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Abstract—Encrypted search algorithms (ESA) are crypto-
graphic algorithms that support search over encrypted data.
ESAs can be designed with various primitives including search-
able/structured symmetric encryption (SSE/STE) and oblivious
RAM (ORAM). Leakage abuse attacks attempt to recover client
queries using knowledge of the client’s data. An important
parameter for any leakage-abuse attack is its known-data rate;
that is, the fraction of client data that must be known to the
adversary.

In this work, we revisit leakage abuse attacks in several ways.
We first highlight some practical limitations and assumptions
underlying the well-known IKK (Islam et al. NDSS ’12) and
Count (Cash et al., CCS ’15) attacks. We then design four new
leakage-abuse attacks that rely on much weaker assumptions.
Three of these attacks are volumetric in the sense that they
only exploit leakage related to document sizes. In particular, this
means that they work not only on SSE/STE-based ESAs but also
against ORAM-based solutions. We also introduce two volumetric
injection attacks which use adversarial file additions to recover
queries even from ORAM-based solutions. As far as we know,
these are the first attacks of their kind.

We evaluated all our attacks empirically and considered many
experimental settings including different data collections, query
selectivities, known-data rates, query space size and composition.
From our experiments, we observed that the only setting that
resulted in reasonable recovery rates under practical assumptions
was the case of high-selectivity queries with a leakage profile that
includes the response identity pattern (i.e., the identifiers of the
matching documents) and the volume pattern (i.e., the size of
the matching documents). All other attack scenarios either failed
or relied on unrealistic assumptions (e.g., very high known-data
rates). For this specific setting, we propose several suggestions and
countermeasures including the use of schemes like PBS (Kamara
et al, CRYPTO ’18), VLH/AVLH (Kamara and Moataz, Eurocrypt
’19), or the use of padding techniques like the ones recently
proposed by Bost and Fouque (Bost and Fouque, IACR ePrint
2017/1060).

I. INTRODUCTION

The area of encrypted search is concerned with the design
and analysis of cryptographic techniques to search over en-
crypted data. There are many ways to design encrypted search
algorithms (ESA) including using fully-homomorphic encryp-
tion (FHE) [28], oblivious RAM (ORAM) [31], functional
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encryption [9], property-preserving encryption [2], [7], [8] and
searchable/structured symmetric encryption (SSE/STE) [69],
[19], [18]. All these approaches achieve different tradeoffs
between leakage, expressiveness and efficiency.

At a high level, a static ESA is composed of two al-
gorithms: a setup algorithm and a search algorithm. Setup
encrypts a data collection in such a way that it can later be
queried using the search algorithm. The most basic form of
search is single-keyword search which, given a keyword w,
returns the documents in the collection that contain w. If the
solution is dynamic, there is an additional update algorithm
to modify the encrypted data collection. In this work, we
will focus on SSE/STE- and ORAM-based ESAs, which we
sometimes refer to as structured ESAs and oblivious ESAs,
respectively.

Leakage. While it is possible to search on encrypted
data with essentially no leakage with time and communication
that is linear in the size of the document collection, this
is however not a viable approach for datasets of practical
interest. Because of this, all known ORAM-, STE- and PPE-
based ESAs leak some information. This leakage comes in
two forms: setup leakage, which is revealed at setup time by
the encrypted dataset, and query leakage, which is revealed at
query time by the encrypted dataset and the query operation.
To better understand the real-world impact of this leakage,
an important research direction in encrypted search has been
to design leakage attacks. This line of work was initiated by
Islam, Kuzu and Kantarcioglu in [38] in the context of SSE
and was expanded to PPE by Naveed, Kamara and Wright
[56] and to ORAM by Kellaris, Kollios, Nissim and O’Neill
[46]. Since then, several works have further explored leakage
attacks including [13], [75], [48], [33] in the SSE setting and
[13], [22], [34] in the PPE setting.

Leakage attacks. Leakage attacks come in different
forms depending on the leakage profiles they exploit, the ad-
versarial models in which they work, the information they re-
cover, the auxiliary information they need and the assumptions
they rely on. We can categorize attacks along the following
dimensions:

• adversarial model: snapshot attacks only require access
to the encrypted document collection; persistent attacks
require access to the encrypted data collection and to the
transcripts of the query operations.
• target: data-recovery attacks recover information about

the data collection whereas query-recovery attacks recover
data about queries;
• auxiliary data: sampled-data attacks require a sample from

a distribution that is close (e.g., in statistical distance) to
the distribution of the data collection; known-query attacks
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require knowledge of a subset of the queries; known-
data attacks require knowledge of a subset of the data
collection. An important parameter for known-data attacks
is the known-data rate which is defined as the fraction δ
of documents in the client’s data collection that are known
to the adversary.

• passive or active: passive attacks do not require the
adversary to choose any part of the client’s data; active,
or chosen-data attacks, require the adversary to choose
some of the data in the data collection.

In this work, we focus on the persistent model since it has
recently been shown that solutions with little to no leakage
can be achieved in the snapshot setting using both PPE [50]
and STE [3] (this doesn’t take into account possible systems-
level pitfalls as pointed out in [32]). We recall that sampled-
data attacks are commonly referred to as inference attacks, that
known-data attacks are commonly referred to as leakage abuse
attacks and that chosen-data attacks are commonly referred to
as injection attacks.

Leakage profiles. Of course, an important characteristic
of any leakage attack is what kind of leakage it exploits. For
example, the IKK attack exploits the co-occurrence pattern
which reveals, for every pair of queries, the number of times
they appear in the same document. The Count attack rely
on the co-occurrence pattern and the response length pattern;
the latter of which reveals, for every query, the number of
documents that contain it. The injection attacks of [75] exploit
the response identity (also known as the access pattern) which
reveals, for every query, the identifiers of the documents that
contain it. Note that the response identity reveals the response
length and the co-occurrence pattern so the IKK and Count
attack can apply to any construction that leaks the response
identity. An important class of leakage patterns for our pur-
poses will be what we call volumetric patterns. By this we
mean any leakage pattern that reveals the size of documents.
Here, we will focus specifically on the volume pattern which
reveals, for each query, the volumes of the documents that
contain it; and the total volume pattern which reveals, for each
query, the sum of the volumes of the documents that contain it.
All the patterns discussed above are common in the literature.
In particular, they are part of the leakage profile of all standard
response-revealing multi-map encryption schemes [19], [18],
[42], [41], [17], [10], which are the encrypted structures that
underlie most single-keyword searchable symmetric encryption
schemes. Some of these leakage patterns (e.g., such as the
volume pattern and the total volume pattern) are also part of
the leakage profile of ORAM-based ESAs.

Known-data attacks against structured ESAs. Known-
data attacks were introduced by Cash, Grubbs, Perry and
Ristenpart in [13]. In that work, they described several at-
tacks against both SSE/STE- and PPE-based ESAs. They also
introduced injection (or chosen-data) attacks against PPE-
based ESAs. Injection attacks were later demonstrated against
structured ESAs by Zhang, Katz and Papamanthou [75].

The IKK attack was first described in [38] as an inference
attack that exploits the co-occurrence pattern. [38] reported
high recovery rates but the experiments conducted had several
methodological flaws. The most salient ones were that: (1) they
were run on a small query space (of size 2500 out of a total
of 77000 after stemming and removing stop words); and (2)

the training and test data collections were not independent.
Motivated by this, Cash et al. re-evaluated the IKK attack
with independent testing and training data and found that IKK
could not recover any queries. IKK was then re-evaluated as
a known-data attack and it was found that it could achieve
reasonable recovery rates if it was given 95% or more of
the client’s data. Effectively, [13] showed that IKK failed as
an inference attack but worked as a known-data attack when
δ ≥ .95. [13] then introduced a new attack called the Count
attack. This attack relies on co-occurrence and response length
leakage and was shown to perform better than the IKK attack.
Recently, the ePrint version of [16] was updated to include
a new attack that performs better than the one originally
published in [13]. Throughout this work, we will refer to the
first Count attack as Count v.1 and to the new attack as Count
v.2.

Discussion and overview of our contributions. The IKK
and Count attacks have received a lot of attention and are
commonly used to draw conclusions about various ESAs. As
an example, they are often cited as a reason to prefer oblivious
ESAs over structured ESAs [71], [72], [74], [52], [20], [64],
[27], [25], [29], [65], [58], [53], [51], [67], [66], [73], [26],
[5], [37]. The results in this work underscore that the study
of and, especially, the interpretation of known-data attacks is
more nuanced.

To address this, we present in Section III several new
known-data attacks that do not have these limitations and that
achieve higher recovery rates for much lower known-data rates.
What is perhaps surprising about our attacks is that they work
not only against structured ESAs but also against oblivious
ESAs which contradicts the conventional wisdom that ORAM-
based search is resistant to leakage-abuse attacks.

Another contribution of our work is that we demonstrate,
for the first time, that injection attacks apply not only to PPE-
based ESAs [13] and structured ESAs [75] but also to oblivious
ESAs. In particular, we describe in Section IV two volumetric
injection attacks, which contradicts the conventional wisdom
that ORAM-based search is resistant to injection attacks.

We evaluated our attacks empirically and provide an
overview of our results in Section V. For a complete empirical
analysis we refer the reader to the full version of this work.
Specifically, we evaluate the attacks in a host of different
settings including different keyword selectivities, query space
compositions, query space sizes and datasets. This extensive
evaluation shows that the success rates of known-data attacks
is very sensitive to various parameters that were not considered
in previous work. This highlights the importance of common
but often implicit assumptions made in the leakage attack
literature.

Finally, in Section VII we propose several countermeasures
to mitigate all known-data attacks, including our own.

