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Abstract—Content filtering technologies are often used for
Internet censorship, but even as these technologies have become
cheaper and easier to deploy, the censorship measurement com-
munity lacks a systematic approach to monitor their proliferation.
Past research has focused on a handful of specific filtering tech-
nologies, each of which required cumbersome manual detective
work to identify. Researchers and policymakers require a more
comprehensive picture of the state and evolution of censorship
based on content filtering in order to establish effective policies
that protect Internet freedom.

In this work, we present FilterMap, a novel framework that
can scalably monitor content filtering technologies based on their
blockpages. FilterMap first compiles in-network and new remote
censorship measurement techniques to gather blockpages from
filter deployments. We then show how the observed blockpages
can be clustered, generating signatures for longitudinal tracking.
FilterMap outputs a map of regions of address space in which the
same blockpages appear (corresponding to filter deployments),
and each unique blockpage is manually verified to avoid false
positives.

By collecting and analyzing more than 379 million mea-
surements from 45,000 vantage points against more than 18,000
sensitive test domains, we are able to identify filter deployments
associated with 90 vendors and actors and observe filtering in 103
countries. We detect the use of commercial filtering technologies
for censorship in 36 out of 48 countries labeled as ‘Not Free’
or ‘Partly Free’ by the Freedom House “Freedom on the Net”
report. The unrestricted transfer of content filtering technologies
have led to high availability, low cost, and highly effective filtering
techniques becoming easier to deploy and harder to circumvent.
Identifying these filtering deployments highlights policy and
corporate social responsibility issues, and adds accountability
to filter manufacturers. Our continued publication of FilterMap
data will help the international community track the scope, scale
and evolution of content-based censorship.

I. INTRODUCTION

Governments and authorities increasingly seek to control
how their citizens access content and communicate online,
often citing concerns of national sovereignty, security, public
morality, and terrorism. These information controls typically
take the form of blocking access to certain websites or online

services. While the technical means of censorship vary and
continue to evolve, some of the most common forms include
DNS tampering, injecting or dropping packets at the IP layer,
and application-layer filtering using deep packet inspection
(which enables advanced classification and filtering). For ex-
ample, ISPs block sensitive keywords or prevent the use of
“undesirable” applications (e.g., virtual private networks or
Tor), sometimes by injecting a blockpage, a notice that explains
to the user why the content has been made unavailable.

A worrying trend in recent years has been the proliferation
of content filtering technologies, specialty networking products
that inspect, filter, and/or tamper network communication for
purposes other than packet forwarding. A decade ago, this
filtering was expensive to conduct at the scale of a national
network and its deployment was limited to a small number
of motivated countries. Today, commoditization has brought
carrier-grade content filtering within the budget of most gov-
ernments, including those with poor human rights records [40].

Monitoring the use of filtering technologies for censorship
can drive change in the regulation and behavior of companies
selling filtering products. For instance, Citizen Lab [49] con-
ducted investigations of a Canadian content filtering vendor
Netsweeper showing how their products were employed in
censorship systems around the world. The investigation was
the result of several years of manual effort in identifying and
scanning for product signatures. One particularly egregious
case they identified concerned an “Alternative Lifestyles”
blacklist curated by Netsweeper, which was used by several
countries to block LGBTQ+ content. After advocacy based on
Citizen Lab’s findings, Netsweeper claims they have removed
the option to block based on this category [57]. In another
case, when ONI [41] informed Websense about the use of
their product for censorship by the Yemeni government, they
stopped providing software updates to the products deployed
in Yemen [63].

Measuring the deployment of filtering technologies, which
we refer to as filters, has been a cumbersome process as
it involves manually identifying a unique signature for a
small set of filter products, often while having physical access
to a sample product and the assistance of on-the-ground
collaborators, and then performing network scans using the
signatures to detect deployments. Moreover, monitoring their
deployment continuously requires sustainable systems. As a
result, the censorship measurement community has only iden-
tified a handful of filters over the years. In 2013, Dalek et
al. manually created signatures for four filter vendors and
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measured their deployment in several countries [15]. These
signatures were based on the blockpages exposed by filters
with public-facing IP addresses and were limited to a particular
product configuration. In 2014, Jones et al. introduced a
technique to reduce manual effort in finding filter signatures by
clustering blockpages in ONI data [42] based on page length
and term frequency vectors [34]. Unfortunately, the metrics
were shown to be a poor heuristic for detecting blockpages, as
the technique suffers from high false positives due to natural
variations in page length from dynamic and language-specific
content [62]. The inability to monitor the proliferation of filters
more broadly withholds researchers, regulators, and citizens
from efficiently discovering and responding to the misuse of
these “dual-use technologies”. This concern is echoed by a
recent report to the UN Human Rights Council that addresses
challenges in establishing regulatory measures and safeguards
pertaining to the use of these products for censorship and
surveillance [54].

In this paper, we present FilterMap, a framework for
semi-automatically identifying filters that are configured to
censor with user-observable blockpages, and we apply the
technique to measure censorship filter deployments around
the globe. FilterMap consists of two main phases: (1) data
collection, in which blockpages are retrieved using network
interference measurement techniques; and (2) data analysis,
in which the collected data is processed to generate clusters of
blockpages, each labeled by a unique signature, which identify
filter deployments in different countries. We use iterative clas-
sification and image clustering to substantially automate the
classification of injected responses. This automation represents
a vital improvement, given the scale of the data collected
(hundreds of millions of measurements).

A crucial challenge for our effort is to ethically collect
a widespread and diverse set of blockpages that result from
triggering many globally deployed censorship filters. Most
censorship measurement techniques rely on volunteers or in-
network vantage points that hinder performing measurements
of the scale and frequency required to gather continuous
data. Moreover, triggering these filters to act on forbidden
or sensitive content can compromise user safety and requires
a great deal of manual effort in surmounting language and
cultural barriers to convey risks to volunteers [51]. Fortunately,
recent measurement techniques [56], [46], [44], [43], [21]
remove the need for an in-network volunteer and enable
measurements to be performed remotely and safely across
a broad swath of networks. We apply and extend one such
technique, Quack [56], to investigate the global proliferation
of censorship filters.

Using FilterMap we provide the first global-scale mea-
surement of censorship filters and identify many previously
unknown deployments. Our data collection phase includes
(1) remotely testing more than 18,000 sensitive domains
from ≈45,000 vantage points, yielding more than 374 million
measurements and (2) adding publicly available censorship
data, primarily 5 million measurements from OONI [25], a
volunteer-run global censorship observation network affiliated
with the Tor project that abides by ethical data collection
norms. The diverse and complementary nature of these mea-
surement methods and platforms allows us to paint a more
complete picture of the global state of content-based filtering.

We were able to detect 70 blockpage clusters that uniquely
identify either the vendor that manufactures the filter or the
actor that deploys it (if the former is unknown). We detect
censorship filters in more than 100 countries—some at the
national or ISP level, some on corporate or institutional
networks—which restrict access to a range of content from
pornography to political criticism. Among these 70 are block-
pages from well-known commercial manufacturers including
Palo Alto Networks, Cisco, and Fortinet, which contain an
explicit indication of the vendor.

While FilterMap cannot discover every deployed censor-
ship filter in existence—some may not be on visible networks,
some may not inject blockpages, and some may evade our
detection—it presents the most comprehensive view thus far
of the deployment of filters used for censorship. Since filters
are considered a dual-use technology, we do not make a
determination on the appropriateness of their use nor the legal
ramification of their deployment; for instance, we note that
schools blocking access to porn and companies blocking access
to Facebook is not comparable to governments blocking access
to political and human rights content. Nevertheless, deciding
on the appropriateness of the use of these filters is subjective
and is outside of the scope of this paper. Regardless of the
reason behind deployment of filtering products, the large-
scale use of these technologies across many countries and
institutions is alarming and emphasizes the need for regulators
and the populace to gain visibility into the growth of content
filtering technology.

An appealing application of our framework for the cen-
sorship measurement community (including projects such as
OONI) is to use our analysis phase to reduce false positives.
Our lightweight, semi-automated data processing methods can
help identify measurement artifacts and noise that invariably
appear in real-world networks. Moreover, designing effective
circumvention tools requires considering both the capabilities
of and the methods used by filters. Our system makes it easier
for tool developers to create circumvention strategies based
on empirical measurement by directing them to places where
filters have been deployed and providing examples that trigger
them. We hope this will help developers test and improve their
circumvention strategies faster.

