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Abstract—In vehicles, internal Electronic Control Units
(ECUs) are increasingly prone to adversarial exploitation over
wireless connections due to ongoing digitalization. Controlling
an ECU allows an adversary to send messages to the internal
vehicle bus and thereby to control various vehicle functions.
Access to the Controller Area Network (CAN), the most widely
used bus technology, is especially severe as it controls brakes
and steering. However, state of the art receivers are not able to
identify the sender of a frame. Retrofitting frame authenticity,
e.g. through Message Authentication Codes (MACs), is only
possible to a limited extent due to reduced bandwidth, low
payload and limited computational resources. To address this
problem, observation in analog differences of the CAN signal
was proposed to determine the actual sender. Some of the
prior approaches exhibit good identification and detection rates,
however require high sampling rates and a high computing effort.
With EASI we significantly reduce the required resources and
at the same time show increased identification rates of 99.98%
by having no false positives in a prototype structure and two
series production vehicles. In comparison to the most lightweight
approach so far, we have reduced the memory footprint and
the computational requirements by a factor of 168 and 142,
respectively. In addition, we show the feasibility of EASI and
thus demonstrate for the first time that voltage-based sender
identification is realizable using comprehensive signal character-
istics on resource-constrained platforms. Due to the lightweight
design, we achieved a classification in under 100µs with a training
time of 2.61 seconds. We also showed the ability to adapt the
system to incremental signal changes during operation. Since cost
effectiveness is of utmost importance in the automotive industry
due to high production volumes, the achieved improvements are
significant and necessary to realize sender identification.

I. INTRODUCTION

Vehicles can no longer be considered as closed systems, as
they are increasingly equipped with functionality that interacts
with the environment [35], [25], [52], [61]. This includes local
connections offered directly by the vehicle, such as Bluetooth
or WiFi, in order to control various functions or to retrieve in-
formation via smartphones. But also retrofittable solutions, e.g.
in the form of diagnostic dongles, offer additional interfaces to
the vehicle, which can be affected by vulnerabilities [18]. In

addition, modern vehicles are increasingly equipped with mo-
bile cellular connections in order to access cloud services and
to communicate with other road participants. Besides useful
services, these interfaces also offer attackers the possibility to
manipulate the vehicle and its ECUs without prior physical ac-
cess, as shown by several researchers [7], [60], [43], [62]. Once
an ECU is compromised, an attacker can remotely control or
influence the vehicle respectively individual functions [43],
[36], [42], [23]. In particular, it turned out that the lack of
security mechanisms for the CAN [53], which is still the most
used standard, enables the manipulation of internal vehicle
communication [25]. Thus, it is possible for a remote attacker
to send forged messages from compromised ECUs, which in
turn enables the control of vehicular functions, as demonstrated
by Miller and Valasek [43]. Their work on a Jeep Cherokee led
to a recall of 1.4 million vehicles. Another demonstration is
provided by the work of the Tencent Keen Security Lab [62],
[5]. The research team discovered multiple vulnerabilities in
various BMW models, including the ability to manipulate
ECUs connected via CAN over a wireless connection. This
fundamental problem has already been criticized by consumer
watchdogs, resulting in a demand for a vehicle kill switch [13]
in connected vehicles.

The implementation of cryptographic measures on CAN is
only possible with restrictions [66], [39], [20], [34]. This is
due to the limited computing power of the ECUs, the small
available bandwidth and the short payload per CAN message.
For example, MACs are significantly truncated [3] or only used
for a limited number of messages. In addition, it is not possible
to unambiguously determine the sending ECU using MACs,
since they do not provide non-repudiation. However, informa-
tion about the sender of a message is also relevant for Network-
based Intrusion Detection Systems (IDSs) [25], [47], which are
expected to be a common security measure around 2023 [52].
These systems analyze the message traffic and can detect attack
patterns or deviations from the expected behavior. One way to
react on intrusions is, besides to warn the driver [47], [24],
to update existing signature-based systems with the observed
attack patterns in order to be able to react quickly to zero
day exploits. This does not necessarily prevent an attack on
a particular vehicle, but immunizes the entire vehicle fleet
and prevents potential major damage. The recognition itself
can e.g. be carried out in the cloud and appropriate measures
can be transmitted to the vehicles over the air. Knowledge
about the sender would also improve detection rates and
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accelerate the elimination of vulnerabilities, as the source
of the attack can be identified. Should this information be
provided by cryptographic measures, digital signatures have to
be implemented, whose usage is considerably more expensive.

As an alternative, approaches have been introduced which
enable the detection of attacks based on physical characteristics
[46], [9], [11], [12], [34]. Characteristics of sent CAN signals
are used to generate fingerprints which can be utilized to
determine the sender. This enables detecting attacks with a
corresponding probability which require the forgery of frames
in order to be executed. In this way, Miller and Valasek’s attack
on the Jeep Cherokee could also have been detected at the point
where the researchers accessed the CAN bus via the compro-
mised multimedia system. Unfortunately, existing approaches
which use comprehensive signal characteristics require a high
sampling rate of up to 2.5 gigasamples per second (GS/s) to
generate the fingerprints, which is not provided by standard
microcontrollers (MCUs). Besides additional hardware costs
for the measurement, this also results in large amounts of data
which have to be processed by the system in a limited period
of time, e.g. in less than 200µs for a standard frame with
maximum payload. Should the calculation require too much
time, the system has to buffer many messages and also cannot
react quickly enough to detected attacks [63].

Some of the aforementioned approaches show good results,
but require high demands on the hardware. Even if high speed
MCUs are available and their general performance increases,
the costs of implementing security functions play a major
role [20]. This is especially true for the automotive sector [36],
[47], [25], [39], [20], [61], as security features are often
difficult to monetize as they are viewed as a fundamental re-
quirement and not as an additional feature [26]. To address this
problem, we present EASI (Edge-Based Sender Identification),
a novel approach which has significantly lower requirements
and thereby increases the cost effectiveness and applicability of
the sender identification for automotive networks. Compared
to the most lightweight approach [34], we were able to reduce
the requirements by two orders of magnitude, i.e. memory
utilization by a factor of 168 and the computing effort by 142.

Existing approaches extract the characteristics from the
symbols of the entire CAN frame. Our key insight is that there
are only minor changes in the characteristics within one frame.
Therefore, it is sufficient to generate the fingerprint from a
single symbol. This already allows a great reduction in the
amount of data, but not in the sampling rate. To achieve this,
only individual points of the actual signal are measured which
are combined afterwards to a representative symbol. Thus, our
proposed approach additionally reduces the required sampling
rate, enabling the implementation of fingerprinting technology
using low-cost standard hardware. In addition, we demonstrate
for the first time that comprehensive signal characteristics
can be processed by machine learning algorithms on standard
MCU architectures which are comparable to hardware used
in actual ECUs. Besides the calculation of the characteristics,
this also includes the training of the model, its adjustment due
to drifts and the actual classification. As a result, information
on the performance requirements of approaches using com-
prehensive signal characteristics are given for the first time.
Based on the methodology of using only a single symbol we
tuned the system accordingly, which includes the optimization

of the utilized characteristics and a refinement of the system
parameters like the necessary update procedure. Besides using
the data already used for the evaluation of Scission [34], we
extended the evaluation by a deeper analysis of a voltage-
aware attacker and a one-week drive involving the utilization
of electronic consumers. While keeping the identification rate
high, we have improved the detection rate and showed also that
even attacks during drive could be detected with an accuracy
over 99 %. Besides the practical enablement, especially for the
automotive industry, our contributions are:

• Reduction of resource requirements for sender identi-
fication using comprehensive signal characteristics.

• Optimization of system parameters to maintain a ro-
bust operation over a longer runtime.

• Demonstration of feasibility on a standard low-cost,
resource-limited MCU, including model adjustments
to changing signal characteristics during runtime.

• Evaluation on a prototype and two production vehicles
as well as under changing conditions over one week
involving different electronic consumers.

