
FUSE: Finding File Upload Bugs via Penetration Testing

Taekjin Lee∗†‡, Seongil Wi∗†, Suyoung Lee†, Sooel Son†

†School of Computing, KAIST
‡The Affiliated Institute of ETRI

Abstract—An Unrestricted File Upload (UFU) vulnerability is
a critical security threat that enables an adversary to upload
her choice of a forged file to a target web server. This bug
evolves into an Unrestricted Executable File Upload (UEFU)
vulnerability when the adversary is able to conduct remote code
execution of the uploaded file via triggering its URL. We design
and implement FUSE, a penetration testing tool designed to
discover UFU and UEFU vulnerabilities in server-side PHP web
applications. The goal of FUSE is to generate upload requests;
each request becomes an exploit payload that triggers a UFU or
UEFU vulnerability. However, this approach entails two technical
challenges: (1) it should generate an upload request that bypasses
all content-filtering checks present in a target web application;
and (2) it should preserve the execution semantic of the resulting
uploaded file. We address these technical challenges by mutating
standard upload requests with carefully designed mutations that
enable the bypassing of content-filtering checks and do not
tamper with the execution of uploaded files. FUSE discovered 30
previously unreported UEFU vulnerabilities, including 15 CVEs
from 33 real-world web applications, thereby demonstrating its
efficacy in finding code execution bugs via file uploads.

I. INTRODUCTION

Sharing user-provided content has become a de facto stan-
dard feature of modern web applications. Facebook, Instagram,
and Twitter have increasingly invited users to upload their own
pictures, videos, and text posts. A content management system
(CMS) is another representative web application supporting
file uploads. The WordPress [23] and Joomla [10] platforms,
accounting for a combined 65% of CMS market share [20],
enable users to upload their images, PDFs, and TAR files. This
upload functionality is a prevalent feature that server-side web
applications support.

Meanwhile, the upload feature poses a security risk
wherein an attacker can upload her arbitrary file to a target
server and exploit it as a stepping-stone to further opportunities
for compromising the target system. Therefore, it is essential
for web application developers to prevent an attacker from
abusing this upload functionality. A widespread practice for
its mitigation is to implement content-filtering checks that
disable the uploading of specified file types that pose a critical
security risk. For example, WordPress forbids its users from
uploading any PHP files because an adversary could execute

*Both authors contributed equally to the paper

an uploaded PHP file that allows unrestricted access to internal
server resources.

Unrestricted File Upload (UFU) [18] is a vulnerability
that exploits bugs in content-filtering checks in a server-side
web application. An adversary, called an upload attacker,
leverages her limited privilege to upload a malformed file by
exploiting a UFU vulnerability. The successful uploading of
a forged file poses a potential code execution risk [18]. A
system administrator may accidentally run this forged but still
executable file while vetting the new file, or a bug in an existing
software can facilitate the execution of the uploaded file.

This UFU vulnerability becomes even more critical when
the adversary is able to trigger code execution of an uploaded
file via its URL; this means that the adversary is capable of
conducting arbitrary code execution by invoking the URL. We
refer to a bug in content-filtering checks as an Unrestricted
Executable File Upload (UEFU) vulnerability when (1) it
allows the upload of an executable file and (2) the adversary is
able to remotely run this executable file on a target web server
or a victim’s browser by invoking a URL.

There have been previous studies on detecting various web
vulnerabilities. Several techniques have been used in attempts
to detect taint-style vulnerabilities, including XSS and SQLI,
via static analyses [43, 49, 63, 65] or dynamic executions [29,
53]. Conducting symbolic execution has also been explored for
finding logic bugs [59, 62] and generating attack exploits [26].
However, few research studies have addressed finding U(E)FU
vulnerabilities [40].

Contributions. In this paper, we propose FUSE, a penetration
testing system designed to identify U(E)FU vulnerabilities.
Penetration testing is a widely practiced testing strategy, espe-
cially in finding security bugs [32, 44, 48, 51]. One invaluable
advantage of penetration testing is that it produces actual
exploits that trigger inherent vulnerabilities. Each reported
exploit payload helps an auditor better understand system
weaknesses and assures their lower bound security level.

The effectiveness of penetration testing solely depends
on generating inputs likely to trigger U(E)FU vulnerabilities,
which entails two technical challenges: (1) FUSE should
generate an upload request that bypasses application-specific
content-filtering checks present in the target web application,
resulting in a successful upload; and (2) a successful upload
request should drop a file that the target web server or a
browser is able to execute.

To address these challenges, we propose a novel mutation-
based algorithm for generating upload requests that elicit
U(E)FU vulnerabilities. FUSE begins by generating four seed
upload requests; each request attempts to upload either a PHP,

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA
ISBN 1-891562-61-4
https://dx.doi.org/10.14722/ndss.2020.23126
www.ndss-symposium.org

HTML, XHTML, or JS file. The target application may block
these seed requests because each one attempts to upload an
executable file, which is inadmissible to the target application.

FUSE, therefore, mutates each seed request by applying
combinations of 13 carefully designed mutation operations.
We designed each one to help bypass content-filtering checks
as well as preserve the execution semantic of the seed file.
Specifically, we defined five objectives that trigger common
mistakes in implementing content-filtering checks. We then im-
plemented concrete mutation methods, each of which achieves
at least one objective, thereby addressing the first challenge.
At the same time, these mutation operations do not tamper
with constraints required for the seed file to be executable by
a target execution environment, thus preserving the execution
semantic of the seed file. That is, these mutations are key
components addressing the aforementioned two technical chal-
lenges. FUSE then sends these generated requests to a target
PHP application in the attempt to upload mutated variants
of seed files. Finally, it checks whether the uploaded file is
executable by accessing its URL, which is computed from
a given configuration file or obtained from the file event
monitoring tool at a target server.

We evaluated FUSE on 33 popular real-world web ap-
plications; FUSE discovered 30 new UEFU vulnerabilities
with corresponding upload requests that caused arbitrary code
execution. These uploading requests are valuable test inputs
that trigger inherent vulnerabilities, thereby helping developers
understand their root causes. We reported all findings to the
corresponding vendors and received 15 CVEs.

In summary, this paper demonstrates that it is feasible to
conduct an effective penetration testing with carefully designed
mutation operations that do not tamper with code execution of
seed files but are nevertheless effective in bypassing content-
filtering checks. Because our mutation-based testing strategy
is compatible with off-the-shelf penetration testing tools [3,
32, 44] for finding web vulnerabilities, FUSE is able to
contribute to those testing tools extending to cover U(E)FU
vulnerabilities. To support open science and further research,
we will release FUSE at https://github.com/WSP-LAB/FUSE.

II. BACKGROUND

We explain a general procedure for uploading files in
PHP server-side web applications. We then describe UFU and
UEFU vulnerabilities, as well as their security impacts.

A. File Upload in PHP Web Applications

PHP is a popular server-side web programming language.
Approximately 80% of web servers among the Alexa top 10
million sites use PHP to implement various services, including
CMS and social forums [21].

Upload functionality is a key feature that PHP supports.
A common upload procedure begins with a client browser
sending an HTTP(S) multipart request [50], originating from
an HTML form. This request is usually sent via POST, which
embodies the user’s selection of a local file.

The recipient PHP interpreter of this upload request ex-
tracts the file and then moves this file to a temporary directory,

1 <?php
2 $black_list = array('js','c','php3',...,'php7')
3 if (!in_array(ext($file_name), $black_list)) {
4 $file_path = $base_path . sanitize($file_name)
5 $uploaded = move($tmp_file_path, $file_path);
6 }
7 else {
8 message('Error: forbidden file type');
9 }

10 ?>

Fig. 1: Example snippet of content-filtering checks imple-
mented in Monstra.

as specified in php.ini. Finally, the PHP application, in-
voked by this upload request, conducts content-filtering checks
that determine whether the uploaded file conforms to the
developers’ expectations.

Figure 1 shows an example of content-filtering checks
in the Monstra CMS application. Line (Ln) 3 extracts the
extension from the uploaded file name via the ext function
and then checks whether it is among the blacklisted extensions
hardcoded at Ln 2. It forbids uploading any file with a
blacklisted extension that poses a potential security threat.
Lastly, Ln 5 moves the uploaded file from the temporary
directory to the sanitized file path, which Ln 4 computes to
specify the upload directory where uploaded files should be
stored.

B. UFU and UEFU Vulnerabilities

A UFU vulnerability [18] is a security bug that allows
an adversary to upload arbitrary files that developers do not
expect to accept. This vulnerability stems from a flawed
implementation of content-filtering checks, which are designed
to accept only admissible files. For instance, Monstra does not
accept JS files from their clients as Ln 2 in Figure 1 shows,
which poses a potential security threat. However, assume that
one uploads the bypass.Js file, which contains arbitrary JS
code. This file triggers a UFU vulnerability because it bypasses
the content-filter check in Ln 3, which checks the file extension
in a case-sensitive manner. This uploaded JS file imposes a risk
of potential code execution (PCE). An upload attacker is able
to abuse hosts running the vulnerable Monstra to distribute a
malicious JS script that could run on the victims’ browsers.

In this paper, we define an Unrestricted Executable File
Upload (UEFU) vulnerability as a UFU vulnerability that
allows arbitrary code execution (CE) via a URL leading to
an uploaded executable file. Thus, UEFU vulnerabilities are
a subset of UFU vulnerabilities. We only consider UFU and
UEFU vulnerabilities that allow the upload of a file, executable
by a PHP interpreter or a browser. Specifically, we focus on
identifying U(E)FU vulnerabilities that enable the uploading
of four file types: PHP, HTML, XHTML, and JS. Each file
type requires different conditions to cause PCE or CE.

PHP. When (1) an upload attacker is able to upload a PHP
file by exploiting a UFU vulnerability and (2) the attacker
is capable of executing this uploaded file via a publicly
accessible URL, the exploited UFU vulnerability becomes a
UEFU vulnerability, which results in remote CE. For example,
consider the adversary successfully uploading the simple PHP
web shell code in Figure 2a. Since the uploaded script can be
invoked via a URL with any crafted parameters, an adversary

2

https://github.com/WSP-LAB/FUSE

1 <?php
2 system($_GET['c']);
3 ?>

(a) Uploaded PHP file.

1 <html>
2 <script>
3 alert('xss');
4 </script>
5 </html>

(b) Uploaded (X)HTML file.

Fig. 2: Examples of uploaded attack files.

is capable of executing any system commands. This poses a
critical threat such that the adversary is able to access local
file resources and databases [4], inject shell commands and
scripts [37], and conduct Server-Side Request Forgery (SSRF)
attacks [56].

.htaccess is an Apache configuration file that contains
configuration directives on a per-directory basis. It often de-
fines an access-control policy on files under the directory
where the file is located as well as determines which file
extensions should be run by a PHP interpreter [1]. PHP
application developers may limit the entry points that allow
access to uploaded files by implementing .htaccess. In this
case, the attacker is unable to invoke the uploaded PHP file
via a URL. However, it still qualifies as a UFU vulnerability
causing PCE. Consider a vulnerable web application with a
Local File Inclusion (LFI) [16] that allows an attacker to
embed any server-side file for the execution of this application,
as the following example shows.

1 <?php include($_GET['page']); ?>

Regardless of the existence of a publicly accessible URL, a
web attacker is capable of executing an uploaded PHP by
leveraging this LFI vulnerability.