FilterMap’s scalable and easily-deployable design enables
longitudinal tracking of worldwide proliferation of filtering
products. Interestingly, as shown in Section V-B, we identify
20 new blockpage clusters (in addition to the previous 70)
in over 3 months of longitudinal measurements. We intend
to maintain FilterMap as a source of longitudinal data for
researchers monitoring global censorship. Our data and re-
sults are available at https://censoredplanet.org/
filtermap and can be used by circumvention developers,
advocacy organizations, and regulators seeking to understand
and police the proliferation of censorship technologies.

II. BACKGROUND

While filters were originally adopted for purposes such
as caching and security, they are increasingly being used by
network operators to control their users’ communication, most
notably for censorship and surveillance. These products enable
advanced filtering, particularly on application-layer data. In
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Fig. 1: Example of a blockpage: Since blockpages often contain
context about the vendor, authority, and/or reason behind blocking,
they are more informative data sources than TCP/IP headers. �

contrast with IP blacklisting, which may result in collateral
blocking, and DNS poisoning, which can be thwarted by using
alternate DNS services, application-layer filtering is more
accurate and effective, thus explaining its increasing preva-
lence. Filters can look into the content of HTTP requests and
responses and disrupt the communication between client and
server when undesirable keywords or domain names are ob-
served. Advancements in filtering technologies have increased
their capability to disrupt even encrypted traffic. For HTTPS,
the Server Name Indication (SNI) extension to Transport Layer
Security (TLS) leaks the domain name in plaintext. In case
the traffic is fully encrypted (using ESNI [23], for instance),
detecting pattern signatures of specific content such as Tor
traffic could be used for filtering [30].

Filtering products, which are often manufactured by west-
ern companies, may come with subscriptions for updates,
initialized blacklists, and a customizable blockpage—a notice
that explains to the user why the content is unavailable—as
shown in Figure 1. While acting on undesirable content, most
filters provide information that may be used to identify either
the vendor that manufactures the filter or the actor that deploys
it. Researchers can then use different parts of the filter response
such as the TCP/IP header, HTTP header, or the blockpage as
a signature to investigate the filter’s deployment.

Previous work on the Great Firewall of China identifies
anomalies in TCP/IP header fields (e.g. IP ID and IP TTL
fields) of injected packets as its signatures [60], [61]. Unfortu-
nately, identifying filters from limited features of TCP/IP head-
ers requires prior knowledge of existing vendor signatures in
addition to cumbersome manual efforts. While we did collect
TCP/IP data, we found blockpages, such as the one in Figure 1,
more practical for extracting signatures and identifying vendors
and actors. Blockpages are injected as a HTML response in the
disrupted communication and often explicitly state the reason
for blocking, possibly to dissuade users from trying to access
the blocked content repeatedly.

Ethically collecting a widespread and diverse set of block-
pages that result from triggering many globally deployed filters
is challenging. One common method, which we refer to as
direct measurement, is to seek assistance from on-the-ground
and in-network volunteers [52], [31] who can run measurement
software from their own devices. Tor’s OONI project performs
direct censorship tests from many volunteer users’ machines
to sensitive test domains. Another recent trend is to use
remote measurement techniques that often use properties of

0 20 40 60 80 100
Page length (In Kilobytes)

0.0

0.5

1.0

Fr
ac

tio
n 

of
 H

TM
L 

pa
ge

s

Blockpage
Unexpected Resposes

Fig. 2: Page length in Kilobytes: Blockpages and Unexpected
Responses (e.g. common server errors) in Quack, Hyperquack and
OONI data have comparable page lengths. �

existing protocols running on Internet infrastructure systems
to measure Internet censorship [56], [46], [44], [43]. While
direct and remote measurement approaches differ in depth,
scale, and coverage, the data collected using global censorship
measurement techniques are most likely to contain responses
from many censorship filters, which we aim to detect.

As these filters act more commonly on HTTP(S) traffic,
we were inspired by Quack, a recently introduced remote
measurement system that efficiently detects application-layer
blocking [56]. Quack uses servers running the Echo service
on port 7, which echoes back any data sent to it. Quack uses
this property and crafts HTTP-like requests in order to trigger
a response from filters along a network path. Unfortunately,
Quack does not generate legitimate HTTP(S) requests and it
does not detect filters that only act on communications on
port 80 or port 443. Hence, in addition to using Quack, we
offer an upgrade for Quack where we use non-end-user-owned
HTTP(S) web servers (in place of Echo servers) as vantage
points and send genuine HTTP(S) requests with a variety of
domain names exposed in the Host header or SNI extension.
Normally, because these web servers are not expecting to
receive requests for our test domain names, they respond with
an error page (e.g. “Content Not Found”). However, if there is
a filter in the path that is triggered by a test domain name,
we might receive an injected blockpage. The blockpage is
different from the typical server response, leading us to learn
which domain triggered the filter. We name this new upgrade
Hyperquack: Quack that uses Hypertext Transfer Protocol
servers as vantage points (see Section III-A). Together, Quack
and Hyperquack data contributed to 82 of the 90 blockpage
clusters detected around the world by FilterMap.

Hyperquack upgrades Quack to detect filters that act on the
HTTP(S) protocols, but it can only capture blockpages if the
filter is configured to act on incoming (Measurement Machine
→ Vantage Point) requests. While the default behaviour of
most filters is to act on all traffic regardless of the direction
of the communication, there may be some that only act on
outgoing traffic (Vantage Point → Measurement Machine).
To detect these filters, we augment our measurement data
with other public censorship datasets, specifically from the
OONI project [25]. We use the OONI web connectivity test
data, which detects censorship by comparing responses for
a sensitive test domain with the response from a control
measurement. Some of these responses contain blockpages
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from filters. While OONI has sparse data, and an unclear
number of volunteers that contribute to measurements—since
their tests are anonymized to protect user privacy—we find
8 blockpage clusters unique to OONI data. Combining data
from both direct and remote measurements helps us achieve
the most comprehensive view yet on the deployment of filters
used for censorship.

Another key challenge in identifying filters using block-
pages is differentiating blockpages from unexpected responses
such as server-side blocking errors (e.g. HTTP status code
403), page not found errors (e.g. status code 404), and DDoS
checks from services hosted in CDNs [38], [53], [48]. Previous
work [34] has used the metric of page length for identifying
blockpages. However, later investigation on OONI data by
Yadav et al. [62] found this metric to have high false positive
rates due to natural variations in page length from dynamic and
language specific content. They found that legitimate responses
containing redirects were often misidentified as blockpages due
to their short page lengths. Similarly, as shown in Figure 2,
this metric is not suitable for the data collected in our work as
typical server error pages are short (like blockpages) and have
the same HTML structure. FilterMap’s data analysis phase
solves this problem by clustering pages based on content or
visual similarity, rather than page length.

III. FILTERMAP DESIGN

We introduce FilterMap, a framework that measures the
deployment of filters that are configured to block traffic by
responding with user-observable blockpages. Figure 3 presents
a basic overview of the FilterMap’s design, which includes the
following key phases:

Data Collection Our data collection consists not only of a
new measurement method, Hyperquack, but also Quack [56],
and OONI’s public censorship dataset [25]. Hyperquack and
Quack run tests from our measurement location in North
America to thousands of vantage points (i.e. HTTP, HTTPS,
and Echo servers) in more than 190 countries. We complement
the resulting dataset by downloading OONI’s web connectivity
test data collected by OONI volunteers. In Section III-A, we
provide a detailed explanation of the data collection phase and
Hyperquack’s measurement technique.

Data Analysis To identify blockpages we use two tech-
niques, Iterative Classification and Image Clustering, on
HTML content extracted from disrupted measurements. These
techniques help with generating large groups of pages that have
either content similarity or visual similarity. Our experience
suggests a filter often returns the same blockpage for all un-
desirable content. Therefore, we expect the injected responses
to group in large clusters.

The clusters generated using both techniques are labeled
by the signature that uniquely identifies the blockpages in that
cluster. We generate these signatures manually, choosing a
subset of the HTML page or Header that acts as a unique
identifier. An example signature for the Barracuda filter is
the presence of “<th>Barracuda NextGen Firewall:</th>” in
the HTML body. Once the clusters are labeled, we detect the
deployment of these filters based on our measurement data by
looking at vantage points whose responses were injected with
the corresponding blockpages. Additionally, these signatures
can be used to search for injected responses in other datasets,
although this may require further verification to prevent po-
tential false positives. We describe one such experiment with
public data from Censys [18] in Section V-D.

