
Bobtail: Improved Blockchain Security
with Low-Variance Mining

George Bissias
University of Massachusetts Amherst

gbiss@cs.umass.edu

Brian N. Levine
University of Massachusetts Amherst

brian@cs.umass.edu

Abstract—Blockchain systems are designed to produce blocks
at a constant average rate. The most popular systems currently
employ a Proof of Work (PoW) algorithm as a means of creating
these blocks. An unfortunate limitation of all deployed PoW
blockchain systems is that the time between blocks has high
variance. For example, Bitcoin produces, on average, one block
every 10 minutes. However, 5% of the time, Bitcoin’s inter-block
time is at least 30 minutes.

In this paper, we show that high variance is at the root
of fundamental attacks on PoW blockchains. We propose an
alternative process for PoW-based block discovery that results
in an inter-block time with significantly lower variance. Our
algorithm, called Bobtail, generalizes the current algorithm,
which uses a single PoW sample, to one that incorporates k
samples. We show that the variance of inter-block times decreases
as k increases. Bobtail significantly thwarts doublespend and
selfish mining attacks. For example, for Bitcoin and Ethereum,
a doublespending attacker with 35% of the mining power will
succeed with 44% probability when the merchant sets up an
embargo of 1 block; however, when k ≥ 40, the probability of
success for the same attacker falls to less than 1%. Similarly,
for Bitcoin and Ethereum currently, a selfish miner with 45%
of the mining power will claim about 71% of blocks; however,
when k ≥ 20, the same miner will find that selfish mining is less
successful than honest mining. We also investigate attacks newly
made possible by Bobtail and show how they can be defeated. The
primary costs of our approach are larger blocks and increased
network traffic.

I. INTRODUCTION

Blockchain systems are designed to produce blocks of
validated transactions at a constant average rate. The most
popular systems employ a Proof of Work (PoW) algorithm as
a means of creating these blocks [35], including Bitcoin [8],
Bitcoin Cash [9], Ethereum [21], and Litecoin [33]. Whether
a pure PoW or hybrid approach [11, 16, 31], the two most
fundamental attacks on PoW blockchains are selfish mining [23]
and the doublespend [35].

A direct consequence of using a PoW algorithm is that
the time between blocks has high variance and the distribution
of inter-block times has a very long tail. As we show in this
paper, high variance is responsible for enabling doublespend
and selfish mining attacks. Generally, miners in all deployed

systems craft blocks by repeatedly changing a nonce in the
block header until the cryptographic hash of that header is less
than a target value t, 0 < t < S, where S is the largest hash
value (typically S = 2256 − 1). In other words, the hash of
each header is a sample from [0, S] taken randomly from a
discrete uniform distribution. A block is discovered when the
first order statistic (i.e., the minimum value) of all sampled
values is less than target t. The resulting inter-block times are
exponentially distributed (a result we show formally), and have
a variance equal to the square of the mean.

Intuitively, variance explains why a miner with a small
fraction of the system’s total hash rate can successfully
doublespend. Whenever the honest miners are unlucky and
encounter high inter-block times, it’s an opportunity for the
attacker to conversely be lucky, mine with relatively smaller
inter-block times, and produce a longer chain. In sum, if PoW
mining could be achieved with a lower inter-block time variance,
then doublespend and selfish mining attacks would fail more
often.

In this paper, we propose an improved process for PoW-
based block discovery that results in an inter-block time
with significantly lower variance. As a result, our approach
is significantly more secure against doublespend and selfish
mining attacks. Our algorithm generalizes the current algorithm,
which uses a single PoW sample, to one that incorporates
k samples. We show that the variance of inter-block times
decreases as k increases. For example, if our approach were
applied to Bitcoin, nearly every block would be found within 5
to 18 minutes; and the average inter-block time would remain
at 10 minutes. In comparison, currently 5% of Bitcoin’s blocks
have inter-block times of at least 30 minutes. We call our
approach Bobtail mining.

As a result, in Bobtail, doublespend and selfish mining
attack efficacies are drastically reduced. For example, in either
Bitcoin or Ethereum, a doublespending attacker with 35% of
the mining power will succeed with 44% probability when the
merchant sets up an embargo of 1 block; however, for Bobtail,
the probability of success for the same attacker falls to less
than 1% (when k ≥ 40). Similarly, for Bitcoin and Ethereum
currently, a selfish miner with 45% of the mining power will
claim about 71% of blocks; however, when k ≥ 20, the same
miner will find that selfish mining is defeated, resulting in a
smaller fraction of blocks than honest mining.

One disadvantage of Bobtail is that new withholding and
denial-of-service attacks are possible. However, we show how
these attacks can be thwarted with careful protocol design.

Network and Distributed Systems Security (NDSS) Symposium 2020
23–26 February 2020, San Diego, CA, USA
ISBN 1-891562-61-4
https://dx.doi.org/10.14722/ndss.2020.23095
www.ndss-symposium.org

Proof 1

Miner-2

Miner-3

Miner-1

Miner-4

Proof 2

Proof 4
Proof 3

Proof k
Proof k+1

…

Txns
(Graphene)

Header

Coinbase

Proofs
(Graphene)

Signature

Miner-3

Fig. 1: (Left) In Bobtail, miners each broadcast proof sets whose
hash values are called proofs. When the average of k proofs is
at or below the target, a new block is found. (Right) The miner of
the lowest proof selects the transactions that are included in the
new block and announces that block to the network. Coinbase
is rewarded to miners proportional to the number of proofs
they contributed. Proofs (and transactions) in the block can be
efficiently announced using Graphene [38].

Contributions. Our contributions are summarized as follows.

• We derive the statistical characteristics of our approach
and validate each empirically. For example, we derive
expressions for the expectation and variance of Bobtail
block times and the amount of work performed for any
value of k. Using these expressions, we quantify the
reduction in variance of inter-block time for values of
k > 1. We show that variance in block discovery time is
reduced by O(1/k) relative to the status quo.

• We demonstrate that low-variance mining significantly
mitigates the threats to security posed by doublespend and
selfish mining attacks, as stated above.

• We demonstrate that, due to our protocol mechanisms,
Bobtail mining has the same or lower orphaned block rate
as existing schemes.

• We quantify the increased network overhead of Bobtail,
and demonstrate how these costs can be kept minimal by
leveraging the statistical characteristics that we derive.

• We show that new intra-block DoS and withholding attacks
are possible for Bobtail. However, through careful protocol
design, these attacks are mitigated.

Bobtail is also a convenience for consumers, who would
benefit from reduced block time variance and a more consistent
flow of validated transactions through the system.

We close by presenting related work and offering concluding
remarks. We begin by defining our problem statement and the
Bobtail mining process and network protocol.

II. AN EXPLANATION OF THE BOBTAIL PROTOCOL

In this section, we provide a high-level overview of the
Bobtail protocol and its features.

Summary. In current PoW systems, miners iterate on a nonce
within a block header until the hash of the header is equal to
or lower than a known target t. The new block is announced
to all other miners, who reference this hash value within the
header of the next block that they will mine. This process
creates a blockchain in that each subsequent block points to
the previous. Similarly, in Bobtail, miners iterate a nonce in a

block header seeking a value near tk, a threshold that varies
with security parameter k. As illustrated in Fig. 1(Left), once
a suitable header is found, a miner announces it to all other
miners; for clarity we call the announcement a proof set and its
hash value simply a proof. If the mean of the k-lowest proofs
is equal to or lower than the target tk, then a new block is
found. The miner with the lowest of all proofs is the only one
that can announce the new block and is the one that controls
the list of transactions confirmed by the block, as shown in
Fig. 1(Right). To be clear, Bobtail blocks are not the result
of k proofs from one miner, but the k-lowest from all miners.
The coinbase reward is split evenly among all contributors
(proportional to number proofs contributed), which leads to
a smoother short-term distribution of rewards among lower
hash rate miners than does the status quo. We now define this
process more formally.

A. Problem Statement

Imagine that the mining process is carried out for exactly
h hashes during time interval I , generating hash values
H1, . . . ,Hh from [0, S] uniformly at random. Now define Vi
to be the value of the ith order statistic at the end of I , i.e.
Vi = H(i) in standard notation. Let Wk be a random variable
representing the average value over the k-lowest order statistics
after h hashes.

Wk =
1

k

k∑
i=1

Vi. (1)

Wk constitutes the collective mining proof for the entire
network. Our Bobtail mining criterion says that a new block is
discovered when a realized value of Wk falls at or below the
target tk:

wk ≤ tk. (2)
Notably, this approach is a generalization of current systems,
which are the special case where k = 1.

The primary goals of our paper are therefore to show the
following, given values of k > 1.

• Inter-block time variance is significantly reduced (Sec-
tion IV).

• Selfish mining and doublespend attacks are significantly
more difficult to carry out as k increases (Section V).

• Costs are relatively small. Orphan rates are no worse than
for k = 1 (Section VI), and the increases in block size and
network traffic are small and manageable (Section VII).

• New attacks made possible by setting k > 1 are easily
mitigated (Section VIII).

B. Protocol Details

So that our results are presented in a concrete context, we
begin by stating the details of the Bobtail network protocol.

Blocks. Bobtail blocks, illustrated in Fig. 2, consist of several
components.

• A block header H contains the same fields as a conven-
tional block header (e.g., in Bitcoin or Ethereum) and one
additional field, described below.

• Proof package K is a collection of k proof sets. Each
proof set Pi contains a payout address for the miner,

2

Header H
version v
prior o
difficulty d
timestamp e

Block

proof set Pi
Merkle root mi

address ai
support si
hash Ni

Transactions T1
transaction 1, transaction 2, …

where
 Vi = h(o, mi, ai, si, Ni)
 and Ni = h(v, d, ei, ni, …)

It must be that
si ≥ V1 for all i ≥ 2;

and ≤ target

nonce n1

Merkle root m1

support s1

proof set P1, …, Pk

Proof package K

Signature S
Signature of (H, K, C) with a1

 coinbase for a1 …, coinbase for ak

Coinbase reward C

1

Fig. 2: Bobtail blocks are a superset of existing PoW schemes;
items already present in a typical PoW blockchain appear in blue.
Bobtail blocks are additionally signed by the miner of V1 and add
proof sets contributed by other miners.

values necessary for creating valid proof of work, and
other values used for thwarting attacks. Proof sets are
hashed to create PoW, i.e. proof Vi = h(Pi). The sets are
ranked so that V1 is defined as the smallest value or first
order statistic.

• A set C of coinbase transactions awarded to the miners
of the k proof sets.