(X)HTML. An uploaded HTML or XHTML file is also a
critical attack vector for injecting malicious JS code, thus
imposing a CE threat. Assume that the adversary takes on
the role of a web attacker [31] by uploading the HTML file
shown in Figure 2b and lures victims into visiting the URL that
leads to the uploaded file. The adversary is thus able to trigger
the execution of malicious JS scripts with the vulnerable web
server origin on the behalf of a victim. This allows unrestricted
access to sensitive information in the victim’s cookies and local
storage governed by the Same Origin Policy (SOP) [57]. By
definition, this is a stored cross-site scripting attack [17]. Any
domain-based Content Security Policy (CSP) [36, 54, 60, 61]
provides little to no protection because the URL rendering the
malicious HTML file is within the target web server domain.

JS. A UFU vulnerability that allows the upload of a JS file
imposes a PCE threat. Many network-level firewalls or CSPs
use domain names to block content resource requests fetching
JS files via blacklists or whitelists. By uploading malicious JS
scripts to a vulnerable web server, the adversary can distribute
those malicious JS scripts to victims or bypasses CSPs that
list this vulnerable web server as trustworthy [47, 64].

III. MOTIVATION

This section describes a threat model and the attacker’s
concrete capabilities of exploiting U(E)FU vulnerabilities that
FUSE is designed to find. It then depicts two technical
challenges to systematically find U(E)FU vulnerabilities and
summarizes our approach to tackling these challenges.

1 <?php
2 function check_filetype_and_ext
3 ($file, $filename, $mimes) {
4 // Infer a type from filename.
5 $filetype = check_filetype($filename, $mimes);
6 ...
7 if($type && !$real_mime &&

extension_loaded('fileinfo')) {↪→

8 $finfo = finfo_open(FILEINFO_MIME_TYPE);
9 $real_mime = finfo_file($finfo, $file);

10 // Check an inferred MIME type.
11 if(!in_array($real_mime,

array('application/octet-stream',..),true)){↪→

12 $type = $ext = false;
13 } }
14 ...
15 $allowed = get_allowed_mime_types();
16 if (!in_array($type, $allowed)){
17 $type = $ext = false;
18 } } } }
19 ?>

Fig. 3: Simplified content-filtering logic in WordPress.

A. Threat Model

We assume an upload attacker. The attacker has a limited
privilege of uploading legitimate files granted by a target
web application; she is unable to use any other system-
level upload channels, such as the secure file transfer (SFTP)
or the secure copy protocol (SCP). For instance, an upload
attacker could be a registered user of a WordPress website.
The adversary can perform only limited operations according
to her access control role as the developer intended. That is,
she cannot upload any files using measures other than the
emplaced upload functionality that WordPress provides. The
goal of the adversary is to upload a file that initiates CE at
a server-side PHP interpreter or a client-side browser and to
subsequently trigger the execution of the uploaded file via
a publicly accessible URL. The adversary may initiate the
execution of an uploaded file by leveraging an existing LFI
vulnerability [16].

B. Technical Challenges

Finding UEFU vulnerabilities entails two technical chal-
lenges: (1) identifying bugs in application-specific content-
filtering checks, and (2) confirming whether such bugs allow
the successful upload of a file executable by a PHP interpreter
or a browser.

Application-specific checks. Different applications implement
their own content-filtering checks in idiosyncratic ways. Fig-
ures 1 and 3 show two different types of content-filtering
logic. The content-filtering logic of Monstra only checks
whether a user-provided file extension conforms to a pre-
defined extension blacklist. On the other hand, the content-
filtering logic of WordPress in Figure 3 begins by extracting
the extension from a file name at Ln 5. When the given file
is an image, the omitted logic at Ln 6 infers its MIME type,
computing real_mime. If real_mime is not determined,
Ln 9 infers its MIME type from a given file based on its content
by invoking the finfo_file built-in function. Ln 16 finally
checks whether the given file is admissible by leveraging two
inferred MIME types from its file extension and content.

Even worse, several applications implement content-
filtering logic across different places in their applications,

3

thereby making it difficult to understand their underlying logic
even with manual analyses. In our benchmark consisting of 33
popular CMSs, we observed that no application implemented
the identical content-filtering logic.

This engineering practice entails a technical challenge for
identifying bugs in such application-specific content-filtering
checks. The majority of web applications are accompanied by
neither specifications of their admissible files nor annotations
indicating whether the checks are located. Identifying or in-
ferring such specifications to begin any procedure is a chal-
lenging problem [34, 49, 58]. Furthermore, the identification
of content-filtering checks is not enough. It is essential to find
test inputs that would bypass such checks but deviate from
developers’ expectations, thus triggering bugs.

Symbolic execution is certainly applicable to systematically
finding bugs in content-filtering checks [26, 27, 39, 40, 45,
59, 62, 65]. However, the aforementioned engineering practice
becomes problematic when conducting symbolic execution.
By nature, symbolic execution requires the specifications that
pinpoint exact code locations after bypassing content-filtering
checks. This requirement demands a deep understanding of a
target application, thus potentially hindering its application by
auditors with less domain knowledge who want to test diverse
applications.

Executable uploaded files. There is another technical chal-
lenge; a bug in content-filtering checks should allow the
successful upload of a file that a target web server or a browser
can execute. Addressing this challenge involves answering
the research question: What constraints should be preserved
in an uploaded file such that it is executable by a web
server or a browser? Identifying such constraints requires a
deep understanding of web server and browser behaviors for
executing a given file.

Our methodology. We focus on finding U(E)FU vulner-
abilities that allow code execution of uploaded seed files
that PHP interpreters with Apache or three major browsers
(i.e., Chrome, Firefox, and Internet Explorer) execute. To this
end, we propose a penetration testing system to address the
aforementioned two technical challenges.

To address the first challenge, we propose eliciting un-
intended erroneous behaviors by providing forged upload re-
quests that are likely to trigger inherent bugs while avoiding
to generating specifications for the intended semantics of
application-specific checks. In particular, when generating up-
load requests, we apply carefully designed mutation operations
that help bypass buggy application-specific checks, whose root
causes stem from common mistakes of developers.

We also analyze the source code of Chrome, Firefox,
Apache, and PHP engines to identify the constraints required
for executable files. When generating upload requests, we
ensure that these identified constraints are preserved in attack
files in the upload requests, which addresses the second
challenge. Also, in Section VII-D, we demonstrate that the
changes made to these constraints due to software updates are
so few that the execution of most mutation variants remains
consistent across different versions of Chrome, Firefox, Safari,
and the PHP engines.

FUSE

PHP

HTML JS

Seed Files

<?php
system();
?>

<script>
</script> alert();

Config.

UPLOAD AGENT

UPLOAD VALIDATOR

XHTML

<script>
</script>

CHAIN COORDINATOR
Chain Lists

Seed, Chain

HTML Chain A

XHTML

Chain B Chain X

Chain B Chain C Chain Y

…

…

…

Select

Upload

Validate
Bugs

Check
Uploading

Extract URL

Login

Web Server

UFU and UEFU
Vulnerabilities

Application
Under Testing

File Monitor

Fig. 4: Overview of FUSE architecture.

IV. OVERVIEW

FUSE takes in a set of seed files and a configuration
file given a target server-side web application. FUSE then
initiates a penetration testing campaign. During the campaign,
FUSE mutates the upload request of seed files by applying the
combinations of 13 carefully designed mutation operations,
and attempts the uploads of mutated seed files by sending
those requests. Once the campaign is over, FUSE reports
functional upload requests that demonstrate the presence of
U(E)FU vulnerabilities.

Figure 4 illustrates the overall architecture of FUSE, which
consists of three components: CHAIN COORDINATOR, UP-
LOAD AGENT, and UPLOAD VALIDATOR. At a high level,
these components work in tandem to perform three steps;
(1) the CHAIN COORDINATOR prepares a testing strategy
for each of the four seed files; (2) the UPLOAD AGENT
builds upload requests, mutates those requests according to the
testing strategy, and sends those mutated requests in an attempt
to upload variants of the seed files; and (3) the UPLOAD
VALIDATOR checks whether the uploaded files are accessible
and executable via publicly accessible URLs.

CHAIN COORDINATOR. The CHAIN COORDINATOR con-
structs a testing strategy, called a chain list. It specifies how
to generate a series of mutated upload requests. Each chain in
this chain list entails a list of mutation operations that FUSE
applies to a seed upload request. Each mutated upload request
is thus a computation result of applying mutations in a chain
to a seed upload request.

UPLOAD AGENT. This module is responsible for generating
an upload request for a given seed file and mutating the original
request according to a given chain computed by the CHAIN
COORDINATOR. A target application often requires completing
an authentication procedure and sending a valid CSRF token
with each attempted upload request. Therefore, the UPLOAD
AGENT addresses the authentication procedure and appends
valid CSRF tokens to facilitate the upload procedures.

UPLOAD VALIDATOR. The UPLOAD VALIDATOR checks
whether generated requests succeed in uploading files and
obtains the publicly available URLs of these uploaded files. By
accessing these files through the computed URLs, the UPLOAD
VALIDATOR checks whether the uploaded files are executable.

4

1 /* Required Parameters */
2 login_page = [Login page URL.],
3 credential = {
4 id = [Username.],
5 pw = [Password.]},
6 upload_page = [Uploading page URL.],
7 token_re = [Regex for matching a CSRF token.],
8 /* Optional Parameters */
9 success_re = [Regex for a successful upload.],

10 response_re = [Regex for file URLs.],
11 url_prefix = [Common prefix of file URLs.],

Fig. 5: Simplified FUSE configuration template file.

V. DESIGN

Given a configuration file, FUSE conducts three phases.
Phase I computes a testing strategy, which we refer to as a
chain list, for each seed file. Phase II executes this testing
strategy by constructing a seed request for each seed file,
mutating these seed requests according to the chain list, and
sending mutated requests. Phase III obtains the accessible
URLs leading to successfully uploaded files and checks the
execution capability of these uploaded files.

A. Specifying a Testing Campaign

FUSE takes in two inputs: a set of seed files and a
configuration file. Each seed file becomes a source for building
a standard upload request, which is called a seed request.
FUSE also uses a user-provided configuration file that specifies
parameters for a target PHP application.

Figure 5 shows a configuration template. It specifies au-
thentication credentials, URLs for the login and upload web-
pages, and CSRF token fields from which FUSE extracts
tokens. The parameters in Lines (Lns) 9-11 are optional as
some applications may not require them. They specify how to
obtain the URLs for uploaded files. Section V-D explains how
FUSE utilizes each parameter in detail.

We argue that specifying this configuration file is an
acceptable cost for finding U(E)FU vulnerabilities. Widespread
web penetration testing tools require comparable configuration
effort. SQLmap [14] requires auditors to specify login cookie
credentials, target URLs, and parameters to inject payloads.
Arachni [3] and Burp [5] crawl target URLs and injection
parameters by default but still demand the same information
for better coverage and precise scanning. Zap [25] takes
advantage of its network proxy tools to generate sitemaps and
specify attack targets via user interactions, thus systematically
generating such configuration information.

The additional configuration cost for FUSE is necessary to
define the success_re, response_re, and url_prefix parameters.
The success_re parameter indicates whether an upload attempt
is successful. The response_re and url_prefix parameters are
for computing the URLs leading to uploaded files. These
parameters can be omitted when leveraging the File Monitor
at a target web server (§V-D). However, these parameters exist
to support testing scenarios in which placing the File Monitor
is not a viable option.

B. Phase I: Chain Coordination

This chain coordination step generates a testing strategy
specifying how to mutate a given seed request. Recall that a

chain is a list of mutation operations. This testing strategy
entails a list of chains, which we call a chain list. The
goal of this chain coordination is to exhaustively explore all
feasible mutation combinations, thus contributing to FUSE
generating diverse upload requests and finding new bugs. Note
that each mutation operation is designed to bypass one kind
of content-filtering check. Therefore, the combination of those
certainly increases the odds of bypassing multiple content-
filtering checks. Our evaluation demonstrates that there exist
numerous bugs that FUSE could miss without considering
mutation combinations (§VII-D).

