point’s amplitude changing to ensure
a good audio quality. Next by referring to the selected graffiti
template, the perturbation then sounds more like an acoustic
graffiti. In this section, we find we can reduce the amount of
frame sampling points to be altered by δ , i.e., coverage of δ ,
to further improve the audio quality.

To recognize one audio clip I as the corresponding tran-
script T by SR, different frames usually have a different
importance in this recognition [20], [25]. However, during the
training of δ , it is unclear which frame sampling points from
I + δ could contribute more to the recognition of the target
transcript T ′ in advance, since δ keeps being updated in the
training. To overcome this issue, we add an L2 regularization in
the loss function to punish perturbation amplitude [20], With
this L2 regularization term, the perturbation value can maintain
to be small. We can thus treat such very small perturbation
values as 0 and their corresponding frame sampling points in I
will not be altered. With L2 regularization and graffiti template,
the attacker can finally train δ again by:

argminδ α ·dBI(δ )+Lctc

+ γ ·Lo f −β ·Ld +η ·dist(δ , N̂)+µ ·L2, (10)

where µ is the weighting factor for L2, which is configured
in §IV-A. For the δ obtained from Eqn. (10), we can define a
perturbation coverage mask C = {C f }, where f is the sampling

Figure 11: Perturbations trained by (a) the enhanced adver-
sarial example generation in §III-B2 and (b) further with the
improved audio quality in §III-C.

point index, as follows:

C f =

{
1, if s < δ f ,
0, otherwise,

where s is the threshold to determine whether δ for each sam-
pling point f is small enough, e.g., s = 20 in the amplitude’s
representation range from −215 to 215 (int-16). Thus, C ·δ will
ignore those very small perturbation values and thus reduce
the δ ’s coverage. Figure 11(a) depicts one δ obtained from
§III-B. When Eqn. (10) is adopted, the resulting δ is shown
in Figure 11(b), and we can see that many perturbation values
in δ are very small. By applying the mask C, we can obtain
the masked C ·δ as the final perturbation.

IV. EVALUATION

In this section, we first introduce the evaluation setup,
including data collection and training, hardware and software,
evaluation metrics, parameter settings and comparison meth-
ods. We then present field studies, which comprehensively
evaluate both the attack success rate and audio quality in both
line-of-sight (LOS) and none-line-of-sight (NLOS) settings.
We finally describe micro-benchmark results in terms of hard-
ware diversity, ambient noise, victim movement, etc.

A. Experiment Setup

1) Data Collection and Training: To demonstrate Meta-
morph could generate over-the-air adversarial examples with
a small set of prior H(·) measurements, we only use 370
channel impulse response (CIR) measures from four public
acoustic CIR dataset (AIR [28], MARDY [53], REVERB [32]
and RWCP [37]) for the perturbation generation. No CIRs are
collected from our experimental environment directly. These
four CIR datasets are recorded in different rooms (e.g., ane-
choic chamber, lecture and meeting room, stairway, corridor,
church.) with various link distance (0–3 m). Our selected 370
CIRs cover 21 different environments4. With this setting, we
observe that using these CIR traces can achieve a good attack
performance already and also lead to a reasonable computation
overhead as stated below.

Metamorph is implemented using tensorflow 1.8.0 [11] and
trained by Adam optimizer [31], together with a our proposed
domain discriminator, on a high-end server equipped with two

4When future research studies employ our approach, they do not need to
design the domain discriminator specifically for their anticipated environments
neither. If the domain discriminator needs to be more generic, they can further
include additional CIR traces covering more environments, e.g., these datasets
contain over 50 different environments in total.
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Figure 12: Floorplan of the field study. We initiate both LOS
and NLOS adversarial attacks in an office building.

NVIDIA GTX 1080Ti GPU and 32GB RAM. The training
time of an adversarial example depends on the length of this
adversarial audio clip. For example, generating a 6-second
adversarial example takes around five to seven hours on a
single NVIDIA GTX 1080Ti GPU, respectively. The training
process in the future can be accelerated when more GPUs can
be used in parallel. We then conduct trace-driven evaluations to
quantify the system performance. In particular, we initiate the
adversarial attack using different receivers (including a Google
Nexus 5X, Samsung Galaxy S7, HTC A9W and iPhone 8)
and one default transmitter (HiVi M200MKIII [5]) across 29
different locations, as shown in Figure 12. At each location,
we play each adversarial example 100 times. The receiver
records the received adversarial examples and feeds them
into the targeting neural network for speech recognition, i.e.,
DeepSpeech. We then evaluate using following metrics.