A. Theory vs. Practice of Known-Data Attacks

Here, we revisit the state-of-the art in known-data attacks
highlighting some of the practical limitations and assumptions
of the currently-known attacks.
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Reliance on co-occurrence. Recall that all IKK, Count
v.1 and Count v.2 attacks all rely on the co-occurrence pattern.
This particular leakage pattern, however, can be hidden using
standard SSE/STE techniques. In fact, we describe a construc-
tion in Section II and, in more details, in Appendix A, OPQ,
that does not reveal the co-occurrence pattern. As far as we
know, this construction has not appeared in previous work and
may be of independent interest.1

High known-data rates. The experimental results in
[13] (cf. Figure 6) and [16] (cf. Figure 6) show that the IKK,
Count v.1 and Count v.2 attacks achieve non-trivial recovery
rates only with very high known-data rates: IKK needs to
know 70% of the data to recover 5% of the queries; Count
v.1 needs to know 80% of the data to recover 40% of the
queries (note that knowing even up to 75% of the data results
in a query recovery rate of 0%); and Count v.2 needs to know
75% of the data to recover 40% of the queries. Given how
high these known-data rates are, it is not clear whether these
attacks should be considered practical. An instructive question
to ask here is how exactly an adversary could, in practice, get
up to, say 75%, of a client’s data? Recall that in the encrypted
search setting the client encrypts its data and outsources it to
an untrusted server. In particular, this means the client deletes
the data from its system after setup which leaves the only
copy on the server and in encrypted form. In such a setting,
there are a few scenarios in which an adversary could recover
75% of the client’s data. One is that the client, for some
reason, chooses to encrypt public data which the adversary
later recovers. A second is that the client decides to release a
large percentage of its data (after downloading and decrypting
it from the server). A third is that the client queries its data and
over time caches enough of the results to amount to a large
percentage of the data. At this stage, a data breach occurs on
the client and the cached data is revealed to the adversary. The
first two scenarios are relatively contrived and have more to
do with a misuse of the primitive: in such settings one should
use private information retrieval. The third scenario is perhaps
less contrived but caching 75% of one’s data locally seems to
defeat the purpose of outsourced storage. Indeed, if a client
is willing to store 75% of its data locally then they might as
well do search locally on the 75% and use encrypted search
only for the remaining 25%.

High- vs. low-selectivity keywords. An important con-
sideration when evaluating a query-recovery attack is how
exactly client queries are chosen. Most leakage attack papers
make implicit assumptions about this but the query distribu-
tion has a large impact on accuracy rates. For example, the
experiments in [13] assume the client queries high-selectivity
keywords, where selectivity refers to the number of documents
matching a particular keyword. It is not clear, however, if this
is realistic. In fact, we ran the IKK and Count attacks on low-
selectivity keywords over the Enron dataset and neither attack
worked; even when the adversary had a complete knowledge
of the client’s data. More precisely, the IKK and Count attacks
had recovery rate 0 even when δ = 1 for keyword selectivities
lower than 20.

Known queries. The IKK and Count v.1 attacks are
described in [13] as known-data attacks that do not require

1Oblivious RAM can also be used to design an ESA that hides the co-
occurrence pattern. We describe one such design, which we call FLL, in
Section II and in Appendix A.

knowledge of any client queries. While it is true that these
attacks can achieve high recovery rates without knowledge of
client queries, this only holds if the adversary has complete
knowledge of the data; that is, if δ = 1. If the adversary has
less than full knowledge (i.e., δ < 1) and no knowledge of
any queries, then Count v.1 does not work.2

Theoretical vs. practical attacks. In cryptanalysis it
is common to distinguish between theoretical attacks and
practical attacks.3 The former are attacks that work in strong
adversarial models; often relying on assumptions about the
adversary’s capabilities which rarely occur in practice. Exam-
ples include related-key attacks where the adversary is allowed
to make chosen-plaintext and chosen-ciphertext queries under
related keys (e.g., through modification of keys). Another is the
known-key model where the adversary is assumed to know the
key and its goal is to distinguish ciphertexts from random. It
is our belief that the IKK and Count attacks are mostly of
theoretical interest since they rely on strong assumptions like
known-queries and high known-data rates and have only been
shown to work on high-selectivity keywords.

Should we discount theoretical attacks? Though these
attacks are of theoretical interest it does not mean we should
dismiss them. Even theoretical cryptanalytic results have some-
thing to teach us about the security of our constructions. For
example, even attacks that require high known-data rates can
be interesting if they exploit a leakage profile that, up to
this point, had not been successfully cryptanalyzed. Especially
since one can assume that attacks always improve. Such results
serve as a warning and motivation to design schemes with
better leakage profiles. It is important, however, to be clear and
explicit about the limitations and implications of cryptanalytic
results.

B. Our Attacks

Motivated by the discussion above, we revisit known-data
attacks (i.e., leakage abuse attacks) against SSE. We introduce
four new attacks and two new injection attacks in Sections III
and IV. We also perform a thorough evaluation which we
report on in Section V and provide in detail in the full version
of this work. Our attacks achieve high recovery rates with
low known-data rates and do not rely on known queries. We
summarize the characteristics of our attacks in Table I. Most
surprisingly, all but one of our attacks are volumetric and,
therefore, apply not only to SSE/STE-based solutions but also
to ORAM-based constructions. As far as we know, these are
the first known-data and chosen-data attacks against ORAM.
We now summarize our attacks and their performance:

• Volume analysis (VolAn): a known-data attack that ex-
ploits the total volume pattern. It has high recovery rates
when δ ≥ .8 and the client queries keywords with high-
selectivity (i.e., 10-13) or pseudo-low-selectivity (i.e.,
1-2).

2This may seem to contradict the results presented in [13] but the experi-
mental evaluation of Count v.1 presented in Figure 6 of [13] was incomplete.
For δ = 1 (i.e., complete knowledge) the attack does not need knowledge
of queries but for δ < 1 it does. We confirmed this with the authors who
updated their manuscript with the new Count v.2 attack which does not require
knowledge of queries.

3We highly recommend the paper of Aumasson [6] for an insightful
discussion of these issues.
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Attack Type Leakage Known δ for high δ for p-low δ for low
Sampled Known Injection pattern queries selectivity selectivity selectivity

IKK [38] 7 X 7 co X ≥95% � �
Count [13] 7 X 7 co, rlen X ≥80% � �
Zhang et al. [75] 7 7 X rid 7 − − −
SubgraphID 7 X 7 rid 7 ≥5% ≥50% ≥60%
SubgraphVL 7 X 7 vol 7 ≥5% ≥50% �
VolAn 7 X 7 tvol 7 ≥85% ≥85% �
SelVolAn 7 X 7 tvol, rlen 7 ≥80% ≥85% �
Decoding & Binary 7 7 X tvol 7 − − −

Table I: Comparison of existing leakage abuse (known-data) and injection (chosen-data) attacks. The last three columns give the known-data rate δ needed for
a recovery rate of at least 20% against low-, pseudo-low- and high-selectivity keywords, respectively. � means the experiment was not conducted in previous
work. � means that even a known-data rate of δ = 1 does not achieve at least 20% recovery rate. All experiments were based on the Enron dataset [63] with
150 queries and a keyword space of 500 keywords.

• Selective volume analysis (SelVolAn): an extension of vol-
ume analysis that relies on the total volume and response
length patterns. This attack has slightly higher recovery
rates under the same conditions as volume analysis.

• Subgraph attacks: a framework to design known-data at-
tacks against atomic leakage patterns, i.e., leakage pattern
that reveals information about each matching document.
We give two concrete instantiations of our framework. The
first is SubgraphID which exploits the response identity
and the second is SubgraphVL which exploits the volume
pattern. Both attacks achieve high recovery rates with very
low known-data rates (i.e., with δ as low as .05) when the
client queries high-selectivity keywords. The recovery rate
drops significantly and reaches 0% when the client queries
keywords with low selectivity (i.e., 1-2) and pseudo-low
selectivity.

• the Decoding attack (Decoding): an injection attack that
exploits the total volume pattern. This attack always re-
covers its target query if the adversary can inject between
4 to 16KBytes depending on the query’s selectivity.

• the Binary Search attack (Binary): an injection attack that
also exploits the total volume pattern. The attack requires
logarithmic number of (adaptive) injections. The attack
recovers its target query if the adversary can inject around
8KBytes.

Remark. As described above, our evaluation shows that
even our new attacks can fail to recover queries in certain
settings. This finding is important as it shows that existing
schemes can be good enough to use in some scenarios. In
Section VI, we provide a set of takeaways summarizing our
findings and conclusions.

C. Countermeasures

We propose several countermeasures and guidelines against
both our new attacks and previously-known attacks.

As discussed earlier, our empirical evaluation found only
a single practical setting where our attacks are successful:
querying high-selectivity keywords using a scheme that leaks
both the response identity and the volume patterns. The
simplest countermeasure to this is to use a scheme that does
not leak these patterns like the PBS construction of Kamara,
Moataz and Ohrimenko [45]. In Section VII, we demonstrate
empirically that PBS is resistant to all known-data attacks
(even ours) as long as the client makes at least 4 queries.
Specifically, we show that under this condition, the best
possible attack has recovery rate 0.02% recovery rate.

To mitigate theoretical attacks, like the IKK or Count
attack which require high known-data rates and exploit the
co-occurrence pattern, we design a new scheme called OPQ
that does not leak this pattern. We also point out that, in [12],
Bost and Fouque introduced padding techniques that efficiently
mitigate these attacks.

Finally, to protect against purely volumetric attacks one
can use the recent constructions of Kamara and Moataz [44]
which are volume-hiding.

D. Related Work

SSE/STE. SSE was introduced by Song, Wagner and
Perrig [69]. Curtmola, Garay, Kamara and Ostrovsky formal-
ized SSE in [19] and described the first sub-linear and optimal-
time constructions. STE was introduced by Chase and Kamara
in [18] as a generalization of SSE. Many works have explored
various aspects of SSE including dynamism [30], [42], [41],
[70], [10], [17], [11], [23], locality [17], [15], [4], [55], [21],
expressiveness [18], [14], [59], [24], [54], [40], [43], multiple
clients [19], [39], [60], [35], and leakage [27], [45], [44], [3].