• Cryptographic signature S of the set (H,K, C), which
must be generated with the private key that matches the
payout address in P1. This thwarts an attack detailed in
Section VIII.

• The body of the block is a set T1 of valid previously
unconfirmed transactions. The subscript denotes that the
miner of V1 selects the transactions.

Mining. Bobtail mining is a generalization of the procedure
implemented in conventional PoW blockchains. Each miner
seeks to receive coinbase reward by generating one of the k
proof sets P1, . . . ,Pk included in K. Each proof set Pi contains
the following fields.

• o is the hash of the signature S of the prior block.
• mi is the root of a Merkle tree containing transactions Ti.
• ai is the miner’s coinbase payout address.
• si is a supporting proof or support, which we define as

the smallest proof value among all proof sets (pointing
to the same prior block) that the miner has seen to date.
This value helps prevent orphan blocks and withholding
attacks.

• Ni is the hash of set Ni = (v, d, ei, ni, . . .) containing
the protocol version v, current difficulty d, timestamp ei,
and nonce ni. Note that v and d are taken from H. We
allow zero or more optional arguments in Ni that may be
required by the blockchain Bobtail is applied to.

To be eligible for inclusion in the same block, proof sets must
use the same prior block o, version v, and difficulty d.

Whether by virtue of network delay or by intentional
deviation from the protocol, the value of V1 in the block might
be greater than the lowest proof value overall. In such cases,
we emphasize this difference by referring to the actual lowest
proof value as the 1OS (first order statistic).

Like other PoW blockchains, miners select new nonces and
generate proofs continuously. In Section VII, we show how a
miner can precisely determine the probability that any given
proof will eventually be included in the mining package. Once
a proof is discovered having sufficient probability of inclusion,
the values in Pi are propagated. Proof sets corresponding to
proofs with sufficiently low value (according to a threshold to
be defined later) are propagated throughout the network.

We say that a block can be assembled when (i) the mean
of the k proofs, V1, . . . Vk, is less than or equal to target tk;
(ii) the package is signed by the miner who generated V1 using
address a1; (iii) supports s2, . . . sk are greater than or equal to
V1.

Current blockchains place the coinbase reward within the
Merkle root. In Bobtail, these rewards are unknown at the time
of mining. Therefore, the set C of k coinbase transactions is
listed separately. The coinbase payout of the block is distributed
according to the scheme described in Section VIII. Because
signature S covers set C, and the signature is tied to the lowest
proof value, the coinbase values are determined entirely by the
block miner. However, any block whose set C fails to follow
protocol conventions is considered invalid, and will be ignored
by other miners.

The assembled block, comprised of H,K, C,S, and T1, is
propagated throughout the network. T1 and the proof package
K can both be expressed very efficiently using Graphene [36,
38] or a similar compression algorithm. Receivers validate
the three assembling rules stated above, that the signature
uses a1 from P1, and that the coinbase is allocated fairly. If
validation succeeds, then the block is added to the blockchain
and propagated to peers.

Difficulty adjustment. Bobtail is compatible with any de-
ployed difficulty adjustment algorithm (DAA). For example,
Bitcoin adjusts roughly once every two weeks1. It uses the
mean block time for the last 2016 blocks to estimate the actual
difficulty at which the miners were operating; then the difficulty
parameter d is adjusted up or down in order to ensure that the
expected block time is 10 minutes if miners continue mining
at the same rate. At a given difficulty d, the target tk can be
derived from d in the same manner that it is for Bitcoin2, which
involves translating integer d into a threshold 256-bit arithmetic
value (i.e., one that supports arithmetic operations). The DAAs
used in Bitcoin Cash [9] and Ethereum [21] are similarly fully
compatible with Bobtail.

Fork-choice rule. If multiple miners generate proofs with value
low enough to mine a block with the same parent, then there
can arise ambiguity over which extends the main chain, i.e. the
chain that honest miners will continue to extend. To avoid this
ambiguity, we define the main chain to be the one comprising
the most aggregate work, from the genesis block up to the

1https://github.com/bitcoin/bitcoin/blob/78dae8cacc/src/pow.cpp#L49
2https://github.com/bitcoin/bitcoin/blob/78dae8cacc/src/pow.cpp/#L80

3

https://github.com/bitcoin/bitcoin/blob/78dae8cacc/src/pow.cpp#L49
https://github.com/bitcoin/bitcoin/blob/78dae8cacc/src/pow.cpp/#L80

tip; all competing chains are orphaned, i.e. ignored by honest
miners. Aggregate work is calculated as the sum of inferred
hashes, S/wk, over each block, where S is the size of the hash
space and wk is the value of the mining statistic. In general,
this fork-choice rule ensures that blocks with lower average
proof values will be favored over those with higher values.
Note that because proof sets reference a specific parent block,
they can only be shared between child blocks having the same
parent. And according to our fork-choice rule, ultimately the
child block with the lowest value wk will extend the main
chain.

Additional rules. In order to reduce the number of orphaned
blocks (discussed in Section VI-A) and thwart various attacks,
(see Section III), miner M will adhere to the following rules. (i)
M rejects proof package K if V1 is higher than the lowest proof
she has seen announced on the network (the 1OS). However,
she continues to mine on the same prior block until a block
containing the 1OS is actually propagated. M does this in order
to mitigate a possible DoS attack by the miner of the 1OS
and also in hopes of generating more of her own proofs to be
included in the block. (ii) When assembling a proof package
as the miner of V1, M will include her own proofs first, and
then proofs from other miners in the order she received them
from the network. Specifically, M begins by identifying all
sets of k proofs S1, . . ., each with mean value below tk. Let
r be the maximum reward value, across all Si, that would be
returned to M if the given set was assembled into a block. She
discards any sets that do not return reward value r, and then
assembles the proof package from the remaining set with the
earliest average proof receipt time so that the mean remains
below tk.

III. ASSUMPTIONS AND METHODOLOGY

A. Threat Model

In this section, we list the set of known attacks that can
be carried out on Bobtail. Doublespend, selfish mining, and
eclipse attacks exist on current blockchains, but the other two
are unique to Bobtail. Solutions to each attack, except eclipse,
are presented in subsequent sections.

Attacker Model. We assume a straightforward attacker model:
attackers are assumed to have some significant proportion of
the network’s total mining power, but less than 50%. We are
interested in attacks on Bobtail’s design only, and thus we
assume the attacker ignores aspects of the blockchain that are
orthogonal, such as hacking into the systems of other miners.

Doublespend. In a doublespend attack [35, 37], the attacker
purchases off-chain goods or services from a merchant using
an on-chain transaction T . Assume the main chain ends with
block B0. Honest miners will add a sequence of blocks
H = H1, H2, . . . after B0, with transaction T appearing in
block H1. In the meantime, the attacker mines an alternate
fork, also beginning from B0, with a fraction q of the mining
power, producing blocks A = A1, A2, Block A1 contains
a transaction T ′ that conflicts with T , allowing the attacker to
avoid paying the merchant. To thwart the attack, the merchant
selects a value z ≥ 0 and does not release the goods or services
until the length of H is at least z. Larger values of z decrease
the probability of success for the attacker. When z = 0, the

item is released immediately. The attacker withholds A until
its length is at least z + 1 and is also longer than the honest
miners’ fork. Upon announcement of A, the honest miners will
adopt it along with the conflicting transaction T ′ instead of T .

Selfish mining. A selfish mining attack [23, 26, 41] is another
strategy where an attacker attempts to increase her proportion
of blocks (and rewards) to an amount above the proportion
she has of the network’s mining power by causing honest
miners to waste some of their work. We follow the attack as
described by Eyal and Sirer [23], which unfolds as follows.
The attacker withholds a secret chain A = A1, A2, . . . forked
from B0, releasing one block at a time only when she is ahead
by two, and continuing until honest miners are able to produce
a competing chain H = H1, H2, . . . of equal or greater length.
At this point, the attacker releases the remaining private portion
of A. If A is the same length as H at the time of release, then
some (non-empty) set of all miners (including the attacker)
will adopt A. Thus, A will be extended with some positive
probability, nullifying the work performed on chain H.

Doublespend and selfing mining attacks are the two most
fundamental attacks on blockchains. In both cases, because the
attacker is assumed to have a minority of the mining power,
in expectation, he cannot create a longer fork than that of the
honest miners. However, just like a person visiting a casino,
the attacker is seeking a short-term win. He is attempting to get
lucky and find a series of blocks quickly while the honest miners
are relatively unlucky and discover blocks slowly, despite their
larger amount of mining power. Intuitively, the success of the
attacks lies in leveraging the inherent variance of mining. We
show how Bobtail’s low variance inter-block time defeats these
attacks in Section V.

Eclipse. Most public blockchains arrange fully validating
nodes (including miners) in a p2p network [17]. An attacker
eclipses [28] a peer in the network by conspiring to take over
all of its incoming and outgoing connections. By doing so,
the attacker can censor both the set of transactions and blocks
sent and received by the peer. As a result, the attacker can
effectively eliminate the hash rate of the targeted peer by
refusing to forward the peer’s blocks. For example, in Bitcoin,
if the peer has a significant fraction of the hash rate, then it
becomes easier for the attacker to doublespend on the main
chain. Bobtail experiences the same susceptibility to eclipse
attacks as Bitcoin because the attacker can censor proofs the
same way he would censor blocks. In particular, an attacker
with fraction x of the hash rate who can eclipse fraction y of
the honest hash rate, will increase his effective hash rate from
x to x/(1− y). We do not focus further on eclipse attacks in
this work because they amount to attacks on network topology
and management mechanisms, which are largely orthogonal
to the consensus mechanism developed by Bobtail. Moreover,
mitigations have been introduced [28] for the eclipse attack in
existing blockchains.

Proof withholding. This attack involves miner A declining to
publish some subset of her Bobtail proofs immediately after
they are generated. Instead, A withholds the proofs in order
to gain an informational advantage over the remaining miners,
H . While miner A sees all proofs, an honest miner in H sees
only proofs generated by members of H . A hopes that this
advantage will allow her to assemble some proof packages

4

with more than her fair share of proofs and ultimately lead to
an increase in her total reward. Section VIII-B describes how
honest Bobtail miners defeat this attack by using supporting
proofs and assembling blocks using the earliest arriving proofs.

Denial-of-Service. We distinguish denial-of-service (DoS)
attacks from proof withholding by the property that, for
the former, a miner elects not to release a complete block
when he is capable of doing so. Such an attack is clearly
disincentivized in current PoW protocols like Bitcoin because
of the opportunity cost associated with losing the mining reward.
However, opportunity cost is less obvious in Bobtail because
the proofs generated by a miner are eligible for inclusion in
multiple potential blocks.