The CHAIN COORDINATOR begins by creating an initial
chain list for each seed request. For each seed request, it
permutes all applicable mutation operations and then orders
them by chain length. For instance, if the mutation operations
applicable to the HTML seed are M1, M2, and M3, the chain
list is as follows.

HTML: {∅,M1,M2,M3,M1M2,M1M3,M2M3,M1M2M3}

It is possible for two different mutation operations to conflict
with each other in the case that they revise the overlapping
portions of a seed request. The CHAIN COORDINATOR re-
moves such spurious chains to purge unnecessary mutations.
For example, if M1 conflicts with M2, the revised chain list for
the previous example becomes the following.

HTML: {∅,M1,M2,M3,M1M2,M1M3,M2M3,M1M2M3}

Another functionality of the CHAIN COORDINATOR is to
remove chains based on a previous upload attempt result ob-
tained from Phase III to conduct an efficient penetration testing
campaign. If a chain contributes to a successful upload, the
CHAIN COORDINATOR purges all other chains that include the
successful chain. Because the chain list is ordered according to
its chain length, FUSE always picks a short chain rather than
other longer chains that include this short chain. Our purpose
is to report distinct minimum-length chains for successful
exploits. For example, if the chain M1 successfully triggers
a UFU vulnerability, the CHAIN COORDINATOR removes all
other chains that include M1 from the chain list as follows:

HTML: {∅,M1
tested

,M2,M3,M1M3,M2M3}

Also, if the chain of ∅ (i.e., no mutation to the seed request)
triggers a UFU vulnerability, the CHAIN COORDINATOR re-
moves all chains in the chain list. In other words, when a
seed request succeeds in uploading its seed file, FUSE sends
no further mutated upload requests originating from this seed
request. When a target application implements no measure to
prevent UFU vulnerabilities, finding diverse test cases becomes
pointless. On the other hand, if a seed request fails, it indicates
the existence of content-filtering checks against which FUSE
performs a penetration testing campaign.

C. Phase II: Mutating and Sending Upload Requests

The UPLOAD AGENT starts by performing the authenti-
cation procedure of a target web application. It leverages the
login_page and credential parameters from a given

5

Algorithm 1: File Upload Algorithm.
1 function Upload(conf , seed, chain)
2 unique ← RandStr(32)
3 url ← conf .upload_page
4 tokenu ← ExtractTokens(url, conf .token_re)
5 request ← ConstructRequest(url, tokenu, seed)
6 for m ∈ chain do
7 request ← MutateRequest(request, m)

8 request ← PostProcess (request, unique)
9 response ← SendRequest (url, request)

10 return request, response, unique

configuration file to construct an authentication request and
sends this request to complete the authentication procedure.
The UPLOAD AGENT then generates upload requests by mu-
tating the seed request and sends these requests. Algorithm 1
describes this uploading procedure. It obtains a given configu-
ration file (conf), seed file (seed), and chain. It first assigns a
unique identifier in Ln 2, which is a reference index used for
the later validation process.

Because a target web application often requires a valid
CSRF token, the ExtractTokens function dynamically
extracts a CSRF token from an upload page. It internally
fetches the upload webpage and extracts the form element
corresponding to a CSRF token by leveraging a regular expres-
sion specified in conf. The ConstructRequest function in
Ln 5 then constructs a seed request that attempts to upload
the seed by adding the extracted CSRF token. The UPLOAD
AGENT then mutates seed by applying each mutation in chain,
as Lns 6-7 show. Ln 8 performs the post-processing of the
mutated upload request to facilitate the later validation process.
Specifically, it changes the upload file name, assigning it a
unique value and appends this value in the comment portion
of the file to be uploaded. Finally, the SendRequest function
in Ln 9 sends the mutated and post-processed request to the
target url and returns the response received from the target
application.

D. Phase III: Upload Validation

The UPLOAD VALIDATOR performs three tasks: (1) it
checks whether each attempted upload request successfully
drops a file at the web server hosting the target application;
(2) it computes the URL leading to the uploaded file; and (3)
it confirms whether this obtained URL invokes the execution
of the uploaded file.

As the first task in vetting a successful upload, the UPLOAD
VALIDATOR checks whether the response to an upload request
is free from any error messages by default. The UPLOAD
VALIDATOR leverages a regular expression (success_re)
defined in the configuration file that checks for the existence
of a pattern in the response indicating a successful upload.

For the second task, the UPLOAD VALIDATOR has three
different methods of obtaining the URL of an uploaded file.
Because various applications differ in assigning URLs to
uploaded files, we generalize those into three methods. We
explain these methods from the simplest approach to the most
sophisticated one.

Common prefix of URLs. The UPLOAD VALIDATOR uses a
user-provided parameter, url_prefix, which indicates the

common prefix of URLs leading to all the uploaded files.
If this parameter is set, the UPLOAD VALIDATOR simply
concatenates the URL value extracted with url_prefix and
an upload file name, thus generating the final URL.

Upload response and summary webpage. Several applica-
tions, including HotCRP, present the URL of an uploaded file
in the response to its upload request. The UPLOAD VALIDA-
TOR leverages a user-provided parameter, response_re, to
extract the URL leading to this uploaded file.

Instead of checking the upload response, the UPLOAD
VALIDATOR is able to reference a specified summary page
listing all accessible URLs leading to uploaded files. The
UPLOAD VALIDATOR leverages the unique identifier from
Algorithm 1. Each URL already has a unique identifier in its
file path, and the fetched content from this URL contains a
unique identifier in its body. Thus, the UPLOAD VALIDATOR
is able to map each URL to an upload request by leveraging
the unique identifier as a joining key.

File Monitor. The previous two methods are highly dependent
on user-provided parameters and the understanding of a target
application. Furthermore, several applications use random file
names for their uploaded files and provide no summary page,
which makes defining the url_prefix and response_re
parameters infeasible. To handle such cases, the UPLOAD
VALIDATOR uses the File Monitor. The File Monitor is a
monitoring component that is installed at the web server
hosting a target web application. It is a one-time setup tool that
monitors any file creation event under a web root directory. 1

For each creation event, the File Monitor stores the absolute
path of the created file and the MD5 hash value of its content.
When the UPLOAD VALIDATOR sends the hash value to re-
trieve the URL leading to a successfully uploaded file, the File
Monitor responds with the stored absolute path that matches
the hash value of the file. The UPLOAD VALIDATOR computes
the URL from the received absolute path by replacing the web
root directory with the web server domain name.

Finally, the UPLOAD VALIDATOR validates whether each
obtained URL indeed invokes the execution of an uploaded
file, which could be different from its seed file. For the PHP
seed file, we implemented the code that dynamically generates
‘FUSE_GEN.’ The UPLOAD VALIDATOR invokes a mutated
version of this seed via its URL and checks whether the
response page contains ‘FUSE_GEN’, which demonstrates the
successful CE of the PHP variant. Otherwise, the UPLOAD
VALIDATOR considers such cases as PCE risks.

For an uploaded HTML, JS, or XHTML file, the UPLOAD
VALIDATOR checks the difference between the attempted
upload file contained in an upload request and the uploaded
file fetched from the obtained URL. If there is no difference,
those uploaded files are highly likely to be executable because
none of the applied mutations tampers with the execution of the
mutated file. Next, the UPLOAD VALIDATOR checks whether
the Content-Type header in the response is among our
selections of 10 MIME types. Recall that JS, HTML, and
XHTML files are executed at client-side browsers, and these
browsers reference the MIME type in the Content-Type
header to decide whether the fetched content is executable.

1We used the default Apache web root directory

6

We empirically collected the aforementioned 10 MIME types.
For each JS or (X)HTML seed file, we fetched the MIME types
while varying the Content-Type header values and checked
whether they were indeed executable in Chrome, Firefox, or
Internet Explorer headless browsers.

E. Uploading .htaccess

FUSE further checks the feasibility of uploading a
.htaccess file. If an upload attacker is able to control a
.htaccess file, she is able to invoke a PHP interpreter to
execute an uploaded file with any extension as well as to make
this uploaded file accessible. This is a critical security threat
that enables a UFU vulnerability, which imposes a PCE risk,
to evolve into a UEFU vulnerability that results in CE.

Specifically, after completing Phase III, FUSE attempts to
upload an arbitrary .htaccess file. We programmed this
.htaccess file to allow arbitrary extensions to be executed
by a PHP interpreter. To check whether the .htaccess file
has successfully uploaded, FUSE uploads another arbitrary
image file with metadata that embeds in the PHP seed file.
It then validates the execution of the uploaded image file via
a PHP interpreter by invoking the URL leading to this image
file.

VI. MUTATION OPERATIONS

The main goal of the mutations is to transform a given
upload request in a way that its resulting upload file preserves
the execution semantic of its seed file and the mutated request
is likely to bypass content-filtering logic. To achieve this goal,
we started by identifying mutation vectors that an upload at-
tacker is able to manipulate. Assuming an upload attacker who
exploits these mutation vectors, we conducted a preliminary
study to identify common developer mistakes in performing
content-filtering checks.

Preliminary study. We investigated known CVEs, existing
evasion techniques from the Internet, and previous studies [30,
41]. We also examined what built-in methods that mature ap-
plications leverage for content-filtering checks in nine popular
applications, including WordPress and Joomla. Based on these
investigations, we generalized the existing attack techniques
into five objectives that exploit different types of developer
mistakes. We then designed 13 operations, each of which
instantiates one or two of the defined objectives, thereby
triggering inherent mistakes and bypassing emplaced content-
filtering logic. Note that five of 13 operations (i.e., M5, M7,
M9, M10, and M13) are proposed by our work.

Execution constraints. When designing each mutation, we
adjusted the operation to preserve the execution semantic of a
seed file. We investigated basic constraints for a given file that
an Apache web server or a browser requires for its execution.
We manually analyzed the source code of Chrome 74, Firefox
68, eight different versions of Apache mod_php modules, and
PHP 5.6 interpreter engines to understand which constraints
should be preserved for the seed files to be executable.

We observed that a PHP interpreter executes a PHP file
that contains the PHP start tag (i.e., <?php or <?). However,
this invocation of a PHP interpreter is governed by an Apache
mod_php module. This module requires an executable PHP

POST http://127.0.0.1/upload.php HTTP/1.1
Host: 127.0.0.1
Origin: http://127.0.0.1
Content-Type: multipart/form-data;
boundary=------WebKitFormBoundary[16byte random str]

------WebKitFormBoundary[16byte random str]
Content-Disposition: form-data; name="upload"; filename="test.html"
Content-Type: text/html

<html><head><title>test</title></head><body>Hello!</body></html>
------WebKitFormBoundary[16byte random str]

Request Header

Request Body
Extension

Content-Type

Content

Mutation
Vector

Fig. 6: Message structure of an HTTP multipart request and
mutation vectors.

file to have one of the seven PHP-style file extensions (e.g.,
php3, phar) for its execution via direct URL invocations.
In the Chrome and Firefox browsers, we also identified that
an executable HTML file must start with pre-defined start
tags within its first 512 bytes with subsequent valid HTML
code, which is well aligned with the models that Barth et al.
extracted [31]. An executable XHTML file shares the same
constraints as the HTML case but requires the presence of
xmlns tags. We also investigated other browser-supported file
types (i.e., SVG and EML) that allow embodying JS scripts.
When implementing each mutation operation, we ensured that
they reflected these constraints, thus preventing the mutation
from tampering with these constraints.