ORAM. Goldreich and Ostrovsky introduced ORAM
in [31], where they described constructions with amortized
square-root and polylog overheads. Shi, Chan, Stefanov and
Li introduced tree-based ORAMs which achieved worst-case
polylog overhead in [68]. Since then, many works have
improved ORAM along many dimensions including com-
munication complexity, round complexity, client and server
storage [47], [71], [64], [27].

The IKK attack [38]. The attack takes as input the co-
occurrence pattern, a background matrix, and a set of known
queries. The co-occurrence pattern is a matrix with rows and
columns indexed by queries (not keywords) and where the
element in the ith row and jth columns is the (normalized)
number of documents that contain both the ith and jth query.
The co-occurrence matrix captures the information leaked to
the adversary. The background matrix is a matrix with rows
and columns indexed by keywords and where the element in
the ith row and jth column is the (normalized) number of
documents that contain both keywords with noise added. This
background matrix is meant to represent auxiliary information
available to the adversary. The IKK attack solves an opti-
mization problem to find a mapping between the two matrices
which leads to a mapping between queries and keywords. The
paper shows that this optimization problem is NP-complete,
but can be efficiently approximated using simulated annealing.
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Count v.1 [13]. The count attack takes as input the co-
occurrence pattern, the response length pattern (called counts
in [13]), and a subset of the user’s data. It starts by mapping
the queries in the query sequence to their response lengths
and keywords in the known dataset to their response lengths.
It then maps all the queries with unique response lengths to
the keyword with the same response length. These recovered
keywords then serve as anchors for the second step of the
attack where each remaining query is mapped to a keyword
with the same response-length and the same co-occurrences
with respect to the recovered keywords. The attack was shown
to achieve high recovery rates when the known-data rate δ = 1.
When δ < 1, the attack also needs knowledge of some fraction
of the user’s queries.

Count v.2 [16]. Count v.2 is similar to Count v.1 except
that it does not require knowledge of user queries when δ < 1.
The main challenge in this setting is in identifying the anchors
since the response lengths computed from the known data are
no longer accurate which leads to failure of the Count v.1.
Count v.2, however, uses a new mechanism that takes into
account the distribution of the keywords in the corpus. The
resulting anchors are only accurate with a certain probability
so the accuracy of the overall attack is probabilistic. The rest
of the attack is similar to v.1.

Again, we note that all three attacks are subject to the
limitations discussed in Section I-A.

II. PRELIMINARIES

Notation. The set of all binary strings of length n is
denoted as {0, 1}n, and the set of all finite binary strings as
{0, 1}∗. [n] is the set of integers {1, . . . , n}, and 2[n] is the
corresponding power set. The output x of an algorithm A is
denoted by x ← A. Given a sequence q of n elements, we
refer to its ith element as qi or q[i]. If S is a set then #S
refers to its cardinality. If s is a string then |s|2 refers to its
bit length. Throughout, k will denote the security parameter.

The word RAM. Our model of computation is the word
RAM. In this model, we assume memory holds an infinite
number of w-bit words and that arithmetic, logic, read and
write operations can all be done in O(1) time. We denote by
|x|w the word-length of an item x; that is, |x|w = |x|2/w.
Here, we assume that w = Ω(log k).

Document collections. Let W be a keyword space. A
document collection D = (D1, . . . ,Dn) over W consists of
n documents, each of which is a subset of W. We denote
by D the space of all document collections over W. We
assume each document D ∈ D has a unique identifier that
is independent from its contents. For ease of exposition, we
assume these identifiers are the integers 1 through n and that
they are assigned to documents uniformly at random. For ease
of exposition, it will be helpful to consider the following
functions. The identifier function id : D → [n] that maps a
document Di to its identifier i. The function D : W → 2D

that maps a keyword w to the documents that contain it. The
identifiers function ids : W→ 2[n] that maps a keyword w to
the identifiers of the documents that contain it. We refer to the
word-length of a document |D|w as its volume.

Throughout this work, we denote the adversary’s known
dataset by D̃ and assume it is a subset of the client’s document
collection D chosen uniformly at random.

Structured ESAs. A static structured encrypted search
algorithm ESA = (Setup,Search) consists of two efficient
algorithms. Setup takes as input a security parameter 1k and a
document collection D = (D1, . . . ,Dn) and outputs a secret
key K and an encrypted data collection (EDB, ct1, . . . , ctn).
Search is a two-party protocol between a client and a server.
The client inputs its secret key K and a keyword w and the
server inputs an encrypted collection (EDB, ct1, . . . , ctn). The
client receives a set of encrypted documents {cti}i∈ids(w) and
the server receives ⊥. Structured ESAs are constructed using
structured encryption (STE) [18] and, in particular, using a
multi-map or dictionary encryption schemes. We now describe
two examples BSL and OPQ which we further detail in
Appendix A.

Given a document collection, BSL first generates a multi-
map (also known as an inverted index) that maps each keyword
to the identifiers of the documents that contain the keyword.
This structure is then encrypted using a response-revealing
multi-map encryption scheme [19], [18], [42], [41], [17], [10],
[3], while the documents are encrypted using a symmetric-
key encryption scheme. This scheme has optimal search and
storage complexities. We refer the reader to [3] for the most
recent construction.

The OPQ construction first generates a multi-map that
maps each keyword to the documents that contain it—as
opposed to the identifiers of the documents that contain it.
The multi-map is then encrypted using a response-hiding
multi-map encryption scheme. While the underlying idea is
straightforward, as far as we know, this scheme is new and has
never appeared in prior work. It has a better leakage profile
than BSL, has the same query complexity but incurs additional
storage overhead since entire documents can be replicated
instead of just identifiers.

Oblivious ESAs. ESAs can also be designed using
ORAM. The simplest approach is similar to the structured ESA
construction described above but where EDB is replaced with
an oblivious RAM ORAM that stores a search structure (e.g., a
multi-map). The Search algorithm then executes the structure’s
query algorithm and replaces each read operation with a call
to the ORAM’s access protocol. We describe some examples
of oblivious ESA constructions in Appendix A, and provide a
high level overview below.

Given a document collection, SMI creates a multi-map that
maps each keyword to the identifiers of the documents that
contain it. This multi-map is then stored and managed in an
ORAM (or stored in a custom oblivious multi-map structure
[74]), while the documents are encrypted using a symmetric-
key encryption scheme. This construction has a better leakage
profile than BSL but is less efficient than both BSL and OPQ.
In particular, the oblivious structure incurs a logarithmic multi-
plicative overhead in communication complexity and multiple
rounds of interaction.

FLL is similar in that it stores a similar multi-map in an
ORAM but, unlike SMI, it also stores blocks of the documents
in a mutli-map that is itself stored in an ORAM. This solution
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has a better leakage profile than all the schemes above but
also incurs a logarithmic multiplicative overhead and multiple
rounds of communication.

Modeling leakage. Each ESA operation is associated
with leakage which itself can be composed of multiple leakage
patterns. The collection of all these leakage patterns forms
the scheme’s leakage profile. Leakage patterns are (families
of) functions over the various spaces associated with the
underlying data collection. For concreteness, we recall some
well-known leakage patterns:

• the query equality pattern is the function family qeq =
{qeqk,t}k,t∈N with qeqk,t : Dk ×Wt

k → {0, 1}t×t such
that qeqk,t(D, w1, . . . , wt) = M , where M is a binary t×
t matrix such that M [i, j] = 1 if wi = wj and M [i, j] = 0
if wi 6= wj . The query equality pattern is referred to as
the search pattern in the SSE literature;

• the identifier pattern is the function family rid =
{ridk,t}k,t∈N with ridk,t : Dk × Wt

k → [2[n]]t such
that ridk,t

(
D, w1, . . . , wt

)
= (ids(w1), . . . , ids(wt)). The

identifier pattern is referred to as the access pattern in the
SSE literature;

• the response length pattern is the function family rlen =
{rlenk,t}k,t∈N with rlenk,t : Dk × Wt

k → N such that
rlenk,t(D, w1, . . . , wt) =

(
#D(w1), . . . ,#D(wt)

)
;

• the volume pattern is the function family vol =
{volk,t}k,t∈N with volk,t : Dk ×Wt

k → Nt such that

volk,t(D, w1, . . . , wt) =

((
|D|w

)
D∈D(w1)

, . . . ,

(
|D|w

)
D∈D(wt)

)
.

• the total volume pattern is the function family tvol =
{tvolk,t}k,t∈N with tvolk,t : Dk ×Wt

k → Nt such that

tvolk,t(D, w1, . . . , wt) =

( ∑
D∈D(w1)

|D|w, . . . ,
∑

D∈D(wt)

|D|w
)
.

Each operation of an ESA (e.g., setup, query) generates
leakage which is the direct product of one or more leakage
patterns.

We say that a leakage pattern is atomic if it reveals
information about each individual matching document. For
example, rid and vol are atomic whereas tvol is not. We say
that a leakage pattern is volumetric if it reveals size infor-
mation about the matching documents. For example, vol and
tvol are volumetric. Attacks that rely on volumetric leakage
are particularly interesting because they apply to almost all
constructions, including ORAM-based constructions.4

Security. In encrypted search we consider persistent
and snapshot adversaries. A persistent adversary receives: (1)
the encrypted data; and (2) the transcripts of the interaction
between the client and the server when a query is made.
A snapshot adversary, on the other hand, only receives the
encrypted data after a query has been executed.