II. BACKGROUND

A. Controller Area Network

The CAN is a broadcast bus over which the internal ECUs
communicate via frames, containing up to 8 bytes of data.
The frames do not contain a receiver or sender address, but
an identifier which specifies the priority and meaning of the
transmitted data. Thus, an ECU can use multiple identifiers
exclusively. The identifier is 11 or in extended format 29
bits long and is used by only one ECU in the corresponding
bus. Since CAN is a broadcast bus, it is possible that several
participants access the bus simultaneously, which would lead
to a faulty transmission. This is avoided by the Carrier Sense
Multiple Access/Collision Resolution [31], which ensures that
the frame with the highest priority prevails the arbitration
phase. During the arbitration, the sending ECUs observe the
current bit on the bus and compare it with the transmitted
bit. If both correspond, the next bit is transmitted, otherwise
the transmission is aborted and restarted as soon as the bus
is free. The bus consists of two twisted wires, CAN high and
low, which are terminated with 120 Ω. When a dominant bit (0)
is transmitted, CAN high is pulled to 3.5 V and CAN low to
1.5 V. A recessive bit (1) is represented by 2.5 V on both wires.
The final voltage level, known as the differential signal, is then
determined by the subtraction of CAN low from CAN high. An
advantage of this procedure is that electromagnetic interference
affects both lines simultaneously and thus balances out in the
differential signal. If five identical bits are transmitted, an
additional contrary bit is inserted for synchronization, which
is called a stuff bit.

B. Cause of the Signal Characteristics

The characteristics of a signal are determined by the
transmitting ECU and the channel to the measuring point [4].
The generated signal during a voltage level change is in
theory a square-wave signal. In practice, however, square-wave
signals are characterized by rise and fall times, indicating
the time required for a signal to reach its target value.
Among others, these are influenced by the capacitances and
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inductances of the circuits and by the power supply of the
ECU respectively the transceiver [10]. The primary voltage
source used is a 12 V battery for passenger cars and 24 V
for trucks. The required operating voltage of 5 V is ensured
by voltage regulators, which also stabilize the voltage supply.
Due to manufacturing variations and imperfections, electronic
components differ slightly [44], leading to variations in the sig-
nals. For instance, resistors come with a tolerance of industry
typical 5 %. Furthermore, CAN actually requires a third cable
for grounding. But in practice, grounding is realized via the
vehicle chassis, which can result in different ground voltages
between individual devices [64]. Variations are also caused
by power reflections of a transmitted signal. This is affected
by impedance mismatches and non-linear changes in cable
characteristics, including the lengths and terminations of the
bus. All together, this may result in overshooting, what can be
followed by an oscillation of the signal, known as ringing [45].
Therefore, the topology has a considerable influence on the
signal waveform, since impedance mismatches mainly occur
at junctions and the devices.

III. EDGE-BASED SENDER IDENTIFICATION

A. Security Models

1) System Model: The structure of internal networks de-
pends fundamentally on the manufacturer and model. There are
simple vehicles with only one network, but also more complex
models whose internal network consist of several individual
buses. The buses are used for different functions, such as
powertrain, comfort or multimedia, and are interconnected
by gateways. In order to prevent the system from being
bypassed, we assume that the ECU on which the system
is implemented is protected by security mechanisms [52],
such as an Hardware Security Module (HSM) [65] and is
therefore considered trustworthy. HSMs are already available
for the automotive market, e.g. by the Infineon Aurix [30]
platform. Especially the gateway is a suitable device for EASI,
which connects several buses and thus can react in case of an
attack depending on the malicious bus segment. Although the
simultaneous monitoring of multiple networks is possible, a
single CAN network or segment is considered in the following
for simplification. In order to record the signals, the ECU on
which the system is implemented has a measuring point on
the monitored CAN network. This allows EASI to analyze the
CAN message signals and thus to decide if an intrusion is
present. Further, the sender identification allows determining
the sending ECU if it is known by the system, which will
help to accelerate the elimination of the exploited vulnerability.
Since the communication flow in vehicles is static, i.e. it is
known which ECU is allowed to send which identifiers, the
system can determine whether a message is legitimate or not.
In addition, we assume that the absence of periodic messages
or an increase in their frequency can be detected, as this can be
easily realized. Several approaches exist for this purpose [25],
[37], [47], [9].

2) Attacker Model: In principle, an attacker with bus access
can manipulate the vehicle functions by injecting messages,
due to the missing sender authenticity. By flooding, periodic
signals can be overwritten, by denial-of-service (DoS) attacks
the entire communication can be disturbed and through the
bus-off attack [8] ECUs can be disconnected from the bus.

These manipulations, which lead to additional or missing
messages, can be detected by monitoring the transmission
schedule. Therefore, in the following, a more intelligent at-
tacker is considered who aims to use aperiodic messages
or intends to take over the sending of periodic messages
unnoticed [55]. Since the identity of the sender cannot be
determined in CAN, the attacker can impersonate any ECU by
using the corresponding message identifier. As a consequence,
each connected bus participant is able to start impersonation
attacks in order to influence vehicle functions without being
noticed. This has far-reaching consequences, especially if this
is possible without prior physical access.

This leads to the first attacker model, the compromised
ECU. Some ECUs have wireless connections, such as WiFi,
Bluetooth or cellular, via which they can be attacked and
compromised by an attacker. If a vulnerability in a vehicle
model exists within an ECU which is accessible via the
internet, an attack can be launched on all vehicles of that
type. Such an intrusion into the system is possible without
prior physical access to the vehicle and remains hidden from
the vehicle or its passengers. The consequences are already
possible today and have been demonstrated such as influenc-
ing safety-critical vehicle functions [43], [62], [5]. Here, the
considered compromised ECU is known by EASI in advance.
Thus in a previous learning phase, a model was created based
on the signal characteristics of the corresponding ECU, which
can be used for its identification. Attacks which require prior
physical access scale worse, which is why the detection of this
attack is the main goal of this work.

However, the assumption that the compromised ECU is
known by the system cannot always be guaranteed, as the
attack on the Jeep Cherokee shows [42]. This leads to the
second attack model, the unmonitored ECU. An ECU was used
for sending unauthorized CAN messages, which in its original
state was only designed as a passive, listening-only device.
Due to a vulnerability in the update mechanism, this ECU
could be reprogrammed and used to send forged messages.
Consequently, EASI does not have a model of the signal
characteristics in this attack scenario.

The third model, the additional ECU, is present when an
attacker connects a simple additional device to the monitored
bus in order to send manipulated messages. Among other
things, this is used to steal vehicles [29], to deactivate AdBlue
systems, to obscure defective airbags or for engine tuning [23],
[29]. If an attacker has physical access to a vehicle, additional
devices can be connected directly to the bus or with little effort
to the on-board diagnostics (OBD)-II port. The OBD-II port is
a standardized diagnostic interface located near the dashboard.

As mentioned, the main goal of the proposed system is
to detect remote attacks by determining the sender of received
messages. Therefore, we additionally consider a voltage-aware
attacker who is aware of the existence of the proposed system.
In order to bypass the system, an attacker can specifically try
to influence the signals of the compromised ECU in such a
way that it resembles the signal of the ECU to be faked.
Influencing the signal directly, i.e. the shape of the rising
edges, is not possible by remote, since these are defined by
the structure of the present CAN and the electrical components
of the ECU. However, we enable the attacker to manipulate
the voltage level by draining the battery and heating up or
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Fig. 1: Sampling points of the rising edges of a frame.

cooling down the compromised ECU. While discharging the
battery leads to a decrease in the voltage level of all ECUs,
the change in temperature of the compromised ECU causes
the corresponding voltage level to rise or fall. In addition, we
allow the attacker to analyze the voltage level of all ECUs
connected to the bus. This is a very strong capability, for which
it would be necessary, for instance, to have the analog-digital-
converter (ADC) of an ECU directly connected to the bus.
Usually, ECUs are only connected to the bus over the CAN
transceiver, which does not provide any information about
the signal characteristics. Although the attacker could analyze
the characteristics, our measurements have shown that the
actual measuring position has a large influence on the received
characteristics. This makes it considerably more difficult for
an attacker to make statements about the signals actually
recorded by EASI. However, for our evaluation we neglect
this circumstance, which means that we allow the attacker to
receive the same information as our IDS.