Note that the same filtering product might return different
blockpages possibly due to different software versions or
customizations. For instance, FilterMap generated 5 blockpage
clusters that are associated with Fortinet products. In our
results, we aggregate clusters from the same vendor or actor
for clarity, which means Fortinet products would only count
towards 1 of the 90 blockpage clusters.

Ethical Considerations Ethical considerations remain a
major point of contention in censorship studies for both direct
and remote censorship measurement systems [39], [11], [33],
[56], [8]. FilterMap uses publicly available OONI censorship
data and runs active measurements using remote techniques.
Censorship measurement projects such as OONI that directly
ask for on-the-ground collaborators to run measurements often
seek informed consent from volunteers. Conveying the risk
behind running sensitive tests require a great deal of human
efforts to surmount volunteers’ language and cultural barriers.
The OONI project provides a summary of potential risks which
they convey effectively to their volunteers and obtain informed
consent. OONI’s measurement data is publicly available and is
used by many academic and non-academic research projects.
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Remote censorship measurements such as Quack and Hy-
perquack use a fundamentally different approach that does not
require volunteers’ involvement. Considering the conceptual
similarity of Quack and Hyperquack, we follow the ethical
constraints described in VanderSloot et al. and only use or-
ganizational servers as our vantage points. We explain our
vantage point selection process in detail in Section III-A.

While we cannot completely exclude the possibility that
our organizational vantage points will be somehow penalized,
we took several steps to reduce the potential risk. Because
IRB considers remote measurement studies outside of their
purview (as these studies did not involve human subjects or
their personally identifiable data), we discussed the study’s
design with internal and external colleagues in our community.
Like Quack, Hyperquack only establishes connections between
our own measurement machine and organizational HTTP(S)
servers. Because these administrators are likely to have more
skills and resources to understand the traffic sent to their
servers, the risk posed to them by these methods is lower than
the risk posed to end users.

Moreover, we make it easy for anyone investigating our
measurement machine’s IP addresses to determine that our ex-
changed traffic is part of a measurement research experiment.
We set up WHOIS records and a web page served from port
80, all indicating that the measurement machine was part of an
Internet measurement research project based at our university.
Over months of running measurements, we only received a
handful of inquiries, and none indicated our probes caused
technical or legal problems.

We also follow the best practices set forth by the ZMap
measurement system [19] and limit the rate at which we
conduct measurements using individual servers. To minimize
the burden on servers we spread our measurements over many
servers within a country, make a single request at a time, add
delays between requests, and use a round-robin schedule to
maximize the time between trials involving the same server.
We use a fresh TCP connection for each request to minimize
interference between requests. We also run our HTTP and
HTTPS tests at different times so that servers used for both
HTTP and HTTPS measurements do not receive simultane-
ous requests. On average, our probes caused servers behind
filter deployments to trigger the filter 99 times a day, and a
maximum of 240 times a day. As a point of comparison, two-
thirds of Top Million sites cause requests to Google servers,
and one-third to Facebook servers, so filters that block these
large companies will be triggered more frequently by everyday
browsing.

We conducted an additional check of running NMap on
the Echo servers in the countries labeled as ‘Not Free’ by
the Freedom House “Freedom on the Net Report” [26] and
excluded servers whose labels left doubt as to whether they
were infrastructural, increasing our confidence that we are not
using residential vantage points in these countries.

A. Data Collection

The data collection phase aims to collect an extensive
and diverse set of disrupted application-layer data—which
most likely contains many blockpages from different filters.
We achieved this by combining Quack, OONI and our new
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measurement system Hyperquack. While OONI data is public,
we ran Quack following the exact measurement method and
code described in [56] to collect data and detect disruption.
The rest of this section describes the technical details about
our new remote measurement technique, Hyperquack.

Hyperquack Vantage Point Selection There are more
than 50 million active HTTP(S) web servers around the world,
with heterogeneous characteristics ranging from international
CDNs to personal sites operated by individuals. We select
servers from this pool with a focus on two properties: Location
Diversity and Ethical Soundness.

Location Diversity: Our desire for location diversity is a
property of the path as much as the remote vantage points.
There are two important considerations on why the location
of a server itself is not sufficient for our understanding of
behavior. First, a subset of servers, including major CDNs,
make use of anycasting. Anycasting describes the situation
where an IP address is resolved to multiple physical hosts
in different locations based upon the location of the client
requesting content from the server [9]. This means that while
the IP address may have a point of presence in a desired
network, the connections from our measurement machine will
not always be directed to that server. Second, servers may
change their responses or behave differently based upon the
location of a client. This means that we need to interact with
servers from a single measurement machine to ensure that the
behavior we observe is consistent across measurements.

Ethical Soundness: Aligned with the ethical considerations
discussed in Section III and the ethical approach of [44], [56],
we need to only use servers known to be organizational.

To address both constraints, we use the following approach
for identifying organizational servers: Using the official list
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of Autonomous Systems, we enumerate optionally provided
websites, which many providers include in their entries on
peeringdb [45]. We choose these officially provided websites
because as a primary point of contact, providers are incen-
tivized to maintain these servers within their networks, rather
than outsourcing them to cloud providers or maintaining them
on their personal servers. Providers of this nature are estab-
lished entities who most likely already have anomaly detection
tools and abuse procedures as part of operations, meaning that
they will be able to deal with our measurements. We also
check one level of indirection in DNS from these providers.
For instance, after identifying level3carrier.com as the
official site for Level 3, we also check for a web server running
on mail.level3carrier.com, and include that server in
our list of potential vantage points. While this pruning step
reduces the number of usable HTTP(S) servers from millions
to thousands, it is ethically necessary for reducing risk. By
selecting only web servers belonging to network operators
from different parts of the world, we achieve both location
diversity and ethical soundness.

Hyperquack Censorship Detection The Hyperquack
measurement technique makes use of characteristics of servers
that support the HTTP(S) protocol. The core concept behind
this technique is that a web server’s response can be predicted
after sending some requests and observing the responses. For
instance, when a client connects to the web front-end of
gov.uk, requesting a domain that is not hosted there, the
server responds with the message “unknown domain: Please
check that this domain has been added to a service”. Then, if
the response for a sensitive domain diverges from the predicted
response, it is indicative of the presence of a filter.

As illustrated in Figure 4, Hyperquack receives an input
list of organizational web servers and a list of domains to test.
Next, Hyperquack requests several bogus but benign domains,
such as “www.test<rand int>.<rand tld>” and “www.example-
<randint>.com”, to create a template for the expected response.
Server response may vary because HTTP(S) responses typ-
ically contain dynamic elements such as cookies or times-
tamps; Therefore a template of server’s predictable behavior
is generated by removing these common dynamic elements
and occurrences of the test domain. For HTTPS servers, the
templates include certificate and cipher suite choice. If the
templates for all of these benign domains match, Hyperquack
classifies the web server as consistent and saves the canonical
template. We were able to generate canonical templates for
87% of the organizational servers. Server behavior may also
vary based on the requested subdomain. The most common
example is when the web server adds or removes the “www”
portion of requested domains on its error pages. Hyperquack
uses a variety of control subdomain patterns when testing
for server consistency. We make requests of the form “<sub-
domain>.example<rand>.com” for all subdomains in our test
list, and compare these replies with the generated canonical
templates. The rates of mismatches are below 1% for all
subdomains except “webmail.sso” and “mail”. Fortunately,
only a negligible number of test domains—precisely 18 out
of 18,736—have these subdomains.

The measurements start once the canonical templates have
been generated. Hyperquack tests each domain for interfer-
ence across the consistent organizational servers (Step 2 in

Figure 4). It begins each trial by making a GET request for
the domain and generating the reply template. If it matches
the server’s canonical template, the trial is done. In this
case, the output state is Not-Disrupted. If the reply does not
match, it makes up to four retries to accommodate temporary
network changes. Because network interference is sparse and
organizational servers are generally reliable, out of all the Not-
Disrupted cases 99.5% of the trials end after a single request,
allowing the system to scale.