2) Metrics: Our experiments primarily rely on the follow-
ing three metrics to evaluate Metamorph’s performance:

• Character success rate (CSR) is defined as the ratio
of characters being successfully interpreted to the total
number of characters conveyed by the adversarial example.

• Transcript success rate (TSR) is defined as the ratio of
transcripts being successfully interpreted to the total num-
ber of transcript conveyed by all the adversarial examples.

• Mel Cepstral Distortion (MCD) [19] measures the sound
quality by comparing the distance between the target
sound (the encoded audio adversarial) and the reference
sound (the original sound). MCD is calculated by: MCD =

(10/ln(10)) ·
√

2 ·∑24
i=1(mct

i−mce
i )

2, where mct
i and mce

i
denote target and the estimated MCD, respectively. Lower
MCD indicates better sound quality.

3) Comparison Schemes: We evaluate following schemes:

• Meta-Init is the initial version of Metamorph (§III-B).
• Meta-Enha is the domain discriminator-based version of

Metamorph (§III-B2). It minimizes the effects of the device-
and environment-specific features from perturbation to im-
prove the attack distance and reliability.

• Meta-Qual represents the audio quality improved version
of Metamorph (§III-C).

4) System Configurations: Metamorph contains several pa-
rameters. According to our detailed investigation in Appendix,
we adopt the default β , γ , η and µ from the final loss function
in Eqn. (10) as 0.05, 500, 1e-4, 1e-12 respectively in the

Figure 13: Performance of LOS attack by three comparison
schemes. (a) Character successful rate (CSR) and (b) Tran-
script successful rate (TSR) in different attack distances.

experiments. On the other hand, the ratio of the characters
being en-coded into the source audio to the total number of
source audio frames, defined as frame utilize rate (FUR), is
set to be less than or equal to 0.2 by default (Section IV-C).

We generate two types of adversarial examples (music and
speech) with different source and target transcripts, detailed in
Table 5 (Appendix). The source musics are labelled in Table 5
directly, and the speech adversarial examples are generated
based on 11 different speech samples from the public Mozilla
Common Voice Dataset [6]. For each adversarial example, we
generate three versions using three comparison schemes.

B. Field Study

1) LOS Attack: We first initiate adversarial attacks at
different locations that all have a clear LOS path to the
victim microphone. Figure 13 shows the averaged TSR and
CSR achieved by three versions of Metamorph in different
link distance settings. We divide the link distance into three
categories: short-range (0.5–1 m), mid-range (2–6 m), and
long-range (6–8 m).

CSR performance. We observe that the initial version Meta-
Init achieves nearly 100% CSR in short range settings. As
we expand the link distance to the mid-range settings, the
multi-path effect grows. Since the initial version has limited
robustness to the multi-path effect, we thus see that CSR
drops significantly to around 50%. As we further increase the
attack distance to 7 m and 8 m (long-range), Meta-Init rarely
succeeds, with a CSR of only around 20%.

In contrast, since the enhanced version Meta-Enha lever-
ages the domain discriminator to minimize the channel effect,
we can see its CSR remains in a constantly high level (around
100%) over both short and middle range link settings. CSR
performance then drops to around 80% in long link distance
settings. This result demonstrates the effectiveness of our
domain discriminator-based “cleaning” design.

The CSR performance of the audio quality improved ver-
sion Meta-Qual is higher than the initial method and lower
than the enhanced one. Its CSR value is constantly high when
the link is shorter than 3 m.

As we expand the link distance further, the CSR perfor-
mance of Meta-Qual drops, yet it is still higher than that of
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Figure 14: (a) CSR and (b) TSR of the NLOS attack for the
enhanced method Meta-Ehan at different locations. The noise
floor at the victim microphone is around 35 dBSPL.
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Figure 15: (a) CSR and (b) TSR of the NLOS attack for the
quality improved method Meta-Qual at different locations. The
noise floor at the victim microphone is around 35 dBSPL.

the initial method. The CSR drop is mainly due to the reduced
perturbation coverage (§III-C). The resulting perturbation in
Meta-Qual becomes sparse and concentrates on modifying
only a part of the original audio I, which actually trades off the
performance of success rate and reliability for audio quality.