Mutation vectors. FUSE mutates the fields of an HTTP(S)
multipart request [50], which is generally constructed by
clients to upload files and data to a web server. Figure 6
represents the standard message format of an HTTP multipart
request. In the request body of the upload request (Figure 6),
FUSE considers three mutation vectors to modify its corre-
sponding field: (1) Extension, (2) Content-Type, and
(3) Content. From the point of view of the file, each vector
is represented as follows.

• Extension: the extension of a file name.
• Content-Type: the MIME [38] type of a file.
• Content: the binary content or plain text of a file.

Mutation objectives. The followings enlist five key objectives
derived from the aforementioned preliminary study.

1) Checking the absence of content-filtering checks: We
observed that several applications do not perform any checks
on incoming upload requests. FUSE achieves this objective by
sending the seed request for each executable seed file without
applying any mutation.

2) Eliciting incorrect type inferences based on Content:
This goal is inspired by the previous approaches that generate
a file with an inferred type that varies between different exe-
cution environments [30, 41]. They demonstrated chameleon
attacks, which disguise one type of file as another type to evade
the type inference heuristics of malware detectors or browsers.
We extend this idea to induce different views on an uploaded
file type between web applications and the execution environ-
ment where the uploaded file runs. Specifically, we aimed to
cause erroneous type inferences from PHP built-in functions,
including finfo_file and mime_content_type, which
references the Content part.

3) Exploiting incomplete whitelists or blacklists based on
Extension: We observed that different applications differ in
specifying prohibited extensions (blacklist) or allowed exten-
sions (whitelist). The goal is to exploit this inconsistency of

7

OP Description Seed File(s) Objectives
M1 Prepending a resource header PHP, HTML 2

M2 Inserting a seed into metadata PHP, HTML, JS 2

M3 Changing the content-type
of a request PHP, HTML, XHTML, JS 5

M4 Changing a file extension PHP, HTML, XHTML, JS 3

M5 Replacing PHP tags
with short tags PHP 4

M6 Converting HTML into EML HTML, XHTML 2, 3

M7 Removing a file extension PHP, HTML, XHTML, JS 3

M8 Converting a file in SVG HTML 3

M9 Prepending an HTML comment HTML, XHTML 2, 4

M10 Changing a file extension
to an arbitrary string PHP, HTML, XHTML, JS 3

M11 Converting a file extension
to uppercase PHP, HTML, XHTML, JS 3

M12 Prepending a file extension PHP, HTML, XHTML, JS 3

M13 Appending a resource header PHP, HTML, XHTML, JS 2

TABLE I: List of mutation operations for each seed file.

whitelists or blacklists of extensions, which presents opportu-
nities to allow the uploads of impermissible files.

4) Bypassing keyword filtering logic based on Content:
The goal is to bypass the filtering logic of applications
that search for certain program-specific keywords, including
<?php, <html>, and <script>, to infer an uploaded file
type.

5) Bypassing filtering logic based on Content-Type:
We observed that several applications often accept the MIME
type specified in the Content-Type without checking the
actual type of the file in the Content. The goal is to inject
incorrect MIME types to bypass content-filtering checks.

Table I summarizes the list of mutation operations that
we designed to address the five objectives above. Note that
achieving the first objective demands no mutation because ac-
cepting seed requests with no mutation implies the absence of
content-filtering checks. Each mutation addresses at least one
objective and corresponds to certain seed files. For example,
M1 is designed to achieve the second objective and is only
applicable to two seed request types that upload HTML or
PHP seed files.

Mutation conflicts. Recall from Section V-B that we pre-
defined a set of conflicting mutation operations for each
mutation operation and excluded such conflicting operations
when creating the chain list. For a given operation (M1), we
defined a conflicting mutation (M2) as when (1) both M1 and
M2 revise the same portion of a mutation vector, or (2) M1
combined with M2 causes a CE failure, thus rendering M2
unnecessary. When enumerating the permutations of the 13
mutations set, we discarded a combination in which one of its
mutation operations conflicted with other mutation operations.

M1: Prepending a resource header. M1 prepends the 1024
bytes from the headers of six resource files (GIF, JPG, PDF,
PNG, TAR_GZ, and ZIP) to the Content of a given upload
request. Thus, applying M1 means generating a mutation
request for each resource file, thus generating six distinct mu-

tation requests. The intention is to deceive the type inference
heuristics of a target PHP application. A common method to
filter out a malicious file is to infer its type and to reject
the file based on the inferred type. We observed that several
PHP applications inferred a file type by matching a prepared
signature to the header part of a file. This observation led
us to define the M1 operation. M1 is applicable to PHP and
HTML seed requests; however, M1 is not applicable to JS
and XHTML because no browser is able to execute a JS or
XHTML file with a resource file header.

M2: Inserting a seed into resource metadata. M2 injects the
Content of a given upload request into the metadata portion
of six resource files (JPG, PNG, GIF, ZIP, PDF, and BMP),
thus generating six distinct mutations. FUSE analyzes the
structure of each resource file and identifies the specific chunk
blocks that include comment metadata. Thereafter, our system
injects an upload file into that block as comment metadata.
Finally, FUSE changes the Content in the seed request with
the corresponding values of the modified resource file. For
instance, FUSE injects a PHP seed into the comment part of
the GIF89a metadata. Unlike to M1, which tries to upload an
incomplete resource file, M2 uploads a complete resource file
so that most image viewers render its thumbnail and image
without any error. We checked that the M2 operation does not
tamper with code execution of a PHP and an HTML file.

M3: Changing the Content-Type of an upload request.
M3 changes the Content-Type of an upload request into
one MIME [38] type of the six resource files (JPG, PNG,
GIF, TAR_GZ, ZIP, and PDF). We observed that some ap-
plications leverage the Content-Type of an upload request
body instead of inferring the type of an uploaded file based
on its content. The M3 operation is effective in bypassing
such filtering logic. Because this operation only alters the
Content-Type value, M3 is applicable to all seed files.

M4: Changing a file extension. This operation changes the
Extension of a given upload request to one of the seven
PHP-style extensions or one of the 17 predefined common
extensions. Because FUSE tries every one of these extensions,
it produces 19 mutated requests for a given upload request.
We observed that web applications often use an extension
blacklist to prevent adversaries from uploading malicious files.
For this operation, our objective is to try a diverse set of
common extensions, including PHP-style extensions, that may
invoke a target PHP interpreter or contribute to bypassing
content-filtering checks. We collected PHP-style extensions
from eight different versions of Apache mod_php modules,
each of which specifies which extension set invokes a PHP
interpreter. For instance, phar is a new extension supported by
mod_php for PHP 7.2. Therefore, developers should update
their content-filtering logic as well to block phar files. M4 is
designed to identify the omission of content-filtering logic for
each listed extension. M4 is applicable to all seed types.

M5: Replacing PHP tags. M5 replaces the default PHP
opening tags (i.e., <?php) in the Content of a given upload
request with short tags (i.e., <?). It is designed to bypass the
content-filtering logic that searches only for the default PHP
opening tag. M5 is designed solely for a PHP seed file.

M6: Converting HTML into EML. This operation converts
the HTML file in the Content of a given upload request into

8

Electronic Mail (EML) [6, 38] by mutating the upload request.
EML is the standard format of email files used by Microsoft
Outlook, Mozilla Thunderbird, and Apple Mail. Interestingly,
an EML file is able to include an HTML document with script
elements. M6 first prepends the header of a prepared EML
file to the beginning of the Content. It then converts HTML
special characters in the Content to hexadecimal format
so that the converted HTML code performs code execution.
Finally, it changes the Extension of a given seed request
into the eml extension. We observed that Internet Explorer 9,
10, and 11 execute an HTML in the EML format. Thus, M6
is applicable to (X)HTML seed files.

M7: Removing a file extension. The M7 operation is designed
to remove the Extension of a given upload request that
potentially contributes to bypassing content-filtering checks.
Unfortunately, we observed that several web applications do
not check the existence of a file extension itself. Since this
operation only concerns the Extension of the requests, it is
suitable for all seed types.

M8: Converting a file to SVG. SVG is a file format in XML
that represents a vector image; it facilitates the embedding
of HTML code in its file. M8 embeds an HTML file into
a prepared Scalable Vector Graphics (SVG) [15] file. M8
appends the start and end tags of a prepared SVG file to
the beginning and ending of the Content of a given upload
request. Additionally, this operation changes the Extension
of the request to svg. Since the SVG file format only supports
embedding in an HTML document, the M8 operation is only
applicable to HTML files.

M9: Prepending an HTML comment. In this operation, the
4,096 bytes of an HTML comment consisting of an arbitrary
string are prepended to the Content of a given request.
We designed the M9 based on the fact that the content-
filtering logic of the XE application checks for the existence
of keywords indicating JS scripts or HTML documents in the
heading part of an uploaded file. For example, XE searched
<html> or <script> in the heading part but not in the
entire file. By leveraging this information, M9 prepends the
HTML comment tags (i.e., <!--, -->) to the contents of the
original HTML seed file, thus bypassing the content-filtering
logic. At the same time, because the comment start tags exist
in its first 512 bytes, the Chrome and Firefox browsers infer
the mutated file to be an executable HTML file. This operation
aims to execute an HTML-type file, thus making the operation
applicable to both HTML and XHTML seed files.

M10: Changing a file extension to an uncommon extension.
M10 changes the Extension of a given request to an
uncommon extension (e.g., fuse). Similar to M4 and M7,
this operation is designed to bypass blacklist-based extension
filtering checks. We observed that the filtering logic of several
web applications does not perform the content-filtering logic
for uncommon extensions because they do not know what
to check for such uncommon file types. We note that CE
of files mutated by M10 depends on whether a web server
performs content-sniffing [2]. In the default Apache setting,
Apache does not perform content-sniffing for files with uncom-
mon extensions. This invites a browser to infer the file type
based on its content by performing content-sniffing. When the
browser determines its MIME type to be HTML, the uploaded

file becomes executable. This is a classic MIME confusion
attack [12]. M10 is suitable for HTML and JS seed files.

M11: Converting a file extension to uppercase. M11 per-
forms an operation that changes the second character in the
Extension of a given request to uppercase. This operation
exploits the discrepancies in checking file extensions between
the file filtering logic of a target web application and the
type inference module of an Apache server. Consider a target
application that allows the upload of an HTML file with
the hTml extension due to buggy content-filter logic. Now,
when a victim accesses this uploaded file, the Apache web
server inspects its file extension in the case-insensitive manner
and specifies the Content-Type header to be the inferred
type of text/html. The victim’s browser executes this file
as HTML because of its content header. That is, the target
application thinks this file is not an HTML file, but its web
server automatically injects the inferred text/html MIME
type, resulting in CE. M11 is applicable to all seeds.

M12: Prepending a file extension. This operation prepends
a given extension to the predefined 14 extensions, including
png, jpg, and zip, to the Extension of a given seed re-
quest. For example, M12 mutates the extension of the uploaded
file from .php to .gzip.php by prepending the gzip to
the Extension. Many applications assess the MIME type of
an uploaded file based on its extension to filter out suspicious
file types. We designed M12 to deceive the flawed content-
filtering logic that infers the MIME type of the file by checking
the extension (gzip) prepended to the Extension, not the
original Extension (php). M12 is applicable to all seeds.

M13: Appending a resource header. M13 appends the eight
bytes header of a predefined JPG file to the end of the
Content of a given upload request. As a result, the uploaded
file has two file signatures: one from the original seed file and
the other from the predefined JPG file. The goal is to mutate
an upload request so that the uploaded file causes a target
application to fail to infer the correct MIME type of the file.
We observed that the finfo_file built-in function returns
the two MIME types for this malformed file. M13 abuses this
misinterpretation by creating a file with more than one file
signature. This operation is applicable to all file types.