If all retries fail to match the canonical template, Hyper-
quack checks to see if the server is still behaving consistently
by requesting a randomly generated control domain. If the re-
ply for the control domain matches, the server is still consistent
and Hyperquack attributes the disruption to the test domain.
The output state in this case is Disrupted, indicating either the
presence of a filter or an unexpected response for the domain.
We explain how our analysis identifies and separates filter
responses and unexpected responses in Section III-B. In our
measurements, we observed filters practicing various types of
disruptions, most commonly injecting a blockpage, injecting a
TCP RST, or forcing the connection to timeout. In HTTP tests,
more than 50% of filters’ responses contained a blockpage. If
none of the responses match the template, the server is deemed
to be behaving inconsistently and Hyperquack does not use
the server for future trials. In this case, it marks the output
state as Server Error. We observed on average a failure rate of
only 1.5% for HTTP and 1.9% for HTTPS after completion of
full measurements. Because the matching criteria for HTTPS
templates is stricter (it contains more features), the higher
failure rate is expected.

Following redirects Some filters are configured to respond
with a redirect to their blockpage. Therefore, we anticipate
observing some web redirects in our collected data. In the post-
processing step, we follow web redirects and add the HTML
retrieved from these redirect URLs for the analysis phase.

B. Data Analysis

In this phase, FilterMap generates clusters for blockpages
using iterative classification and image clustering, thus sig-
nificantly reducing the manual effort required in identifying
and labeling blockpages. The iterative classification prioritizes
classifying pages that occur frequently and image clustering is
highly effective in grouping HTML pages with dynamic con-
tent like embedded advertisements which have considerably
different HTML code but render visually similar pages.

We use all the HTML responses marked as disrupted from
all the collected datasets. The HTML content can either signify
a blockpage or an unexpected response. Unexpected responses
are anomalous responses—such as server-side blocking errors
(e.g. status code 403), page not found errors (e.g. status code
404) and DDoS checks from services hosted in CDNs—that
occur due to unexpected vantage point behavior towards some
domains. Our manual labeling confirms these responses do not
originate from filters. For example, in Hyperquack we find
instances where a web server hosts one of the test domains
and thus sends back the genuine content of the domain that is
different from our canonical template.

Iterative Classification Considering the enormous
amount of collected data, any clustering approach would take
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Algorithm 1 : Iterative Classification
1: block-patterns←[ ]
2: ur-patterns←[ ]
3: unclassified←[ ]
4: procedure ITER-CLASS(param,HTML-pages,block-patterns,ur-patterns)
5: foreach HTML in HTML-pages
6: if get_pattern(HTML) ∈ {"Blockpage", "Unexpected Response"} then
7: next
8: Unclassified← HTML
9: unclassified_length = len(unclassified)

10: assert(param > 0)
11: groups = make-group(unclassified)
12: unclassified←[ ]
13: flag = False
14: foreach group in groups
15: if len(group)/len(unclassified_length) ∗ 100 >= param then
16: flag = True
17: pattern,type← get_pattern(group),label_manually(group)
18: if type == ”Blockpage” then
19: block-patterns← pattern
20: else if type == ”UnexpectedResponse” then
21: ur-patterns← pattern
22: else
23: unclassified← group
24: if flag == False then
25: return unclassified
26: else
27: return ITER-CLASS(param,unclassified,block-patterns,ur-patterns)

Fig. 5: Dynamic elements in blockpages: Zoomed blockpages
injected for hidemyass.com and vkontakte.ru. Image clustering uses
the visual similarity to correctly group these pages together. �

considerable computing time and resources to cluster block-
pages. Inspired by the iterative fingerprinting methodology
described in Weaver et al. [59], our first systematic step is
to reduce the number of elements that need to be clustered
simply by grouping recurring HTML pages (which contain
both blockpages and unexpected responses). As shown in
Algorithm 1, the iterative classification algorithm starts with an
empty blockpage set, an empty unexpected responses set, and
an unclassified set initially containing all the HTML responses.

The first run results in different groups, where each group
represents a set of matching HTML pages, and often picks
up a handful of widely deployed filters. Since data from the
data collection phase may contain over 500,000 blockpages,
the first run can generate upwards of thousands of groups. In
each iteration, to find candidate groups for manual labeling, we
look at the group sizes above a certain empirical threshold, i.e.
groups with size above a certain percentage of the unclassified
set are candidates for labeling. In this study, we find that a
threshold of 10% of the size of the unclassified set gives an
acceptable coverage rate with a very low number of iterations.
The labeled groups (blockpages or unexpected responses) are
added to the sets accordingly and generated labels (signatures)

for the groups are stored. The iterative classification algorithm
recursively continues on the remaining unlabeled instances.
The iteration stops when no remaining groups are big enough
to pass the threshold.

Image Clustering As mentioned previously, iterative clas-
sification fails to classify responses that occur infrequently or
have dynamic content (e.g. Figure 5). To minimize human
involvement in classifying these instances, we use a deep learn-
ing model to extract feature representations, or embeddings,
from screenshots taken from rendered responses, and cluster
these screenshots using the resulting embeddings. Previous
work [7] rely on neural network models (e.g. an autoencoder)
to extract compact representations of a webpage’s content.
We adopt a similar approach by using a pre-trained image
recognition model, more specifically ResNet50 convolutional
neural network [29] trained on the ImageNet [16] dataset, to
obtain embeddings of length 2048 from each screenshot. We
extract embeddings from the layer before the softmax layer,
which is used to output predictions for ImageNet classes. This
step is intended to extract meaningful representations from the
screenshots, while reducing the dimensionality of the original
images, which in turn reduces computational requirements
for the clustering algorithm. We employ image clustering as
opposed to clustering using document similarity, because we
found instances of the same blockpage returned in different
languages (based on configuration), and because we expect a
high visual similarity between blockpages from the same filter.

Next, we use the DBSCAN [24] algorithm to cluster the
reduced feature vectors obtained from all the screenshots, using
a minimum of five samples to form a cluster. Clusters are
extracted by using five different ε values, which represent the
maximum euclidean distance of embeddings of two samples
to be considered as in the same neighborhood. The reason
we chose to use different ε values (10, 5, 2, 1, and 0.5) for
the clustering process is that a relatively low ε would result
in separating content-heavy pages that should otherwise be
clustered together, while using a relatively high ε would group
together all the pages with the same background color and
a small amount of content. It is also worth noting that a
cluster obtained using a lower ε is always going to be a sub-
cluster of one obtained using a higher ε, allowing us to inspect
each cluster and its corresponding sub-clusters, and choose an
appropriate ε level accordingly. The clusters are then labeled
using the signatures generated based on what we gather from
the HTML content of the blockpage. All the clusters that do
not have any indication of being a blockpage are labeled as
unexpected responses.

With iterative classification and image clustering, we
tremendously reduce the effort needed to identify blockpages.
The only manual effort is in labeling the groups with the
appropriate signature. This required looking at one HTML
page from approximately 200 groups. Fortunately, enriching
these known blockpage sets over time can speed up the
data analysis phase by pre-processing the next generation
of collected data using regular expression matching of their
known signatures.

IV. EXPERIMENT SETUP AND EVALUATION

In this study, we performed two large-scale measurements;
the first is a latitudinal measurement that expands over several
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HTTP HTTPS Quack

Initial Set 9223 6200 36000
Experiment Set 9063 6070 33602

Number of Countries 215 204 75
Median / Country 11 13 151
Number of AS 4558 3442 3463

TABLE I: Characterization of Vantage Points: The experiment
set consists of servers that passed consistency tests for all domains
without failing. The reported country and AS is based on the qualified
servers. �

thousand sensitive test domains with the goal of triggering
many filters; the second, longitudinal measurement, expands
over several months, hence displaying the effectiveness, scal-
ability, and sustainability of FilterMap.

Latitudinal Measurement We initially performed a three-
week measurement in October 2018 for Hyperquack and
Quack. We use entries from the Citizen Lab Test List
(CLTL) [10] as our potentially-blocked test domains. CLTL
is a curated list of websites that have either previously been
reported unavailable or are of interest from a political or human
rights perspective. CLTL includes 102 country-specific lists,
categorized into 33 categories from public health to gambling.
We used the list as on October 4, 2018, which contained 18,736
unique domains. We combine this data with the OONI web
connectivity test data from the same period. OONI’s volunteers
performed connectivity tests to 15,828 unique domains during
that time.