B. Methodology

In this paper, our primary conclusions are based on
theoretical analysis, which are subsequently validated using a
detailed Monte Carlo simulation3. In the simulation, the mining
process is modeled as sampling from a uniform distribution
and comparing those samples against a target. For each trial,
we set a target and count the number of samples taken until the
target is reached. This procedure yields a valid approximation
of mining time assuming a constant hash rate, in which case
block generation times can be inferred from a count of hashes
performed. For each plot in the paper, we computed many
thousands of trials such that the 95% confidence intervals
are sometimes too small to be shown or are represented as
(very small) intervals. Every point on each plot is a separate
set of trials to ensure independence. In some simulations
we measured block times only; in other simulations, sharing
the same code, we awarded coinbase and included network
delays required to examine the operation of the full Bobtail
protocol and operation. In our simulations, we do not model the
network topology, which is to say that all miners are nominally
connected in a clique. Nevertheless, we feel that the latencies
we introduce, where appropriate, are realistic for the networks
they model [24].

IV. LOW VARIANCE AND OTHER PROPERTIES
OF THE k-OS CRITERION

In this section, we derive the statistical characteristics of
Bobtail. Our primary goal is to prove that the inter-block time
variance decreases as O(1/k).

Roadmap. To derive the reduction in Bobtail’s inter-block
time variance, we proceed in four steps. We begin by laying
a statistical foundation upon which our results are built. In
Section IV-A, we derive an equation for Bobtail’s PoW target,
which is a function of k. In Section IV-B, we use the target
tk to derive an expression for the expected amount of time
it takes to mine a block, given k. In Section IV-C, we use
this expectation to calculate the inter-block time variance, and
finally, in Section IV-D, we compare as a ratio the variance
of mining with k > 1 to current systems (i.e., k = 1). The
primary challenge in this derivation is in linking the statistics
of PoW sample values with mining time. The former is dictated
directly by the protocol (through mining criterion wk < tk),
while the latter is emergent.

3https://github.com/umass-forensics/bobtail-simulations

Foundation. To begin, we state a fundamental relationship
between the size of the hash space S, the total number of
hashes performed h, and the expected value of the minimum
hash v found during an interval of time I when miners are
hashing. (I is any duration, but one could think of it as, for
example, the desired inter-block time.)

Recall from Section II-A that Vi represents the ith lowest
hash value achieved after h hashes are performed during
interval I . Next, define Xi to be the number of intervals I
required for Vi to fall below v when h hashes are performed
per interval. In Appendix A, we show that both Vi and Xi are
gamma distributed with shape parameter i, only differing in
scale parameter. Specifically, Theorem 6 proves that

Vi ∼ Gamma(i, v), (3)
and Theorem 7 proves that

Xi ∼ Gamma(i, 1/r), (4)
where v is the expected value of the minimum hash (V1) during
interval I and 1/r is the expected number of intervals required
for V1 to fall below v.

We can see that the distributions for Vi and Xi are
related through the change of variables v = 1/r, and all four
parameters v, r, h, and S are related by

v = r
S

h
. (5)

In words, Eq. 5 states: the expected minimum hash v during
interval I is related to the expected rate at which the first order
statistic falls below v by the ratio S

h .

A. Adjustment of the Target Given k

Intuitively, if we increased k > 1 without adjusting the
target for k = 1, then the expected block time would increase:
the average of the k lowest order statistics has higher expected
value than the first order statistic alone, so we expect that
more hashes are required for the average to fall below a given
value. Therefore, to keep the number of hashes expected to
find a block constant as we increase k, the target tk appropriate
for each k should also be increased. In this subsection, we
determine the relationship between ti and tj , i 6= j, such that
the expected time to mine a block using criterion wi < ti is
the same as when using the criterion wj < tj .

Define X ′i = Xi/i and V ′i = Vi/i to be the normalized
value and interval count, respectively, for order statistic i.
Furthermore, define

W ′k =
1

k

k∑
i=1

V ′i

to be the normalized mining statistic. We have the following.

LEMMA 1: In expectation, 1/r intervals are required to
ensure that V ′i = Vi/i < v for all i.

PROOF: As stated above, Xi is gamma distributed so that
E[Xi] =

i
r . Each X ′i is interpreted as the number of intervals

required for Vi to fall below iv, or analogously, the number
of intervals required for V ′i to fall below v. Since E[X ′i] =
E[iXi] =

1
r for all i ≥ 1, it follows that we expect V ′i < v

after 1/r intervals, as required.

5

https://github.com/umass-forensics/bobtail-simulations

2

The next result shows how mining statistic Wk is related
to the expected value of the minimum hash.

LEMMA 2: The expected value of Wk is E[Wk] =
k+1
2 v.

PROOF: Starting from the expectation of Eq. 1:

E[Wk] = E

[
1
k

k∑
i=1

Vi

]
= 1

k

k∑
i=1

E [Vi]

= 1
k

k∑
i=1

iv

= k+1
2 v.

(6)

2

Now we are in a position to prove our desired lemma.

LEMMA 3: In expectation, 1/r intervals are required to
ensure Wk < tk, for all k > 0, provided that tk is chosen
such that

tk =
k + 1

2
v. (7)

PROOF: Define T (Wk, tk) to be the expected number of
intervals required for Wk to fall below tk. It will suffice to
show that T (Wk, (k+1)v/2) = 1

r for all k > 0. Unfortunately,
it is difficult to reason directly about T (Wk, tk), but it is
straightforward to reason about T (W ′k, v). From Lemma 1, we
expect each V ′i to fall below v after exactly 1/r intervals. So
it must also be the case that T (W ′k, v) =

1
r . Using reasoning

similar to that in Lemma 2, it can be shown that E[W ′k] = v.
Therefore, k+1

2 W ′k is an unbiased estimator of Wk, and we
expect that T (Wk, tk) = T (k+1

2 W ′k, tk). Finally, we have the
following.

T
(
Wk,

(k+1)v
2

)
= T

(
2
k+1Wk, v

)
= T (W ′k, v)

= 1
r .

(8)

2

B. Estimating Mining Time

In this section, we derive a consistent estimator of block
mining time for mining statistic Wk assuming that tk = k+1

2 v
according to Lemma 3.

Consider the following choice of estimator for the overall
number of intervals required to ensure Wk < tk:

Yk =
2

k + 1

(
1

k

k∑
i=1

Xi

)
. (9)

We next derive the expected value and establish the consistency
of Yk as an estimator of mining time.

LEMMA 4: Assuming that tk = v(k+1)
2 , Yk is a

consistent estimator of the expected number of intervals

●
●

●
●

●

●

●

●

0e+00

3e+17

6e+17

9e+17

0 10 20 30 40
k

V
ar

ia
nc

e

● ●Eq. 12 sample variance

Fig. 3: We measured the variance of Bobtail’s average proof of
work statistic using a Monte Carlo simulation and it has the same
values as predicted by Eq. 12 from Theorem 1. 95% c.i.’s are too
small to show.

required for Wk to fall below tk with

E[Yk] =
1

r
, (10)

where r = vh/S.

PROOF: Beginning with Eq. 9 we have,

E[Yk] = E

[
2
k+1

(
1
k

k∑
i=1

Xi

)]
= E

[
1
k

k∑
i=1

X ′i

]
= 1

k

k∑
i=1

E[X ′i]

= 1
k

k∑
i=1

1
r

= 1
r .

(11)

Now Lemma 1 establishes that E[Vi] = iv after mining for
1/r intervals. And because we assume tk = k+1

2 v, the target
can be decomposed as

tk =
k + 1

2
v =

1

k

k∑
i=1

iv.

That is to say, tk is simply the average of the expected values
for each Vi when mining for 1/r intervals. Of course Wk

is the sample average of the Vi. Therefore, by the law of
large numbers, in the limit that k approaches infinity, Wk will
identically equal its expected value k+1

2 v and will thus fall
below tk after exactly E[Yk] = 1/r intervals.

2

C. Variance of Wk

Our third step is to derive and validate an expression for
V ar[Wk]. Wk is simply the sample mean over the lowest k or-
der statistics V1, . . . , Vk. But, unfortunately, the analysis below

6

is not straightforward because the Vi are neither independent
nor identically distributed.

THEOREM 1: The variance of Wk is

V ar[Wk] =
(k + 1)(2k + 1)

6k
v2. (12)

PROOF: Assuming that j > i, Lemma 8 in the Appendix
yields
E[ViVj] =

∫∞
0

∫∞
ti
titjg(ti; i, v)g(tj − ti; j − i, v)dtjdti

=
∫∞
0
tig(ti; i, v)[(j − i)v + ti]dti

= iv2(1 + j). (13)

Before continuing, we note that since Vi ∼ Gamma(i, v), it
follows that V ar[Vi] = iv2. Now, assuming that j > i, and
using Eq. 13, we have

cov[Vi, Vj] = E[ViVj]− E[Vi]E[Vj]

= iv2(1 + j)− (iv)(jv)

= iv2

= V ar[Vi].

(14)

Finally, we find the variance of Wk by substituting first Eq. 1
and then Eq. 14:

V ar[Wk] = V ar

[
1
k

k∑
i=1

Vi

]
= 1

k2

(
k∑
i=1

V ar[Vi] + 2
k∑
j=1

j−1∑
i=1

cov[Vi, Vj]

)

= 1
k2

(
k∑
i=1

iv2 + 2
k∑
j=1

j−1∑
i=1

iv2

)

= (k+1)(2k+1)
6k v2. (15)

2

Empirical Validation of Theorem 1. Fig. 3 shows Eq. 12
versus our Monte Carlo simulation where k is the independent
variable. The results show an exact match.

D. Improvement in Variance

Finally, we turn our attention to quantifying the reduction in
mining time variance that is realized by using Bobtail with k >
1 versus the status quo in PoW mining, k = 1. In Section IV-B
we established that statistic Yk is a consistent estimator of
the number of intervals required for mining statistic Wk to
fall below target tk = k+1

2 v. Here we measure the change in
variance of Yk as k increases, while holding its expected value
constant.

First note that because Xi shares the same distribution as
Vi, up to the change of variables v = 1/r, the following result
follows trivially from Theorem 1.