B. Phase 1: Signal Gathering

The first step is to record the differential signal of the
actual CAN frame. Since the amount of data to be processed
per frame has a large influence on the required computing
power, a major goal is to reduce the required amount of
sampling points. Thus, the system only considers the bits
which contain the most important characteristics with regard to
sender identification. This applies to those bits which contain
a rising edge, i.e. dominant bits which are preceded by a
recessive bit [34]. A further reduction is achieved by not
recording the entire frame or all corresponding bits, but only
a single rising edge. This is not considered to be a major
disadvantage, as we observed that the relevant characteristics
only change very slightly within one frame, as illustrated in
Figure 1. Smaller deviations within a frame are due to noise
and are not particularly relevant for the identification.

In order to obtain extensive characteristics from a CAN
signal, a certain number of samples per bit is necessary,
as otherwise too much information is lost. For illustration,
Figure 2 shows the signal curve of a single symbol with
different sampling rates. Proposed fingerprinting approaches
use rates between 20 MS/s [34] and 2.5 GS/s [11], whereby
identification rates up to 99.85 % [34] are achieved.

However, existing MCU architectures, such as the Infineon
TriCore [30], NXP MPC [49] or STM32 [59], are often only
equipped with ADCs with lower sampling rates. Therefore,
an additional ADC is necessary even for a scanning with
relatively low rates of 20 MS/s, which leads to increased costs.
For instance, a reduction of the sampling rate by a factor of 10
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Fig. 2: Rising edge recorded with different sampling rates.

is necessary to implement sender identification on a standard
MCU providing 2 MS/s. This is achieved by not recording
the edge with a high sampling rate, but several rising edges
with a lower sampling rate. The sampling times are shifted
accordingly so that a representing bit can be composed of
the measurements after the sampling phase. This procedure
is called Random Interleaved Sampling (RIS) [50] and is a
common technique of Digital Storage Oscilloscopes (DSOs) to
achieve high sampling rates for repetitive signals. For example,
an absolute sampling rate of 20 MS/s with an actual rate
of 2 MS/s can be achieved by using 10 rising edges. The
procedure is illustrated in Figure 1, in which the sampling
points of 10 rising edges are marked. Figure 3 shows the
resulting rising edge, a complete edge and an average edge
calculated from all 10 rising edges. As seen in the figure,
the different recordings do not show much difference or are
comparable to the differences that also occur between signals
from the same ECU.
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Fig. 3: Rising edge recorded in different modes.
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TABLE I: Features extracted from the rising edge for classification while x contains the measured voltages, N is the cardinality
of x, ym and yf are the magnitude coefficients and frequencies, respectively, and M is the number of elements of ym and yf .

Rank Feature Description Type IG Prototype IG Fiat IG Porsche IG General
1 Ratio Max Plateau Maximum

Plateau
Descriptive 3.3 2.6 2.6 8.5

2 Skewness 1
N

∑N

i=1

(
x(i)−µ
σ

)3
Time 3.1 2.4 2.8 8.3

3 Plateau N
4

∑N

i= 3
4
N
x(i) Descriptive 3.1 2.3 2.7 8.1

4 Kurtosis 1
N

∑N

i=1

(
x(i)−µ
σ

)4
Time 3.1 2.5 2.5 8.1

5 Overshoot height Maximum− Plateau Descriptive 2.9 2.5 2.6 8

6 Irregularity

∑M−1

j=1
(ym(j)−ym(j+1))2∑M−1

j=1
ym(j)2

Frequency 3.3 1.9 2.6 7.8

7 Centroid

∑M

j=1
yf (j)∗ym(j)∑M

j=1
ym(j)

Frequency 3.2 1.8 2.7 7.7

8 Flatness
∑M

j=1
ym(j) ∗

M

√∏M

k=1
ym(k)∑M

k=1
ym(k)

Frequency 3.1 2 2.5 7.6

9 Mean µ = 1
N

∑N

i=1
x(i) Time 3.2 1.7 2.6 7.5

10 Variance σ2 = 1
N

∑N

i=1
(x(i)− µ)2 Time 2.6 2.3 2.6 7.5

11 Power 1
N

∑N

i=1
x(i)2 Time 3.1 1.5 2.7 7.3

12 Maximum max(x(i))i=1...N Descriptive 3 1.9 2.3 7.2

C. Phase 2: Characteristic Derivation

After the signal is recorded and a representing edge is
calculated, the system extracts various features from it. If
no representative bit is used, a single or average edge can
of course also be used at this point. Appropriate statistical
features from time and frequency domain have already been
investigated in previous work [11], [4], [34]. New in this case
is that additionally signal descriptive features were examined.
In this category those characteristics were categorized that
contain specific knowledge about the signal course of rising
edges. Especially the course of the stabilization is essential
for the distinction of the signals. From all candidates, the 12
most important features were selected. For this purpose, the
Information Gain (IG) algorithm from the Weka 3 Toolkit [56]
was used. IG is a method for calculating how much information
a feature provides about the class, which also allows to rank
the considered features. In order to prevent features being
selected which only fit the current situation or a specific setup,
three different setups were considered. From the validation set
of a prototype and two series production vehicles a common
feature set was derived, which is shown in Table I. The feature
vector extracted represents the fingerprint of the signal and the
associated ECU.

D. Phase 3: Sender Identification

Identifying a sender on the basis of a feature vector, i.e. the
actual fingerprint, is a classification problem. For these kind of
problems a variety of algorithms exist, which are able to deter-
mine to which class a new observation belongs. In the selection
of suitable algorithms with regard to the field of the application
presented here, the data properties must be considered. The
frames from which the fingerprints are extracted, and which are
also used to create the model, are transmitted periodically and

are therefore available incrementally. Keeping the resource-
limited hardware in mind, this results in the necessity for a
fast calculation, Classification Speed, as otherwise too many
fingerprints have to be buffered. To achieve a low Memory
Footprint, it is also necessary to select an algorithm which
allows to establish the model from an incremental stream of
training examples. Thus, and as changes in the characteristics
are expected to happen, the Model Adjustment is another
important criteria. A further point is the Overall Complexity
of the algorithm, which also includes the number of freely
selectable parameters. The assessment of the criteria regard-
ing the considered machine learning algorithms is shown in
Table II. Based on these estimations, the focus is primarily set
on Logistic Regression (LR) since the algorithm has already
proven to be suitable for sender identification [34] and Naive
Bayes (NB), due to its low complexity. Further, we consider
Support Vector Machines (SVMs) in the evaluation as it allows
a non-linear separation using the radial basis function kernel.

TABLE II: Assessment of the machine learning algorithms.

Classification Memory Model Overall
Speed Footprint Adjustment Complexity

LR + ◦ + ◦
Naive Bayes ◦ + + +

SVM ◦ - ◦ ◦
Decision Tree + - - +

Neural Network - ◦ - -

Before it is possible to estimate the sender of transmit-
ted frames based on their fingerprints during the operation
of the IDS, the according relationship between ECUs and
characteristics has to be learned supervised. Therefore, the
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system generates multiple fingerprints from several transmitted
frames for each ECU, whereby the mapping between the
frames and the ECUs is done using the included identifier.
This is possible as each identifier is only used by one ECU
and the communication is static. Thereby, it is particularly
important to prevent an attacker from influencing the training
data, known as poisoning attacks [27], [33]. When the system
is initially trained, where also a key for later model adjustments
is exchanged between the IDS and each ECU, it must be
ensured that no bus manipulations are present. This can be
done, for example, in an authorized workshop or, for new
vehicles, during the production. After the training, the system
calculates the average probabilities avgP k

init of each classifier
k using a validation set, a separate data set for the unbiased
evaluation of the generated model.

E. Phase 4: Intrusion Decision

For the analysis of the probabilities of the fingerprints and
thus for the recognition of attacks, we use dynamic thresholds,
a development of the approach introduced in [34]. In the
following we will discuss these detection methods for the
attacks described in Section III-A.