VII. EVALUATION

We evaluated FUSE for finding U(E)FU vulnerabilities
(§VII-B) and compared it against state-of-the-art penetration
testing tools (§VII-C). We also analyzed the efficacy of the
exercised mutation operations (§VII-D). Finally, we present
case studies of the discovered vulnerabilities (§VII-E).

A. Experimental Setup

We ran a series of experiments on 33 PHP web appli-
cations listed in the first column of Table II. We selected
our benchmark applications that support the upload function-
ality from the three sources: (1) the evaluation set covered
by NAVEX [26]; (2) popular CMS applications listed by
W3Techs [20]; and (3) highly rated CMS projects in PHP with
more than 500 stars on GitHub [8] that report no errors in their
installations. According to the W3Techs statistics [20], these
are applications with the upload functionality used by at least
5,600 sites [20] or have received large attention from GitHub

9

Application
(Version)

Total # of
Attempted Requests

CE PCE .htaccess
Uploaded

Monitor
Enabled

Execution
TimePHP HTML XHTML PHP JS

Bludit(3.8.1) 117,267 0 1 0 3 0 7 3 37m 34s
Textpattern (4.7.3) 11 1 1 1 0 1 7 7 0s
Joomla (3.9.3) 121,117 0 0 0 28 2 7 3 47m 20s
Drupal (8.6.9) 120,849 0 0 0 18 0 7 7 70m 39s
CMSMadeSimple (2.2.9.1) 24,986 2 1 1 14 1 7 7 22m 53s
Pagekit (1.0.16) 107,609 0 2 1 5 2 7 7 36m 59s
Backdrop (1.12.1) 26,930 0 0 0 34 1 7 7 17m 16s
CMSimple (4.7.7) 102,168 0 1 0 5 3 7 7 19m 3s
WordPress (5.0.3) 98,730 0 4 4 43 8 7 7 15m 26s
Concrete5 (8.4.4) 96,638 0 3 2 6 4 7 7 38m 59s
Composr (10.0.22) 60 0 1 1 50 1 7 3 1s
OctoberCMS‡ (1.0.446) 94,294 0 1 0 5 1 7 3 14m 39s
phpBB3 (3.2.5) 119,796 0 0 0 †21 (21) 0 7 3 7m 42s
Elgg (2.3.10) 11 1 1 1 0 1 7 3 0s
Microweber (1.1.2.1) 47,419 26 39 17 156 13 7 7 25m 44s
XE (1.11.2) 105,757 0 †2 (1) †2 (1) 1 1 7 7 325m 51s
SilverStripe (4.3.0) 87,312 0 2 2 8 5 7 7 100m 22s
ZenCart (1.5.6a) 121,827 0 1 1 1 1 7 3 24m 34s
ECCube3 (3.0.17) 5 1 1 1 0 1 3 7 1s
GetSimpleCMS (3.3.15) 52,564 0 9 1 15 12 7 7 16m 26s
DotPlant2 (N/A) 5 1 1 1 0 1 3 7 1s
MyBB (1.8.19) 12,142 0 †1 (1) 0 †33 (33) †4 (4) 7 3 2m 58s
HotCRP¶ (2.102) 94,034 0 0 0 †3 (3) 0 7 7 257m 18s
Subrion (4.2.1) 60 1 1 1 48 1 7 7 4s
SymphonyCMS (2.7.7) 24,980 1 1 1 14 1 3 7 4m 18s
AnchorCMS (0.12.7) 108,292 0 0 0 4 1 7 7 3m 28s
WeBid (1.2.2) 85,317 0 0 0 6 0 7 7 19m 42s
Collabtive (3.1) 102,097 0 0 0 1 1 7 7 184m 20s
OsCommerce2 (2.3.4.1) 6,825 1 11 1 49 1 3 7 10m 31s
X2engine (6.9) 71,021 0 0 0 14 0 7 3 71m 38s
ClipperCMS (1.3.3) 63,259 0 1 1 7 1 3 7 18m 41s
Monstra (3.0.4) 16,982 2 12 1 15 14 7 7 13m 56s
Codiad (2.8.4) 5 1 1 1 0 1 3 7 0s

† Includes false positives. False positive numbers
are specified in parentheses.

‡ Tested in the PHP 7.0 environment.
¶ Tested in the PHP 7.1 environment.

TABLE II: Evaluation of FUSE.

developers. We intentionally excluded applications with no
upload support. Each PHP application differs in its implemen-
tation of content-filtering logic. This trend helps test the broad
applicability of FUSE in finding U(E)FU vulnerabilities.

Environment. We ran FUSE on a Linux workstation with an
Intel core i7-7700 (3.60 GHz) CPU with 32 GB of RAM.
For the target system with our benchmarks, we used a Linux
workstation with an Intel core i7-8700 (3.20 GHz) CPU with
32 GB of RAM. We installed Ubuntu 16.04, Apache 2.4,
and PHP 5.6 at the target system under testing. For some
applications that require PHP versions above 5.6, we used a
separate Docker container with PHP 7.0 and 7.1. For each PHP
interpreter, we deliberately enabled PHP short tags because
those short tags are supported by default in PHP versions below
5.3, accounting for 15.1% of web server settings among the
Alexa top 10 million websites using PHP [22].

B. Discovering UFU and UEFU Vulnerabilities

Table II summarizes the bugs that FUSE found. The
second column describes the total number of upload requests
that FUSE attempted. When a chain contributes to triggering
UFU or UEFU vulnerabilities, FUSE purges other chains that
include this successful chain (§V-B). This mechanism prunes
unnecessary upload requests triggering the same vulnerability

that a shorter mutation chain has already invoked. Thus, the
number of total requests varies with the number of chains
causing successful uploads. Note that the total number of
attempted requests for ECCube3, DotPlant2, and Codiad is
five since they allow the upload of the four seeds and the
.htaccess file, which indicates the absence of content-
filtering checks.

The CE column in Table II presents the number of requests
that succeeded in finding UEFU vulnerabilities by uploading
variants of PHP, HTML, and XHTML. Any positive number in
those columns indicates that the corresponding application has
UEFU vulnerabilities. For instance, in the case of Microweber,
FUSE generated 26 distinctive upload requests, each of which
was able to drop an executable PHP file at a target web server.
Furthermore, the upload attacker is able to invoke these PHP
files with URLs, which enables remote CE.

The PCE column in Table II represents the number of up-
load requests that succeed in uploading potentially executable
PHP and JS files. The eighth column indicates whether an
application allows the uploading of a .htaccess file. If an
application allows a .htaccess to upload, we mark it with
a 3, and 7 otherwise. The ninth column shows whether an
application requires the File Monitor. If an application uses
the File Monitor, we mark it with a 3, and 7 otherwise. 24

10

applications did not require the presence of the File Monitor.
To investigate the feasibility of not applying the File Monitor,
we implemented a configuration file to specify the file upload
oracle for each application. If placing the File Monitor at
the target server for testing is viable, the configuration task
becomes much easier, thus rendering FUSE as a gray-box
testing tool. The last column shows the execution time for
FUSE to finish a penetration testing campaign.

UEFU vulnerabilities. FUSE reported 30 exploitable UEFU
vulnerabilities in 23 applications with 176 distinct upload
request payloads. The 23 vulnerable applications include pop-
ular PHP applications, such as WordPress, Concrete5, Os-
Commerce2, and ZenCart. The estimated number of websites
deploying these five applications ranges from 5,600 to three
million sites [20].

Instead of reporting each of the 176 distinct requests as
one vulnerability, we conservatively counted distinct causes of
UEFU vulnerabilities. We leveraged five key objectives (§VI)
of mutation operations because each objective aims to exploit
a different vulnerability cause. For a list of chains, each of
which contributes to producing one successful upload request
among the 176 requests, we counted multiple chains with
the same mutation objective as one vulnerability. That is, we
counted groups of chains with distinct mutation objectives. For
example, consider the case that FUSE reports four mutation
chains, each of which corresponds to a successful upload
request:

{M1,M2
#2

,M3
#5

, M4M9
#2+#3

}

We count them as three vulnerabilities because the M1 and M2
operations share the same root cause (objective #2) although
their upload requests and applied mutations completely differ.
The M4M9 chain is a result of two mutation operations with a
root cause that is due to developers committing two mistakes
(objectives #2 and #3) together. This methodology helps avoid
overcounting vulnerabilities that share the same root cause.

We reported all the 30 UEFU vulnerabilities to the cor-
responding vendors and obtained 15 CVEs from nine ap-
plications. Eight vulnerabilities from five vendors have been
patched. Five vulnerabilities from four vendors, including
WordPress, confirmed that they would address the reported
vulnerabilities. 15 bugs are awaiting confirmation from the
corresponding vendors. Two vendors declined to patch the
reported bugs.

Among the 30 UEFU vulnerabilities, 14 bugs required
an administrator-level privilege for their exploitation. We
emphasize that for nine of these 14 UEFU vulnerabilities,
the implemented content-filtering checks forbid the upload of
our seed files for application administrators. Therefore, these
UEFU vulnerabilities exhibit mistakes of developers, causing
unintended remote CE. Note that a mature web application
often limits the upload capability even for their application
administrators, thus enforcing the upload of admissible files
only, because web host and web application administrators
can be different. For instance, a web hosting administrator
often separates application administrators from the host man-
agement, such as uploading files via SFTP or SCP, and only
provides them with access to specified hosting apps [33]. It is

known that malicious application administrators have exploited
UEFU vulnerabilities to upload web shells to gain access to
the host resources [33].

We double-checked whether every uploaded file caused
remote CE. Of the 176 upload request payloads, one upload
request targeting MyBB and two upload requests for XE were
false positives (1.7%). In the case of one MyBB false positive,
MyBB appends random tokens in the URL leading to the
uploaded file. FUSE is able to retrieve this URL with the help
of the File Monitor. In the benchmarks, other applications use
randomized URLs and provide these URLs in a web page that
an upload attacker can reference and exploit. However, MyBB
provides no such page of leaking this randomized URL, thus
leaving only one option for the attacker: to guess the URL.
Thus, we labeled it as a false positive. The reported URL
indeed invokes U(E)FU vulnerabilities; however, this does not
account for the fact that the URL is difficult for the attacker
to guess. The two false positives for XE involved uploading
an HTML and an XHTML file after applying M6. We found
that XE removes the extension (.eml) of an uploaded file,
thereby rendering the web server unable to infer the MIME
type when setting the Content-Type header to the response.
This enforces a browser fetching this resource to infer the
fetched resource type via content-sniffing. We tested these
uploaded files with Chrome, Firefox and Internet Explorer.
Every browser rendered them as text files, thus resulting
in no execution. Conducting this additional verification of
running Internet Explorer on such uploaded files can eliminate
these two false positives. However, introducing this additional
step makes our tool to depend on various headless browser
execution environments. Validating Content-Type headers
(§V-D) without this step meets our goal with few false posi-
tives.

UFU vulnerabilities. FUSE found 55 UFU vulnerabilities
from 30 applications with 630 distinct upload request pay-
loads. Among the 630 requests, which excluded 176 requests
that trigger UEFU vulnerabilities from the total of 806 suc-
cessful upload requests, we counted UFU vulnerabilities by
applying the same counting standard outlined above. Because
we excluded upload requests that trigger UEFU vulnerabilities,
each one of the 55 UFU vulnerabilities cannot become a UEFU
vulnerability. Table II shows that 30 applications (91%) in
our benchmarks have at least one UFU vulnerability posing
a risk of PCE. This demonstrates that their emplaced content-
filtering logic is unable to prevent an attacker from uploading
executable PHP and JS files.