V ar

[
1

k

k∑
i=1

Xi

]
=

(k + 1)(2k + 1)

6k

(
1

r

)2

. (16)

●

●

●

●

●

●

●
●

0.0e+00

2.5e+11

5.0e+11

7.5e+11

1.0e+12

0 10 20 30 40
k

V
ar

ia
nc

e

● ●Eq. 17 sample variance

Fig. 4: We measured the ratio of Bobtail’s block discovery-time
variance to current systems using a Monte Carlo simulation and
found that the results exactly match V ar[Yk]

V ar[Y1]
= 8k+4

6(k2+k)
(Eq. 17)

from Theorem 2. 95% c.i.’s are too small to show.

THEOREM 2: For fixed expected block discovery time,
variance decreases by fraction 8k+4

6(k2+k) = O
(
1
k

)
when

using mining statistic Wk instead of W1.

PROOF: Lemma 4 establishes that block discovery time Yk is
the same in expectation for all mining statistics Wk provided
that tk = v(k+1)

2 . Therefore, the ratio of variance in Yk to the
variance in Y1 estimates the reduction in block time variance
due to Bobtail.

V ar[Yk]
V ar[Y1]

=
V ar[2

k+1 (
1
k

∑k
i=1Xi)]

V ar[X1]

= 4
(k+1)2

(k+1)(2k+1)(1/r)2

6k

(1/r)2

= 4
(k+1)2

(k+1)(2k+1)
6k

= 8k+4
6(k2+k)

= O
(
1
k

)
,

(17)

where we use the expression for V ar
[
1
k

∑k
i=1Xi

]
stated in

Eq 16.
2

Empirical Validation of Theorem 2. In Fig. 4, we show
the results from a Monte Carlo simulation that compares
the variance of Yk, the block discovery time under mining
statistic Wk, to the variance of Y1, the mining statistic used
by current PoW algorithms. The results exactly match Eq. 17
from Theorem 2.

Fig. 5 shows the distribution of Yk when tk = v(k+1)/2 so
that E[Yk] = E[Y1]. The plot shows the cumulative distribution
function (CDF) based on the results of a Monte Carlo simulation.
As the plot illustrates, the use of Bobtail mining results in a
significant decrease in variance in block discovery time.

7

0 5 10 15 20 25 30 35 40 45 50 55 60

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30 35 40

Ethereum (seconds per block)

Bitcoin (minutes per block)

C
D

F

k

1

10

20

40

5

Fig. 5: Results of a Monte Carlo simulation showing the CDF of
Yk, the block discovery time under mining statistic Wk, where k
varies for each curve and target tk is chosen so that E[Yk] =
E[Y1]. Each plot’s independent axis is shown in terms of the
minutes per block for Bitcoin (bottom axis) and seconds per block
for Ethereum (top axis).

V. BOBTAIL THWARTS SELFISH MINING AND
DOUBLESPEND ATTACKS

We next demonstrate quantitatively that its reduced inter-
block-time variance allows Bobtail to thwart both double-
spend [35] and selfish mining [23] attacks. Note that, in our
experiments below, only the variance of the inter-block time
changes as k increases, leaving the expected time unchanged,
and hence we can ascribe the increased resilience against these
attacks to Bobtail.

Recall the definitions of doublespend and selfish mining
from Section III; in particular the honest and attacker forks are
composed of blocks H = H1, H2, . . . and A = A1, A2, . . .,
respectively. And, in the context of the Bobtail protocol, each
block is itself comprised of k proofs, which are generally
contributed by both honest and attacker miners. For both attacks,
Bobtail allows the attacker two additional strategies when k > 1.
First, because they point to the same prior block, proofs can
be reused between A1 and H1. As a result, while the lowest
proof in A1 must be her own, the attacker can include any
proofs from the honest miners that help her reach the target.
And second, while mining A1, the attacker need only withhold
proofs that are lower than the honest miners’ lowest proof in
order to delay the creation of a block. Thus, her larger proofs
may still appear in H1, which reduces her cost if the attack
fails. We include these strategies in our evaluations of Bobtail.

Fig. 6 shows a Monte Carlo simulation of the doublespend
attack. To ensure the attack has a finite duration, the attacker
gives up when the honest branch is 3z + 1500 blocks ahead.
Each facet of the plot represents a value of k. The results show
that as k increases and variance decreases, the probability of
attacker success significantly decreases. For example, in today’s
implementations of both Bitcoin and Ethereum (k = 1), an
attacker with 40% of the mining power will succeed with 37%
probability on average when z = 6; however, using Bobtail
with k ≥ 20, the probability of success falls to less than 0.5%

k = 30 k = 50 k = 100

k = 1 k = 10 k = 20

0 1 2 3 4 5 6 7 8 910 0 1 2 3 4 5 6 7 8 910 0 1 2 3 4 5 6 7 8 910

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

z

P
ro

b.
 o

f s
uc

cc
es

sf
ul

 d
ou

bl
es

pe
nd

attacker mining power 0.1 0.2 0.3 0.4 0.45

Fig. 6: Monte Carlo Simulation. Doublespend attack success
given k for various values of attacker mining power (each curve)
and merchant’s embargo period z (on the independent axis).
Error bars show 95% c.i.’s. The dashed lines show the probability
of success predicted by Nakamoto’s model for k = 1 [35, 37].

on average for the same scenario.

Fig. 7 shows the efficacy of selfish mining attacks via a
Monte Carlo simulation. In the simulation, during a block
propagation race, with probability γ the attacker’s block
propagates to other miners before any block belonging to an
honest miner can. Fig. 7(Top) shows the proportion of blocks
on the main chain won by attackers for γ = 0 and γ = 1; and
Fig. 7(Bottom) shows the proportion of rewards. The dashed
identity line (y = x) represents the proportion that are won
mining honestly. Any selfish mining result that is below the
identity line is worse for the attacker than honest mining.

As the results demonstrate, Bobtail is a significant defense
against selfish mining. For example, a selfish miner with 45%
of the mining power will claim about 71% of blocks with
Bitcoin and Ethereum currently (k = 1 and γ = 1); however,
using Bobtail with k ≥ 20 and γ = 1, the same miner will
find that selfish mining is less successful than honest mining
whether in terms of the fraction of blocks or rewards.

Finally, we note that while Bobtail is not more robust against
eclipse attacks [28], its low variance block times make such
attacks easier to detect.

As stated in Section III, other attacks are possible for Bobtail.
We return to them in Section VIII.

VI. BOBTAIL’S ORPHAN RATES ARE THE SAME OR LOWER

Even when all miners operate honestly, current blockchain
systems frequently suffer from orphaned blocks during their
operation that diminish security and delay consensus. Orphans

8

● ●
●

●

●

●

●

●

●

●

●

● ● ● ●
●

●

●

●

●

●

●

● ● ● ● ● ● ●

●

●

●

●

● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

gamma= 0 gamma= 1

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

attacker mining power

P
ro

po
rt

io
n

of
 m

ai
n

ch
ai

n
bl

oc
ks k

●

●

●

●

1

5

20

100

● ●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

gamma= 0 gamma= 1

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

attacker mining power

P
ro

po
rt

io
n

of
 m

ai
n

ch
ai

n
re

w
ar

ds

k
●

●

●

●

1

5

20

100

Fig. 7: Monte Carlo Simulation. Selfish mining attack success in
terms blocks mined (top) and rewards captured (bottom) given
k (different curves) for various values of attacker mining power q
(on the independent axis); q ≤ 0.495. The straight dashed identity
line shows the results of honest mining; the curved dash-dotted
line shows analytical results from Eyal and Sirer [23, Eq. 8]. Error
bars show 95% c.i.’s.

are generated when the announcement of a new block by one
miner takes time to propagate to all other miners. In the interim,
a second miner may produce a valid block. At that point, the
subset of miners who received the first block first will attempt
to build upon it, and the remaining miners will build upon
the second. Eventually the blockchain will fork on just one
of those blocks, orphaning the other. If the set of transactions
in the two blocks is not the same, then consensus is delayed.
While the occurrence of orphans in Bitcoin is relatively low,
Ethereum’s use of a 15-second average block discovery time
increases its orphan rate significantly.

In Appendix A, we show that Xi, the number of block
intervals required to mine the ith order statistic, has distribution
Gamma(i, 1/r), where 1/r is the expected number of intervals
I required for Vi to fall below v. Interpreting v as the
target and letting I equal one second, it follows that X1

represents the block inter-arrival time, and it has distribution
Exponential(1/r) = Exponential(T), where T is the
expected block time in seconds. Therefore, in existing PoW
blockchains, the probability that one or more other blocks will
be discovered during propagation time τ is bounded by 1− 1

eτ/T

●

● ● ● ●
●

●
● ●

●
●

● ●
● ●

●
●

●
● ● ●

●

● ●

●
●

●
●

●
● ●

● ● ●

●

● ●
● ●

●

●

● ●
●

●
●

● ●
●

● ●
● ● ● ● ●

● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ●
● ● ● ● ●

● ● ●

Bitcoin (tau=10s,T=600s) Ethereum (tau=5s,T=15s)

0 10 20 30 40 0 10 20 30 40

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

0.00%

0.50%

1.00%

1.50%

k

ra
te

Fig. 8: A simulation of Bobtail’s orphan rate when proofs and
blocks propagate with constant delay of τ = 10 seconds and the
inter-block time is T = 600 seconds. The orphan rate of Bobtail is
at or below the expected orphan rate, 1−1/eτ/T for k = 1 (shown
as a dashed line). Similar results hold for Ethereum where τ = 5
and T = 15 seconds. Error bars represent a 95% c.i.

(see also Rizun [40]). Note that this bound is pessimistic in
that it assumes the worst case scenario where the author of
the first block has a negligible percentage of the total network
hash rate.

In this section, we examine the orphan rate associated with
Bobtail mining compared to Bitcoin and Ethereum. We show
that when miners follow the Bobtail protocol, orphans are no
more likely.

A. Orphan Prevention Measures

The principal cause of orphans in Bobtail is the fact that,
once more than k proofs have been disseminated, there exist
a combinatorial number of k-element subsets of those proofs.
Thus at the time when there exists some subset of k proofs
whose mean falls below target tk, there is a reasonable chance
that some other subset also exists (or will exist relatively soon).
Fortunately, the proof package rules introduced in Section II
greatly reduce the number of valid subsets. First, all proofs
must be tethered to a supporting proof, the latter of which
should be the smallest proof previously received by the miner.
Second, no support in the proof package can have value less
than V1 (the lowest proof in the package). And third, the block
must be signed by the private key used to generate V1.

Together, these conditions ensure that if at least one of
the k proof sets in the proof package points to V1 as support
(excluding the support for V1 itself), then the creator of V1
is the only miner capable of assembling that proof package.
Conversely, although another miner, say the one who generated
V2, might be capable of collecting a set of proofs that exclude
V1 but still have mean below target tk, that miner cannot
assemble a proof package if even a single proof set includes
V1 as support.