TSR performance. we further calculate the transcript success
rate (TSR) for each attack method and plot the result in
Figure 13(b). TSR shares a similar trend with CSR yet with
different success rate details. Specifically, we find that the
adversarial transcripts are all successfully interpreted when the
attacker loudspeaker is within the short range of the victim
microphone. As we expand the link distance to 2 m, TSR
of Meta-Init drops to around 60%. The initial method never
succeeds as we expand the link distance further.

In contrast, the enhanced method never fails within the 5 m
attacking range. As we expand the attacking range to 6 m and
further to 8 m, TSR of the enhanced method drops to 90% and
then 50%. The Meta-Qual method, on the other hand, succeeds
over 90% within the 3 m attacking range, which is better than
the initial method. TSR of Meta-Qual then drops to 50% and
then 5% as we expand the attacking range to 5 m and further
to 8 m.

2) NLOS Attack: We next evaluate the performance of
Metamorph in the NLOS conditions. Launching adversarial
attack in the NLOS environment is more challenging as the
blocking materials not only attenuates the acoustic signals but
also introduce frequency selectivity due to the non-uniform
distribution of blocking materials. In this experiment we launch
attacks with the adversarial examples trained by Meta-Enha
and Meta-Qual. Figure 14(a-b) shows CSR and TSR of Meta-
Enha across different locations. To imitate the real attack
where the attacker is unaware of the exact location of the
victim device, we place the attacker speaker facing towards
the blockage (e.g., the wall or the wooden splitter) across all
testing locations. The victim microphone, on the other hand, is
facing towards the wall on the left throughout the experiment.
When we move speaker in the room, the facing direction
(angle) between two devices varies from about 45◦ to 135◦.

Figure 14 shows that Metamorph achieves consistently high
CSR across the majority of attacking locations. CSR drops to
46% at the corner of this office building, primarily due to the
severe multi-path introduced by walls, tables, and monitors
nearby. TSR also shows a similar trend with different success
rate details. We observe Meta-Enha achieves over 85% TSR
across 11/20 NLOS attacking locations. In particular, we find
that attacker could initiate the attack with a consistently high

TSR in the corridor. This result demonstrates the efficiency
of our domain adaptation algorithm and practicality of our
adversarial attack. As the victim microphone is facing towards
the wall on the left throughout the experiment, the performance
is generally better when the speaker is placed to the left-hand
side of the room. Moreover, we observe both CSR and TSR
are relatively low of Meta-Qual in Figure 15(a-b) and suggest
to launch Meta-Enha in NLOS attacks.

3) Audio Quality: In this experiment we quantify the audio
quality of adversarial examples generated by different methods
using the MCD metric (introduced in §IV-A). A lower MCD
value indicates a higher similarity between the adversarial
example and the original audio. We find Metamorph has
different audio quality behaviors with the music (M) and
human speech (S) as audio source. Hence, we plot the MCDs
of Meta-Enha and Meta-Qual separately to achieve a more
comprehensive view.

Figure 16: MCD values achieved by different methods (with
a reversed y-axis representation).

MCD comparison. Figure 16 shows MCD comparison result,
wherein we also plot the MCD of the adversarial example
generated by Carlini et al. [2] as a reference (REF). From the
figure, we can see that REF achieves the lowest MCD value
(15.5) on average, followed by Meta-Qual(M) (18), Meta-
Enha(M) (22.5), Meta-Qual(S) (24.2), Meta-Enha(S) (27.9),
and Meta-Init (27). Meta-Enha(S) achieves the highest MCD
(27.9). Meta-Qual achieves lower MCDs (better audio quality)
than Meta-Enha for each type of the audio files, indicating that
our proposed mechanisms in §III-C improve the audio quality
successfully. On the other hand, the adversarial examples gen-
erated from musics outperform those generated from speeches
in general, because music files usually have a higher power
than the speech files, while their added perturbations have
similar amplitude levels. Therefore, music-based adversarial
examples could have a higher SNR to achieve a lower MCD.