The security of ESAs can be formalized using “leakage-
parameterized” definitions following [19], [18]. In this frame-
work, a construction is proven secure with respect to a security

4Note that different schemes have different leakage profiles but, until
recently, all known constructions leaked one of the patterns described above.
The total volume pattern in particular is very difficult to suppress and is leaked
by all known constructions except for the constructions recently proposed in
[44].

definition that is parameterized with a specific leakage profile.
Leakage-parameterized definitions for persistent adversaries
were given in [19], [18] and for snapshot adversaries in [3]. 5

We recall these definitions here informally and refer the reader
to [19], [18], [3] for the formal definitions.

Definition II.1 (Security vs. persistent adversary (Informal)).
Let Λ =

(
LS,LQ

)
=
(
patt1, patt2

)
be a leakage profile. An

encrypted search algorithm ESA is Λ-secure if there exists
a PPT simulator that, given patt1(D) for an adversarially-
chosen document collection D and patt2(D, q1, . . . , qt) for
adaptively-chosen queries qi, can simulate the view of any
PPT adversary. Here, the view includes the encrypted data
collection and the transcript of the queries.

Known leakage profiles. There are many ways to design
ESAs and each one provides a tradeoff between leakage and
efficiency. Here, we summarize some of the most common
leakage profiles and refer the reader to Appendix A for an
overview of how these profiles can be achieved (and their
cost). For ease of exposition, we will ignore setup leakage in
this work and just denote it by ?. This is justified since none
of our attacks rely on it and, moreover, there are no known
attacks that leverage it. As we show in Appendix A, there are
structured ESAs with leakage profiles,

ΛBSL = (LS,LQ) =
(
?,
(
qeq, rid, vol

))
and

ΛOPQ = (LS,LQ) =
(
?,
(
qeq, tvol

))
,

and oblivious ESAs with leakage profiles,

ΛSMI = (LS,LQ) =
(
?,
(
rlen, rid, vol

))
and

ΛFLL = (LS,LQ) =
(
?,
(
rlen, tvol

))
.

Adversarial model. As discussed in Section I, we
consider two kinds of attacks each of which is carried out
by different adversaries. Known-data attacks (i.e., leakage-
abuse attacks) are carried out by a passive adversary that:
(1) observes all query operations and therefore sees the query
leakage; (2) knows a fraction of the client’s data; and (3)
knows the universe of keywords from which the queries are
drawn. Chosen-data attacks (i.e., injection attacks) are carried
out by an active adversary that can add arbitrary documents
either adaptively (i.e., as a function of previously-observed
search results and/or leakage) or non-adaptively.6

III. VOLUMETRIC KNOWN-DATA ATTACKS

In this section we present four new known-data attacks,
three of which are volumetric. The first is volume analysis
which exploits the total volume pattern tvol. The second attack
is selective volume analysis which exploits the total volume
and response length patterns (tvol, rlen). The last two are
concrete instantiations of an attack framework we refer to
as subgraph attacks. The first instantiation, the volumetric

5Even though parameterized definitions were introduced in the context
of SSE and STE, they can be (and have been) applied to other primitives,
including to FHE-, PPE-, ORAM- and FE-based solutions.

6Note that for chosen-data attacks, one assumes a trivial client that accepts
all injected documents without any filtering.
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subgraph attack, exploits the volume pattern vol. The second
instantiation, the identifier subgraph attack exploits the iden-
tifier pattern rid.

Remark on queries vs. keywords. For ease of exposi-
tion, we will use the term query when referring to a keyword
that is unknown to the attacker. In particular, given leakage
patt(D, q1, . . . , qt) on a sequence of t queries, the adversary’s
goal will be to match each query qi to a keyword w ∈W.

A. Volume Analysis

Volume analysis exploits the total volume pattern. It can
be viewed as a volume-based analogue of frequency analysis.
Given the total volume pattern, it maps every unknown query
to the keyword in the known dataset that has the closest total
volume. The intuition here is that keywords usually belong to
documents with different volumes so the sum of these volumes
can be used as a unique signature for a keyword.

Volume analysis takes as auxiliary input a known dataset
D̃ and as leakage

tvol(D, q1, . . . , qt) = (v1, . . . , vt)

where vi =
∑

D∈D(qi)
|D|w. The attack then maps the ith

query qi to the keyword w ∈ W that has the closest known
volume to vi. More precisely, the attack maps qi to

argmaxw∈W

{
f(w) : f(w) ≤ vi

}
,

where f is the function

f(w) =
∑

D̃∈D̃(w)

|D̃|w,

that maps each keyword to its known volume. The pseudo-code
of the attack appears in the full version of this work.

Efficiency. The attack runs in O(t ·#W) time.

In the full version of this work, we provide an extension of
the volume analysis attack we call selective volume analysis.
It exploits the response length pattern in addition to the total
volume pattern.

B. Subgraph Attacks

In this section, we present our subgraph attack framework.

Overview. Contrary to previous attacks, our subgraph
attacks exploit leakage patterns that reveal information on each
matching document. This includes the volume pattern and
the response identity pattern and we refer to the information
revealed about a document as its handle. At a high level, the
attack models the leakage pattern and the known dataset as
bi-partite graphs. For the leakage graph, the top vertices are
queries and the bottom vertices are handles, e.g., the document
identifiers or the volumes. An edge is added between a query
and a handle if and only if the handle is part of that query’s
observed leakage. For the known-data graph, the top vertices
are keywords and the bottom vertices are handles again, e.g.,
the document identifiers or volumes. Similarly, an edge exists
between a keyword and a handle if and only if the handle
corresponds to the keyword, e.g., if the document contains
the keyword or if the keyword has that volume. Note that

the bottom vertices are the same in both graphs. The attack
can be thought of as a subgraph mapping problem in which
the adversary’s goal is to map the known-data graph into the
leakage graph by leveraging the edge distribution of the graphs.
As an example, if in each graph there is only one top vertex
that is adjacent to a given set of bottom vertices, then it is
very likely that the vertices represent the same keyword. The
attack builds on this idea and a series of filtering steps. Due to
space constraints, the pseudo-code appears in the full version
of this work.

Details. Subgraph attacks are query-recovery attacks
with known-data that can exploit any atomic leakage pattern;
that is, any pattern that reveals a function of each matching
document. Formally, a pattern patt is atomic if there exists a
function h : D→ Y such that

patt(D, q1, . . . , qt) =
(
L1, . . . , Lt

)
where, for all i ∈ [t], Li is a tuple (h(D))D∈D(qi). Atomic
patterns are relatively common and include the volume pattern
vol and the identifier pattern rid. In the case of the volume
pattern, h is the function | · |w. In the case of the identifier
pattern, h is the function ids. In the following, we refer to
the value h(D) as D’s handle. We stress that just because
a subgraph attack can be defined with respect to any atomic
leakage pattern, it does not necessarily mean that it will be
successful against that pattern. Its accuracy has to be verified
experimentally, as we do in Section V. The attack works as
follows.

Bipartite graphs. The attack takes as input an auxiliary
data set D̃ ⊆ D and query leakage (L1, . . . , Lt) defined
as above. It starts by creating two bipartite graphs G̃ =(
(L̃,W), Ẽ

)
and G =

(
(L,Q),E

)
from the auxiliary data and

the leakage, respectively. The vertex set L̃ is composed of the
handles of the known documents; that is,

L̃ =

{
h(D̃)

}
D̃∈D̃

.

For all keywords w ∈ W and documents D̃ ∈ D̃, Ẽ includes
an edge

(
w, h(D̃)

)
if w ∈ D̃. The second bipartite graph

G = ((L,Q),E) is constructed as follows. The vertex set L
is composed of the observed document handles; that is,

L =

{
h(D)

}
D∈

⋃t
i=1 D(qi)

.

The vertex set Q = (q1, . . . , qt) is composed of the queries q1
through qt. The edges E are created using the observed leakage
by adding an edge (qj , h(D)) if h(D) ∈ Lj , for all j ∈ [t] and
D ∈

⋃t
i=1 D(qi).

Refinement. Given these two graphs, the algorithm’s
goal is to match each qi in Q to some w in W. For each qi, the
attack will build a set of potential keyword matches Si ⊆ W
and keep refining it using several filtering steps. We will denote
by S(j)

i the set of qi’s potential keyword matches after the jth
refinement step. Let S(0)

i = W and let w∗i be qi’s correct
match. The first filtering step is based on the observation that
w∗i ’s matching documents in D̃ have to be a subset of qi’s
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matching documents in D. More formally, we have

S
(1)
i =

{
w ∈W : NG̃(w) ⊆ NG(qi)

}
,

where NG̃(w) and NG(w) are the neighbors of w and qi in
G̃ and G, respectively. The second filtering step is based on
the observation that the selectivity of w∗ in D̃ should be a δ
fraction of its selectivity in D, where δ is the known-data rate.
Based on this we have

S
(2)
i =

{
w ∈ S(1)

i : #NG̃(w) ≥ δ ·#NG(qi)− ε
}
,

where ε is an error parameter we set experimentally.

Cross filtering. The next filtering step is optional and
can be used only if the function h : D → Y is a bijection
and if the adversary knows a large enough fraction of D. The
observation we rely on is that the correct keyword in a potential
set S(2)

i must be contained in all the documents in the set
h−1(Li). As a concrete example, consider the case where h
is the document ID function id. In this case, the observation
above translates to the fact that the correct keyword w∗i in S(2)

i
must be contained in all the documents (Dα)α∈Li

. This follows
from the correctness of the ESA scheme. More formally, we
have that

w∗i ∈ S
(2)
i

⋂( ⋂
D∈h−1(Li)

D
)
.

Notice, however, that we may not be able to compute the
above subset because it requires us to invert h and recover
all the documents that matched the query. In particular, we
can only invert h if our auxiliary dataset is complete, i.e.,
δ = 1. Nevertheless, we can approximate the set h−1 even
when δ < 1 as follows. We use the set L̃ ∩ Li which is the
subset of observed handles of documents that we know. We
then compute

S
(3)
i = S

(2)
i

⋂( ⋂
α∈L̃∩Li

D̃α

)
.