1) Compromised ECU: Normally, the ECU with the high-
est probability would be selected as the source of the received
frame. If this ECU would not be allowed to use the present
identifier, an attack would be assumed. However, we use an
upper threshold tkmax = α ∗ avgP k

init for each classifier k.
Only if the probability of an ECU exceeds tkmax and this
device is not allowed to use the present identifier, the message
is marked as malicious. This has the advantage that if the
classification of a fingerprint is not clearly possible, e.g. due to
a electromagnetic interference, the occurrence of a false alarm
is less likely. Since it is assumed that the amount of trustworthy
messages compared to malicious is significantly higher over
the entire deployment time of the system, the reduction of
false positives, i.e. wrong alarms, is of special interest. As an
illustration, already a low false positive rate of 0.2 % would
lead to a wrong alarm every 166 ms on a common CAN bus
which transfers 3000 frames per second. At the same time, a
slightly lower detection rate of malicious messages is to be
expected. However, many attacks require the transmission of
more than one message, which increases the general attack
detection probability. In order to increase robustness against
outliers, e.g. triggered by electromagnetic interferences, and
to reduce the required computational effort, the system uses a
further threshold tkmin = (1−α)∗avgP k

init. Since it is known
in advance which ECU is authorized to use an identifier, only
the sender’s probability for the corresponding ECU is initially
calculated. Only if this probability undercuts tkmin, the message
is marked as suspicious and the probabilities of the remaining
ECUs are calculated. If one of these probabilities exceeds
the upper threshold tkmax, the message is finally marked as
malicious. In order to determine the threshold parameters,
a statistical analysis of validation sets for the vehicle is
used. Either a single value can be defined for all vehicles as
presented in this work, or an individual one, fitted to the actual
bus architecture, to satisfy the needs of the car manufacturer.

2) Unmonitored ECU: Here, three cases must be consid-
ered. If the signal of the unmonitored ECU is very similar to
an ECU known to the system, which is not allowed to use

the current identifier, the attack is detected as in the previous
section. Should the signal from the unmonitored ECU be equal
to the signal of the authorized ECU, the attack cannot be
detected. Signals which are not similar to any of the known
signals will lead to an increase in messages that have been
classified as suspicious but not malicious. So, the system
monitors the number of suspicious messages to detect this
type of attack. Each message marked as suspicious causes
an increase of a counter per ECU, which is decremented if
a trustworthy message is present. If one of these counters
exceeds a threshold, an alarm is triggered.

3) Additional Device: In addition to remote attacks, the
system is also able to detect the connection of additional de-
vices. The system is limited to the detection of simple devices,
since an attacker with physical access, appropriate knowledge
and sufficient resources has basically unlimited possibilities to
manipulate a vehicle and thus bypass the system. However, this
is associated with higher effort. The detection is possible as
the topology changes when an additional device is connected
to the monitored bus, which leads to an abrupt change in the
signals of all monitored ECUs. This leads to a reduction in the
identification probabilities of the existing ECUs in the moment
of the modification. Thus, the number of suspicious frames
will increase. If the sum of the suspicious counters exceeds a
threshold value, an alarm is triggered.

4) Voltage-aware Attacker: Influencing the voltage levels
of all ECUs by an attacker leads to a reduction of all iden-
tification probabilities. These are continuously monitored by
EASI, which leads to a permanent adaptation of the models,
whereby the sender identification is retained. However, if an
attacker can abruptly and significantly influence the voltage
level of all ECUs, so that a sufficiently high identification is no
longer possible, a complete learning phase becomes necessary.
In principle, the system’s performance decreases during this
learning phase. However, a persistent and abrupt change can
be assumed as unlikely, since a standard ECU is not capable
of such a rapid discharge of the battery.

If it is possible for an attacker to influence the voltage
level of the compromised ECU, the voltage level can generally
rise or fall. However, since such changes are not abruptly
possible, the system is still able to continuously adapt the
model. In principle, an attacker has the ability to approximate
the signal of the ECU to be faked, but cannot achieve an
exact adjustment, since the general shape of the signal remains
unchanged. Even if the signals are similar, the success of such
an attack is unlikely, since an attacker has no information about
the characteristics of both the compromised and the ECU to be
faked. In addition, the signal is defined by the actual topology,
while the system is able to continuously adapt the model, we
consider the system to be able to recognize such an attacker.

F. Model Adjustments

Since changes in the signal characteristics are expected, e.g.
due to aging of components or corrosion, it is necessary to ad-
just the trained model according to these concept drifts [19]. A
distinction must be made between an incremental drift, where
the changes are occurring over a longer period of time, and an
abrupt drift, where the changes are occurring spontaneously.
In order to detect these changes in the signal characteristics
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and to react accordingly, the system monitors its performance
by calculating the average classification probability avgP k

op of
each classifier k in a sliding window. Observing the averages
offers the opportunity to detect a deterioration of the system
performance, which in turn can be utilized as an indication for
a required model update. A big difference to the initial training
is that after the deployment a non-manipulated system can no
longer be assumed, which means that the update process must
expect potential manipulation.

When a drift of a signal is recognized by the system, i.e. if
the average classification probability of a classifier decreases
for corresponding frames by more than 5 % or increases for
frames send from other ECUs by more than 10 % compared
to the reference probabilities avgP k

init, the update phase is
triggered. Within the adjustment phase, the IDS composes an
update batch with already classified fingerprints from all ECUs
and thus does not require additional computing capacity. The
batch consist of those fingerprints, which can still be assigned
to exactly one ECU with a probability greater than tkmax, which
is then used to adjust the corresponding model.

While this method deals with incremental drifts, it is also
necessary to handle abrupt changes. This is especially relevant
when it is not possible to generate an update batch due to
fingerprints that cannot be classified with a probability greater
than tkmax. In this situation it is necessary to use the keys,
which are exchanged during the initial training phase between
the system and the observed ECUs. These can be used to
generate authenticated and thus securely labeled data, which
are necessary for a model update. Another case where abrupt
changes may occur is when the vehicle is in a workshop for re-
pair or maintenance. This may require a complete retraining of
the system, which must be triggered e.g. by a secure diagnostic
access [2]. Necessary cryptographic procedures are provided
by the AUTOSAR module Secure Onboard Communication
(SecOC) [3]. The use of cryptography for system retraining
has basically the same problem of bandwidth limitation, but is
not used continuously and without hard real-time requirements,
which is why calculations are realistic even for resource-
constrained ECUs. If, for example, 16 additional frames are
sent once for six control units, the bus utilization, which is
normally loaded by 65 % and corresponds to approximately
3000 frames/s at 500 kb/s, increases by 2.08 % for one second.
The continuous use of MACs with a length of 24 bits and
additional 8 bits for freshness values halves the available
payload and hence leads to transmitting twice the amount
of frames. This in turn results in a load of 130 %, which is
obviously not possible without structural changes. Depending
on the platform, it would be also possible to use further
countermeasures [33], [16], [28] against poisoning attacks.
However, they are not exactly tailored for mini-batch training
on platforms with limited resources, as considered in this work.
This means that not all data can be held during the training
phase and must therefore be processed in pieces.

IV. EVALUATION

In the following sections, the presented system is evaluated
with regard to the basic sender identification and the intrusion
detection. We use data from a prototype assembly, a Fiat 500
and a Porsche Panamera S E-Hybrid, which was also used
in [34], thus enabling a direct comparison of both approaches.

During the measurements for the initial evaluation, the vehicles
were switched on, but stationary, while no electrical consumers
have been actuated.

The prototype consists of five Arduino Unos, each
equipped with two CAN shields and supplied from the same
power source, a wall socket. The shields are identical in
construction and use an MCP2515 [40] controller and an
MCP2551 [41] transceiver. For the assembly original cables
were used, while the bus was terminated with 120 Ω and the
stubs with 2400 Ω. Higher resistors at the ends of the stubs
are used to minimize reflections, as the bus topologies in
many vehicles are not implemented exactly according to the
standards in order to reduce costs. From this structure a total
of 48128 frames with random payload were recorded.

The Fiat 500 has six internal ECUs, each using up to seven
identifiers. In addition, two Raspberry Pis were connected,
each equipped with a CAN Shield, in order to increase the
number of ECUs. The first Raspberry Pi, referred to as ECU 6,
was connected to the OBD-II port together with the DSO.
The second Raspberry Pi, referred to as ECU 7, was connected
directly to the bus in the trunk of the vehicle. Altogether 35129
frames were recorded from the Fiat 500, while its engine was
switched off.