User perceptibility study. While the above objective MCD
measurement justifies the similarity between the adversarial
example and the original source audio, these MCD values
fail to reflect the subjective opinions from human beings, e.g.,
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No Diff. Word change Audio quality level Reason description
Yes No 1 2 3 4 A B C

M-Enha(M) (%) 9.7 0.8 99.2 49.5 43.6 6.9 0 89.9 7.5 2.6
M-Enha(S) (%) 2.0 1.9 98.1 14.5 64.7 20.0 0.8 88.1 8.9 3.0
M-Qual(M) (%) 12.3 0.5 99.5 55.0 40.8 4.2 0 90.5 7.5 2.0
M-Qual(S) (%) 9.7 0.7 99.3 47.2 47.3 5.5 0 91.3 5.6 3.1

TABLE 1: Results of the first trial of the user perceptibility study. The meaning of each option is explained in Table 4 (Appendix).

whether the adversarial examples can be easily perceived by
humans. We thus invite 50 volunteers (20 females and 30
males) with diverse ages ranging from 18 to 50 and conduct a
perceptibility evaluation of the audio quality. These volunteers
are non-paid for this study and have no hearing disease. We
utilize the adversarial examples listed in Table 5 (Appendix) to
conduct the following two trials of user perceptibility studies.5

a) In the first trial, volunteers will sequentially listen to
each set of audios organized as follows: “[(one original audio,
the adversarial example generated from this audio by Meta-
Enha), 60s pause, (the same original audio, the adversar-
ial example generated from this audio by Meta-Qual), 60s
pause]”. In each 60s pause, volunteers assess the audio quality
of the adversarial example (they just heard) compared with the
original audio by answering the following four questions.

Volunteers first select whether this adversarial example has
a same audio quality as the original audio, including both the
noise level and the audio content. If the answer is Yes (i.e.,
no difference), the assessment of this adversarial example is
complete for the first trial; Otherwise, volunteers will further
answer the following questions for this adversarial example.

• Word change (Yes or No): any word (content) change is
perceived compared to the original audio’s transcript?

• Audio quality level: we have provided four options (1–4)
reflecting different audio quality levels for volunteers to rate.

• Description: we have also provided two options (A and B)
to describe how or where, the volunteers think, such noises
come from. If none of them fits, they can also select “C
(Others)” and describe using their own words.

Due to the page limit, the explanations of above three questions
and the options are detailed in Table 4 (Appendix). Table 1
summarizes the results. Although nearly 90% adversarial ex-
amples are thought not exactly the same as their original
audios, among those examples, 98.1% to 99.5% of them do
not cause the hearing of any content (word) change to the
volunteers, i.e., the heard content is still the original transcript.
In terms of the audio quality level, 64.7% of the adversarial
examples from Meta-Enha(S) are rated to be slightly loud
(level 2), and even 20% of them cause the missed hearing
of certain audio content occasionally due to noise. However,
around 47.2% to 55.0% adversarial examples are rated to be
clear (level 1) for Meta-Enha(M), as well as for both Meta-
Qual(M) and (S), implying the effectiveness of our Meta-Qual
design on improving the audio quality. In the description field,
for 88.1% to 91.3% of the adversarial examples, volunteers feel
that the noises are coming from the hardware (e.g., recording

5The questions in our user study do not involve any confidential information
about volunteers, which will not cause them any potential risks (psychologi-
cally, physically, socially, etc.). The study obtains university’s ethical approval.

microphones, cheap speakers) (Option A). For 5.6% to 8.9%
of them, they feel that it is due to the low-quality of audio
clip itself (Option B). For the rest 3%, volunteers describe
like “mixture of options A and B”, “sound dithering from the
old tape recorder”, “buzzing effect”, etc.

b) After a 10-minute rest, volunteers start the second trial.
At the beginning of this trial, we play original audios one more
time to refresh the volunteers’ impressions on the audio quality
of these original audios. Then we play audio clips (either an
original audio or an adversarial example) in a random order,
and volunteers are not aware they are about to hear an original
audio or an adversarial one each time. After hearing each
played audio, volunteers need to decide whether this played
audio is an original audio clip immediately.

M-
Enha(M)

M-
Enha(S)

M-
Qual(M)

M-
Qual(S)

Original
audio

Ratio (%) 36.7 19.5 42.4 39.4 88.9

TABLE 2: Results from the second trial of the user study.

Table 2 summarizes the result. We can see with this exper-
imental setting, even about 10% original audios are recognized
incorrectly. For M-Enha(S), a small portion of adversarial
examples are recognized as the original audios, while the music
audios can increase this ratio to 36.7%. With our audio quality
improvement design, M-Qual(M) and M-Qual(S) can further
improve the ratio to 42.4% and 39.4%, respectively.

Conclusion. According to this field study, we conclude that
within a moderate attack distance (e.g., 3 m), Meta-Qual can
be firstly considered. For the long links, Meta-Enha(M) is
prioritized than Meta-Enha(S), if the music source can be
selected in the attack.