At the end of this step, if the size of the set S(3)
i is equal to

1, then this means that we found a match for the ith query qi,
and therefore update the map α accordingly.

Iterative elimination. The final step of the attack relies
on the observation that if some w is the correct match for a
query qi then it cannot be the correct match for another query
qj , where i 6= j. In other words, if w is the unique element
of some potential set S(`)

i , for ` ∈ [4, t + 3], then w cannot
be the matching keyword in some other potential set S(`)

j and,
therefore, we can remove it from S

(`)
j . If this removal leads to

S
(`)
j having a single element, then we can in turn remove that

element from other potential sets. This process keeps going
until the potential sets stabilize. Note that while the algorithm
will terminate it may not find matches for all qi.

Efficiency. The first filtering step is O(t·#W), the cross
filtering step is

O

(
t+

t∑
i=1

∑
D∈D(qi)

#D
)

and the iterative elimination step is O(t2). In total, the algo-
rithm runs in time

O

(
t ·#W +

t∑
i=1

∑
D∈D(qi)

#D
)
.

The volumetric subgraph attack. As discussed above,
subgraph attacks can exploit any atomic leakage pattern by
properly instantiating the handle function h. The volumetric
subgraph attack results from instantiating h with the function
|·|w which maps each document to its volume. Note that |·|w is
not bijective so this instantiation cannot use the cross filtering
step.

The identifier subgraph attack. Our subgraph frame-
work can also be used to exploit the identifier pattern by
instantiating h with the function ids that maps keywords to the
identifiers of the documents that contain it. Note that because
ids is bijective, we can use the cross filtering step.

IV. VOLUMETRIC INJECTION ATTACKS

Injection attacks were first proposed by Cash et al. [13]
in the context of the PPE-based ShadowCrypt and Mimesis
[36], [49] systems. The first injection attacks on structured
ESAs were described by Zhang, Katz and Papamanthou in
[75]. In that work, two attacks are described, each of which
exploits the identifier pattern. In this section, we describe new
volumetric injection attacks. In particular, our attacks exploit
the total volume pattern and, therefore, can even be used
against oblivious ESAs.

A. The Decoding Attack

We now describe our decoding attack. At a high-level, the
attack first observes user queries and their associated volume. It
then uses this information to create documents with carefully-
chosen sizes for the purpose of injection. More precisely, the
sizes of an injected documents are chosen so that the volume of
each keyword becomes unique. This unique volume can then
be used as a signature when the keyword is queried again. Due
to space constraints, the pseudo-code of this attack appears in
the full version of this work.

The decoding attack works in two phases: baseline and
recovery. In the baseline phase, the adversary waits until it has
observed the total volumes for all keywords in W.7 During the
recovery phase, the adversary observes an additional sequence
of t ≥ 1 client queries q = (q1, . . . , qt) with total volumes
v = (v1, . . . , vt). The attack will recover all queries in q. We
now describe each phase in more detail.

Baseline. During the baseline phase, the adversary
observes queries until it holds the volumes b = (b1 . . . , bm)
of all the keywords w1, . . . , w` ∈ W. It then creates a set of
documents to inject as follows. It first computes an offset γ
defined as

γ = min

{
γ ∈ N : ∀i, j ∈ [m], γ 6 | bi − bj

}
.

For all keywords wi ∈ W, the adversary injects a document
with volume i · γ filled with wi. Intuitively, this step increases
wi’s volume by i · γ.

7Note that the attack works similarly if the user only queries a strict subset
of W. This will lead to fewer injections.
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Recovery. During the recovery phase, the adversary will
observe volumes v = (v1, . . . , vt) on queries q = (q1, . . . , qt).
Note that for all i ∈ [t], the volume of qi can be written as

vi = bj + u · γ

for some j ∈ [m] and u ∈ [`]. The adversary’s goal now is
to map qi to some keyword w ∈ W = (w1, . . . , w`). It does
this as follows. It checks if there exists a u ∈ [`] such that
vi−u ·γ is equal to one of the baseline volumes (b1, . . . , bm).
If this is the case, then the adversary maps qi to keyword wu.
Note that there can be at most a single baseline volume that
satisfies this condition. To see why, suppose there exists two
baseline volumes β1 6= β2 and two values z 6= z′ in [`] such
that

vi − z · γ = β1 and vi − z′ · γ = β2.

But this implies that γ · (z′ − z) = β1 − β2 which is a
contradiction since γ 6 | bi − bj , for all i, j ∈ [m].

Correctness & efficiency. The decoding attack recovers
all queries in q as long as the user did not add any documents
of its own. As described, the attack recovers all queries in q by
injecting #W documents with a total volume of O(γ ·#W2).
Note, however, that the attack can be made a lot more efficient
if the adversary is only interested in recovering queries within
some target set T ⊂W. In this case, in the baseline phase the
adversary still needs to gather the baseline volumes for queries
in W, but only needs to inject documents for keywords in T .
With this modification, the attack recovers queries in q∩T by
injecting T documents with a total volume of O(γ ·#T 2). Our
evaluation demonstrates that the offset γ for different subsets
of the Enron dataset is between 4 and 16 KBytes depending
on the query selectivity (see Appendix D).

B. The Binary Search Attack

Overview. Contrary to the decoding attack where the
adversary recovers all queries, the binary search attack is a
targeted attack in which the adversary’s goal is to recover one
specific query. At a high-level, the attack first observes user
queries and their associated volume. It then uses this informa-
tion to create a document that contains half the keyword space
and that has a carefully-chosen size. When this document is
injected, it modifies the volume of half of the keywords (the
ones contained in the injected document) in a unique manner
that is detectable. The adversary then observes more queries
and uses the presence or absence of the unique volume to
infer which half of the keyword space the target query is in.
The attack then recurs on that half. The base case is a single-
element set which it outputs as the keyword. Due to space
constraints, the pseudo-code of this attack appears in the full
version of this work.

Details. The binary search attack works in three phases:
baseline, targeting and recovery. In the baseline phase, the
adversary waits until it has observed the total volumes for
all keywords in W. During the targeting phase the adversary
observes more client queries until it decides on a query q0, with
total volume v0, that it wishes to target. In the recovery phase,
the adversary observes an additional sequence of t > log #W
client queries q = (q1, . . . , qt) with volumes v = (v1, . . . , vt)
that it will use to recover its target q0. We now describe each
phase in more detail.

Baseline. During the baseline phase, the adversary
observes queries until it holds the volumes b(0) = (b1, . . . , bm)
for each keyword w1, . . . , w` ∈W(0), where W(0) = W.

Targeting. During the targeting phase, the adversary
observes queries until it decides on a target query q0 with
total volume v0. It then partitions W(0) into two equal-sized
sets, W(0)

0 and W(0)
1 and computes an offset

γ = min

{
γ ∈ N : ∀j ∈ [m], γ 6= |v0 − b(0)j | ∧ γ ≥ |W

(0)
1 |w

}
.

The adversary then injects a document with volume γ that
contains all the keywords in W(0)

1 .

Recovery. In the first round of the recovery phase, the
adversary observes the total volume v1 for query q1. It then
uses γ to decide on one of three cases:

• if v1 = v0 + γ then the adversary concludes that q1 = q0
and that q0 ∈W(0)

1 ;
• if v1 = v0 then the adversary concludes that q1 = q0 and

that q0 ∈W(0)
0 ;

• if v1 6= v0 and v1 6= v0 + γ then the adversary concludes
that q1 6= q0.

If q0 ∈W(0)
1 the adversary sets W(1) = W(0)

1 . If q0 ∈W(0)
0 it

sets W(1) = W(0)
0 . For both these cases, before moving to the

next round, the adversary re-injects a document with volume
γ such that

γ = min

{
γ ∈ N : ∀j ∈ [m], γ 6= |v1 − b(1)j | ∧ γ ≥ |W

(1)
1 |w

}
,

where b(1) = (b(0), b
(0)
1 +γ, · · · , b(0)m +γ), W(1)

0 and W(1)
1 are

the two partitions of W(1). If otherwise q1 6= q0, the adversary
moves to the next round without changing W(0) nor injecting
a new file.

Correctness & efficiency. The binary search attack
will recover q0 as long as: (1) it appears log #W times in
q = (q1, . . . , qt); (2) it has a unique volume in the baseline
volumes; and (3) the user did not add any document of its own.
The attack needs to inject log #W files with a total volume of
Ω(#W). Our evaluation demonstrates that the size of the query
space was the main factor that determines the total injected
volume (i.e., γ ' #W/2u for all u ≤ log #W for different
subsets of the Enron dataset). The total injected volume was
around 8KBytes (see Appendix D).

V. EMPIRICAL EVALUATION

To evaluate the effectiveness of our attacks, we imple-
mented and evaluated them under different conditions. The
results are perhaps surprising and provide a new and more
nuanced perspective on the potential impact and limitations of
leakage abuse attacks.

Document collections. We build our document collec-
tions using the Enron Email dataset [63]. This dataset is com-
posed of 150 folders with a total of 520, 901 files. Each folder
corresponds to the email account of a single individual and
is itself composed of several folders including, for example,
inbox, sent, contacts, discussion threads, etc.
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Starting from the entire Enron dataset, we generated different
subsets that capture different settings of interest:

• single user (SU): is a document collection composed
of one individual’s email account. For this dataset, we
picked the arnold-j folder which is 11.6MBytes and is
composed of 4, 944 files. The total number of keywords is
40, 363. This collection models the traditional single user
ESA setting where a single client uses an ESA to encrypt
and privately access its own dataset.