Longitudinal Measurement We ran Hyperquack and
Quack scans twice a week from November 2018 to January
2019 to show FilterMap’s ability to continuously detect filters
over an extended period. We tested ≈2100 domain from the
CLTL global list which contains domains of interest across
many countries, and the top 1000 most popular domains from
the Alexa Top 1M Dataset [3]. We used the Alexa list based
on its applicability to user-centric measurement studies and to
detect blocking of popular domains which may not be added to
the CLTL immediately. Considering the continuous nature of
these scans, we reduced the number of test domains to prevent
unnecessary load on vantage points.

Vantage Points To find HTTP(S) servers we followed the
process outlined in Section III-A. For a representative test run
in October 2018, this process yielded 11,700 organizational
web servers. Not all of these servers behaved consistently
enough to characterize their behavior. After removing CDNs
and IPs blacklisted due to abuse complaints, we were left with
10,470 servers. Consistency checks further reduced the number
of vantage points to 9,223 servers for HTTP measurements and
6,200 servers for HTTPS measurements. From Table I, we
observe that 98% of the servers complete all measurements
without failing consistency checks. For Quack, we found
over 45,000 echo servers using custom ZMap [19] scans. Of
these, we excluded 92 servers that we could not confirm are
organizational according to our ethical constraints (Section III).
Our initial vantage point set consisted of 36,000 echo servers
which remained stable during the consistency checks.

Data Collection Evaluation Our measurement machine
performs measurements for 1,000 domains on all HTTP(S) and

BP (%, #) UR (%, #) UC (%) # of Iterations

HTTP (56.51%, 27) (39.39%, 105) 4.10% 3
HTTPS (3.48%, 5) (83.83%, 67) 12.70% 1
Quack (93.08%, 34) (4.8%, 116) 2.12% 2
OONI (13.02%, 16) (43.27%, 44) 43.71% 2

TABLE II: Iterative Classification Evaluation: This table shows
the (percentage of responses, number of groups) of HTML responses
that were classified as blockpages (BP), unexpected responses (UR)
or were unclassified (UC) in the three-week measurement data. �

Echo servers in under 10 hours— While we can speed up by
sending many requests in parallel, we abide by best practices
and limit the rate of sending requests (as described in III).
We find that 95% of the measurements complete within 3 and
a half hours. The remaining 5% of measurements take up to
6 hours more due to slow server responses.

Data Analysis Evaluation Clustering approaches often
take considerable computing time and resources and our analy-
sis phase had to process large quantities of data. With multiple
strategies to optimize performance as described in Section
III-B, each iteration of the iterative clustering algorithm only
runs for approximately 25 minutes on a dataset of 1 million
HTML pages. Through manual trials, we find that a threshold
of 10% of the size of the unclassified set gives an acceptable
coverage rate with a very low number of iterations. Detailed
performance analysis per data collection tool is presented
in Table II. The high percentage of unclassified responses
in OONI is due to difference in data collection method, as
OONI’s volunteers test different domains. FilterMap identified
a total of 82 blockpages using iterative classification.

For image clustering, note that the time complexity of
the DBSCAN algorithm for high-dimensional data is O(n2),
where n is the number of samples being clustered. For our
largest set containing ≈80,000 screenshots, the clustering algo-
rithm takes 5 minutes per ε level (25 minutes for all levels). To
evaluate the accuracy of image clustering, we manually inspect
the corresponding clusters for 100 randomly picked screen-
shots and examine whether they have been correctly grouped
with similar images for any of the utilized ε values. For HTTP
(HTTPS) responses, we observe that 84 (90) samples were
correctly grouped with similar screenshots. Interestingly, we
found no false positives (i.e. a sample that looks different
from the rest of the screenshots) in the respective clusters for
these samples. The remaining 16 (10) samples corresponded
to unexpected response pages with a white background and,
optionally, a single short line of content (e.g. “Bad Request”,
or “Page moved permanently”), and were grouped together
in one cluster (two clusters) for the lowest ε value. We
further inspected all clusters obtained from Quack and OONI
measurements, and similarly observed that the only case where
our technique did not group similar images was for screenshots
with a white background and a very short line of content.
Inspecting all HTML pages inside blank page clusters confirms
they are not blockpages, hence the imprecision of our approach
on blank pages does not affect our ability in discovering
blockpages. Upon inspection of the generated clusters from
image clustering, we additionally identify 8 new blockpages.
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V. RESULTS

In FilterMap’s data collection phase, we tested more than
18,000 sensitive domains from ≈45,000 vantage points, yield-
ing more than 374 million measurements, which is augmented
with 5 million measurements from OONI. FilterMap’s data
analysis phase generated 90 blockpage clusters in which the
blockpages identify either the commercialized vendor that
manufactures the filter or the actor that deploys it (e.g. govern-
ment, ISP, or organization). These filters are located in many
locations in 103 countries revealing the diverse and widespread
use of content filtering technologies.

The signatures generated for 87 of these blockpages were
previously unknown. FilterMap extracted 38, 49, and 21
blockpages from Hyperquack, Quack, and OONI data respec-
tively. Hyperquack triggered a large number of commercial
filters—products with an explicit indicator of the vendor in
its blockpage—being used for censorship. This is because the
default configuration of most of these commercial filters acts
on HTTP(S) traffic on port 80 and 443. Hyperquack data
detected deployments in three times as many countries as
Quack and OONI. Because of the large number of Quack
vantage points in ISP networks, Quack was helpful in detecting
a large number of filters deployed in ISPs, especially in Russia
(38 out of the 49 filters detected by Quack were deployed in
Russian ISPs).

We observed blockpages in 14 languages: filters which are
locally configured return blockpages in regional languages,
while most exported from western countries have a standard
blockpage in English. Some blockpages have content in mul-
tiple languages, e.g. local content and advertisement added to
the template blockpage in English. We also observed the same
blockpage being returned in different languages, suggesting
vendors customize template blockpages for their customers.
Fortinet products have the largest presence in many countries
in our data, with blockpages observed in both English and
Chinese. Note that image clustering was able to group these
instances into the same cluster, which would not have been
possible with text-based clustering methods.

We manually categorized these blockpages as Legal (con-
taining a notice about blocking based on a law or court
order), Informative (not Legal, but containing information
regarding blocking), or Unclear (not indicating that the content
is being blocked)—to prevent potential bias, three authors
independently categorized the blockpages and arrived on a
consensus. The breakdown of blockpages is as follows: 60%
Legal, 32% Informative, and 8% Unclear. The large number
of blockpages with explicit reference to law or court order
suggests most networks that follow orders of authorities are
eager to inform their users of the reason behind blocking.
This is especially striking in Russia where all the blockpages
from 41 Russian ISPs cited Federal Law as the reason for
blocking. We observed that most filters deployed in organi-
zations fall under the informative category. Finally, 8% of
Unclear blockpages either show an error page or a blank
page instead of an indication of blocking. Upon looking at
the raw HTML content, we see some indication of blocking
that is not easily visible to the user. We observed 48 filters
returning status code “302 Found” which is a common way
of redirecting requests to a blockpage. Apart from redirects,

AU
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SA

Fig. 6: World map of commercial filter deployment: Circle size
represents number of products detected in that country. �

the most common blockpage status codes were “200 OK” (15)
and “403 Forbidden” (14).

A. Filter Types

Blockpages (and the corresponding signatures) can help
identify the vendor that manufactures the filter, or the actor that
deploys it. Commercial filters are well-known content filtering
technologies that are available on the market and have trade-
marks such as “<TITLE>Juniper Web Filtering</TITLE>”
or “<h2>Powered By FortiGuard</h2>”. These products are
mostly deployed by actors such as organizations, ISPs, and
governments. Filters with Government Blockpages have a
presence on a nation-wide scale (e.g. Bahrain). Filters with
ISP Blockpages are deployed by ISPs for restricting access
to certain websites for their users. ISPs may block content to
comply with directions from telecommunications authorities
or censorship laws (e.g. Russia, India). Filters with Organiza-
tional Blockpages have information about the organization that
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Country of Origin Commercial filter

Israel Allot
China Senhua
Republic of Korea SmartxFilter
Russia VAS Experts
United States Barracuda, CacheFlow, Cisco, Fortinet, IBM QRadar,

Juniper, Palo Alto, SonicWall, Squid, Sucuri, WatchGuard

TABLE III: Location of commercial filters’ headquarters �

Fig. 7: Categories blocked using commercial filters: The heatmap
shows the median blocking percentage of domains in the global test
list by vantage points behind each commercial filter. The bar chart
shows the number of vantage points (in log scale) contributing to
the median value. Categories such as Pornography, Gambling, and
Anonymization tools have high blocking rates, showing that these
products are increasingly used for censorship. �

deploys or owns the filter, such as a university. Finally, there
are some filters where the vendor or actor is Unknown.