The second vehicle, the Porsche Panamera, has several
separate CAN buses, whereby the powertrain domain was used
for the evaluation. The considered segment has six internal
control units and in order to increase the number as well,
two additional Raspberry Pis were connected to the bus.
These were connected together with the DSO directly to the
bus near the armrest, since the OBD-II port has no direct
connection to the observed bus. In this manner 9543 frames
were recorded from the Porsche while its engine was switched
on and off. Thus, in comparison to [34], the set additionally
contains frames of the switched-on vehicle, which exhibit
electromagnetic interference due to the hybrid system.

All data sets were divided into a training, validation and
test set. The first 200 recorded frames from each available ECU
were used to train the models, 10 % of the succeeding data for
the validation and the remaining frames for the test set. The
signals were recorded with a PicoScope 5204 at a sampling
rate of 500 MS/s and a resolution of 8 bit. For processing, the
signals were first converted to a differential signal, from which
a representative bit was extracted. In order to achieve realistic
results, the conversion and sampling times of constrained
ADCs and comparators were considered when creating the
representative bit. Initially, the first rising edge was detected
by a voltage rise above 0.2 V, which represents the beginning
of a frame. For the implementation, a comparator can be used
here. Henceforth, the system was on hold for the time of the
arbitration phase. Afterwards, two samples from each of the
following ten rising edges are recorded. Due to the presumed
sample rate of 2 MS/s, the recording was made at a distance
of 500 ns. After the detection of an edge, the time of sampling
was shifted by 25 ns per measurement already taken. After the
sample phase, which works without complex synchronization,
a representative bit was created from the 20 samples.
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Fig. 4: Error rates for all setups with varying thresholds.

A. Sender Identification

First, the accuracy of the introduced sender identification is
evaluated. For this, the approach was implemented in Python,
using the Scikit Machine Learning and SciPy library. For
Logistic Regression, the Newton-CG method was used for
minimization and the abort condition was set to 1−6. For the
SVM, the Radial basis function was used as kernel and the
existing parameters were retained. No additional parameters
were necessary for the Naive Bayes classifier. The average,
as well as the minimum identification rates of the ECUs of
the three considered setups are shown in Table III. It can be
seen that, with the exception of the Porsche, there are no
significant differences in the identification rates between the
various machine learning algorithms. The lowest identification
rate of the Porsche is explained by the two additionally
connected Raspberry Pis, which are identical in construction
and are located approximately at the same position on the bus.
Evaluating the Porsche with only one Raspberry Pi connected,
results in an identification rate of 100%.

TABLE III: Identification rates.

Prototype Fiat Porsche Average
LR Avg 99.99 100 99.86 99.98
LR Min 99.95 100 99.41 99.92
SVM Avg 100 99.98 99.81 99.98
SVM Min 100 99.83 98.87 99.84
NB Avg 100 100 97.64 99.79
NB Min 100 100 87.15 98.88

B. Detecting Compromised ECUs

An identification rate of on average 99.98 % results in a
false positive rate of 0.02 %, which means that every 5000
frames a false alarm occurs. The goal of the proposed intrusion
detection is to reduce this rate, which is evaluated in this
section. Since the amount of recognized malicious frames is
another important criterion, attacks were simulated to inves-
tigate the false negative rate. For this purpose, 10 % of the
signals from the test sets were selected for each ECU and
handled as attacks. The targets of the attacks were continuously
changed so that each ECU was counterfeited by every other
ECU, which was achieved by changing the identifiers of the

frames into identifiers used by other ECUs. This ensures that
not only attacks from particularly well distinguishable devices
are considered. However, before it is possible to perform the
evaluation, it is necessary to configure the value α for the
calculation of the node-dependent upper and lower threshold.
This parameter was determined using the validation sets of
the three setups. Therefore, we calculated the False Positive
(FP) and False Negative (FN) rates, which are shown in
Figure 4 for different α values. As α = 0.8 is a good trade-off
between the FP and FN rates, we selected this value for the
following evaluation. The resulting confusion matrices for the
different setups and classifiers are shown in Table IV. It can
be seen how many of the original and the faked signals are
recognized correctly by the system. The rates show that the
threshold approach has reduced the FP to zero when Logistic
Regression is used. However, as mentioned in Section III-E1,
the detection rate of attacks decreases at the same time by
0.32 %. Accordingly, the chance for the Fiat setup is 0.06 % to
miss a single forged frame, 0.000036 % to miss a second and to
miss a third one the chance is already at 0.0000000216 %. This
allows EASI to detect all attacks with the given probabilities
that require sending at least one forged frame. Furthermore,
the rates of the Porsche show that the robustness of the
system increases, since the threshold approach compensates
the minimum identification rates, when Naive Bayes is used.

C. Detecting Unmonitored ECUs

This section evaluates the detection of attacks via unmon-
itored ECUs. Since an already existing frequency analysis is
assumed, i.e. missing and additional messages are detected, it
is necessary that the ECU to be counterfeited is first deactivated
and then its messages are taken over by the unmonitored
ECU [8], as otherwise, the impersonated ECU can easily
recognize forged frames [14]. We assume that the attacker
has these capabilities and that an intrusion remains unnoticed
by the vehicle. As a result, the unmonitored ECU must
continuously send CAN frames to not get detected due to
missing frames, which in turn can be analyzed by EASI. For
evaluation, the Fiat 500 data set is used by training the system
without ECU 7 and using it to send forged frames which
are normally send from ECU 6. These ECUs were chosen
as they are identical in construction and use the same power
supply, i.e. they have similar characteristics. Only the position
in the bus differs. Depending on the frequency of suspicious
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TABLE IV: Confusion matrices of the IDS.

Logistic Regression

Attack Predicted Suspicious
0 1 Frames

Prototype 0 100 0 0.01
1 0.19 99.81 0.16

Fiat 500 0 100 0 0
1 0.06 99.94 0.03

Porsche Panamera 0 100 0 0.03
1 0.77 99.23 0.64

Support Vector Machines

Prototype 0 100 0 0
1 0 100 0

Fiat 500 0 100 0 0.03
1 0.21 99.79 0.18

Porsche Panamera 0 99.99 0.01 0
1 0.51 99.49 0.26

Naive Bayes

Prototype 0 100 0 0
1 0 100 0

Fiat 500 0 100 0 0
1 0 100 0

Porsche Panamera 0 99.31 0.69 0
1 2.31 97.69 1.93

frames and the number of frames after which such an attack
should be detected, the parameters for the detection must be
determined. For the Fiat 500, we identified a suspicious frame
rate of about 0.06, which means that every 1666 frames such a
frame erroneously occurs. Therefore, we increment the counter
by 1 for each suspicious frame and decrement it by 0.006
for a normal frame. In addition, it is assumed that an alarm
should be triggered after 10 fake frames, which is why the
alarm threshold is set to 10. Figure 5 shows the course of the
counter for suspicious frames. It can be seen, that it increases
rapidly when the sender changes from ECU 6 to ECU 7 after
frame 851. As configured, an alarm is triggered after 10 forged
frames sent from the unmonitored ECU.
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Fig. 5: Suspicious counter of ECU 6 from the Fiat 500 during
unmonitored ECU attack.

D. Detecting Additional ECUs

For detection evaluation of simple additional ECUs, the
data set of the Fiat 500 was used. Initially, the system was
trained with signals from an unmodified bus, i.e. without
ECU 6 and ECU 7 being connected to the bus. Both data sets
were recorded one after another under the same conditions.
Only the DSO was connected via the OBD-II port. After
500 signals were processed by the system, the data set was
changed to signals of the changed bus. In order to detect
this attack, the counters of the suspicious frames of all ECUs
are considered. If the sum of the counters exceeds the set
threshold value, an alarm is triggered. The threshold for the
detection of additional ECUs is #ECU

2 times the threshold for
the detection of unknown ECUs. The course of the summed
counter is shown in Figure 6. The attack was detected after
86 frames have been processed by the system. The difference
to the detection of attacks via unmonitored ECUs is that by
changing the bus topology the detection rates of all ECUs
decrease, i.e. the number of suspicious frames increases at
several ECUs. This makes the detection of this manipulation
independent of forged messages.
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Fig. 6: Summed suspicious counter of all ECUs from the Fiat
500 during additional ECU attack.