B. Performance

We ran a discrete event simulator to determine the efficacy of
the orphan prevention measures described in Section VI-A. The
simulation includes only honest miners: once he has received
a valid proof package, an honest miner does not release a

9

competing proof package of his own. We evaluate attacks on
Bobtail subsequently.

The simulation generates blocks by repeatedly selecting
values uniformly at random between 0 and 232. The smallest k
values are used to assemble a candidate block given a pre-set
target value. The propagation delay of new proofs and blocks is
τ seconds. Once a block is found, we assume that the authoring
miner drops out and her mining power is replaced by a new
honest miner; i.e., the hash rate does not change. For τ seconds,
the miners continue seeking a new block following the rules in
Section II. For example, if they find a block is possible with a
higher V1, they will not release the new block.

Fig. 8 (left) shows the results for a Bitcoin-like scenario
where the inter-block time is targeted at T = 600 seconds and
the propagation delay is τ = 10 seconds. The orphan rate for
k = 1 follows the expected exponential distribution, shown
as a dashed line. The experiment shows that, across multiple
values of k, the 95% confidence interval for orphan rate in
Bobtail consistently falls at or below the k = 1 rate. Fig. 8
(right) shows the same result for a simulation of Ethereum
where τ = 5 and T = 15 seconds, respectively.

VII. LOWERING NETWORK OVERHEAD

When the mining statistic is Wk, k � 1, it is not efficient
for each miner to send proof of work every time she finds a hash
value lower than her previous k best. A slight improvement to
that scheme is for her to send proof of work only when her hash
value is lower than the lowest k hashes produced by all miners
cumulatively. But even this approach will result in a large
amount of network traffic early in the mining process because
hash values are generated uniformly at random throughout
the mining interval (see Lemma 5); the k lowest overall are
unlikely to be generated early in the mining process.

To improve network efficiency significantly we instruct
miners to propagate proof sets only if the associated proof is
at least minimally likely to be among the k lowest. To that
end, we seek a proof value x such that the k lowest proofs
will fall below x with probability p, p ≈ 1.

We know from Theorem 6 in Appendix A that the kth order
statistic Vk has distribution Gamma(y; k, v), where v is the
expected minimum proof value. The inverse of that distribution
is Quantile-Gamma(p; k, v), which returns the value y for
which Gamma(y; k, v) = p. Therefore, a natural choice for our
bounding proof value is

x = Quantile-Gamma(p; k, v). (18)
The following theorem establishes the expected number of
proofs forwarded per block when we propagate only the proofs
lower than x.

THEOREM 3: For proof value threshold x defined by
Eq. 18, the expected number of proofs announced to the
network is Quantile-Gamma(p; k, 1).

PROOF: Note from Eq. 5 that v = S/h when tk is
tuned for blocks to be generated in a single interval I (i.e.,
r = 1). We expect h hashes per block interval, and each
has probability x/S of being below x. Therefore, the random
variable representing the number of proofs forwarded by all

miners follows distribution Binomial(n = h, p = x/S),
which has expectation:

hx

S
=

1

v
· Quantile-Gamma(p; k, v)

= Quantile-Gamma(p; k, v/v)

= Quantile-Gamma(p; k, 1) (19)

2

Notably, for p = 0.999999, the value remains quite low. For
example, when k = 40, only about 80 proofs are sent on the
network. Further, the value is independent of h, the expected
number of hashes required to mine a block, as well as S, the
size of the hash space. We can also use a Chernoff bound
for the binomial distribution to bound the deviation in the
number of messages M . Let z = Quantile-Gamma(p; k, 1).
We have,

Pr[M ≥ (1 + ε)z] ≤ e
−zε2
2+ε . (20)

This is a tight bound, and it decreases exponentially with z and
similarly with k. For example, when k = 2 and p = 0.999999,
then z ≈ 16.7, and we see that P (M > 1.9z) ≤ 0.0095. For
k = 3, the probability decreases to 0.004, and so on.

VIII. INCENTIVIZING HONEST BEHAVIOR WITH REWARDS

In this section, we show that there exists a reward scheme
(coinbase, ignoring fees) that incentivizes miners to: (i) continue
mining for increased reward, rather than stopping once any
proof is discovered; (ii) use the lowest proof they know of as
support; and (iii) immediately broadcast all sufficiently low
proofs. With this reward scheme in place, Bobtail thwarts
attacks described in Section III. At a high level, the rewards
scheme is as follows. Recall that a proof Vi is the hash of
proof set Pi. And support si, for a proof set Pi, is the lowest
proof that the miner has received to date among those sharing
the same prior block. We assign rewards as follows.

• To the miners of each proof set P1, . . . ,Pk in the proof
package K, we assign primary reward R; all proofs in a
given package receive the same amount, but the amount
may vary from block to block.

• To the miners of each proof set whose support is V1, we
award a bonus reward B, which is again the same for
every proof pointing to V1, but may vary by block.

Below, we evaluate the scheme with respect to all three
properties first assuming honest miner behavior. Specifically,
we determine the expected primary and bonus rewards accrued
by an honest miner across all proofs in a given block. We
further derive the expected total reward T , which is the sum
of expected primary and bonus rewards for a miner following
the honest strategy. We then show that dishonest miners can
expect to receive lower rewards.

A. Analysis of Honest Miners

We begin with a basic result that is useful in contemplating
reward distribution.

LEMMA 5: In expectation, a fraction x of the mining
power will generate a fraction x of all proofs as well as

10

a fraction x of the k lowest proofs.

PROOF: Without loss of generality, assume a single miner M
controls fraction x of the mining power. All hashes generated
are uniformly distributed throughout space S. Therefore, of
all the hashes that fall within an arbitrary interval of S, miner
M expects to have generated fraction x. The interval [0, S]
contains all proofs; it is therefore clear that M expects to
generate fraction x of all proofs. Moreover, the set of all proofs
K that are at or below the kth order statistic defines an interval,
[0, Vk]. Thus, M expects to generate fraction x of proofs in K
as well, which constitutes fraction x of the set of the k lowest
proofs.

2

We next analyze the reward payout with respect to our
desired mining properties under the assumption that all miners
behave honestly, i.e. according to the protocol. Consider a
miner M who possesses fraction x of the total mining power.
According to Lemma 5, M can expect to have generated
fraction x of the k proofs in the proof package. Therefore,
M will earn xkR primary reward in expectation. Calculating
the expected bonus reward requires the following observation.

LEMMA 6: The rank (i.e., position in an ascending list
by value) of a proof is uncorrelated with the time it is
generated.

PROOF: Let P = P∗1 ,P∗2 , . . . be the set of all proof sets
generated during time interval I listed in the order that they
appear chronologically such that P∗i was generated before P∗j
if i < j. Define V ∗i = h(P∗i), and let V(P) = V ∗1 , V

∗
2 , . . .

denote the set of all proofs generated during I . It will suffice
to show that the probability that P∗i achieves a given value
ν ∈ V(P), conditioned on all values V(P), is uniform for all
P∗i .

Being drawn from a uniform distribution, we have that
Pr[V ∗i = ν] is equal for all proofs P∗i . Next define V\ν(P) =
V(P)\{ν}, which implies Pr[V(P) | V ∗i = ν] = Pr[V\ν(P)]
because Pr[V ∗i] and Pr[V ∗j] are independent for i 6= j. Thus

Pr[V ∗i = v | V(P)] =
Pr[V(P) | V ∗i =ν] Pr[V ∗i =ν]

Pr[V(P)]

= Pr[V ∗i = ν]
Pr[V\ν(P)]

Pr[V(P)]

= c,

(21)

for some constant c.
2

We can use Lemma 6 to show that half of a miner’s proof
sets in the proof package are expected to be generated after
V1. Thus honest miner M , with fraction x of the hash rate, is
expected to generate xk

2 proofs that use V1 as support. It follows
that M ’s expected bonus reward is equal to xkB

2 . Finally, the
expected total reward for the honest miner is given by

TH = xk (R+ B/2) . (22)

From this expression for total reward, we can see that
honest mining delivers all three desired mining properties.
First, a miner’s reward is proportional to her hash rate, which
encourages her to mine as much as possible rather than stopping

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

 primary bonuses

no w
ithholding

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

0
2
4
6
8

10
12
14
16
18
20

Mining power

C
ou

nt
 p

er
 b

lo
ck

 (
m

ea
n)

Fig. 9: A Monte Carlo simulation of rewards issued by Bobtail for
an honest miner with a given fraction of the mining power. The
dotted lines show the predicted value of R and B from Eq. 22.

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

primary bonuses

R
ule I only

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

0
2
4
6
8

10
12
14
16
18
20

Mining power
C
ou
nt

 p
er

 b
lo

ck
 (

m
ea

n)

Fig. 10: In these Monte Carlo results, we have modified the
simulation so that miners follow Rule I from Section VIII-B; i.e.,
all miners prioritize their own proofs when assembling the block.
With the rule in place, rewards are still issued proportionally.

once a proof is found. Second, her total reward is an increasing
function of the number of her proofs that point to V1. And
third, because total reward is also an increasing function of the
number of proofs in the proof package, she is incentivized to
release her proofs as soon as possible so as to give them the
greatest chance of being included.

Fig. 9 shows the results of this rewards scheme from a
Monte Carlo simulation of honest miners. The dotted lines
show the values predicted by Eq. 22. Next, we demonstrate
that dishonest miners earn only fewer rewards.

B. Thwarting Proof Withholding Attacks

Bobtail allows for an attack where a malicious miner
withholds proof sets for a competitive advantage. In this section,
we demonstrate that our design of Bobtail ensures that the
economic reward for withholding attackers is substantially lower
than that of honest miners.

In the withholding attack, the malicious miner does not
immediately announce her own proof sets to the other miners.
This behavior can be advantageous in two ways. First, it gives
her more time to mine V1, which would allow her to control
the set of transactions included in the block, T1. Second, it
allows the attacker to pack more of her own proof sets into the
proof package if she does manage to mine V1. The attacker

11

●

●

●

●

●●
●

●●
●

●●
●

●●
●

●●
●
●

●
●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●
●

●
●

 primary bonuses

R
ule I only

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

0
2
4
6
8

10
12
14
16
18
20

Mining power

C
ou

nt
 p

er
 b

lo
ck

 (
m

ea
n) ●

●

attacker

honest

Fig. 11: In this Monte Carlo simulation, we include attacking
miners who attempt to withhold their proofs and we do not
include Rule II from Section VIII-B: although there are no gains
for the attacking miners, the honest miners lose out on bonuses.