• small multiple users (S-MU): is a document collection
composed of multiple email accounts. For this dataset,
we picked 5 folders with a total size equal to 26MBytes.
This document collection is composed of the follow-
ing email accounts: baughman-d, gay-r, heard-m,
hendrickson-s and linder-e. The dataset is com-
posed of 9, 416 files in total. The total number of key-
words is 77, 762. This collection models the multi-user
ESA setting in which there is one party (e.g., a company)
that uses an ESA to encrypt and store multiple users’
documents. Here, queries can be performed by a subset
of authorized users. Note that the users were arbitrarily
picked.

• medium multiple user (M-MU): is the same as above
except that we increase the number of folders to 10 with
a total size of 49MBytes. The data collection is composed
of the same email accounts as above plus: allen-p,
buy-r, forney-j, hyvl-d and keiser-k. The total
number of keywords is 115, 679. Similarly, the additional
folders were picked arbitrarily.

The purpose of the first two collections is to see whether the
effectiveness of our attacks will vary as a function of different
data distributions. The third collection is used to understand if
increasing the size of the dataset impacts the effectiveness of
the attacks. We note that we performed evaluations which we
do not report here in order to avoid redundancy. In particular,
we evaluated the attacks on a larger document collection from
Enron of size 106MBytes and the results were similar to the
ones on M-UM. We also evaluated our attacks on a subset of
the TREC 2007 Public Corpus dataset [57], an email
dataset composed of 75, 419 emails (including spam), and the
results were similar.

Data indexing. We indexed each data collection using
Apache Lucene [1]. We removed 224 stop words listed in
the SnowBall list [62]. Furthermore, we used the Porter
Stemming implementation of Lucene so all words that share
the same stem are mapped to the same root.

Query frequency. We observed that previous works on
leakage abuse attacks [38], [13] evaluated the effectiveness of
their attacks on the most frequent keywords in the dataset.
While this assumption might hold in some settings, it is far
from clear if this a reasonable assumption in practice. In
fact, it might seem that users would more often search for
keywords that occur less frequently in their dataset rather than
for keywords that occur frequently. With this in mind, we
evaluated all of our attacks in three different settings:

• high selectivity: the queries are sampled from the set of
keywords with the highest selectivities (i.e., that appear
in the largest number of documents). We noticed that
keyword selectivities in Enron are power-law distributed

(see Appendix C) which implies that high-selectivity
keywords tend to have unique selectivities while low-
selectivity keywords tend to have less unique selectivities
(in our datasets it was none).
• low selectivity: the queries are sampled from the set of

keywords with the lowest selectivities. In our datasets, all
the low-selectivity keywords had selectivity 1.
• pseudo-low selectivity: in this case we consider low-

selectivity keywords with a slightly higher selectivity than
above. In particular, we consider the case where the
selectivity ranges from 10 to 13. Note that these values
are only examples and that pseudo-low selectivity can be
defined using other values.

Size and composition of the query space. We first fix the
size of the query space, Q, to be 500. We then study the impact
of increasing #Q. In particular, we increased #Q up to 5000
keywords.8 We also consider two ways of instantiating the
query space. The first consists of populating Q with keywords
that only exist in the known-data collection D̃. This guarantees
that all q ∈ Q must exist in D̃. As a consequence, the attacker
would know that any client query will match at least one
document in D̃. The second approach consists of populating
Q from keywords that exist in the client’s collection D.

Experimental setting. As described above, there are
several variables that can impact the effectiveness of our
attacks. In our evaluation, we considered many different com-
binations of these variables and organized them in three main
categories:

• (C1) single keyword queries: we consider the SU dataset
and fix the size of the query space to be 500. We then
vary the query selectivity and query space composition;
refer to Figures 1a and 1b.
• (C2) size of the query space: this second category is the

same as the first except that we increase the size of the
query space to be 5000; refer to Figures 1c and 1d.
• (C3) varying the datasets: the third category is similar to

the first category except that we replace the SU dataset
with the S-MU and M-MU datasets; refer to Figures 1e,
1f, and Figures 1f.

All our attacks are evaluated against a query sequence q of
size t = 150. The queries are sampled uniformly at random
from the corresponding keyword space Q whose composition
varies depending on the chosen approach (see above). In all
our experiments, we start with the adversary knowing the entire
client collection and then gradually decrease this knowledge
until it knows only 5% of the documents (chosen uniformly at
random). For each attack, we report the recovery rate, i.e., the
number of queries recovered correctly over the total number
of queries. We run all experiments 5 times and report the
minimum, median and maximum of the recovery rate. All
attacks are implemented in Java and the experiments were run
on a MacBook 3.1 GHz Intel Core i7 with 16GBytes of RAM.

Baseline. In all our experiments we have included
the count-only attack which is simply the Count attack [13]
without the co-occurence matrix. This depicts constructions

8The values we picked are similar to the ones used in existing works [38],
[13].
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for which we have suppressed the co-occurence leakage, refer
to Appendix A.

Overview of results. We noticed that the recovery
rate of our attacks is impacted the most by the selectivity
of the queries. In fact, it seems that evaluating known-data
attacks on high- vs. low-selectivity queries leads to completely
opposite conclusions.9 Moreover, we noticed that changing
the datasets or increasing the size of the query space led to
some fluctuations but the overall trends remained the same.
This shows that our attacks work across different settings
and different dataset compositions. We found, however, that
if client queries are not in the adversary’s known dataset then
the recovery rate is always low. This simply follows from the
fact that there are several queries for which the adversary does
not hold any part of the response. Below, we provide more
detailed comments on the results of our evaluations:

• When the query space is composed of high-selectivity
keywords, both SubgraphID and SubgraphVL have a re-
covery rate of about 70% even with a known-data rate
of 5% (see Figure 1e). We believe that the low known-
data rate makes these attacks practical for high-selectivity
keywords. However, if the query space is composed of
low-selectivity keywords, then the recovery rate drops
significantly. In fact, we found that SubgraphVL does not
work at all while SubgraphID has a recovery rate of about
20% even when δ = 1; that is, with full knowledge of
the client’s data. With a known-data rate of δ = 1/2,
SubgraphID only has 10% recovery rate. It tends to 0 for
known-data rates smaller than 10%.

• For VolAn and SelVolAn, our evaluation shows that both
attacks work only when: (1) the query space consists
of high-selectivity keywords; and (2) the adversary has
a high known-data rate, often at least .85. We refer the
reader to Figure 1a for an example. In the case where
the query space consists of low-selectivity keywords, the
recovery rate is very low: around 10% even when δ = 1/2.
It drops significantly when δ gets smaller.

• When the query space consists of pseudo-low-selectivity
keywords (i.e., with selectivity between 10 and 13), both
the VolAn and SelVolAn attacks have high recovery rate
only when the known-data rate δ ≥ .8 (see Figure 2).
As δ decreases, the recovery rate stabilizes at around
18% and starts to decrease again to 0 when δ ≤ 0.15.
Note that this recovery rate is the highest among the
three selectivity classes for these two attacks. The re-
covery rates of both SubgraphID and SubgraphVL against
pseudo-low-selectivity queries are slightly better than the
recovery rates of SelVolAn and VolAn. SubgraphID and
SubgraphVL also do better on pseudo-low-selectivity key-
words than they do on low-selectivity keywords. However,
they do a lot worse than they do against high-selectivity
keywords.10

Impact of known-data rates. Our evaluation demon-
strates that the known-data rate has a big impact on the

9We recall that the experiments in [13] were done exclusively on high-
selectivity keywords.

10We also conducted experiments in which the queries were sampled
uniformly at random from the entire keyword space. The results were similar
to the low-selectivity case (the SubgraphID recovery rate was slightly higher
though).

recovery rate. For all attacks, the larger δ is the higher the
recovery rate. This is natural since all the attacks exploit some
correlation between documents and keywords. As discussed
in Section I, choosing what constitutes a “safe” known-data
rate requires more cryptanalysis but what we can say is that a
known-data rate of δ < 0.05 could be considered safe against
the attacks in this work. If a dataset is composed of one million
documents, then even when δ = 0.05 the adversary would still
need to know 50, 000 documents.

Impact of query selectivity. Our evaluation also shows
that query selectivity is an important factor in the query
recovery rate. In particular, higher query selectivity implies
that the keyword is present in a higher number of documents
which increases the accuracy of the attacks. For example,
both volume analysis and selective volume analysis can build
stronger signatures on high-selectivity queries and therefore
obtain better recovery rates when δ ≈ 1. Similarly, on high-
selectivity queries, the subgraph attacks have richer neighbor
sets (i.e., more unique distribution of edges). Of course,
whether a user queries high- or low-selectivity keywords is
application specific but we believe that varying this parameter
is important when evaluating the recovery rate of an attack.

Impact of the composition of the query space. We
considered two cases: entire or partial query space. For the
former, the query space consists of the keywords in the entire
dataset, while for the latter the query space is composed of
the keywords in the known dataset. We believe that the partial
case is more realistic for unstructured data but we included
both. For structured data (e.g., a medical database) the values
of all attributes are often public (e.g., the possible ages, illness
codes etc.) so entire or partial knowledge of the data does not
matter in this case.

Impact of indexing. Indexing is a parameter that we,
unfortunately, did not investigate much in this work. We
performed our evaluations using an “aggressive” indexing
strategy where we used porter stemming before indexing all
the keywords in the dataset. If the adversary is not aware of
the stemming algorithm, it could end up with a completely
different query space than the user which would impact the
recovery rate.

Impact of the composition of the dataset. Among all
the parameters, we believe dataset composition is the one that
has the least impact on the recovery date. Our results show that
any reasonable dataset composition of the Enron datasets or
the TREC 2007 Public Corpus dataset leads to similar
results.