E. Detecting Voltage-aware Attacker

For the simulation of this attack we have scaled the existing
signals of an attacker in such a way that its voltage level is
similar to the signal to be forged. The exact adaptation to
an existing signal is not possible in real conditions without
physical access, since an attacker has no information about
the characteristics of the ECU which has been taken over
or is to be forged. Even if the characteristics of an ECU
could be measured exactly at the point of bus access, they
are not identical with the characteristics measured by EASI.
This is due to the different channels between the observed
ECU and the two measurement points. This can be seen in
Figure 7, where the same rising and falling edge of one frame
is displayed, recorded at different bus positions.

It can also be assumed that an ECU has no possibility of
making such a fine adjustment. The attacker simulated here
is therefore more powerful than it can be assumed in reality.
ECU 6 and ECU 7 of the Fiat 500 were used to evaluate the
detection of this attack, as they are identical in construction
and use the same power supply, which makes them more
difficult to distinguish. 300 signals from ECU 7 have been
adapted so that their voltage levels match the voltage level
of ECU 6. The identifier has also been adapted accordingly
to ECU 6. The system was trained with the original data and
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Fig. 7: Exemplary parallel measuring difference.

has subsequently processed the 300 manipulated signals. The
change has reduced the average probability of ECU 7 by more
than 3 %. However, the distinction between ECU 6 and ECU 7
remains, so that 95 % of the forged and adapted messages
could be correctly detected as an attack. All the undetected
forged messages were marked as suspicious, which indicates
that this attack should also be considered when determining
the thresholds. The simulation shows that adjusting the voltage
level is not enough to circumvent the system dependably. Apart
from that, the monitoring was able to detect the drop of the
probabilities while maintaining the functionality of the system.
This makes it possible to adapt to a change at an early stage.

F. Varying Conditions

For the evaluation of the performance of the approach un-
der changing conditions, additional analyses were performed.
Three datasets of the Fiat in its original state, i.e. without
having the Raspberry Pis connected, were used, which were
recorded via the OBD-II port of the vehicle. The first data
set was recorded at an ambient temperature of approximately
25◦C (77◦F) while the engine was switched off and cold. The
first 200 frames per ECU of the set were used for the initial
training and the remaining 5685 frames of the data set were
classified completely correct. After the start of the vehicle the
second data set was recorded, which contains data of a trip
of approximately 30 minutes at an ambient temperature of
over 32◦C (89.6◦F). After the vehicle was completely heated
up, it was parked in an underground garage at approximately
23◦C (73.4◦F). All of the 6672 frames were correctly classified
using the already trained classifiers. The recording of the third
data set was started after a cooling phase of three hours while
the vehicle was switched off. After a short time the vehicle
was started and driven for another 20 minutes at an ambient
temperature of approximately 36◦C (96.8◦F). The 4863 frames
recorded were fully classified except for one, but due to the
proposed threshold approach a false positive was prevented.
During the whole process no re-training of the models was
necessary and an identification rate of 99.99 % was achieved.

G. Manipulation of the Power Supply

We also performed a fourth measurement with 6885 frames
while the engine of the vehicles was switched off but with a
battery pack connected in order to analyze the behavior of
the system when manipulating the power supply. This data
set was used in a second evaluation as training data set.
Subsequently, the remaining frames and the three data records
from Section IV-F were processed by the system. Although

differences in the voltage level of over 20 mV and signal
deviations are visible, the robust selection of diverse features
ensures that tampering had no effect. Here, only a single frame
showed irregularities, but due to the threshold approach this
does not lead to a false alarm.

H. One Week Drive

For the analysis of environmental factors as well as the
effect of electrical consumers in the vehicle on the signal
characteristics, we performed another series of measurements
with the Fiat. Data from a total of nine half-hour trips were
recorded over a period of one week. The vehicle was in
the original state and the DSO was connected to the bus
via the OBD-II port. The measurements were carried out in
winter with rain, wetness and drought at ambient temperatures
between -2◦C (28.4◦F) and 10◦C (50◦F). During the journey,
different consumers were used, such as lights, turn signals,
windscreen wipers, heating and also the start-stop automatic
of the vehicle. Altogether more than 65,000 frames were
recorded.

Again, the first 200 frames per ECU of the first trip were
used to train the model while 10 % of the test frames were han-
dled as attacks. During the analysis we noticed another striking
feature, the distance between the overshoot and the lowest
point of the subsequent oscillation. We replaced this feature
with the variance in order to keep the amount of features. With
this adjustment we achieved a identification rate of 99.98 %
instead of 99.96 % and a false positive rate of 0 % instead
of 0.01 % for the unadjusted feature set. With a detection of
99.6 % of the malicious frames we could also show that the
attack detection still works while driving. Again, no update was
necessary during operation. Overall, the measurements show
that a model can maintain a high identification rate even under
changing conditions over a longer period of time.

V. MICROCONTROLLER IMPLEMENTATION

In order to estimate the performance requirements of
the approach on limited hardware, the fingerprint genera-
tion, classification, model training and update mechanism was
implemented on an STM32 NUCLEO-F446RE [59], a 14 $
development board. The MCU used runs at a clock frequency
of 180 MHz, offers 512 kB flash and 128 kB SRAM, provides
a floating point unit (FPU) and also a digital signal processor
(DSP). This platform is quite comparable with MCUs used in
today’s vehicles, which include the STM SPC58 [58] with up
to 3x180 MHz and the Infineon TriCore TC3x [30] with up to
6x300 MHz. These automotive MCUs also offer an HSM to
realize the requested security measures, like Secure Boot [52].

A. Signal Gathering

To achieve a realistic comparison we have used the sig-
nals of the Fiat 500 as already done in Section IV. The
representative rising edges, each consisting of 20 samples,
were first determined on the PC and then transmitted via
UART together with the associated identifier to the evaluation
platform. For the sampling on the actual device, a fast-
compare channel or automotive capable high-speed comparator
can be used to control the internal ADC according to the
description in Section IV. The SPC58 and the TC3x series
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also offer Generic Timer Modules (GTMs) [57], mainly used
for powertrain tasks [38], which are free programmable and
designed to process repetitive task. Such a module can be
utilized to control the internal ADC and thus to generate a
representative edge without using the actual MCU. Thus, the
MCU must be used for feature calculation and classification
only after the edge has been captured.

B. Characteristic Derivation

The features listed in Table I are first calculated from
each transmitted edge using the CMSIS DSP Software Li-
brary [1]. The resulting features are stored temporarily as
floating point numbers for further processing. This already
offers optimization potential by switching the approach to
integer arithmetic. Calculating the features requires 16,730
cycles, which corresponds to a duration of 92.94µs. This also
includes the normalization of the features with 2,283 cycles,
which improves Logistic Regression.

C. Model Generation

Before classification is possible, the model has to be
trained. Here we use Logistic Regression with L2 regulariza-
tion. In order to achieve a low memory utilization, a mini-
batch approach was implemented. Instead of using 200 frames
per ECU at once, a new mini-batch with 8 frames per ECU
is used after each iteration. Altogether the training consists
of 25 iterations, whereby in each iteration 20 minimization
steps using the conjugate gradient method are performed.
For each ECU 2,348,400 cycles are required per iteration,
which corresponds to 13,046µs. Accordingly, the learning time
requires 2.61 seconds for the given training set of 200 frames
per ECU.

D. Sender Identification and Intrusion Decision

After the training phase, the classifiers can be used for
sender identification. For each classifier, 663 cycles or 3.68µs
are needed for the calculation of the probabilities. In the
optimum case, i.e. with a high probability of detection, a
total duration of 96.62µs per signal was achieved. Making the
decision about an intrusion requires with 468 cycles further
2.6µs. If all probabilities have to be calculated, the total
duration was 124.98µs. A CAN frame with 8 bytes of payload
occupies the bus for minimum 222µs with an automotive
typical bandwidth of 500 kB/s [32]. Therefore, the presented
approach is capable to process the signals sufficiently fast
in order to identify the sender on a 100 % loaded bus, as
illustrated in Figure 8. However, in practice the load is much
lower to ensure safety requirements.