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ● ●
● ●

●●

●

●
●

●

●
●

●

●
●

●

●●●

primary bonuses

R
ules I and II

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

0
2
4
6
8

10
12
14
16
18
20

Mining power

C
ou

nt
 p

er
 b

lo
ck

 (
m

ea
n)

●

●

attacker

honest

Fig. 12: In this Monte Carlo simulation, we include attacking
miners who attempt to withhold their proofs. In these simulations,
we do include Rules I and II from Section VIII-B. As a result,
attacking miners give up some of their rewards to honest miners.

mines until either she is able to assemble a block as the miner
of V1; or it is clear that the honest miners are more likely to
release a block without her withheld proof sets. In the latter
case, she disseminates her withheld proof sets, hoping that
some will be included in the proof package.

To thwart the attack, Bobtail includes two simple rules
(originally described in Section II-B).

• Rule I: it is considered honest behavior for miners to
prioritize inclusion of their own proofs when assembling
a block. As a result, no miner benefits more from this
behavior than any other.

• Rule II: after prioritizing their own proof sets, if multiple
subsets of k proof sets can be used to assemble a block,
an honest miner will select proof sets from other miners in
the order that they were received locally over the network.

In other words, the proof sets of the withholding attacker are
likely left out if withheld too long.

We evaluated this attack using a Monte Carlo simulation, a
variation of the one used in earlier sections. Fig. 10 shows the

allocation of rewards and bonuses when all miners follow Rule
I above: there is no difference from Fig. 9. In short, although
it seems selfish to prioritize one’s own proof sets, if all miners
do it then there is no advantage. Hence, we have eliminated
this attack.

Fig. 11 demonstrates the need for Rule II. We modified
our simulation so that attackers withhold their proof sets. As
a result, the honest miners lose out on bonuses because they
do not know the correct supporting proof to list. There is no
immediate gain for attackers for doing so, but note that they
have effectively lowered the total hash rate of the network,
while packing a higher fraction of their proof sets into the
proof package than their hash rate should allow. Thus, once
the difficulty adjusts to this lower overall hash rate, attackers
will gain higher reward than if they behaved honestly. In other
words, without Rule II in place, a Bobtail-specific version of
the selfish mining attack [23] is possible.

Fig. 12 shows result of the withholding attack when Rules I
and II are both in place. Withholding of proof sets from honest
miners results in the attacking miner receiving lower primary
and bonus rewards. In fact, honest miners gain from the attack,
further incentivizing honest behavior.

C. Thwarting DoS Attacks

Bobtail is robust to a denial-of-service (DoS) attack from
the holder of the true 1OS who refuses to publish a block.
First, the attack is easy for honest miners to detect. In the type
of mining environment seen in Bitcoin today — where most
of the hash rate is attributable to a set of known miners —
one could easily imagine a practical countermeasure would be
for honest miners to ban attackers who conduct DoS attacks,
refusing to forward any of their proofs. Second, there exists an
opportunity cost to attackers in the form of lost bonus reward.
And third, even when the attacker has as much as 50% of
the hash rate, the expected increase in inter-block time due to
DoS attack does not exceed twice the target time. We presently
explore the last two points in more detail.

Opportunity cost. Suppose that the attacker holds the 1OS
(lowest proof value overall). In a DoS attack, he will release
this proof and any others he generates, but will never release
an assembled block. Yet the protocol stipulates that honest
miners should not accept a block if V1 is greater than the 1OS
(see the first additional rule in Section II-B). And in any case,
honest miners will also include the 1OS as support, which
again means that no greater proof value can be used as V1.
Therefore, miners will be unable to assemble a block until one
of them produces a lower proof than the attacker’s current 1OS
(one that is valid as V1 in the block). At that point, any proof
(be it from the attacker or from honest) can be added to the
block and receive primary reward, but no proof will receive a
bonus because it cannot have pointed to V1, which just arrived.
This amounts to an opportunity cost for the attacker, which we
term bonus cost, and it is the basis of the following result.

THEOREM 4: In expectation, and regardless of the
attacker’s hash rate, at most 1 out of every k blocks can
be subject to DoS attack without incurring a bonus cost
to the attacker.

12

PROOF: Suppose that the attacker has hash rate x. If x ≤ 1
k ,

then clearly the attack can succeed no more often than once
out of every k blocks. Next, suppose that x > 1

k . According to
Lemma 5, in expectation, the attacker will mine fraction x of
the k proofs in each block. If the attacker generates the 1OS,
but also generates other proofs after it, then the others will
incur a bonus cost. This is because they would have received
bonus if the attacker released the block, but receive none when
he conducts a DoS attack. However, with probability 1

xk , the
attacker will generate the 1OS after generating all his other
proofs, in which case he would not have received any bonus
anyhow. This is the only way that a block can be subject to
DoS attack without incurring bonus cost. The attacker can
successfully DoS attack no more often than the frequency with
which he generates the 1OS, which occurs with probability x.
It follows that the total fraction of blocks upon which a DoS
attack can be inflicted without bonus cost is x

xk = 1
k .

2

Increase in inter-block time. Even when the block is withheld
by the attacker, eventually a proof lower than the attacker’s
lowest will be generated, whose owner will also be capable
of mining the block. Even when the attacker controls a large
fraction of the hash rate, the expected waiting time for this
lower proof is a low-order multiple of the typical block time.

THEOREM 5: Assume that target tk is tuned so that
the expected block time is T seconds. When the attacker
has up to 50% of the total hash rate, the expected time
for honest miners to replace the 1OS for a block subject
to DoS attack does not exceed 2T .

PROOF: Eq. 5 establishes that r = vh/S where S is the size
of the hash space, h is the expected number of hashes required
to mine a block, and v and r are (respectively) the expected
value and frequency with which the minimum hash is generated
during interval I . According to Theorem 7, X1 ∼ Expon(1/r)
is a random variable representing the number of intervals I
required to find a proof low enough to assemble a block. If I
is one second, then blocks are expected after T intervals so
that E[X1] = T . Now let X∗1 ∼ Expon(1/r∗) be a random
variable denoting the number of intervals required once the
attacker removes his portion of hash rate. If the attacker holds
50% of the total hash rate, then h∗ = h/2 and

E[X∗1] =
1

r∗
=

S

v(h/2)
= 2

S

vh
= 2

1

r
= 2E[X1] = 2T.

Therefore, in expectation, honest miners are capable of replac-
ing a 1OS generated by the attacker in time equal to twice the
target block inter-arrival time T .

2

IX. LIMITATIONS

Bobtail has limitations and disadvantages compared to
existing PoW systems. Bobtail’s reduction in variance decreases
with k by 8k+4

6(k2+k) = O
(
1
k

)
, but comes at the cost of a larger

block. Existing Bitcoin blocks consist of an 80 byte header and
body that contains the transaction set. In Bobtail, the header
H contains an additional 32-byte supporting proof s1. The
Bobtail body includes the transaction set T like Bitcoin, and

additionally, for each value of k > 1, the size of proof package
P is increased by one proof set consisting of four 32-byte
values. Similarly, the coinbase reward C increases by a 32-
byte address per k. The header must also be signed, which is
another 32-byte value. Hence, Bobtail blocks are approximately
128(k− 1) + 32k+ 144 bytes not including the size of T ; for
example when k = 40, the header would be approximately
6.3KB. This overhead is small relative to the size of the block:
0.61% of Bitcoin’s 1 MB blocks, and 0.02% of Bitcoin Cash’s
32 MB blocks. Bobtail’s increased header size is significant
for light-clients (e.g. [1, 2]), which validate only block headers,
but we note that these clients can discard headers once they
have been validated.

The additional information contained in Bobtail blocks
would add little additional overhead to block propagation
because redundant information can be propagated using the
Graphene protocol [38]. Graphene provides a compressed
representation of a block’s transactions, taking advantage of the
fact that transactions are typically propagated and stored at peers
ahead of the block. It can be applied to Bobtail advantageously
in two ways. First, Bobtail can improve Graphene compression
as follows. Whether the lowest proof set will ultimately become
V1 is unknown until a final block is assembled. However, the
transactions of the lowest proof set at any given time can be
prioritized for propagation by peers, ensuring better Graphene
performance and faster block propagation. Second, the proof
sets contained in K can be numerous, but like transactions, they
are always propagated ahead of an assembled block. Graphene
can be applied to propagating K, where the proof sets take the
place of transactions in the protocol.

Although we have investigated numerous potential attack
vectors, our security analysis of Bobtail is not comprehensive.
It is likely that techniques similar to those employed by
Sapirshtein et al. [41], Gervais et al. [26], and Zhang et al. [44]
are required to achieve this end. We note that because these
works each use a Markov Decision Process (MDP) to model
block creation only, their results do not apply to Bobtail. In
other words, none of these works have a model that captures
the complexity of Bobtail’s proof creation and dissemination
process. Indeed, we have communicated directly with the
authors of [44], who have acknowledged that Bobtail was
not modeled in that recent work. A post-publication revision
of the aforementioned paper acknowledges this fact.4

X. RELATED WORK

Our approach is related to previous results in proof-of-
work, cryptographic puzzles, and improvements to blockchain
architectures.

Foundations of PoW. A large number of papers have explored
applications of proof-of-work (PoW). Dwork and Naor [19] first
suggested PoW in 1992, applying it as a method to thwart spam
email. A number of subsequent works similarly applied PoW to
thwarting denial-of-service (DoS) attacks [4, 13, 15, 25, 27, 43].
Our approach can be adopted into many of these past works
to improve computational variance. Jakobsson and Juels [29]
and Jules and Brainerd [30] examine the security properties
of PoW protocols, and base their theorems on the average

4https://www.esat.kuleuven.be/cosic/publications/article-3005.pdf

13

https://www.esat.kuleuven.be/cosic/publications/article-3005.pdf

work required; our approach would provide stronger guarantees
under their theorems since the variance is lower. Laurie and
Clayton [32] examine the practical limitations in deploying
PoW solutions in DoS scenarios. Douceur [18] noted in 2002
that proofs of work can mitigate Sybil attacks. Also in 2002,
Back [5] applied PoW to cryptocurrencies. Back noted the high
variance of computational PoW and regarded it as an open
problem. Nakamoto’s Bitcoin [35] built on these ideas.