Figure 17: TSR, CSR, and MCD in different FUR settings
(with a reversed y-axis representation for MCD).

C. Micro-Benchmarks

We next conduct micro-benchmarks to understand the
effect of each designing factors on Metamorph’s performance.
Suggested by the field study, Meta-Enha and Meta-Qual can
achieve effective attacking results (e.g., abover 90% TSRs) at
distances of five and three meters, respectively. We thus adopt
these link distances in the micro-benchmarks.
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Figure 18: CSR and TSR achieved by
(a) Meta-Enha and (b) Meta-Qual across
different victim receivers.

Figure 19: CSR and TSR achieved by (a)
Meta-Enha and (b) Meta-Qual in different
noise floor settings.

Figure 20: CSR and TSR achieved by (a)
Meta-Enha and (b) Meta-Qual in various
speaker volume.

1) Effect of Transcript Length: Given a source audio,
the audio quality degrades with the growth of adversarial
transcripts that being inserted in this audio source. In this
experiment, we define a new metric frame utilize rate (FUR)
as the ratio of characters being en-coded into the source audio
to the total number of source audio frames. The experiment
setup is same as the previous one. Figure 17 shows the result.
As expected, audio quality decreases (MCD increases) with
the growth of FUR. On the other hand, we also witness a
decreasing trend of both TSR and CSR as we increase the
FUR from 0.1 to 0.5. This is understandable as a larger FUR
value indicates more adversarial characters are en-coded into
the source audio, hence more characters are prone to errors.
Suggested by this result, we set the maximum FUR to 0.2 by
default in the current Metamorph.

2) Effect of Device Frequency Selectivity: We first examine
whether the attack performance of Metamorph is insensitive to
different types of victim devices. We setup a five-meter (for
Meta-Enha) and three-meter (for Meta-Qual) acoustic link to
launch the attack. We fix the transmitter and then exchange
the receivers to examine the corresponding CSR and TSR.
Figure 18 shows the TSR and CSR achieved by Meta-Qual and
Meta-Enha across four type of receivers. We observe that the
high-end iPhone and Samsung smartphone achieve consistently
high TSR and CSR, which are both around 100%. CSR and
TSR of HTC smartphone (less expensive) drops gradually to
around 90%. While the CSR of Nexus (cheapest one among
four testing phones) maintains in a reasonable level (80%), we
witness a significant TSR drop (50%) on it, probably due to
the inferior hardware components used in this smartphone.

TSR of Nexus then grows from 50% to around 65% when
we use Meta-Enha method to train the adversarial phrases.
We also observe that TSR of HTC smartphone even jumps
to around 100% in the same setting. On the other hand,
both iPhone and Samsung smartphone maintains a consistently
high TSR and CSR. The result demonstrates that Metamorph
achieves overall satisfying robustness to the middle-end and
high-end smartphone. Its performance degrades when using
low-end smartphone, and we leave the way to compensate for
that as our future work.

3) Effect of Ambient Noise: We next examine the effect of
ambient noise. The experiment setup is same as the previous
one. The attacker speaker plays the adversarial examples at
75 dBSPL. We further play another music clip as a background
noise and examine system performance under different noise
levels from 35 dBSPL to 50 dBSPL, e.g., the corresponding

SNR varies from 40 to 25. From Figure 19 we observe
that Meta-Qual achieves consistently high TSR and CSR in
35 dBSPL and 40 dBSPL noise floor settings (e.g., a quite
room). TSR decrease slightly to 85% when the noise floor
grows to 45 dBSPL (e.g., in a common human conversion),
and then drops to around 60% as we further increase noise
floor to 50 dBSPL. On the other hand, we observe TSR for
Meta-Enha method maintains in a high level in all these four
noise floor settings. This result shows Metamorph is robust to
moderate ambient noise levels, e.g., SNR is greater than 25.

4) Effect of Speaker Volume: Moreover, we further vary the
transmission power from 45, 55, 65 to 75 dBSPL and examine
the system performance with the ambient noise around 35
dBSPL. Figure 20 shows the performance of Meta-Enha and
Meta-Qual. When the speaker volume is 65 and 75 dBSPL
(SNR is 30 and 45 respectively), both TSR and CSR are nearly
100%. When the speaker volume is tuned to 55 dBSPL (SNR
is 20), the attack performance slightly degrades, e.g. TSR of
Meta-Enha degrades to 0.9 and TSR of Meta-Qual degrades
to around 0.82. When speaker volume is further reduced to 45
(SNR is 10), the attack successful rates become low.