We verified whether all of the uploaded PHP and JS files
were indeed executable. We placed our own webpage with an
LFI vulnerability at the web server and conducted LFI attacks
against it to execute each uploaded PHP file. For each JS
file, we made another webpage including the script tag with a
source URL that leads to the uploaded JS file. We then visited
this page to check the execution of the JS files with Chrome,
Firefox, and Internet Explorer browsers.

Of the 630 upload requests in the PCE column, 61 upload
requests targeting the HotCRP (0.4%), phpBB3 (3.0%), and
MyBB (5.4%) applications were false positives (8.8%). For
HotCRP, three reported requests were false positives. Since
HotCRP stores the uploaded file in its database instead of
using a file system, we could not perform the LFI attack.

11

Vulnerability (Risk) FUSE fuxploider UploadScanner

UEFU (PHP CE) 12 7 5
UEFU (HTML CE) 23 N/A 14
UFU (JS PCE) 26 N/A 21

N/A: not applicable for HTML and JS files

TABLE III: The number of unique U(E)FU vulnerabilities
found from the benchmarks using three different testing tools.

This means that it is feasible to upload an executable PHP
file; however, we do not have a sink method to trigger its
execution. Both phpBB3 and MyBB use random tokens in the
URLs of uploaded files, which renders an attacker unable to
guess these URLs.

We observed that ECCube3, DotPlant2, SymphonyCMS,
OsCommerce2, ClipperCMS, and Codiad allow the upload of
a .htaccess file, which entails a security-critical conse-
quence. Now, the adversary is capable of inducing an Apache
web server to invoke a PHP interpreter for any file extension,
which allows the PHP interpreter to execute any uploaded file.
For instance, the adversary is able to upload 49 unique PHP
variants for OsCommerce2, as Table II shows. These uploaded
files impose the risk of PCE. However, the adversary can
reprogram a .htaccess file, and make a PHP interpreter to
be invoked for each of the 49 PHP variants, which enables
CE. Thus, we reported all findings regarding .htaccess
uploading bugs to the vendors and obtained two CVEs from
the OsCommerce2 and ClipperCMS.

Performance. The execution times of FUSE vary with the
target applications because FUSE invokes application-specific
upload functionality. Elgg, ECCube3, DotPlant2, and Codiad
took less than two seconds because they allowed the upload of
all the four seed files. For such cases, FUSE does not attempt
to find more complicated examples because they implement
no content-filtering checks (§V-B). On the other hand, FUSE
took more than 100 minutes to complete a penetration test-
ing campaign on XE, SilverStripe, HotCRP, and Collabtive.
These delays emanated from their internal implementation of
handling concurrent sessions associated with requests. They
used the PHP session built-in methods that often hang upon
locking a session file until on-going requests unlock the session
file [13]. That is, these applications are not designed to handle
bulk requests from one session. Other applications implement
their own session handling methods or explicitly unlock the
session file before generating a response completes.

C. Comparison against State-of-the-Art Penetration Testing
Tools

We compared FUSE against two state-of-the-art tools:
fuxploider [7], and UploadScanner [19]. Fuxploider is an open-
source upload vulnerability scanning tool and UploadScan-
ner [19] is an extension for Burp Suite Pro, a commercial
platform for web application security testing. We selected
these tools because they are penetration testing tools available
from GitHub and are specifically designed to find U(E)FU
vulnerabilities.

We ran both the scanners on the same benchmarks and
counted vulnerabilities by applying the same counting stan-
dard aforementioned. We manually examined each successful

exploit and its cause from the reported bugs. Table III sum-
marizes the vulnerabilities found by each tool. Note that while
fuxploider only attempts the upload of PHP files, UploadScan-
ner uploads PHP and HTML files to trigger CE as well as JS
files to trigger PCE. For fair comparison, we compared the
performance of FUSE for each seed file type.

PHP CE. With regard to uploading PHP files, FUSE found
more than twice as many vulnerabilities as fuxploider and
UploadScanner found. Fuxploider missed five UEFU vulner-
abilities from five applications due to several implementation
issues. For instance, the tool generates an execution error when
a target application generates an upload response with the
content-encoding header to be gzip. Fuxploider is also
unable to retrieve randomized URLs for checking the presence
of uploaded files, which the File Monitor of FUSE is able to
support.

FUSE also found seven more UEFU bugs than Upload-
Scanner. Four UEFU bugs stem from the capability of FUSE
considering diverse PHP-style extensions, including pht and
php7, when applying M4. However, UploadScanner only tries
two extensions for penetration testing: php5 and phtml, thus
failing to find those four bugs. The remaining three UEFU bugs
are due to the incapability of retrieving randomized URLs
and case-sensitive comparison for matching file names. Up-
loadScanner only computes an upload URL from a predefined
file name. When a target application changes this file name
to lowercase, UploadScanner becomes unable to check the
successful upload of this file, thus producing a false negative.

HTML CE. For UEFU bugs involving HTML files, FUSE
found nine more bugs than UploadScanner. Seven of the nine
bugs were due to the File Monitor module and the aforemen-
tioned miscellaneous implementation issues of UploadScanner.
The remaining two bugs were found by the M9 and M13
operations. For example, FUSE found a UEFU bug from
WordPress by trying the combination of M4 and M13, while
UploadScanner was unable to identify the bug.

JS PCE. Regarding UFU bugs with the JS seed, there are
19 common bugs between FUSE and UploadScanner. In par-
ticular, UploadScanner missed seven bugs due to the same
aforementioned issues and the inability of leveraging the File
Monitor. From two applications, FUSE missed two bugs that
involves injecting JS payloads into the GIF metadata because
FUSE did not apply M2 to JS files. These false negatives are
easily fixable by revising the conflict rules among the mutation
operations.

D. Effectiveness of Mutations

Operation significance. Figure 7 illustrates the frequency
of each mutation. Each histogram corresponds to a muta-
tion operation, and its height represents the total number of
successful upload requests that have used this mutation. We
observed that every mutation was used to generate at least
five upload requests that triggered UFU vulnerabilities. This
demonstrates that every mutation is indispensable. Note that
the M4 operation significantly outperformed other operations
by achieving the highest frequency. Recall that applying the
M4 operation means producing an upload request for each
extension, resulting in 19 different requests, each attempting
to forge its own extensions. The effectiveness of the M4

12

0

30

60

90

120

150

180

210

240

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13

of

 R
eq

ue
st

Mutation Operation

XHTML
PHP
JS
HTML

540

510
1

Fig. 7: The frequency of successful mutation operations in
triggering U(E)FU vulnerabilities.

0 50 100 150 200 250 300 350 400 450

3

2

1

0

of Request

C
h
a
in

 L
e
n
g
th

Fig. 8: The chain length frequency of successful chains.

operation also indicates that many applications implement
buggy content-filtering checks based on file extensions.

Chain length. We also measured the frequency of each chain
length that triggered U(E)FU vulnerabilities. As Figure 8
shows, FUSE reported 45, 419, 314, and 28 upload requests
with chain lengths of zero, one, two, and three, respectively.

A chain length of zero indicates that an upload request
with no mutation triggers a UFU vulnerability. We observed
that FUSE found many bugs by applying a single mutation,
which demonstrates that each mutation is quite effective at
bypassing content-filtering checks. We also observed that 28
upload requests that triggered UFU vulnerabilities resulted
from applying a chain with a length of three. Considering
that FUSE coordinates the shortest chains to trigger UFU
vulnerabilities, the existence of those long chains implies the
difficulty of manually finding these bugs.

Vulnerability causes. Table IV presents the number of vul-
nerabilities that FUSE found after applying the mutations with
their respective mutation objectives. The column for the first
objective shows that FUSE found 14 UFU and 13 UEFU
vulnerabilities, including four CVEs resulting from the absence
of any content-filtering checks. The mutations, designed for the
third objective, are the most effective, contributing to finding
21 UFU and 14 UEFU vulnerabilities, including 11 CVEs.
FUSE reports these objectives along with actual payload
exploits that help users understand the root causes of the
discovered U(E)FU vulnerabilities.

Constraint consistency. Note that the 13 mutation operations
are designed to preserve the execution semantic of the seed
files. However, when target execution environments, including

#1 #2 #3 #4 #5 #2+#3 #2+#3+#4

UEFU (CVE) 13 (4) 0 14 (11) 1 0 2 0
UFU \ UEFU 14 5 21 5 5 4 1

Total 27 5 35 6 5 6 1

TABLE IV: Causes of the identified U(E)FU vulnerabilities.

web browsers and PHP interpreters, change their execution
constraints due to their software updates, these mutation oper-
ations should reflect such changes.

We tested how execution constraints remain consistent
across different versions of browsers and PHP interpreters.
Specifically, we checked whether an executable file mutated
from one seed file remains executable across different ex-
ecution environments. For the PHP, HTML, XHTML, and
JS seed files, we applied all combination chains of the 13
mutations of which the length is less than three, thus preparing
a set of mutated seed files. We then tested whether they
were executable across different versions of browsers and
PHP interpreters. For this experiment, we deployed Chrome
(versions 53, 61, 69, and 77), Firefox (versions 49, 52, 62,
and 69), Internet Explorer (versions 9, 10, and 11) and Safari
(versions 10, 11, 12, and 13) for checking the execution
constraints of JS and (X)HTML variants. For each browser, we
picked the stable version released at every October in the last
four years (2016-2019). We also tested PHP variants against
different versions of PHP interpreters and Apache mod_php
modules enabling the PHP short tags (versions 5.2, 5.6, 7.0,
7.1, 7.2, and 7.3).

We observed that all executable JS and (X)HTML variants
remain consistent across different versions of the browsers
except for one case. It denotes that the extracted constraints
do not change much across the different versions of these
browsers, requiring no change in our mutations as these
software evolve. The one anomalous case arose from Internet
Explorer 9. A JS file mutated by M2 is executable by Internet
Explorer 10 and 11. However, Internet Explorer 9 treats the
JS payload in the metadata section of this image/JS file as an
unterminated comment, resulting in no execution. However,
this JS file is executable by every version of Chrome, Firefox,
and Safari, indicating that the JS file will be executable when
a victim uses Chrome, Firefox, or Safari.

Note that all mutated (X)HTML and JS files remain
consistent across the four different versions of Safari, which
we did not analyze when designing the 13 mutations. This
observation demonstrates that the extracted constraints are
browser-agnostic in that no change is required to generate
upload requests that would drop Safari-executable (X)HTML
and JS files.

The execution of PHP files with different PHP-style exten-
sions varies across PHP versions. For instance, the direction
invocation and execution of a PHP file with phar via URL
is only feasible in PHP 7.2 and 7.3. Besides the differences
stemming from extensions, the execution results of the mutated
PHP files causing PCE are consistent across the different PHP
interpreters.

We concluded that browser updates have little impact on
the capability of FUSE generating executable upload files. As
for PHP interpreter updates, FUSE may need to cover more

13

PHP-style extensions with interpreter updates over time.

E. Case Studies

In the following, we investigate the findings of FUSE and
how its mutation operations contributed towards uncovering
these bugs. We specifically focus on the UEFU bugs from
Concrete5, Joomla, and Microweber.

Concrete5. Figure 9 shows an uploaded SVG file that invokes
CVE-2018-19146 in Concrete5. This uploaded file is a result
of the mutated upload request, which is the result of applying
the M8 operation to the HTML seed request. Concrete5 allows
users to upload images and considers an SVG file as an
image, as Figure 10 shows. However, the whitelist allows the
adversary to upload SVG files with the HTML code embedded
with an arbitrary JS script, which causes CE.

1 <svg>
2 <html>
3 <head><title>test</title></head>
4 <body><script>alert('xss');</script></body>
5 </html>
6 </svg>

Fig. 9: A simplified SVG file with injected HTML code
(M8.svg).