Regarding the performance on the system, an identification
rate of 99.94 % and a false negative rate of 0.03 % was
achieved for the Fiat 500 data set from Section IV-A. As in
the previous evaluations, no false positives occurred.

E. Naive Bayes

We have also implemented and analyzed Naive Bayes on
the considered platform. As expected, the training of the model
is less computationally expensive, which is reflected in an
approximately 20 times faster training time. The classification

achieves similar good results, whereby the estimation of the
origin of a frame takes more than three times as long compared
to Logistic Regression. In addition, with the NB classifier the
calculation cannot be carried out only for a single ECU, which
leads to the fact, that in contrast to LR, it require almost the
entire time.
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Fig. 8: Worst case timings on the resource-constrained plat-
form.

F. Model Adjustment

Since it is of interest whether the presented update mech-
anism is able to maintain a consistently high identification
rate even with very strong changes, the update mechanism
was evaluated with LR and NB. However, since almost no
real signal changes occurred during the measurements, the
evaluation was performed with simulated changes. After the
analysis of 1000 unchanged frames, the voltages of 4000
randomly selected frames were scaled incrementally to 80 %,
followed by 3000 frames, which were scaled to 110 % of their
original value. Fig. 9 shows the identification rates for LR and
NB with and without the update mechanism. Obviously, even
with such strong changes of up to 30 % after frame 5000 in a
very short period of time, the LR is able to maintain a high
identification rate with the proposed update procedure.
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Fig. 9: Comparison of model updates for the Fiat 500 set.

Besides the evaluation of incremental drifts, it is also of
interest how to handle the model adaptation to abrupt changes.
Therefore it was examined whether it is more efficient to
adapt the existing model or to create it from scratch, by
comparing the number of required iterations, i.e. mini-batches.
For comparison with the existing model, it was first trained
with unchanged data. In the following, randomly selected
frames were scaled by a factor of 0.8 to simulate the abrupt
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drift. Afterwards, the two approaches were analyzed for both
machine learning algorithms. While it is an advantage for the
LR to adjust the existing model, it is more efficient for NB
to train a new model, as it takes longer for the changes to
be fully adopted. In contrast to the complete training with 25
iterations, only 4 iterations are necessary for the adjustment
with LR, which takes less than one second on the system used
here. In such a situation, the secure labeling of the data for
which we exchanged keys in the initial training phase must
be guaranteed. Summarizing, it was shown that the sender
identification can be maintained during incremental drifts with
a high detection rate, and that the model can be adapted to
abrupt drifts.

VI. RELATED WORK

Cryptographic measures, such as MACs, are the most
suitable methods to ensure authenticity. Since AUTOSAR
4.2.1, cryptographic algorithms are provided by the SecOC
module [3]. In order to prevent collisions, the general rec-
ommendation for the minimum length of the MAC tag is
64 bit [15]. However, this also corresponds to the maximum
payload of a CAN message, which is why tags are strongly
truncated. But even with an exemplary length of 24 bits
plus 8 bits as freshness counter, the available bandwidth is
reduced by more than 50 %, as regular synchronization of
the freshness counter is necessary as well. Another factor is
key management, which includes not only key generation and
distribution but also its secure storing. This requires HSMs,
which can provide additional acceleration for the calculation
of cryptographic algorithms [65]. However, even for ECUs
which include such a hardware extension, the calculation or
verification of the tags is not trivial, as further overhead is
added by the communication with the HSM. For example,
for ECUs that process many frames, such as gateways, it is
difficult to process all tags accordingly. But although a MAC
can be implemented without problems, they do not offer non-
repudiation. As a result, ECUs capable of verifying frames are
also able to forge them. Non-repudiation is provided by digital
signatures, but their requirements are considerably greater and
therefore not suitable for CAN communication.

Murvay and Groza [46] have shown for the first time
that the differences of the CAN signal characteristics can
be used for sender identification and remain unchanged over
several months on a prototype setup. Based on these results,
Choi et al. [11] optimized the approach by using machine
learning methods for classification. Using a neural network
and a sample rate of 2.5 GS/s a classification rate of 96.48 %
was achieved. The approach also requires to embed a fixed
18-bit value for all ECUs in the extended identifier field to
extract the characteristics from the corresponding signal. This
allows a classification independent of the transmitted data, but
at the same time reduces the available bandwidth. In addition,
the extended identifier can no longer be used for its original
purpose. The best results are achieved by using a fixed value
which, apart from additional stuff bits, consists exclusively of
dominant bits. Therefore, characteristics contained in the rising
or falling edge only slightly influence the classification. Thus,
the voltage level is the most important and main characteristic.
With VoltageIDS [12] Choi et al. have presented a further
development of their approach operating without the extended
identifier field. The approach was evaluated in two vehicles,

with identification rates ranging from 90.01 % to 99.61 % being
achieved while driving. In addition, a lower sample rate of
250 MS/s was analyzed, resulting in a detection rate of up to
93.54 % on real vehicles.

The IDS extension Voltage-based attacker identification
(Viden) [10] works only on the basis of the voltage level,
whose goal is to identify the attacking ECU after an intrusion
has been detected by a high-level IDS. The system generates
a model based on the average voltage level of dominant
bits of the ECUs, collected from multiple frames. Although
the basic concept has low resource requirements, a 200-tree
Random Forest is used to verify the decisions, which negates
the performance advantage. The verification phase is necessary
for the detection of voltage-aware attackers and to distinguish
near-equivalent voltage profiles, for which we see an increased
probability due to the use of a single signal characteristic.
In addition, there are no details about the life cycle of the
classifier, whose training respectively actualization we consider
to be very complex, as with Decision Trees. Beyond that, Viden
uses the two signals, high and low, separately instead of the
difference signal, making it more sensitive to interferences.

Scission [34] uses comprehensive signal characteristics for
the identification. By analyzing the individual symbols of a
received frame separately, an identification rate of 99.85 %
could be achieved, while all false positives were prevented
during the evaluation in two production vehicles. Even if
Scission has a lower computing requirement compared to the
work of Choi et al. [11], there is still a high hardware demand.
This is mainly caused by the resulting data rate due to the
methodology as well as the sampling rate of 20 MS/s. Scission
can therefore only be partially implemented on an automotive
platform, which must also provide an external ADC.

Simple [17] creates an average symbol like Volt-
ageIDS [12] and therefore also utilizes comprehensive signal
characteristics for sender identification. The difference to pre-
vious methods lies in the fact that the average symbol is used as
a direct input for the identification via a distance metric. While
this provides runtime benefits, we have observed that using
machine learning is an advantage regarding the robustness as
well as the identification and detection rates. This is also shown
by the results, as despite a sampling rate of 50 MS/s and the
use of a less complex bus architecture, the equal error rate of
0.89 is higher than the rates we achieved with EASI.

With TACAN [67] an approach to use covert channel-based
transmitter authentication by exploiting physical characteristics
of communication was introduced. Among others, the inter-
arrival times are specifically adapted to transmit information
for the authentication of ECUs. While this option does not
have a negative impact on bandwidth compared to the use of
MACs, key management and the additional resource demand
for resources for the calculations remain. Especially with the
adoption of CAN with flexible data rate (CAN-FD), the issue
of limited bandwidth for the transmission of MAC tags loses
importance, as the maximum payload rises to 64 bytes.

Besides using sender identification methods it is also
possible to use package-inspection in order to detect malicious
behavior, like done by EVAD [21] or CASAD [48]. Rare
cases and combinations, which have to be considered for
training, make these systems prone to wrong decisions in
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operation [63]. Depending on the actual requirements there
is either an additional cloud connection or a high-performance
ECU necessary to establish and adapt the models according to
the driver or environmental conditions. Apart from the voltage,
signal characteristics are less dependent on the situation or
driver and thus much easier to keep up-to-date. On the other
hand, these systems are also able to detect attacks based on
the payload of the frames, even if the identifier used is sent by
a legitimate ECU. Therefore, we consider package-inspection
as a complementary security measure to sender identification.