Figure 21: CSR and TSR achieved by (a) Meta-Enha and (b)
Meta-Qual in different attacker moving speed settings.

5) Effect of Victim Device Movement: We finally inves-
tigate the possibility of attacking when the victim device
is moving, which is a nature and practical scenario for the
adversarial attack. In this experiment we place the attacker
speaker on a table and play adversarial examples generated by
Meta-Qual and Meta-Enha, respectively. We hold the victim
device in hand and move towards and backwards the table
at a different yet relatively constant speed (0.1 m/s, 0.5 m/s,
1.0 m/s, and 1.5 m/s). The result is shown in Figure 21. We
observe CSR for Meta-Qual is consistently high (>90%) when
the attacker moves at both low (0.5m/s) and normal speed
(1.5m/s). TSR for Meta-Qual, on the other hand, decreases
slightly when the attacker moves at 1.5m/s. Both CSR and
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Schemes Target model Attack model Over-the-air Attack scenes Successful rate Audio quality (MCD)
Black-box Attacks [43], [47] DeepSpeech Black-box No - - -
Qin et al. [42] Lingvo [30] White-box No Simulated - -
Carlini et al. [17] DeepSpeech White-box No - - -
Abdullah et al. [12] DeepSpeech White-box Yes 0.3m (1 foot) 15/15 (trials) -
CommanderSong [57] Kaldi [41] White-box Yes 1.5m 78 % 22.3
Yakura et al. [56] DeepSpeech White-box Yes 0.5m 80 % 25.1
Meta-Enha DeepSpeech White-box Yes 6m / NLOS 90 % / 85.5 % 25.2
Meta-Qual DeepSpeech White-box Yes 3m 90 % 21.1

TABLE 3: The state-of-the-art audio adversarial attacks. “-” indicates the information is not available. We compute MCD value
for [56] and [57] based on their released attack samples.

TSR for Meta-Enha are around 100% in all four moving speed
settings. The result shows that both Metamorph versions are
robust to the victim’s normal movement.

V. RELATED WORK

Audio adversarial examples. Early study [50] reveals the pos-
sibility to conduct an adversarial attack on speech recognition
(SR) systems, while the generated adversarial examples can be
easily perceived by human [46]. Alzantot et al. [14] later attack
a command word recognition model without the listener’s
perception. Motivated by [14], Taori et al. [49] further attack
DeepSpeech [27]. However, their major limitation is that the
recognized command contain no more than two words [56].

Recently, Carlini et al. [16] realize an attack on gen-
eral HMM-based RS systems without the constraint of the
command’s word number, and later they introduce a targeted
audio adversarial attack on the state-of-the-art SR system
DeepSpeech in [17]. Study [46] further introduces an attack
with the dedicated temporal alignment and back-propagation
designs, and Liu et al. [36] propose a weighted-sampling
method to reduce the search space. Qin et al. [42] propose a set
of frequency masking algorithms to improve the imperceptibly
of adversarial attacks. Felix et al. [33] design adversarial
examples to attack voice authentication system. Moustapha
et al. [18] proposes a general adversarial example generation
method, which can works on any gradient-based machine
learning models. Moreover, there are also few works leveraging
evolutionary algorithms to initiate black-box attack [43], [47].
However, the adversarial examples generated from these works
cannot survive after the over-the-air transmission. Later on
researchers try to make these adversarial attacks work in real-
world scenarios (as listed in Table 3). Yuan et al. [57] integrate
the commands into a song and Abdullah et al. [12] leverage the
similar frequency domain feature vectors extracted from mul-
tiple source audios to generate audio adversarial examples that
can initially succeed after over-the-air transmission. Yakura et
al. [56] further propose to inject the CIR collected at other
places into the training model and achieve descent success
rate. However, they mainly work in short range, e.g., 0.3 m to
1 m, and/or require the physical presence of the attack devices.

Embedding bits into audio. In the literature, there are also
some existing works that propose to embed bits into audios
for different application designs. For example, Dhwani [38]
utilizes the acoustic signals to develop a secure near-field
communication protocol. GeneWave [54] proposes an efficient
authentication design for mobile devices. The study [58]
further introduces a secure communication design without

using keys. These works mainly focus on the security-related
application designs. There are also some prior works that
propose more general methods to embed bits into sounds to
achieve a side-channel information delivery [35], [40], [52].
These designs mainly embed bits into the high-frequency
band, such as 18 kHz – 20 kHz, to minimize the perception
of human. The generation of audio adversarial examples, in
both Metamorph and prior attacks, also add bits into audios.
However, these bits are usually added in the audible range,
e.g., 0 kHz – 8 kHz, because SR mainly uses this range for
the recognition. Therefore, the audio quality is one crucial
consideration in the adversarial example generation.