Results on chosen-data attacks. Since our injection
attacks always succeed we do not evaluate their success rate
empirically. We report, however, that in order to succeed we
set the size of the keyword universe W to 500. Also, for the
Decoding attack, one has to inject between 4 and 16 KBytes to
recover one keyword depending on the type of the document
collection and the keyword selectivity. For the Binary attack,
the adversary has to inject around 8 KBytes for all document
collections and this holds independently of the selectivity of
the keyword. We provide more details about our evaluation in
Appendix D.
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Figure 1: SU dataset (Figures 1a and 1b: 150 keywords queried u.a.r. from 500 ? keywords in the � dataset. SU dataset (Figures 1c and 1d): 150 keywords
queried u.a.r. from 5000 ? keywords in the � dataset. M-MU dataset (Figures 1e and 1f): 150 keywords queried u.a.r. from 500 ? keywords in the � dataset.
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Figure 2: 150 keywords queried u.a.r. from 500
pseudo-low selectivity keywords in SU.
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Figure 4: Number of matches in PBS brute-
force attack.

VI. TAKEAWAYS

In this work we revisited leakage abuse and injection
attacks against ESAs. In particular, we argued that the often-
cited IKK and Count attacks are mostly of theoretical interest
due to the following limitations and assumptions:

• high known-data rates: both the IKK and Count attack
require high known-data rates to achieve reasonable re-
covery rates and it is not clear whether such rates are
realistic;

• known queries: in addition to relying on known-data, the
Count v.1 attack also relies on known queries;

• suppressable leakage: the IKK and Count attacks rely on
the co-occurrence pattern which can be easily hidden at
the cost of additional storage using our OPQ construction.

• experimental evaluation: the experimental evaluations of
the IKK and Count attack were not conducted in all
settings of interest. This includes, for example, querying

low-selectivity keywords or keywords that are not in the
adversary’s known dataset.

New attacks. To address these limitations, we intro-
duced four new known-data attacks and two new injection
attacks. We believe our known-data attacks are of practical
interest since they work with low known-data rates and do
not rely on any known queries. Most surprisingly, our attacks
make use of only volumetric leakage and therefore apply, not
only to structured ESAs, but also to oblivious ESAs.

We implemented our attacks and evaluated them empiri-
cally in various settings and using different kinds of queries.
We hope that our study provides useful insights that may
help the community better understand the real-world impact
of leakage abuse attacks. In the following, we list our main
takeaways, sometimes referencing the constructions described
in Section II and Appendix A:
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• None of the attacks worked against low-selectivity or
pseudo-low-selectivity keywords;

• When querying high-selectivity keywords, the rid and vol
patterns (which are respectively leaked by the BSL and
SMI constructions) can be exploited by our Subgraph
attacks with very low known-data rates (as low as 5%).
Note that high recovery rates are maintained across dif-
ferent settings. In addition, we believe our attacks would
do even better on larger data collections. For example,
on collections on the order of gigabytes we estimate
that relatively high recovery rates could still be achieved
with known-data rates as low as 1%. We conclude that,
for high-selectivity keywords, there are practical attacks
against leakage profiles that include rid and vol.

• When querying high-selectivity keywords, the total vol-
ume pattern (which is leaked by OPQ and FLL) seems
resistant to our attacks for δ ≤ .8.

• The total volume pattern tvol can be successfully attacked
with our injection attacks (though in the case of the Binary
Search attack only if the target query has a unique total
volume).

• Structured and oblivious ESAs seem to provide the same
level of security against both our known-data (i.e., leakage
abuse) and chosen-data (i.e., injection) attacks.

VII. COUNTERMEASURES

Our study revealed two settings in which our attacks could
be practical. The first is using our Subgraph attacks to exploit
the rid and vol patterns on high-selectivity keywords and the
second is using our volumetric injection attacks to exploit the
total volume pattern. For all other settings, we do not believe
any countermeasures are required though they are certainly
available.

High-selectivity keywords. For high-selectivity key-
words, one should simply use a scheme that does not leak
rid or vol like the PBS construction of [45] (see Appendix A
for a brief overview of PBS) or the OPQ or FLL constructions
described in Appendix A. These schemes have the following
leakage profiles

ΛPBS =
(
?, (qeq, svol)

)
and ΛOPQ =

(
?, (keq, tvol)

)
and,

ΛFLL =
(
?, (rlen, tvol)

)
,

where svol is the sequence volume pattern,

svol(D, w1, . . . , wt) =

t∑
i=1

∑
D∈D(w)

|D|w.

Our experiments suggest that for δ ≤ .8 either OPQ or FLL
can be used but that for δ > .8 one should use PBS. Note that
the sequence volume pattern seems to be a very “low leakage”
pattern in the sense that even a “brute-force” attack that simply
tries to match keywords to the sequence volume leakage does
not work on our dataset. We provide more details below.

Brute force. We assume the adversary has full knowl-
edge of the client’s data, i.e., δ = 1. Given the sequence
volume pattern of a query sequence of length λ drawn uni-
formly at random from a set of 500 either low- or high-
selectivity keywords, the attack finds all possible sequences of

λ keywords that have sequence volume leakage equal to the
given/observed leakage. If there is only a single such sequence,
the attack returns it as its output otherwise it fails.

Note that this is the best possible attack against the
sequence volume pattern (not taking efficiency into account).
We define the attack’s success rate as the fraction of its output
that is correct; that is, the number of keywords in its output
sequence (assuming it outputs a sequence) that are indeed
in the client sequence over the size of the sequence. We
ran the attack for high- and low-selectivity keywords, with
λ ranging from 1 to 6 and found that when λ ≥ 4 the
attack stopped working. More precisely, in the case of low-
selectivity keywords its success rate was 0 and in the case of
high-selectivity keywords it was 0.02. Figure 3 describes these
results in detail.

Note that the success rate of the brute-force attack does
not capture partial knowledge since it only accounts for the
case where the attack finds a single “matching” sequence. For
example, the success rate could be 0 even though the attack
found just 2 matching sequences. To address this, we ran an
additional experiment that computes the number of matching
sequences found by the attack. The results are described in
Figure 4 which shows that the average number of matches
grows exponentially as a function of the sequence length (this
holds independently of the selectivity of the keywords in the
sequence). For example, for λ = 5, there are 385 matching
sequences even when the keyword space space is as small
as 100.11 Notice that increasing the number of keywords will
significantly increase the number of matches.

On the cost of OPQ, FLL, and PBS. The cost of OPQ
and FLL is described in Section II so we focus on PBS [45].
This construction uses a response-hiding multi-map encryption
scheme so the query overhead is comparable to BSL and OPQ.
However, it does introduce additional latency which is not
incurred by previous constructions. That is, while PBS’s query
algorithm is very efficient (for the server) the user might need
to wait until it makes additional queries to retrieve the complete
response of a query. The latency can be tuned to be smaller
but this requires some knowledge about the underlying dataset.
Note however that for applications where the user issues a
batch of queries all at once, PBS does not incur much latency.
In addition, we showed in the previous paragraph that batch
sizes as small as five can be safe. Additionally, the user could
make dummy queries instead of batching queries, in which
case latency will not be a factor.

Volumetric attacks. Recently, Kamara and Moataz [44]
proposed the first volume-hiding encrypted multi-maps that do
not rely on naı́ve padding. The two constructions, VLH and
AVLH, achieve different trade-offs between storage efficiency,
query efficiency and lossiness and can be used to protect
against volumetric attacks. We refer the reader to Appendix A
for more details.

Note that VLH is lossy and can return false negatives.
The lossiness/false negatives, however, are tunable and can
be traded-off for additional storage. Depending on the choice
of parameters, VLH can be as efficient as BSL and OPQ.

11For this experiment we had to reduce the size of the keyword space from
500 to 100 keywords, because the former results in an extremely large number
of sequences to check, i.e.,

(500
6

)
' 2 · 1013

13



AVLH, on the other hand, has no false negatives but its
query complexity is the maximum response length (over the
keyword space). The storage overhead of AVLH is comparable
to the overhead of BSL. Recent volume-hiding results by Patel,
Persiano, Yeo and Yung [61] show how to get even better query
complexity and storage overhead.

Another approach to protecting against volumetric attacks
is to use padding techniques. Naı̈ve padding (adding dummy
values to ensure the volume of every query response is of the
same size) will protect against volumetric attacks but incurs a
large storage overhead. More efficient padding techniques were
proposed by Bost and Fouque [12]. While these techniques
seem to make attacks harder, it is not clear if they can
completely mitigate them.
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APPENDIX A
OVERVIEW OF ESA CONSTRUCTIONS

We recall some common ESA constructions based on both
STE and ORAM.

Baseline (BSL). Let Σmm = (Setup,Get) be a
response-revealing multi-map encryption scheme and SKE =
(Gen,Enc,Dec) be a symmetric-key encryption scheme. Con-
sider the ESA scheme BSL = (Setup,Search) where each
algorithm works as follows:

• BSL.Setup(1k,D): it builds a multi-map MM that maps
each keyword w ∈W to the tuple D(w). It then computes
(K1,EMM) ← Σmm.Setup(1k,MM) and, for all i ∈ [n],
cti ← Enc(K2,Di), where K2 ← SKE.Gen(1k). It
outputs (K,ED), where K = (K1,K2) and ED =
(EMM, ct1, . . . , ctn).

• BSL.Search
(
K,w;ED

)
: the parties execute (⊥; I) ←

Σmm.Get(K1, w;EMM) after which the server returns
(cti)i∈I to the client. For all i ∈ I, the client computes
Di := SKE.Dec(K2, cti).

If the multi-map encryption scheme Σmm is instantiated
with any of the standard constructions [19], [18], [17], [10],
[11], [3], the SSE scheme will have leakage profile

ΛBSL =
(
?,
(
qeq, rid, vol

))
.

Its storage complexity will be

O

( ∑
w∈W

#D(w) +

n∑
i=1

|Di|w
)
,

and its search and communication complexity will be

O

(
#D(w) +

∑
D∈D(w)

|D|w
)
,

which is optimal.