Similar protocols. Bobtail is situated among a number of
related PoW protocols introduced in recent years, beginning
with the seminal Bitcoin whitepaper [35]. FruitChains [39]
is the most similar work to ours but lacks many of the
benefits of our approach. Like Bobtail, FruitChains thwarts
withholding attacks that enable selfish mining, and it also
reduces the variance of how often rewards are issued to
miners. Unlike Bobtail, FruitChains offers no reduction in
the variance of block times, and therefore does not mitigate
doublespend attacks. Bitcoin-NG [22] also offers low-variance
transaction announcements via PoW-based leader election.
However, because inter-leader time variance would still follow
an exponential distribution, unlike Bobtail, Bitcoin-NG does not
reduce doublespend or selfish mining vulnerability. Furthermore,
unlike our approach, Bitcoin-NG sets up the elected leader as
a single point of failure and attack.

Leader election. In Bobtail, multiple miners collaborate to
generate the PoW required to mine a block. They do this by
submitting partial PoW, called proofs, to the network. Anyone
with hardware capable of generating proofs can participate, yet
only the miner who generates the lowest proof, the 1OS, can
determine the set of transactions in a block. In this sense, the
Bobtail mining process is a form of leader election whereby
miners propose blocks as they produce proofs and the lowest of
these proofs determines the leader whose proposal is accepted.
This form of leader election is similar to many existing PoW
systems including Bitcoin [35] and its derivatives except that,
in the latter, each proof is independently sufficient to propose a
block and appoint a leader. All of these approaches contrast with
Bitcoin-NG [22], which first elects a leader who then proposes
blocks after election until the next leader is elected. Finally,
we note that leader election in Bobtail contrasts sharply with
classic Byzantine Fault Tolerant (BFT) protocols [42]. Among
many other differences, BFT restricts the leader election pool
while Bobtail does not.

Broader impact. Our work is complementary to and improves
upon most any work that combines PoW with BFT [11, 16, 31].
Some blockchains are not based on computational proof of
work, and our solution does not apply to them. These include
proof-of-storage [34], proof-of-stake [6, 7], and blockless [10]
schemes. However, currently, almost all the wealth stored in
cryptocurrencies is in computational PoW blockchains that
our approach does apply to, including Bitcoin, Bitcoin Cash,
Litecoin, Ethereum, and Ethereum Classic.

Reducing variance. Much more limited is the work related
to reducing variance in random computational processes. In
2003, Abadi et al. [3] suggested memory-bound functions as a
better foundation for avoiding the variance in CPU resources
among users. Indeed, the ETHASH [20] PoW algorithm in
Ethereum [21] adopted a PoW function that requires more
memory than most ASICSs provide. In contrast, our goal is

to reduce the variance of the entire network’s time to solve
a PoW problem, and it is not to increase egalitarianism or
increase participation by eschewing specialized hardware. In
any case, our approach is applicable to ETHASH. Coelho [14]
proposes a PoW puzzle based on Merkle trees that requires
an exact number of steps and therefore has no computational
variance. Without variance, the same miner would always win,
and therefore the method is unsuitable for blockchains.

XI. CONCLUSION

We have designed and characterized a novel method of low-
variance blockchain mining called Bobtail. We have derived
expressions for the expectation and variance of the Bobtail
mining proof of work and its mining time for any value of k.
Using these expressions, we have shown that Bobtail reduces
variance in block inter-arrival time by a factor of O(1/k),
compared to using k = 1. We have also shown that forks are
inadvertently created by Bobtail miners no more often than
existing systems, and that dishonest miners receive significantly
lower rewards due to minor protocol adjustments. Furthermore,
we have demonstrated that low-variance mining significantly
reduces the effectiveness of doublespend and selfish mining
attacks, and that our design thwarts withholding and denial-
of-service attacks. Finally we have introduced a policy for
miner coordination in Bobtail that keeps network traffic to a
minimum.

ACKNOWLEDGMENT

The authors would like to thank David Thibodeau for his
careful review of this paper on multiple occasions as well as
the many helpful discussions we had with him.

REFERENCES

[1] “Electrum Bitcoin Wallet,” https://electrum.org.
[2] “Neutrino Bitcoin Cash Wallet,” https://neutrino.cash.
[3] M. Abadi, M. Burrows, M. Manasse, and T. Wobber, “Moderately

hard, memory-bound functions,” ACM Trans. Internet Technol.,
vol. 5, no. 2, pp. 299–327, May 2005. [Online]. Available:
http://doi.acm.org/10.1145/1064340.1064341

[4] T. Aura, P. Nikander, and J. Leiwo, “Dos-resistant authentication
with client puzzles,” in Revised Papers from the 8th International
Workshop on Security Protocols, 2001, pp. 170–177. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647218.720854

[5] A. Back, “Hashcash - Amortizable Publicly Auditable Cost-Functions,”
2002. [Online]. Available: http://www.hashcash.org/papers/amortizable.
pdf

[6] I. Bentov, A. Gabizon, and A. Mizrahi, “Cryptocurrencies without proof
of work,” in International Conference on Financial Cryptography and
Data Security. Springer, 2016, pp. 142–157.

[7] I. Bentov, C. Lee, A. Mizrahi, and M. Rosenfeld, “Proof of Activity:
Extending Bitcoin’s Proof of Work via Proof of Stake [Extended
Abstract],” ACM SIGMETRICS Performance Evaluation Review, vol. 42,
no. 3, pp. 34–37, 2014.

[8] “Bitcoin (BTC),” https://github.com/bitcoin/bitcoin.
[9] Bitcoin Unlimited, “Bitcoin cash implementation,” https://github.com/

BitcoinUnlimited/BitcoinUnlimited.
[10] X. Boyen, C. Carr, and T. Haines, “Blockchain-Free Cryptocurrencies: A

Framework for Truly Decentralised Fast Transactions,” Cryptology ePrint
Archive, Report 2016/871, Sept 2016, http://eprint.iacr.org/2016/871.

[11] V. Buterin and V. Griffith, “Casper the friendly finality gadget,” https:
//arxiv.org/abs/1710.09437, Oct 2017.

14

https://electrum.org
https://neutrino.cash
http://doi.acm.org/10.1145/1064340.1064341
http://dl.acm.org/citation.cfm?id=647218.720854
http://www.hashcash.org/papers/amortizable.pdf
http://www.hashcash.org/papers/amortizable.pdf
https://github.com/bitcoin/bitcoin
https://github.com/BitcoinUnlimited/BitcoinUnlimited
https://github.com/BitcoinUnlimited/BitcoinUnlimited
http://eprint.iacr.org/2016/871
https://arxiv.org/abs/1710.09437
https://arxiv.org/abs/1710.09437

[12] G. Casella and R. L. Berger, Statistical inference. Pacific Grove,
CA: Brooks Cole, 2002. [Online]. Available: http://opac.inria.fr/record=
b1134456

[13] L. Chen and W. Mao, “An auditable metering scheme for web
advertisement applications,” Information Security, pp. 475–485, 2001.

[14] F. Coelho, “An (Almost) Constant-Effort Solution- Verification Proof-
of-Work Protocol Based on Merkle Trees,” in Progress in Cryptology –
AFRICACRYPT, June 2008, pp. 80–93.

[15] D. Dean and A. Stubblefield, “Using client puzzles to protect tls,” in
Proc. Conference on USENIX Security Symposium, 2001. [Online].
Available: http://dl.acm.org/citation.cfm?id=1251327.1251328

[16] C. Decker, J. Seidel, and R. Wattenhofer, “Bitcoin Meets Strong Con-
sistency,” in Proc. International Conference on Distributed Computing
and Networking (ICDCN), January 2016.

[17] J. A. D. Donet, C. Pérez-Sola, and J. Herrera-Joancomartı́, “The
Bitcoin P2P Network,” in Proc. International conference on financial
cryptography and data security, 2014.

[18] J. Douceur, “The Sybil Attack,” in Proc. International Workshop on
Peer-to-Peer Systems (IPTPS), Mar. 2002.

[19] C. Dwork and M. Naor, “Pricing via processing or combatting junk
mail,” in Proc. Annual Intl. Cryptology Conference, 1992, pp. 139–147.

[20] ETHASH, https://github.com/ethereum/wiki/wiki/Ethash, Aug 3 2017.

[21] “Ethereum Homestead Documentation,” http://ethdocs.org/en/latest/.

[22] I. Eyal, A. E. Gencer, E. G. Sirer, and R. V. Renesse, “Bitcoin-NG:
A Scalable Blockchain Protocol,” in Proc. USENIX Symposium on
Networked Systems Design and Implementation, 2016, pp. 45–59.

[23] I. Eyal and E. G. Sirer, “Majority is not Enough: Bitcoin Mining is
Vulnerable,” in Proc. International conference on financial cryptography
and data security. Springer, 2014, pp. 436–454.

[24] “Fast Internet Bitcoin Relay Engine (FIBRE),” http://bitcoinfibre.org/.

[25] M. Franklin and D. Malkhi, “Auditable metering with lightweight
security.” in Proc. Financial Cryptography, 1997, pp. 151–160.

[26] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and
S. Capkun, “On the security and performance of proof of work block-
chains,” in Proc. ACM Conference on Computer and Communications
Security, 2016, pp. 3–16.

[27] B. Groza and B. Warinschi, “Cryptographic Puzzles and DoS Resilience,
Revisited,” Designs, Codes and Cryptography, vol. 73, no. 1, pp. 177–
207, Oct. 2014. [Online]. Available: http://dx.doi.org/10.1007/s10623-
013-9816-5

[28] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse Attacks on
Bitcoin’s Peer-to-Peer Network,” in Proc. USENIX Security Symposium,
2015, pp. 129–144.

[29] M. Jakobsson and A. Juels, “Proofs of Work and Bread Pudding
Protocols,” in Proc. Conference on Secure Information Networks:
Communications and Multimedia Security, 1999, pp. 258–272. [Online].
Available: http://dl.acm.org/citation.cfm?id=647800.757199

[30] A. Juels and J. Brainard, “Client puzzles: A cryptographic counter-
measure against connection depletion attacks.” in Proc. Networks and
Distributed Security Systems, 1999, pp. 151–165.

[31] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford,
“Enhancing bitcoin security and performance with strong consistency
via collective signing,” in Proc. USENIX Security Symposium, 2016, pp.
279–296.

[32] B. Laurie and R. Clayton, ““Proof-of-work” proves not to work; version
0.2,” in Proc. Workshop on Economics and Information Security, 2004.

[33] Litecoin, https://litecoin.org/.

[34] A. Miller, A. Juels, E. Shi, B. Parno, and J. Katz, “Permacoin:
Repurposing bitcoin work for data preservation,” in Proc. IEEE Security
and Privacy, 2014, pp. 475–490.