Microphone non-linearity. In the literature, some recent
studies, like [44], [45], [59], successfully realize a series of
inaudible attacks on the speech recognition by harnessing the
non-linearities of the diaphragm of microphone and the power
amplifier of receiver [44]. The attacker can inject the sneaky
voice commands to the speech recognition system of the victim
receiver, and the device’s owner cannot hear such commands.
However, these recent inaudible attacks all require the special
speaker hardware to play ultrasonic acoustic signals, incurring
the extra hardware requirement. Moreover, it is successfully
defended in [45]. These works do not belong to the adversarial
attack, which are parallel to Metamorph and do not address our
unique challenges in this paper.

Assorted topics related to Metamorph. There are also some
other types of adversarial examples and the most representative
example is the image-based ones [15], [34]. For the image ad-
versarial example generation, there exists a similar problem —
whether the image adversarial examples can survive when they
are taken by a camera? RP2 [20] recently reports a successful
attack by taking the varying of distances and angles between
the camera and the adversarial image into consideration in
the perturbation training. However, the technical challenges
in acoustic channels are different compared with the existing
image-based adversarial attacks.

On the other hand, to improve the attacking distance, we
also utilize the domain discriminator training methods [29],
[60]. Inspired by these existing works, we further propose a
dedicated domain discriminator to exclude the device- and
environmental-dependent features from the prior measure-
ments in the training of the adversarial example perturbation.

VI. CONCLUSION

This paper presents Metamorph to generate over-the-air
audio adversarial examples. We first conduct extensive empir-
ical studies to understand this attack in the over-the-air setting
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and observe that the reason undermining prior designs is the
frequency-selectivity caused by both device and channel. To
cope with this issue, we propose a “generate-and-clean” two-
phase design and also consider the audio quality of generated
adversarial examples. The evaluation shows the efficacy and
good performance of Metamorph.
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APPENDIX

A. Configuration of System Parameters

The final loss function of Metamorph in Eqn. (10) includes
five parameters, including α , β , γ , η and µ . In this subsection,
we introduce how they are configured in this paper.

Parameter α . This parameter is based on the audio adversarial
example generation method proposed in [17], which aims to
balance the audio sound distortion, described by Decibels (dB),
and the attack successful rate, described by the Connectionist
Temporal Classification (CTC) loss. Although it is possible to
train it directly, a more efficient mechanism is implemented in
[2] to avoid a direct parameter tuning. In our implementation,
we also adopt this mechanism without turning α directly.

Parameters β and γ . These two parameters are introduced
in Metamorph to ensure the good attack performance after the
over-the-air transmission of the adversarial example. Parameter
β balances the adversarial example generation and the ability
to distinguish domains by the domain discriminator. We vary6

β from 0.005 to 0.5 in Figure 22(a). From the results, we
observe that both the transcript successful rate (TSR) and
character successful rate (CSR) at a moderate attack distance
of 3 m can achieve a better performance (e.g., > 0.95) when
β is 0.05. The audio quality, measured by MCD (Mel Cepstral
Distortion), keeps relative stable in this experiment. We thus
experimentally adopt 0.05 as the default β setting in current
Metamorph. With this setting, more experiments from the
evaluation section show the good system performance at other
attack distances as well. On the other hand, parameter γ is
introduced to reduce the over-fitting. Through the experiment
in Figure 22(b), we observe that when we increase γ , e.g., 500
or 1000, TSR approaches to nearly 100%. The audio quality
degrades only slightly. However, when we further increase γ ,
both TSR/CSR and audio quality drop rapidly. Therefore, we
adopt 500 as the default γ setting in the current Metamorph.

Parameters η and µ . These two parameters are introduced
in Metamorph to mainly improve the audio quality of the
generated adversarial example. Parameter η controls the utility
of the audio graffiti. In Figure 22(c), we vary η from 1e-5
to 1e-3. The result shows that when η increases, the audio
quality, measured by MCD, keeps improving, while CSR and
TSR drop significantly when η is greater than 1e-4. Hence,
we adopt 1e-4 as the default η setting in current Metamorph.
On the other hand, parameter µ is introduced to reduce the
perturbation coverage. Through the experiment in Figure 22(d),
we observe that the increase of µ also leads to the improvement
of the audio quality MCD, while the CSR and TSR will drop
concurrently. As a result, we adopt 1e-12 as the default µ

setting in the current Metamorph.