Opaque (OPQ). As far as we know, the construc-
tion we now describe has not appeared in prior work. It
has a relatively low leakage profile and optimal search and
communication complexity at the cost of additional storage.
Let Σmm = (Setup,Get) be a response-hiding multi-map
encryption scheme and let SKE = (Gen,Enc,Dec) be a
symmetric-key encryption scheme. Consider the structured
ESA scheme OPQ = (Setup,Search) where each algorithm
works as follows:

• OPQ.Setup(1k,D): it builds a multi-map MM that maps
each keyword w ∈ W to a tuple t = (t1, · · · , ta/B)
composed of B-sized blocks, where ti is the ith block of

the concatenation of the documents (not identifiers) that
contain w, and where

a =
∑

D∈D(w)

|D|w.

The algorithm then computes (K,EMM) ←
Σmm.Setup(1k,MM) and outputs (K,ED) where
ED = EMM.

• OPQ.Search
(
K,w;ED

)
: the parties execute

(t;⊥)← Σmm.Get(K,w;EMM)

and the client parses t as (D)D∈D(w).

If the multi-map encryption scheme Σmm is instantiated
with a standard response-hiding encrypted multi-map [19],
[18], [17], [10], [11]12 the ESA will have leakage profile

ΛOPQ = (LS,LQ) =
(
?,
(
qeq, tvol

))
.

Its storage complexity will be

O

( ∑
w∈W

∑
D∈D(w)

|D|w
)
,

and the search and communication complexity will be

O

(
#D(w) +

∑
D∈D(w)

|D|w
)
,

which is optimal.

Semi-ORAM (SMI). Let ORAM = (Setup,Read)
be an ORAM scheme and SKE = (Gen,Enc,Dec) be
a symmetric-key encryption scheme. Consider the scheme
SMI = (Setup,Search) where each algorithm works as fol-
lows:

• SMI.Setup(1k,D): it builds a multi-map MM that maps
each keyword w ∈ W to the tuple D(w). It then com-
putes (K1,OMM)← ORAM.Setup(1k,MM) and, for all
i ∈ [n], cti ← Enc(K2,Di), where K2 ← SKE.Gen(1k).
It outputs (K,ED), where K = (K1,K2) and OD =
(OMM, ct1, . . . , ctn).
• SMI.Search

(
K,w;OD

)
: the client uses ORAM to

simulate an execution of Get(MM, w); that is,
it runs Get(MM, w) locally but replaces every
read operation to location i with an execution of
ORAM.Read(K1, i;OMM). At the end of this simulation,
the client holds a set of indices I which it sends to
the server. The server returns (cti)i∈I which the client
decrypts.

If the ORAM scheme is instantiated with any standard
construction [31], [47], [71], the search scheme will have
leakage profile

ΛSMI =
(
?,
(
rlen, rid, vol

))
.

Using Path ORAM [71], the storage complexity is

O

( ∑
w∈W

#D(w) +

n∑
i=1

|Di|w
)
,

12We note that while most of these constructions are described as response-
revealing constructions it is trivial to convert them to response-hiding schemes.
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and the search and communication complexity are

O

(
#D(w)

B
· log2

( ∑
w∈W

#D(w)

B

)
+

∑
D∈D(w)

|D|w
)
,

where B is the block size in bits.

Full ORAM (FLL). Let ORAM = (Setup,Read)
be an ORAM scheme and consider the scheme FLL =
(Setup,Search) where each algorithm works as follows:

• FLL.Setup(1k,D): it builds an array RAM that stores all
the documents in D. It then builds a multi-map MM
that maps each keyword w ∈ W to the locations of
the blocks in RAM that store the documents in D(w).
It then computes (K1,OMM) ← ORAM.Setup(1k,MM)
and (K2,ORAM) ← ORAM.Setup(1k,RAM). It out-
puts (K,OD), where K = (K1,K2) and OD =
(OMM,ORAM).

• FLL.Search
(
K,w;OD

)
: the client uses ORAM to sim-

ulate an execution of Get(MM, w). At the end of this
simulation, the client holds a set of indices I. It then uses
ORAM again to simulate, for all i ∈ I, an execution of
Read(RAM, i) to recover the documents.

If the ORAM scheme is instantiated with any standard
construction [31], [47], [71], the search scheme will have
leakage profile

ΛFLL =
(
?,
(
rlen, tvol

))
.

The storage complexity is

O

( ∑
w∈W

#D(w) +
∑

D∈D(w)

|D|w
)
,

and the search and communication complexity are

O

(
#D(w)

B1
· log2

( ∑
w∈W

#D(w)

B1

)
+

∑
i∈D(w)

|Di|w
B2

· log2

( n∑
i=1

|Di|w
B2

))
where B1 and B2 are the block sizes in bits of the first and
second ORAM, respectively. Note that this construction has
leakage profile ΛFLL only if the client retrieves all of the
matching documents from the second ORAM at once. If, on
the other hand, the client retrieves them one by one then it
will have leakage profile

(
?,
(
rlen, vol

))
.

Additional ORAM-based constructions. We note that
there are alternative ORAM-based designs in addition to the
ones we described above. One could, for example, merge the
two ORAMs used in the full ORAM simulation into a single
ORAM with the same block size. This would have leakage
pattern

(
?, tvol

)
.

The Piggyback scheme (PBS). PBS is an STE scheme
recently introduced in [45] that partially hides the volume
pattern. It comes in two variants. The first reveals only the
sequence volume pattern (i.e., the sum of the volume associ-
ated to a query sequence) on non-repeating query sequences.
The second variant reveals nothing (beyond a public parameter
independent of the volume) on non-repeating query sequences.

At a high level, the scheme leverages a new trade-off in
STE design; specifically, it trades latency for an improved
leakage profile. At a high level, the scheme processes the
input data structure such that the query responses are divided
into smaller chunks of equal size. These chunks are then
stored and encrypted so that, on each query, the client only
retrieves a fixed number of chunks. If the whole response is
not retrieved at that moment, then the query is added to a queue
and the remaining chunks are retrieved on the next query. The
responses can therefore be delayed but the authors show that
the delay can be minimal for standard query distributions.

Volume-hiding constructions. VLH and AVLH are
volume-hiding encrypted multi-map constructions recently in-
troduced by Kamara and Moataz [44]. These schemes are the
first volume-hiding STE constructions that do not rely on naı̈ve
padding. VLH makes use of a pseudo-random function F and
an optimal multi-map encryption scheme. It is parameterized
with a public parameter λ ≥ 1 that affects correctness. Given a
multi-map MM, the scheme determines a new response length
for each label ` in MM which is computed by evaluating F on
`’s original response length and adding λ. If the new response
length is larger than the original, then `’s tuple is padded.
If the new response length is smaller than the original, then
`’s tuple is truncated. AVLH is a more advanced construction
based on a new design paradigm based on bi-partite graphs.
More precisely, AVLH transforms its input multi-map as a bi-
partite graph where top vertices correspond to the multi-map’s
labels and the bottom vertices correspond to bins. Each label’s
tuple values are then stored in its associated bin in a specific
way. The bins are then padded to have the same size. At query
time, the user always retrieves the same number of bins. AVLH
does not improve on the query complexity of encrypted multi-
map schemes but does improve on the storage efficiency of
naive padding. In [44] it is then shown that the storage can be
further reduced by relying on the conjectured hardness of the
planted densest subgraph problem.

APPENDIX B
COUNT V.1 WITH δ < 1

The Count v.1 attack was shown in [13] to have high
recovery rate when δ = 1; that is, when the adversary has full
knowledge of the data. For δ < 1, however, the attack seems to
only work if δ ≤ .8. We found that the experimental results for
δ < 1 that are reported in [13], however, are for an unpublished
variant of the count attack that relies on knowledge of client
queries. To better understand how known queries impact the
recovery rate of Count v.1, we evaluated the attack with a
varying fraction of known queries. The results are shown in
Figure 5.13 When the adversary knows 5% of the queries,
recovery rates are similar to the ones reported in [13]. When
the adversary knows 2% known queries, however, the attack
ceases to work even with δ = .9.

APPENDIX C
KEYWORD SELECTIVITY

Our empirical evaluation (see Section V) clearly shows
that the selectivity of the queries is by far the most important

13This experiment was performed using the implementation and dataset
of [13]. We thank the authors for promptly sharing their implementation and
data with us.
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Figure 5: Count v.1 with varying fractions of known queries (on 150
queries out of a keywords space of size 500).

factor on the recovery rate of all the attacks. Understanding the
selectivity of keywords in our dataset is therefore important.
In Figures 6 (a) and (b) we plot the selectivity of 1000 and
10, 000 most selective keywords, respectively, in our datasets
after stemming and removing stop words. We can see in
these Figures that keyword selectivity in Enron is power law
distributed. In other words, only a few keywords have high
and unique selectivities whereas the overwhelming majority
of keywords have low and common selectivities (at most 3).
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Figure 6: Keyword selectivity.

APPENDIX D
QUANTIFYING THE OFFSET FOR INJECTION

The total number of files injected by both the Decoding
and Binary Search attacks depend on an offset γ which is
determined by characteristics of the data collection. Here, we
study the values of these offsets on three different collections:
SU, S-MU and M-MU as defined in Section V. Our results are
described in Figure 7. We found that querying on high- or low-
selectivity keywords did not have any impact on the Binary
Search attack. However, as can be seen from its description,
the size of the keyword space did have an impact. For the
Decoding attack, the amount of injected data did depend on
the selectivity of the queries: the amount for high-selectivity
queries was about twice as much as for low-selectivity queries.
This held for both the SU and S-MU datasets. We believe that
this is inherent to the way the offset is computed. In fact, on
high-selectivity queries, we noticed that the total volumes tend
to have a higher gap between them. This is not the case for
low-selectivity queries.
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Figure 7: Amount of injected data for both the Decoding and Binary
Search attacks (with #W = 500).
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