[35] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” https:
//bitcoin.org/bitcoin.pdf, May 2009.

[36] A. P. Ozisik, G. Andresen, G. Bissias, A. Houmansadr, and B. N.
Levine, “Graphene: A New Protocol for Block Propagation Using Set
Reconciliation,” in Proc. of International Workshop on Cryptocurrencies
and Blockchain Technology (ESORICS Workshop), Sept 2017.

[37] A. P. Ozisik and B. N. Levine, “An Explanation of Nakamoto’s Analysis

of Double-spend Attacks,” University of Massachusetts, Amherst, MA,
Tech. Rep. arXiv:1701.03977, January 2017.

[38] A. P. Ozisik, B. N. Levine, G. Bissias, G. Andresen, G. Bissias, D. Tapp,
and S. Katkuri, “Graphene: Efficient Interactive Set Reconciliation
Applied to Blockchain Propagation,” in Proc. ACM SIGCOMM, August
2019.

[39] R. Pass and E. Shi, “Fruitchains: A fair blockchain,” in Proc. ACM
Symposium on Principles of Distributed Computing, 2017, pp. 315–324.

[40] P. Rizun, “Subchains: A Technique to Scale Bitcoin and Improve the
User Experience,” Ledger, vol. 1, pp. 38–52, 2016.

[41] A. Sapirshtein, Y. Sompolinsky, and A. Zohar, “Optimal Selfish Mining
Strategies in Bitcoin,” in Proc. Financial Cryptography and Data Security
(See also https://arxiv.org/pdf/1507.06183.pdf), Feb 2016.

[42] M. Vukolić, “ The Quest for Scalable Blockchain Fabric: Proof-of-Work
vs. BFT Replication,” in International Workshop on Open Problems in
Network Security, 2015.

[43] X. Wang and M. K. Reiter, “Defending against denial-of-service attacks
with puzzle auctions,” in Proc. IEEE Symposium on Security and Privacy,
2003, pp. 78–92.

[44] R. Zhang and B. Preneel, “Lay Down the Common Metrics: Evaluating
Proof-of-Work Consensus Protocols’ Security,” in IEEE Symposium on
Security and Privacy, 2019.

APPENDIX

In this appendix, we prove that Vi, the value of the ith order
statistic, is gamma distributed (Theorem 6). We also prove that
Xi, which is the number of hash intervals required for the
ith order statistic to fall below target v, is gamma distributed
(Theorem 7). Both theorems are applied in Section IV. We then
derive the joint distribution of the ith and jth order statistics
in Lemma 8, which is applied in Section IV-C.

A. Properties of Bobtail Order Statistics

We begin with a supporting lemma. Consider the distribution
of H an arbitrary random variable chosen from the sequence
of block hashes H1, . . . ,Hh. We have fH(t;S) = 1/S and
FH(t;S) = t/S.

LEMMA 7: The probability density function (PDF) of
the ith order statistic, Vi, from h samples (i.e., hashes) is

fVi(t;S, h) = h!
(i−1)!(h−i)!fH(t) (FH(t))

i−1
(1− FH(t))

h−i

= h!
(i−1)!(h−i)!

1
S

(
t
S

)i−1 (
1− t

S

)h−i
.

(23)

The above result is well known; see for example, Casella and
Berger [12].

When hash interval I corresponds to the desired block
time, say 600 seconds for Bitcoin, there will be many hashes
performed during the interval. So it is reasonable to consider
how the distribution for Vi changes in the limit that h
approaches infinity.

THEOREM 6: In the limit that h approaches infinity,
Vi ∼ Gamma(i, v), where v is the expected value of the
minimum hash.

PROOF: Define g(t; i, v) to be the PDF of the gamma
distribution with shape parameter i and scale parameter v.
If the number of hashes approaches infinity, then so must the

15

http://opac.inria.fr/record=b1134456
http://opac.inria.fr/record=b1134456
http://dl.acm.org/citation.cfm?id=1251327.1251328
https://github.com/ethereum/wiki/wiki/Ethash
http://ethdocs.org/en/latest/
http://bitcoinfibre.org/
http://dx.doi.org/10.1007/s10623-013-9816-5
http://dx.doi.org/10.1007/s10623-013-9816-5
http://dl.acm.org/citation.cfm?id=647800.757199
https://litecoin.org/
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://arxiv.org/pdf/1507.06183.pdf

size of the hash space, and yet S must always be larger than
h. Therefore, we assume that h = S/v for arbitrary parameter
v > 1. Under this assumption we can equivalently consider the
limit that S approaches infinity. We have

fVi(t;S, h) = lim
h→∞

fVi(t;S, h)

= lim
S→∞

(S/v)!

(i−1)!(Sv−i)!
1
S

(
t
S

)i−1 (
1− t

S

)S
v−i

= lim
S→∞

(S/v)!

Si(i−1)!(Sv−i)!
ti−1

(
1− t

S

)S
v−i

= ti−1

(i−1)!

[
lim
S→∞

(Sv)...(
S
v−i+1)
Si

] [
lim
S→∞

(
1− t

S

)S
v−i
]

= ti−1

(i−1)!vi e
−t
v

= g(t; i, v),

(24)
The second-to-last step follows from the fact that

lim
S→∞

(
S
v

)
. . .
(
S
v − i+ 1

)
Si

= lim
S→∞

(
S
v

)i
Si

=
1

vi
, (25)

and the common limit

lim
S→∞

(
1− t

S

)S
v

= e
−t
v , (26)

which implies that

lim
S→∞

(
1− t

S

)S
v−i =

[
lim
S→∞

(
1− t

S

)−i] [
lim
S→∞

(
1− t

S

)S
v

]
= 1 · e−tv .

(27)
When i = 1, V1 ∼ Gamma(t; 1, v) = Exponential(t; v).
And since the expected value of an exponential random variable
is equal to the value of its scale parameter, we can see that v
is simply the expected value of the minimum hash.

2

Next, define Xi as the number of intervals required for Vi
to fall below v, and consider the PDF of Xi, fXi(x;S, v). After
x hash intervals, let E, L, and G be, respectively, the events
that the ith order statistic is equal to v, the order statistics
below i are less than v, and the order statistics above i are
greater than v. Furthermore, let O be the set of all divisions of
H1, . . . ,Hh into distinct sets {H | H = Vi}, {H | H < Vi},
and {H | H > Vi}. We have

fXi(x;S, v) =
∑
o∈O

P [E(x), L(x), G(x) | o]

=
(
hx
i−1
)
(hx−i+1) · Pr[E(x)|o] · Pr[L(x)|o] · Pr[G(x)|o]

= (hx)!
(i−1)!(hx−i)! · Pr[E(x)|o] · Pr[L(x)|o] · Pr[G(x)|o]

= (hx)!
(i−1)!(hx−i)!

1
S

(
v
S

)i−1 (
1− v

S

)hx−i
(28)

Assuming that I is large, it again makes sense to consider
the limit as h approaches infinity.

THEOREM 7: In the limit that h approaches infinity,

Xi ∼ Gamma(i, 1/r) where r is the expected rate, in
units of I , at which Vi falls below v.

PROOF: The probability that any given hash succeeds, i.e.
falls below v, is given by p = v

S . Again, we would like to
consider the limit as h approaches infinity. But in doing so,
we must ensure that p remains constant. In other words, the
probability of hash success must diminish as h increases. So
there must exist some constant r such that r

h = p = v
S . It

follows that

fXi(x;S, v) = (hx)!
(i−1)!(hx−i)!

r
h

(
r
h

)i−1 (
1− r

h

)hx−i
(29)

Arguing in similar fashion as for Vi, we find that
lim
h→∞

fXi(x;S, v) = g(x; i, 1/r).

Thus, E[Xi] = 1/r, which implies that r should be interpreted
as the expected rate at which Vi falls below v during a single
interval I.

2

B. Joint Distribution

Here we derive the limiting joint distribution of the ith and
jth order statistics Vi and Vj , which are applied in Section IV-C
to derive the variance of Wk.

LEMMA 8: In the limit that h approaches infinity, the
joint distribution of the ith and jth order statistics of
uniform random samples H1, . . . ,Hh is given by
fVi,Vj (ti, tj ; v) = g(ti; i, v)g(tj − ti; j − i, v). (30)

where v is the expected value of the minimum hash.

PROOF: It is well known5 that the joint distribution of the
ith and jth order statistics, out of h total samples, is given by
fVi,Vj (ti, tj ; v) =

h!
(i−1)!(j−1−i)!(h−j)!fH(ti)fH(tj)[FH(ti)]

i−1

× [FH(tj)− FH(ti)]
j−1−i[1− FH(tj)]

n−j .
(31)

Thus, we have
fVi,Vj (ti, tj ;S, v)

=
ti−1
i (tj−ti)j−1−i

Sj
h!

(i−1)!(j−1−i)!(h−j)!

(
1− tj

S

)h−j
=

S
v ...(

S
v−j+1)
Sj

ti−1
i (tj−ti)j−1−i

(i−1)!(j−1−i)!

(
1− tj

S

)S
v−j

.

(32)
Finally, assuming j > i, and reasoning in the limit as S →∞
in the same manner as in Theorem 6,
fVi,Vj (ti, tj ; v) = lim

S→∞
fVi,Vj (ti, tj ;S, v)

= 1
vj
ti−1
i (tj−ti)j−1−i

(i−1)!(j−1−i)! e
−
tj
v

=
ti−1
i

vi(i−1)!e
− tiv (tj−ti)j−1−i

vj−i(j−1−i)!e
−
tj−ti
v

= g(ti; i, v)g(tj − ti; j − i, v).

(33)

2

5See Casella and Berger [12], Theorem 5.4.6.

16

	Introduction
	An Explanation of the Bobtail Protocol
	Problem Statement
	Protocol Details

	Assumptions and Methodology
	Threat Model
	Methodology

	Low Variance and other properties of the k-OS Criterion
	Adjustment of the Target Given k
	Estimating Mining Time
	Variance of Wk
	Improvement in Variance

	Bobtail thwarts selfish mining and doublespend attacks
	Bobtail's orphan rates are the same or lower
	Orphan Prevention Measures
	Performance

	Lowering Network Overhead
	Incentivizing Honest Behavior with Rewards
	Analysis of Honest Miners
	Thwarting Proof Withholding Attacks
	Thwarting DoS Attacks

	Limitations
	Related Work
	Conclusion
	References
	Appendix
	Properties of Bobtail Order Statistics
	Joint Distribution