1 'upload' => [
2 'extensions' =>
3 '*.ppt;*.pptx;*.kml;*.xml;*.svg;*.webm;'.
4 ...
5]

Fig. 10: The whitelist of acceptable upload file extensions in
Concrete5.

Joomla. Joomla implements strict content-filtering logic that
does not permit the upload of any file with PHP scripts,
thus preventing PCE. FUSE generated an uploading request
that successfully dropped an executable PHP, as shown in
Figure 11. This uploaded file is the result of applying the
M1, M4, and M5 operations together. Leaving out any of
these mutation operations results in not bypassing content-
filtering checks in Joomla. This case demonstrates that FUSE
is capable of generating a complicated input that triggers
erroneous behaviors in a target web application. It also shows
that applying a single mutation is not enough to find a UFU
vulnerability.

1 \x89\x0d\x0a\x1a\x0a\x00\x00\x00\x0d
2 \x49\x48... #1024 bytes of PNG binary
3 <?
4 $sn = pack('H*', dechex(2534024256545858215*2));
5 echo $sn;
6 # $sn set to "FUSE_GEN" after the Ln #4.
7 ...
8 ?>

Fig. 11: A simplified PHP exploit posing a PCE risk
(M1PNG_M4GIF_M5.gif) against Joomla.

Microweber. Figure 12 shows the variant of a seed PHP file
after applying the M4 and M13 operations together. Microwe-
ber internally manages a blacklist of file extensions and MIME
types. Thus, from each upload request, Microweber extracts a

file extension and infers the MIME type, and then matches it
to the blacklist. This case abuses the pht extension, which is
not on the blacklist, and changes the inferred MIME type to
be application/octet-stream by appending the JPG
header to its content. Both M4 and M13 are essential to trigger
this UEFU vulnerability, which causes CE.

1 <?php
2 $sn = pack('H*', dechex(2534024256545858215*2));
3 echo $sn;
4 ?>
5 \xff\xd8\xff\xee\x00\x10JF # JPG file signature

Fig. 12: A simplified PHP exploit (M4PHT_M13.pht) against
Microweber.

VIII. LIMITATION AND DISCUSSION

We presented the five objectives that capture common de-
veloper mistakes and implemented 13 mutations. We acknowl-
edge that there exist other mutation methods that achieve the
same objectives. However, the presented objectives are general
enough for users to suggest their own mutations that achieves
the same goal. For instance, the second mutation objective is
to cause incorrect type inferences by manipulating Content.
We triggered incorrect type inferences for the finfo_file
built-in function. However, a user can implement a different
mutation that would bring the same result and integrate it with
FUSE to decrease possible false negatives.

We manually examined the execution constraints of the
browsers and PHP interpreters (§VI) and reflected those con-
straints when designing the 13 mutations. Therefore, when
these constraints embedded in these software change due to
their updates, the mutations should also be modified to reflect
these changes (§VII-D). The automatic extraction of these
execution constraints [30] and the reflection of such constraints
on mutations are interesting technical challenges that we leave
to future research.

We observed that the most common mistake causing UFU
vulnerabilities was using an incomplete blacklist or flawed
whitelist of extensions. This trend stems from the ignorance of
developers with respect to file types posing a low security risk.
For example, it requires domain-specific expertise to know that
SVG and EML files are able to execute embedded scripts.
Furthermore, file extensions embedded in upload requests are
usually under the control of upload attackers. Thus, inferring
upload file types based on user-provided extensions opens a
door for further attacks. Developers should check the actual
content of a given file to determine its admissibility [18].

Another vulnerability source was due to smart browsers
performing content-sniffing. Assume that an attacker attempts
the upload of an attack file that a target application ac-
cepts. In some cases, the Apache server hosting the appli-
cation is unable to infer the uploaded file type, thus placing
no Content-Type header in the response to a request
for this file. This invites a browser to infer the file type
based on its content by performing content-sniffing, which
the upload attacker exploits. For uploaded files of which
a web server cannot infer their types, we recommend set-
ting the X-Content-Type-Options header to enable
nosniff, which prevents browsers from performing content-
sniffing [11]. Adjusting an Apache configuration file to setup

14

the default value for this header blocks the attack. Also, web
applications can specify the header with the specific file type
that the application inferred, thus preventing the attack.

IX. RELATED WORK

MIME confusion attack. Barth et al. [30] proposed content-
sniffing XSS attacks, which targets discrepancies between a
web browser and the content file filtering logic of a target
website. They demonstrated that a stored XSS is possible
by exploiting uploaded PDF files. However, they covered a
subset of UEFU vulnerabilities that exploit the content-sniffing
algorithms of major browsers. FUSE considered more diverse
attack vectors that enable CE via file uploads, such as placing
attack code in SVG files and uploading images that contain
attack PHP code. Jana et al. [41] presented chameleon attacks
that exploit discrepancies in file type inference heuristics
between the malware detector in a remote environment and
file parsing algorithms in the actual host application.

Moreover, there have been numerous attempts to find
content-sniffing XSS attacks by leveraging PNG or PDF
chameleons [9, 24, 52]. Our framework is inspired by the
approaches of these works, but our goal is to evade the file
filtering logic in CMS web applications that rarely parses
files. Also, we considered many attack vectors in our mutation
operations that can trigger U(E)FU vulnerabilities in addition
to the chameleon attack.

Finding web vulnerabilities. Previous research proposed
static analyses in identifying data-flow vulnerabilities, includ-
ing XSS and SQL injection [43, 49, 63, 65]. Bakes et al. [28]
presented a scalable framework for computing code prop-
erty graphs [66] from PHP web applications. The authors
leveraged graph traversal on the computed graphs to iden-
tify XSS and SQLI vulnerabilities. Doupé et al. [35] and
Payet et al. [55] identified EAR vulnerabilities, which are
control-flow bugs that allow continuous execution after redi-
rection. Lee et al. [46] manually analyzed progressive web
applications in terms of their security and privacy and reported
new ways of abusing unique progressive web features.

Saner [29] validates the safety of custom sanitization rou-
tines. It statically approximates string values that a variable can
hold at certain program points with an automata instance and
then checks the feasibility of accepting escaping characters.
For the subsequent step, it then dynamically injects attack
strings in a pre-defined test suite to remove false positives. This
approach is clearly applicable to finding U(E)FU vulnerabil-
ities. However, their method requires modeling diverse PHP
built-in functions as transducers, which requires non-trivial
engineering efforts.

There are several works on applying symbolic execution to
PHP web applications [26, 40, 59, 62, 65]. Huang et al. [40]
conducted symbolic execution to discover UEFU vulnerabil-
ities allowing the upload of PHP files. They modeled PHP
built-in functions regarding file writing functionality (i.e.,
move_uploaded_file or file_put_content) as a
vulnerable sink, and they devised a reachability constraint to
guarantee that such functions are reachable from a tainted
source (i.e., $_FILES). They also designed an extension
constraint to ensure that the uploaded PHP file indeed has
the PHP-style file extensions. Thus, they aimed to check

whether an arbitrary file can be uploaded with the PHP-style
file extensions. They evaluated their tool on 9,160 WordPress
plugins and found only three vulnerabilities. On the other hand,
FUSE takes into account multiple mutation vectors other than
the Extension, such as Content-Type and Content,
which should be considered to find sophisticated U(E)FU
vulnerabilities from 33 applications.

NAVEX [26] introduced an automatic exploit generation
framework. It combines static and dynamic analyses to identify
the paths from sources to vulnerable sinks while consider-
ing sanitization filters and generates exploit strings by solv-
ing symbolic constraints. Son and Shmatikov [59] presented
SAFERPHP for discovering semantic bugs by leveraging taint
analysis and symbolic execution. THAPS [42] is a web scan-
ner that applies symbolic execution to simulate all possible
execution paths and carry out a taint analysis as a post-
process for finding defects. Sun et al. [62] conducted symbolic
execution with taint analysis to identify logical vulnerabilities
in e-commerce applications. Their tool explores critical logic
states, which include payment status, across checkout nodes.

X. CONCLUSION

We propose FUSE, a penetration testing tool designed to
find U(E)FU vulnerabilities. We present 13 mutation opera-
tions that transform executable seed files to bypass content-
filtering checks while remaining executable in target execution
environments. We evaluated FUSE on 33 real-world PHP
applications. FUSE found 30 UEFU vulnerabilities including
15 CVEs, which demonstrates the practical utility of FUSE in
finding code execution bugs via file uploads.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their concrete feedback. This work was supported by
National Research Foundation of Korea (NRF) Grant No.:
2017073934.

REFERENCES

[1] “Apache HTTP server tutorial: .htaccess,” https://httpd.apache.org/docs/
2.2/en/howto/htaccess.html.

[2] “Apache module mod_mime_magic,” http://httpd.apache.org/docs/2.4/
mod/mod_mime_magic.html.

[3] “Arachni web application security scanner framework,” http://www.
arachni-scanner.com/.

[4] “Broken access control,” https://www.owasp.org/index.php/Broken_
Access_Control.

[5] “Burp suite - cybersecurity software from portswigger,” https://
portswigger.net/burp.

[6] “Email (electronic mail format),” https://www.loc.gov/preservation/
digital/formats/fdd/fdd000388.shtml.

[7] “fuxploider,” https://github.com/almandin/fuxploider.
[8] “Github PHP CMS project,” https://github.com/topics/php?o=desc&q=

cms&s=stars.
[9] “The hazards of MIME sniffing,” https://adblockplus.org/blog/

the-hazards-of-mime-sniffing.
[10] “Joomla,” https://www.joomla.org/.
[11] “Mdn web docs: X-content-type-options,” https://developer.mozilla.org/

en-US/docs/Web/HTTP/Headers/X-Content-Type-Options.
[12] “Mitigating mime confusion attacks in firefox,” https://blog.mozilla.org/

security/2016/08/26/mitigating-mime-confusion-attacks-in-firefox/.

15

https://httpd.apache.org/docs/2.2/en/howto/htaccess.html
https://httpd.apache.org/docs/2.2/en/howto/htaccess.html
http://httpd.apache.org/docs/2.4/mod/mod_mime_magic.html
http://httpd.apache.org/docs/2.4/mod/mod_mime_magic.html
http://www.arachni-scanner.com/
http://www.arachni-scanner.com/
https://www.owasp.org/index.php/Broken_Access_Control
https://www.owasp.org/index.php/Broken_Access_Control
https://portswigger.net/burp
https://portswigger.net/burp
https://www.loc.gov/preservation/digital/formats/fdd/fdd000388.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000388.shtml
https://github.com/almandin/fuxploider
https://github.com/topics/php?o=desc&q=cms&s=stars
https://github.com/topics/php?o=desc&q=cms&s=stars
https://adblockplus.org/blog/the-hazards-of-mime-sniffing
https://adblockplus.org/blog/the-hazards-of-mime-sniffing
https://www.joomla.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options
https://blog.mozilla.org/security/2016/08/26/mitigating-mime-confusion-attacks-in-firefox/
https://blog.mozilla.org/security/2016/08/26/mitigating-mime-confusion-attacks-in-firefox/

[13] “PHP session locking: How to prevent ses-
sions blocking in PHP requests,” https://ma.ttias.be/
php-session-locking-prevent-sessions-blocking-in-requests/.

[14] “SQLmap: automatic sql injection and database takeover tool,” http:
//sqlmap.org/.

[15] “SVG file format reference,” https://www.w3.org/TR/SVG2/intro.html#
AboutSVG.

[16] “Testing for local file inclusion,” https://www.owasp.org/index.php/
Testing_for_Local_File_Inclusion.

[17] “Testing for stored cross site scripting,” https://www.owasp.org/index.
php/Testing_for_Stored_Cross_site_scripting_(OTG-INPVAL-002).