1) Commercial filters: FilterMap identified 15 commercial
filters in 102 countries, as shown in Figure 6. The availability
and ease of deployment of commercial filters has galvanized
the process of restriction of Internet freedom in many coun-
tries. About three quarters of these products explicitly state
the vendor name making them easy to identify, while the
others required further investigation such as following links in
the blockpage and looking at the alternate text behind logos.
Many countries have no export or import restrictions on these
products, allowing for the free flow of this technology to other
countries. The most popular product, Fortinet, has a presence
in at least 60 countries.

While a small portion of commercial filters are locally
manufactured and deployed (e.g. VAS Experts in Russia), most
suppliers are headquartered in the United States, as shown
in Table III—A company’s headquarter location is where the
company has legal responsibility for decisions made. The
export of these products to countries with poor records in
Internet freedom is a cause for concern. 36 out of 48 countries
labelled as ‘Not Free’ or ‘Partly Free’ by the Freedom House
“Freedom on the Net” report [26] appear in Figure 6. The unre-
stricted transfer of content filtering technology has led to high
availability, low cost, and highly effective filtering techniques
becoming easier to deploy and harder to circumvent.

As shown in Figure 6, some commercial filters are more
popular in specific regions. For instance, FilterMap detected a
high presence of Fortinet and Cisco products in African coun-
tries where Internet Freedom has been a cause for concern [20].
Similarly, Palo Alto products are deployed in a large number
of countries in Europe, where the Internet is generally thought
of as free.

To characterize the kinds of content being blocked by
commercial filters, we extracted the categories of domains
in the Citizen Lab Global Test List [10], and computed the
blocking percentage for each category per vantage point in
Hyperquack and Quack (OONI volunteers rarely test the CLTL
lists—running tests for 18,000 domains can become costly,
especially in developing countries). The median value of this
blocking percentage per vantage point is shown in the heatmap
in Figure 7 alongside the number of vantage points behind each
filter. Pornography and Gambling websites are most commonly
blocked across all products, followed by websites featuring
provocative attire and anonymization tools. Interestingly, we
observed that the Russian product VASExperts is being used
to block access to many social networking websites, including
popular ones such as LinkedIn.

2) Filters with Government Blockpages: We identified pri-
mary blockpages in Bahrain, Iran, Saudi Arabia and Republic
of Korea that previous reports have established as government
specific blockpages [14], [4], [65], [1]. Refer to Appendix B
for the observed blockpages. In Hyperquack data 97.1% of
the disruptions in Iran were caused by the Iran firewall, while
the Bahrain and Saudi Arabia firewalls contributed to 71.2%
and 80.2% of the disruptions, respectively. Note that China, a
well-known censoring country, does not appear here because
we observed in agreement with previous work [22] that the
Great Firewall resets connections instead of responding with a
blockpage. We also do not detect a few other known firewalls
such as the ones in Qatar and Turkey, because they either
disrupt traffic using techniques other than application-layer
blocking (such as DNS tampering or TCP/IP blocking), or be-
cause their blockpages do not explicitly indicate governments’
involvement. Pornography websites, gambling websites, and
anonymization and circumvention tools are three of the most
common categories of domains disrupted by filters in these
countries.

The level of detail in the blockpage returned by the filter in
Saudi Arabia (shown in Figure 1) is surprising, but shows the
desire of the authority to provide explicit information regarding
the connection disruption, possibly to dissuade users from
trying to access blocked content again. Although the Bahrain
blockpage does not give any information about the vendor,
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Countries ISP with filter Deployment

Ivory Coast MTN
Iceland STEF
Bahrain VIVA
Mauritius Airtel
India Court Order India
Kyrgyzstan Elcat
Saudi Arabia STCS
Yemen TeleYemen
Kuwait Zain ISP
Colombia ERT
Pakistan Wi-tribe
Republic of Korea SKT
United Arab Emirates Etisalat
Belgium Telenet
Russia Convex, RSVO, Piter-Telekom, Wiland, Kamenkstel, Avan-

tel, Orion Net, Sivash, Strela Telecom, Infolink, Inter-
tax, East Media, Sky@Net, Sevstar, Altegrosky, DTEL,
Goodline, Dianet, Maglan, Skynet, Sibitex, Novotele-
com, Yota, DSI, Kristel, ITNet, Westlan, UGMK-Telecom,
Spacenet, ACME, Iterika, Mosnet, Metroset, Redcom, Bash-
tel, TSCrimea, IKS, Divo, Beeline, MTS, Flex

TABLE IV: Filters deployed in ISPs �

Organization Country

Brazilian Federal District Government Brazil
Sun TV Network India
AUIS Iraq
Gyeonsang University Republic of Korea
Elko Latvia
National University Singapore Singapore
Northwestern University United States
Uniminuto Colombia
Pustekkom Indonesia
Itgrad Russia

TABLE V: Organizational filter deployments �

reports by Citizen Lab [49] indicate that the product used by
Bahrain is manufactured by Canadian vendor Netsweeper [14].
Recent reports from South Korea have indicated a rise in SNI-
based censorship and a shift away from DNS-based censorship,
following the trend in the increase of keyword-based block-
ing [6].

3) Filters with ISP Blockpages: These filters are deployed
by ISPs to restrict access to users of the ISP network. ISPs
play an important role in Internet censorship as many countries
practice decentralized Internet control at the ISP level. For
example, ISPs in India block content under guidelines from the
Department of Telecommunications [62]. ISP blockpages most
often contain legal information to describe the reason behind
blocking content. The blockpages are also predominantly in the
local language. FilterMap was able to detect 41 ISPs restricting
access to content in Russia, as shown in Table IV. Other than
Russia, we found filters deployed in popular ISPs in a large
number of countries in Asia.

4) Filters with Organizational blockpages: Some block-
pages do not contain any indication about the vendor nor about
government or ISP policy but do contain content indicating that
the filter has been deployed as a result of organizational policy.
Although these filters do not restrict content at a nation-wide
scale, detecting them can bring transparency to corporate and
social organizations’ policy, and can aid in highlighting cases
of egregious blocking of content. FilterMap was able to detect
the presence of 10 filtering deployments of this kind, as shown
in Table V. Six of these deployments were in universities.

Government

Organizational

ISP

Fig. 8: Filter deployments detected over time: The scan dates
are aggregated to week-level. Each dot represents the presence ( a
green line indicates an absence) of a blockpage for the corresponding
category. �

5) Unknown filters: FilterMap detected the presence of 6
blockpages that do not contain any identifiable information.
For example, one of the the HTML responses in this category
only contains a title “Warning” and a line “This webpage has
been blocked”.

B. Longitudinal data

FilterMap is a scalable, lightweight, and easily-deployable
tool that can detect filter deployments over time. During
our 3 month longitudinal measurement, we collected data
using Hyperquack and Quack semi-weekly. We discovered 20
additional blockpage clusters apart from the ones discovered
from our latitudinal measurements.

The manual effort required to label clusters reduces over
time as more blockpages and unexpected responses are added
to our database of known regexes. As expected we observe
very few new large clusters due to the deployment of new
censorship systems. Most commercial filters (except Allot)
were detected in every scan. Allot was only detected using
one vantage point, and some scans did not include that
vantage point due to churn in server selection. For filters
with organizational, ISP, and government blockpages, Figure 8
shows the presence (or absence) of each blockpage in each
run over 3 months. We did not observe any Saudi Arabia
blockpages in our longitudinal scans because of lack of vantage
points, but we detected the other Government blockpages in
all scans. ISP and organizational blockpages have infrequent
absences that can be explained by churn in our vantage point
selection sources, routing changes in the path, and changes
in policy—as filtering decisions change over time. The new
deployments discovered were because of the inclusion of new
vantage points, or due to configurations being modified to
respond with a blockpage. This not only shows the capability
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Fig. 9: An example of an unexpected response �

Filter # of IPs # of countries

Barracuda 29 4
Fortinet 10,748 151
Juniper 41 2
Palo Alto 3,087 72
Watchguard 211 28
Cisco 1,434 63
IBM QRadar 22 5
SmartxFilter 33,639 2
Sucuri 24 8
Squid 1 1

TABLE VI: Signature matches in Censys: This table shows the
number of IPs in Censys whose response matched with one of our
commercial filter signatures. �

of our technique, but also highlights the need for continuous
detection of filters for monitoring their proliferation.