These default parameters introduced above are utilized in
the experimental evaluations in Section IV.

B. User Perceptibility Study Questions

In the first trial of the experiments conducted in the user
perceptibility study of Section IV-B, volunteers will sequen-
tially listen to each set of audios following the organization

6Principle of each parameter’s varying range is to ensure its product with
its loss function will be comparable to other terms in Eqn. (10).

Figure 22: Experimental configurations for system parameters
β , γ , η and µ (with a reversed y-axis representation for MCD).

below: “[(one original audio, the adversarial example generated
from this audio by Meta-Enha), 60s pause, (the same original
audio, the adversarial example generated from this audio by
Meta-Qual), 60s pause]”. During each pause, the volunteers
immediately assess the audio quality of each adversarial ex-
ample compared with the original audio. Volunteers first select
whether each adversarial example has the same audio quality
as the original audio (Y or N), including both the noise level
and the audio content. If the answer is Y, the assessment of this
adversarial example in the first trial is complete; Otherwise,
volunteers will further select for three questions related to 1)
word (content) change, 2) audio quality level and 3) noise
description. The explanation of each question is in Table 4.

Explanations
Word change Y Word (content) change per-

ceived.
N No word (content) change per-

ceived.

1 Noise is small and audio con-
tent is clear.

2 Noise is a slightly loud, but it
does not impact my hearing of
the audio content.

Quality level 3 Noise is loud and I cannot hear
the audio content occasionally.

4 Noise is annoying and I cannot
hear the audio content consis-
tently.

A Noise is brought by the hard-
ware, e.g., microphone record-
ing, cheap speaker, etc.

Description B Noise is due to the low-quality
of the audio clip itself.

C Others (using your own words).

TABLE 4: Explanations of word change, audio quality level
and description three fields in the user perceptibility study.

C. Adversarial Examples Used in Evaluation

We generate two types of adversarial examples (music and
speech) with different source and target transcripts, which are
detailed in Table 5. The source musics are labelled in the table
directly, and the speech adversarial examples are generated
based on 11 different speech samples from the public Mozilla
Common Voice Dataset [6].
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No. Source audio transcripts (musics) Target commands
1 “[no transcript]”–Bach, Violin “hello world”
2 “chase your dreams and remember me sweet

bravery”–Owl City, To The Sky
“power off”

3 “I feel earth move under my feet I feel the sky”–
Carole King, I Feel The Earth Move

“pay the money”

4 “lyrical acrobat stunts while I’m practicing that I’ll
still be able to break a motherfuckin’table over the
back of a couple"–Eminem, Rap God

“turn off the light”

5 “well the kid is into losin’ sleep and he don’t
come home for half the week”–Van Halen, And
the Cradle Will Rock

“airplane mode on”

6 “[no transcription]”–Van Halen, Guitar “browse to evil dot com”
7 “somebody mix my medicine”–The pretty Reck-

less, My Medicine
“turn off the cellular network”

8 “[no transcription]”–Chopin, Piano “update the phone blacklist”
9 “I am a mountaineer in the”–Owl City, Hello

Seattle
“silence the phone”

No. Source audio transcripts (speeches) Target commands
1 “hold your nose to keep the smell from disabling

your motor functions”
“clear all appointments on calendar”

2 “your son went to server at a distant place and
became a centurion”

“open the door”

3 “the shower’s in there” “restart”
4 “and you know it” “open the camera”
5 “this is no place for you” “flashlight on”
6 “if I had told you you wouldn’t have seem the

pyramids”
“play the scary music”

7 “I told you to have the ice box fixed” “call nine one one”
8 “their faces were hidden behind blue veils with

only their eyes showing”
“send me your messages”

9 “we are refugees from the tribal wars and we need
money the other figure said”

“log in paypal”

10 “isn’t the party also to announce his engagement
to joanna”

“show fake traffic information”

11 “he stood irresolute for a moment and then scram-
bled out of the pit”

“shut down the power source”

TABLE 5: Source audios and target transcripts used in Metamorph, where “[no transcription]” means that there is no transcript
when the classical music is played. The source musics are labelled in the table and the source audio for speeches are from the
Mozilla Common Voice Dataset.
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