[18] “Unrestricted file upload,” https://www.owasp.org/index.php/
Unrestricted_File_Upload.

[19] “Uploadscanner burp extension,” https://github.com/PortSwigger/
upload-scanner.

[20] “Usage of content management systems for websites,” https://w3techs.
com/technologies/overview/content_management/all.

[21] “Usage of server-side programming languages for websites,” https://
w3techs.com/technologies/overview/programming_language/all.

[22] “Usage statistics and market share of PHP for websites,” https://
w3techs.com/technologies/details/pl-php/all/all.

[23] “Wordpress,” https://wordpress.org/.
[24] “XSS-exploit door microsoft betiteld als ‘by design’,” https://tweakers.

net/nieuws/47643/xss-exploit-door-microsoft-betiteld-als-by-design.
html.

[25] “ZAP: The OWASP zed attack proxy,” https://www.zaproxy.org/.
[26] A. Alhuzali, R. Gjomemo, B. Eshete, and V. Venkatakrishnan,

“NAVEX: precise and scalable exploit generation for dynamic web
applications,” in Proceedings of the USENIX Security Symposium, 2018,
pp. 377–392.

[27] D. Babic, L. Martignoni, S. McCamant, and D. Song, “Statically-
directed dynamic automated test generation,” in Proceedings of the
International Symposium on Software Testing and Analysis, 2011, pp.
12–22.

[28] M. Backes, K. Rieck, M. Skoruppa, B. Stock, and F. Yamaguchi,
“Efficient and flexible discovery of PHP application vulnerabilities,” in
Proceedings of the IEEE European Symposium on Security and Privacy,
2017, pp. 334–349.

[29] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna, “Saner: Composing static and dynamic
analysis to validate sanitization in web applications,” in Proceedings
of the IEEE Symposium on Security and Privacy, 2008, pp. 387–401.

[30] A. Barth, J. Caballero, and D. Song, “Secure content sniffing for
web browsers, or how to stop papers from reviewing themselves,” in
Proceedings of the IEEE Symposium on Security and Privacy, 2009,
pp. 360–371.

[31] A. Barth, C. Jackson, and J. C. Mitchell, “Securing frame communica-
tion in browsers,” in Proceedings of the USENIX Security Symposium,
2008, pp. 17–30.

[32] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, “State of the art: Auto-
mated black-box web application vulnerability testing,” in Proceedings
of the IEEE Symposium on Security and Privacy, 2010, pp. 332–345.

[33] D. Canali, D. Balzarotti, and A. Francillon, “The role of web hosting
providers in detecting compromised websites,” in Proceedings of the
International Conference on World Wide Web, 2018, pp. 177–188.

[34] M. Dalton, C. Kozyrakis, and N. Zeldovich, “Nemesis: Preventing
authentication and access control vulnerabilities in web applications,”
in Proceedings of the USENIX Security Symposium, 2009, pp. 267–282.

[35] A. Doupé, B. Boe, C. Kruegel, and G. Vigna, “Fear the EAR:
discovering and mitigating execution after redirect vulnerabilities,” in
Proceedings of the ACM Conference on Computer and Communications
Security, 2011, pp. 251–262.

[36] A. Doupé, W. Cui, M. H. Jakubowski, M. Peinado, C. Kruegel, and
G. Vigna, “deDacota: Toward preventing server-side XSS via automatic
code and data separation,” in Proceedings of the ACM Conference on
Computer and Communications Security, 2013, pp. 1205–1216.

[37] D. Endler, “The evolution of cross site scripting attacks,” iDEFENSE
Labs, Tech. Rep., 2002.

[38] N. Freed and N. Borenstein, “Multipurpose internet mail extensions
(MIME) part one: Format of internet message bodies,” Tech. Rep., 1996.

[39] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated whitebox
fuzz testing,” in Proceedings of the Network and Distributed System
Security Symposium, 2008, pp. 151–166.

[40] J. Huang, Y. Li, J. Zhang, and R. Dai, “UChecker: Automatically detect-
ing php-based unrestricted file upload vulnerabilities,” in Proceedings of
the International Conference on Dependable Systems Networks, 2019,
pp. 581–592.

[41] S. Jana and V. Shmatikov, “Abusing file processing in malware detectors
for fun and profit,” in Proceedings of the IEEE Symposium on Security
and Privacy, 2012, pp. 80–94.

[42] T. Jensen, H. Pedersen, M. C. Olesen, and R. R. Hansen, “THAPS:
automated vulnerability scanning of PHP applications,” in Proceedings
of the Nordic Conference on Secure IT Systems, 2012, pp. 31–46.

[43] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: a static analysis tool for
detecting web application vulnerabilities,” in Proceedings of the IEEE
Symposium on Security and Privacy, 2006, pp. 258–263.

[44] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic, “SecuBat: a web
vulnerability scanner,” in Proceedings of the International Conference
on World Wide Web, 2006, pp. 247–256.

[45] J. C. King, “Symbolic execution and program testing,” Communications
of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[46] J. Lee, H. Kim, J. Park, I. Shin, and S. Son, “Pride and prejudice
in progressive web apps: Abusing native app-like features in web
applications,” in Proceedings of the ACM Conference on Computer and
Communications Security, 2018, pp. 1731–1746.

[47] S. Lekies, K. Kotowicz, S. Groß, E. V. Nava, and M. Johns, “Code-
reuse attacks for the web: Breaking cross-site scripting mitigations via
script gadgets,” in Proceedings of the ACM Conference on Computer
and Communications Security, 2017, pp. 1709–1723.

[48] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu,
“Steelix: program-state based binary fuzzing,” in Proceedings of the
International Symposium on Foundations of Software Engineering,
2017, pp. 627–637.

[49] B. Livshits, A. V. Nori, S. K. Rajamani, and A. Banerjee, “Merlin:
Specification inference for explicit information flow problems,” in
Proceedings of the ACM Conference on Programming Language Design
and Implementation, 2009, pp. 75–86.

[50] L. Masinter, “Returning values from forms: multipart/form-data,” Tech.
Rep., 2015.

[51] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of UNIX utilities,” Communications of the ACM, vol. 33,
no. 12, pp. 32–44, 1990.

[52] G. Molnár and K. Kotowicz, “Content sniffing with comma chameleon,”
PoC||GTFO, vol. 12, no. 4, pp. 14–27, 2016.

[53] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans,
“Automatically hardening web applications using precise tainting,” in
Proceedings of the Information Security Conference and Privacy, 2005,
pp. 295–307.

[54] X. Pan, Y. Cao, S. Liu, Y. Zhou, Y. Chen, and T. Zhou, “CSPAutoGen:
Black-box enforcement of content security policy upon real-world
websites,” in Proceedings of the ACM Conference on Computer and
Communications Security, 2016, pp. 653–665.

[55] P. Payet, A. Doupé, C. Kruegel, and G. Vigna, “EARs in the wild: large-
scale analysis of execution after redirect vulnerabilities,” in Proceedings
of the ACM Symposium on Applied Computing, 2013, pp. 1792–1799.

[56] G. Pellegrino, O. Catakoglu, D. Balzarotti, and C. Rossow, “Uses and
abuses of server-side requests,” in Proceedings of the International
Conference on Research in Attacks, Intrusions, and Defenses, 2016,
pp. 393–414.

[57] J. Ruderman, “Same Origin Policy (SOP),” http://www.mozilla.org/
projects/security/components/same-origin.html.

[58] S. Son, K. S. McKinley, and V. Shmatikov, “RoleCast: Finding missing
security checks when you do not know what checks are,” in Proceedings
of the ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, 2011, pp. 1069–
1084.

16

https://ma.ttias.be/php-session-locking-prevent-sessions-blocking-in-requests/
https://ma.ttias.be/php-session-locking-prevent-sessions-blocking-in-requests/
http://sqlmap.org/
http://sqlmap.org/
https://www.w3.org/TR/SVG2/intro.html#AboutSVG
https://www.w3.org/TR/SVG2/intro.html#AboutSVG
https://www.owasp.org/index.php/Testing_for_Local_File_Inclusion
https://www.owasp.org/index.php/Testing_for_Local_File_Inclusion
https://www.owasp.org/index.php/Testing_for_Stored_Cross_site_scripting_(OTG-INPVAL-002)
https://www.owasp.org/index.php/Testing_for_Stored_Cross_site_scripting_(OTG-INPVAL-002)
https://www.owasp.org/index.php/Unrestricted_File_Upload
https://www.owasp.org/index.php/Unrestricted_File_Upload
https://github.com/PortSwigger/upload-scanner
https://github.com/PortSwigger/upload-scanner
https://w3techs.com/technologies/overview/content_management/all
https://w3techs.com/technologies/overview/content_management/all
https://w3techs.com/technologies/overview/programming_language/all
https://w3techs.com/technologies/overview/programming_language/all
https://w3techs.com/technologies/details/pl-php/all/all
https://w3techs.com/technologies/details/pl-php/all/all
https://wordpress.org/
https://tweakers.net/nieuws/47643/xss-exploit-door-microsoft-betiteld-als-by-design.html
https://tweakers.net/nieuws/47643/xss-exploit-door-microsoft-betiteld-als-by-design.html
https://tweakers.net/nieuws/47643/xss-exploit-door-microsoft-betiteld-als-by-design.html
https://www.zaproxy.org/
http://www.mozilla.org/projects/security/components/same-origin.html
http://www.mozilla.org/projects/security/components/same-origin.html

[59] S. Son and V. Shmatikov, “SAFERPHP: Finding semantic vulnera-
bilities in php applications,” in Proceedings of the ACM SIGPLAN
Workshop on Programming Languages and Analysis for Security, 2011.

[60] S. Stamm, B. Sterne, and G. Markham, “Reining in the web with
content security policy,” in Proceedings of the International Conference
on World Wide Web, 2010, pp. 921–930.

[61] B. Sterne and A. Barth, “Content Security Policy (CSP),”
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/
csp-specification.dev.html.

[62] F. Sun, L. Xu, and Z. Su, “Detecting logic vulnerabilities in e-commerce
applications,” in Proceedings of the Network and Distributed System
Security Symposium, 2014.

[63] G. Wassermann and Z. Su, “Sound and precise analysis of web
applications for injection vulnerabilities,” in Proceedings of the ACM
Conference on Programming Language Design and Implementation,
2007, pp. 32–41.

[64] L. Weichselbaum, M. Spagnuolo, S. Lekies, and A. Janc, “CSP is dead,
long live CSP! on the insecurity of whitelists and the future of content
security policy,” in Proceedings of the ACM Conference on Computer
and Communications Security, 2016, pp. 1376–1387.

[65] Y. Xie and A. Aiken, “Static detection of security vulnerabilities in
scripting languages,” in Proceedings of the USENIX Security Sympo-
sium, 2006, pp. 179–192.

[66] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and
discovering vulnerabilities with code property graphs,” in Proceedings
of the IEEE Symposium on Security and Privacy, 2014, pp. 590–604.

17

https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html

	Introduction
	Background
	File Upload in PHP Web Applications
	UFU and UEFU Vulnerabilities

	Motivation
	Threat Model
	Technical Challenges

	Overview
	Design
	Specifying a Testing Campaign
	Phase I: Chain Coordination
	Phase II: Mutating and Sending Upload Requests
	Phase III: Upload Validation
	Uploading .htaccess

	Mutation Operations
	Evaluation
	Experimental Setup
	Discovering UFU and UEFU Vulnerabilities
	Comparison against State-of-the-Art Penetration Testing Tools
	Effectiveness of Mutations
	Case Studies

	Limitation and Discussion
	Related Work
	Conclusion
	References