C. Unexpected Responses

In disrupted responses from Hyperquack, Quack, and
OONI, FilterMap detected unexpected responses in addition
to blockpages. Figure 9 shows an example of an unexpected
response detected in all of our datasets. This page contains an
explicit note indicating that the site is hosted on Cloudflare
and protected against DDoS attacks, and this does not indicate
any kind of censorship. Since this response is different from
the control response, Hyperquack, Quack, and OONI label it
as disrupted. There are many different types of unexpected
errors indicating server-side blocking (status code 403), “Not
Found” errors (status code 404), DDoS checks, etc. One ap-
pealing application of our lightweight data processing method
is to help distinguish these errors from censorship; A tool
that can be easily adopted by the censorship measurement
community (including projects such as OONI and Quack) to
identify measurement artifacts and noise from their censorship
measurement data.

D. Using signatures in other public datasets

In this work, our goal is not to produce compact signatures
of blockpages that can be applied to other datasets, but
rather to detect deployments of filters around the globe by
identifying unique blockpages. While the signatures gener-
ated by FilterMap for identifying blockpages can be used in
datasets other than the ones described thus far, the discovery
might not indicate the use of these filters for censorship. To
demonstrate this potential, we performed an experiment by
searching for these signatures in Censys data [18]. Censys
collects HTTP(S) responses obtained from every public IP
address on the Internet that hosts a web server. We downloaded
Censys HTTP and HTTPS measurement data on September 12,
2019 and searched for our signatures in the responses recorded

by Censys. Out of 100 signatures (corresponding to 90 block-
pages), 19 unique signatures (corresponding to 14 blockpages)
matched with at least one Censys measurement response. The
number of IP addresses that returned a response matching
signatures for the commercial filters is shown in Table VI. We
find a large number of blockpages from Fortinet and Palo Alto
in Censys data. Filters were found in 154 countries probed by
Censys, many of which were not discovered using Hyperquack,
Quack and OONI data. Since Censys probes every single IP
address, it contains a more complete view of the Internet.
However, Censys does not request commonly-censored content
and does not measure for censorship, thus detecting many
firewalls performing access control and DDoS protection.

Using signatures to detect blockpages in public datasets
such as Censys may result in false positives. To obtain a rough
estimate of the number of false positives, we selected a sample
of Censys responses matching our signatures and manually
parsed each response. Specifically, we utilized disproportionate
stratified sampling, randomly selecting up to 10 responses for
manual checking from each set of matching responses for a
signature. 154 responses were selected in this manner, and
after manual verification, none were determined to be false
positives. However, we discovered some blockpages that have
slightly different content and also found blockpages in new
languages, such as a Spanish Fortinet blockpage.

We observe corroboration in results between our measure-
ments and Censys data. For instance, most IP addresses that
return a SmartxFilter blockpage are in South Korea (where it is
manufactured) as also detected by Hyperquack data. However,
Censys data also shows a few IP addresses in Iran returning
the SmartxFilter blockpage, indicating that the product may
be exported to Iran. Our experiment with Censys shows that
signatures generated by FilterMap can be used in other public
datasets for identifying blockpages. The experiment also shows
large networks in almost all countries in the world employing
the use of filters, providing more insight into the proliferation
of these systems.

VI. RELATED WORK

While we extensively discussed related work that directly
affected our design choices in Section II, we discuss other
relevant works in this section. Many measurement systems
utilize lists of keywords for testing censorship. On the web,
domain names are commonly used as a proxy for services,
and are typically drawn either from lists of popular global
domains [3], or from curated lists of potentially sensitive
domains [10]. To conduct measurements on a sufficiently large
corpus, and to maximize comparability, our system uses both
of these sources.

Detection of keywords more broadly has made use of
corpora extracted from observed content deletion, along with
NLP and active probing. [64], [27], [13]. Previous systems
determining such keywords have largely focused on individual
countries and services, especially related to Chinese social
media such as Weibo and TOM-Skype [35], [12].

Deep packet inspection and application-layer disruption
have become standard practice online [17]. Asghari et al. [5]
find support for their hypothesis that nations pursing censor-
ship are likely to push deployment of application-layer filtering
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technology. ONI reports have shown that filters manufactured
by western companies are used by countries in the Middle East
for effecting censorship [40]. OONI reports on application-
layer censorship in 12 countries with identified vendors [50],
and the Tor project has noted keyword-based blocking in at
least 6 countries [2]. Prior work by Marczak et al. [36] involved
acquiring and analyzing a Sandvine/Procera PacketLogic prod-
uct in a lab. Although they had success detecting the deploy-
ment of that product, their process is cumbersome, and it will
only identify known filters. A recent report traces the diffusion
of the Chinese and Russian models of information control
to 110 countries [55], mainly through manually identifying
a chosen set of middleboxes that are exported from China and
Russia using public network measurement data.

Techniques similar to the one described in this paper
have been used in a limited context for identifying specific
products and web proxies [37], [59], or to find where products
are deployed within a country or network [14], [1]. Dalek
et al. [15] explored an alternative approach to investigat-
ing known vendors by first looking at known blockpages
and manually extracting signatures. They were then able to
look at publicly available Internet-wide scanning data from
Shodan [47] and the 2012 Internet Census [32] to discover
deployments. Although their results show the deployment of
four vendors across multiple countries, their approach required
a manual validation process, requiring in-country testing to
confirm their findings.

VII. DISCUSSION AND CONCLUSION

In this paper we present FilterMap, a framework for
identifying and monitoring filters based on the blockpages they
display.

Limitations Though FilterMap finds a significant number
of new filter deployments, it cannot discover all filters deployed
around the globe. Some network paths are not covered by
our measurements to the selected vantage points, some de-
ployments are not triggered by our data collection techniques,
and some manufacturers or actors cannot be identified through
the injected blockpages. Ethical considerations limited the
selection of our HTTP(S) vantage points to the ones we were
confident are not end-user-owned. This selection drastically
reduced the number of Hyperquack vantage points. In the
future, more web servers can be identified to increase the
coverage of Hyperquack.

A motivated actor behind the filter can evade our detection
by changing their method of disruption or erasing all identifi-
able content from their blockpage. While most censors have the
capability to evade detection, evasion against our technique is
unlikely to be the priority for censors in the short-term because
of the following reasons: Blockpages are injected for the
purpose of informing users about the reason for blocking and
dissuade them from attempting further access. It goes against
the purpose of the censor to remove blockpages altogether;
Since commercial filters are usually deployed as a black-box,
pushing updates to all deployed products to remove blockpages
would require significant effort and developer support, and
vendors rarely have any incentive to remove trademarks from
their blockpages; Changing blockpages is generally easier than
removing them altogether. Fortunately, FilterMap would still

be able to detect them by identifying new signatures in such
cases. Indeed, we believe this to be rare as well, as we observe
the same blockpages observed in studies performed several
years ago [49], [1], [40].

Moreover, due to accuracy and precision limitations of geo-
location databases [28], data from Hyperquack and Quack is
labeled with only country level precision. Geolocation infor-
mation can only identify the vantage point’s location rather
than the location of the filter deployment, thus our system is
not able to determine exactly where on the path the filtering
is occurring.

Future work and conclusion By analyzing data from
three measurement techniques, Hyperquack, Quack, and
OONI, we achieve the most complete view yet on the de-
ployment of censorship filters that respond with blockpages.
FilterMap detected filter deployments corresponding to 90
vendors and actors in 103 countries. 20 of these vendors and
actors were identified during our longitudinal measurements.
All of these attest to the capacity of FilterMap to continuously
monitor the evolution of filter proliferation. We find that filters
are being used widely to enact censorship, galvanized by high
availability and precision in blocking.

A promising future research direction is to use other
features of the filter response, such as the certificate returned
in HTTPS measurements, to extract signatures and identify
filters. FilterMap’s analysis techniques can also be used by the
censorship measurement community to reduce false positives:
measurement artifacts and noise that invariably appear in real-
world networks. Moreover, designing effective circumvention
tools requires considering both the capabilities of and the
methods used by application-level filters. Our system makes it
easier for circumvention tool developers to create circumven-
tion strategies based on empirical measurements, by directing
them to instances of filter deployment, and providing example
domains that trigger them.

The power of filters to implement national-scale Internet
censorship has meant that the technology is regulated under
export control laws, including the Wassenaar Arrangement,
an international mechanism to limit the sale of dual-use tech-
nologies [58]. Previous studies revealing the deployments of
filtering technologies for censorship have resulted in million-
dollar fines for vendor compliance violations, and have helped
motivate further regulatory controls [37]. We hope that longi-
tudinal data about filter deployments can help identify those
responsible for illegal proliferation of the technology, and
provide a basis for more effective enforcement. We intend
to maintain FilterMap as a source of longitudinal data for
researchers monitoring global censorship, in a format that is
readily usable by circumvention developers, advocacy organi-
zations, and regulators seeking to understand and police the
proliferation of censorship technologies around the world.
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APPENDIX

A. Filtering Technology Deployments

Tables VII, VIII, IX, and X show the different kinds of
filters detected by FilterMap, the country of deployment, and
the datasets that contained the presence of these filters. We use
the following symbol notation: An ‘*’ on top of the country
name indicates it was discovered using the HTTP dataset,
‘@’ using the HTTPS dataset, ‘-’ using the Echo dataset, ‘+’
using the longitudinal HTTP dataset, ‘=’ using the longitudinal
HTTPS dataset, ‘o’ using the longitudinal Echo dataset, and
‘n’ using the OONI dataset.

National Firewall Countries

Bahrain Bahrain∗+n

Iran Iran∗−+n

Saudi Arabia Saudi Arabia∗n

Republic of Korea Republic of Korea−o

TABLE VII: Filters with Government blockpages �

Organization with filter deployment Countries

Brazilian Federal District Government Brazil∗+

Sun TV Network India∗+

AUIS Iraq∗+

Gyeonsang University Republic of Korea∗@

Elko Latvia+

National University Singapore Singapore∗+

Northwestern University United States∗+

Uniminuto Colombia+

Pustekkom Indonesia@+=

Itgrad Russia−o

TABLE VIII: Organizational filter deployments �

Countries ISP with filter deployment

Ivory Coast MTN∗+

Iceland STEF∗+

Bahrain VIVA∗+

Mauritius Airtel+

India Court Order India∗−+on

Kyrgyzstan Elcat∗

Saudi Arabia STCS∗+

Yemen TeleYemen∗+

Kuwait Zain ISPn

Colombia ERT−o

Pakistan Wi-tribeo

Republic of Korea SKTn

United Arab Emirates Etisalatn

Belgium Telenetn

Russia Convex−o, RSVO−o, Piter-Telekom−o, Wiland−o,
Kamenkstel−o, Avantel−o, Orion Net−o, Sivash−,
Strela Telecom−, Infolink−o, Intertax−o, East Media−o,
Sky@Net−o, Sevstar−o, Altegrosky−o, DTEL−o,
Goodline−on, Dianet−o, Maglan−o, Skynet−o, Sibitex−o,
Novotelecom−on, Yota−o, DSI−o, Kristelo, ITNeto,
Westlano, UGMK-Telecomo, Spaceneto, ACMEo, Iterikao,
Mosneto, Metroseto, Redcomo, Bashtelo, tscrimeao, IKSo,
Divoo, Beelinen, MTSn, Flexn

TABLE IX: Filters with ISP blockpages �

B. Government blockpages

Figure 10 shows the Government blockpages identified by
FilterMap.
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Filter Vendor Manufactured in Countries

Allot Israel India−

Barracuda United States Estonia∗

CacheFlow United States Luxembourg∗@+=

Cisco United States Bhutan∗+, Pakistan∗, Kuwait∗+, Mongolia∗+, Kyrgyzstan∗+, Palestine∗+, Qatar∗+, United Arab Emirates∗+, Iran∗+,
Kazakhstan∗+, Thailand−o, Taiwan−o, India=, Austria∗+, Croatia∗+, Macedonia∗+, Belarus∗+, Romania∗+n, Greece∗+,
Sweden∗+o−, Iceland+, Germanyn, Spain=, Benin∗+, Libya+, Botswana+, United States−on, Canada+o

Fortinet United States Saudi Arabia∗+, Israel∗+, Hashemite Kingdom of Jordan∗+, Iraq∗+, Turkey∗+=,Singapore∗−+o, Armenia∗+,
Indonesia∗+, Kuwait∗@+, Oman∗+, Taiwan∗−+o, Malaysia−o, Palestine∗+=, Japan−o, Syrian, Republic of Korea−o,
Thailand−o, Hong Kong−on, India−on, Philippinesn, Lebanonn, Iran+, Republic of Moldova∗+, Spain∗@+=on,
Germany∗+n, Swedenn, Irelandn, Belarusn, Italyn, Russian, Hungary∗, Luxembourg∗, Belgium+n, Ukrainen,
Romanian, Republic of Lithuania+=, United Kingdomn, Franceon, Somalia∗+, Angola∗@+, Mali∗+, Cameroon∗+,
South Africa∗+n, Egypt−, Gabon+, Zimbabwen, Zambian, Kenya+n, Canada∗+n, Dominican Republicn, Panaman,
Guatemalan, Mexico∗−+on, United States−on, Colombia∗@n, Argentina∗+ Venezuela∗+, Brazil−o, Australia=,
New Zealandn

IBM QRadar United States Saudi Arabia∗, India∗+

Juniper United States Palestine∗+, Greece∗+

Palo Alto United States Malaysia∗−+on, United Arab Emirates∗@+, Thailand∗−o, Kuwait∗−+o, Mongolia∗, Qatar∗, Indonesia∗+o,
Bangladesh∗+, Bahrain∗+, Saudi Arabia∗+, Nepal∗+, Hong Kong−, Kazakhstann, Taiwan−on, Armenia+, Singaporen,
Pakistano, Republic of Koreao, Switzerland∗+, Iceland∗+, Cyprus∗, France∗+n, Poland∗n, Belarusn, Slovenia∗+, Russian,
Croatia∗, Latvia∗, United Kingdomn, Irelandn, Norwayn, Netherlandsn, Belgiumn, Finland∗, Sweden∗n, Germany∗n,
Greece∗, Austria∗, Italy∗@+=n, Spain−n, Bulgariao, Burkina Faso+, Cabo Verde∗+, Zambian, Algerian , Burundin,
Comoros∗+, Puerto Rico∗, Canada∗+n, Mexico∗+, United States∗−+on, Brazil∗+n, Ecuador∗−, Bolivian, Colombia∗

Senhua China China∗

SmartxFilter Republic of Korea Republic of Korea+

SonicWall United States Syrian, France∗+n, Belarusn, Germanyn, United Kingdomn, Russian, Ugandan, Canadan, United States−on, Braziln,
Bolivia∗

Squid United States Israel∗, Singapore∗, Syrian, Turkey+, Belarusn, Germanyn, Francen, United Kingdomn, Russian, South Africa∗+, Ugandan,
United States∗+n, Braziln , Ecuador∗+

Sucuri United States Chinan, Indian, Iraqn, Malaysian, Taiwann, Vietnamn, Belarusn, Austrian, Switzerlandn, Germanyn, Spainn, Francen,
Netherlandsn, Polandn, Romanian, Russian, Swedenn, Slovenian, United Kingdomn, Italyn, Irelandn, Ukrainen, Egyptn,
Ugandan, Canadan, Mexicon, United States+=n, Braziln, Argentinan, Ecuadorn

VAS Experts Russia Russia−o

WatchGuard United States Mongolia∗, Armenia∗,Germany∗, Greece∗@, Finland∗, Russian, Italy∗, Belgium∗, Serbia∗, United Kingdomn, Morocco∗,
Tunisian, Costa Rica∗, Mexicon, Puerto Rico∗+, United Statesn, Ecuador∗, Chile∗

TABLE X: Commercial filtering technologies: Manufacturer’s location based on the company’s headquarters. �

Fig. 10: Government blockpages: (Clockwise) (a) Bahrain (b) South Korea (c) Saudi Arabia and (d) Iran �
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