VII. RESOURCE REQUIREMENTS

The approach presented in this paper reduces the require-
ments, enabling the usage of comprehensive signal character-
istics on resource-constrained platforms in real time. Previous
approaches have considerably higher requirements, are not
real-time capable even with high-end PC hardware [11] or
leave this issue unclear [34], [12]. In order to compare the
requirements, we consider the necessary memory to store the
measurements in order to generate one fingerprint and the
computational effort required for the calculation of the mean,
a feature used by the compared approaches. In the following
we assume a bus with a baud rate of 500 kb/s and a frame
with a payload of 8 bytes.

In the approach of Choi et al. [11] the extended identifier is
used and its signals are recorded with 2.5 GS/s and 12 bit accu-
racy. Due to the recommended extended identifier, three stuff
bits are transmitted in addition, resulting in a total of 21 bits.
Thus, only for the storage of the measurements 153.81 kB are
needed, which is already 20 % more than the available memory
of the platform used in this paper. The VoltageIDS [12] uses
the signals which are transmitted after the arbitration phase.
This results in 86 bits, recorded with at least 250 MS/s and
8 bit accuracy. Possible stuff bits are not considered here.
Altogether, this results in a memory requirement of 41.99 kB.
Scission [34] is comparable to the VoltageIDS, but operates
with a lower sample rate of 20 MS/s, resulting in a memory
requirement of 3.36 kB. Simple [17] samples initially the
whole frame with 50 MS/s, including the bit fields before the
payload in order to extract the identifier. Since this can easily
be avoided by using the CAN controller, we also assume
86 bits here, which corresponds to a memory requirement
of 8.4 kB. EASI samples ten edges two times, resulting in
20 measurements respectively a memory requirement of 20
bytes, which is a reduction by a factor of 168 compared to
Scission [34].

An exact statement about the required computational re-
sources is difficult to determine as the approaches are imple-
mented in different programming languages, have been tested
on different platforms or are not available. However, since
the greatest effort lies in the calculation of the features, we
consider the number of cycles required to calculate the mean
value. This gives an estimation of how strong the calculation
depends on the number of measurements. The results are
shown in Table V, where it can be seen that our approach re-
duces the computational effort by a factor of 142 compared to
Scission [34]. As mentioned in Section V a frame with 8 bytes
of payload occupies the bus for a minimum of 222µs at a
bandwidth of 500kB/s. The calculation of the mean value with
Scission alone requires 332µs with the embedded platform

TABLE V: Comparison of the considered approaches.
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Identification (%) 96.48 93.54 99.85 99.1 99.98
False positives (%) 3.52 6.46 0 0.9 0
Sampling rate (MS/s) 2500 250 20 50 2
Improvement factor 1250 125 10 25 -
FP footprint (kB) 153.81 41.99 3.36 8.4 0.02
Improvement factor 7691 2150 168 420 -
Computation (cycles) 2.7 M 0.75 M 60 K + 420
Improvement factor 6443 1782 142 + -

used here, almost one and a half the time the bus is occupied
by the frame. For comparison, our approach is completed with
the entire feature calculation and classification after 96.62µs.
Since Simple [17] does not calculate comparable features, we
cannot give a comparison for this metric. To ensure that this
performance advantage is not ignored, we highlight Simple
positively in the table.

Another part of the cost of implementing an approach for
the use of comprehensive signal characteristics is defined by
the required ADC. Higher sampling rates usually require an
external ADCs, which leads to additional costs for the circuit
and also for the actual ADC. While gigasample ADCs cost
several 100 dollars, ADCs with few megasample are in the
10 dollar range. EASI can work without additional ADCs,
since the required sample rate is often supported by current
MCUs [30], [49], [59].

VIII. DISCUSSION

A. Size of Frames

A disadvantage of the proposed procedure is that a mini-
mum number of rising edges is required to acquire a sufficient
number of samples. In order to obtain a representative signal
curve comparable to a curve sampled with 20 MS/s, at least
10 rising edges are required at a sampling rate of 2 MS/s. The
number of edges depends primarily on the transmitted data.
However, the minimum available and usable edges can be
determined so that a minimum sampling rate can be specified
with regard to the data lengths. If the entire data space is known
for a communication system, the required sampling rate can
be determined.

The minimum number of usable rising edges depending on
the length of the payload and the resulting minimum sampling
rate is given in Table VI. Only the rising edges which are
present after arbitration were counted, since previous ones may
have been influenced by other bus participants. In addition
to the data length and the actual data, the CRC field is also
available, which in the worst case contains two rising edges.
If these parameters are not fulfilled, the senders of messages
containing too few rising edges may only be determined with
limited accuracy. Thus, with 2 MS/s in the worst case, only
frames containing at least 5 bytes of payload can be clearly
assigned.
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TABLE VI: Required sampling rate in MS/s dependent on the
length of the payload in bytes.

Payload 0 1 2 3 4 5 6 7 8
Edges 2 4 6 8 9 11 11 13 15
Rate 10 5 3.4 2.5 2.3 1.9 1.9 1.6 1.4

B. Using an External ADC

Although we have presented a procedure which avoids
the need for an additional ADC depending on the platform,
it can still offer advantages to use an external ADC with a
high sample rate in order to record a full edge directly. This
is particularly the case if several buses are to be analyzed
simultaneously by the same system, for example, if EASI is
integrated in a gateway that connects several bus segments.
Thus, one ADC can then be utilized for the buses, since the
time of its usage per frame would be much smaller and the
triggering would also require a less precise behavior. Except
for the signal gathering phase, no changes would be necessary.

C. Falling Edge

In addition to the rising edge, the falling edge also provides
characteristics which can be used for classification. Although
the characteristics are not sufficient to achieve comparable
results, they can be used to increase the detection rate and
robustness. Depending on the selected features, however, the
required computing power and memory utilization increases.

D. Limitations

The system detects intrusions when a malicious ECU sends
messages with identifiers for which it is not authorized. When
an attack can be carried out without this injury, the system
presented is not able to detect it. This also applies if an
attack is fed into the monitored bus via a gateway and the
messages with the identifiers used can generally be sent via
the gateway. This is based on the fact that the signals of the
original sender are replaced by the signals of the gateway.
Further, simple additional connected devices are recognized
by detecting changes in the bus, as this significantly changes
the characteristics of the known ECUs. If it is possible for an
attacker to prevent this change, no alarm is triggered. Although
this requires access to a specific vehicle, but the attacker
has access to a similar vehicle of the same model with the
same equipment, he can obtain some information about the
characteristics of the target vehicle in advance. Following, it
is possible with correspondingly complex hardware and effort
to imitate special signals and thus respective characteristics.
For this reason, in addition to the monitoring of the signal
characteristics, the use of classical IDS, which work on the
basis of frequency and packet analyses, is recommended.

E. Field of Application

By drastically reducing the resource requirements and the
associated costs, it is possible to integrate the presented system
at several points of a bus. Due to the varying measuring
positions in the bus, different characteristics occur for the same
frame, as shown in Figure 7. If several systems are operated
in parallel, their results can be compared which leads to a

reduction of wrong decisions In addition to being used as
extensions for classic IDSs, the approach can also be integrated
into gateways. This allows messages to be checked before
being forwarded and discarded in the event of an attack. Thus
it is possible to prevent the propagation of attacks over several
segments without the need for further communication over
potentially compromised bus segments to notify other ECUs.

Besides the automotive sector, CAN is also used in other
areas, such as automation, medicine and rail. There are also
several higher protocols based on CAN, such as CANopen [6]
or SafetyBUS [51]. In principle, the same problems exist here,
which makes EASI relevant for these areas as well. In addition,
since the bandwidth provided by CAN will not be sufficient for
future developments, CAN-FD [54] was introduced in 2012.
CAN-FD enables an increased bandwidth of up to 2.5 Mbit/s
in the automotive sector [22] and a payload between 8 and 64
bytes per message. Since the functionality remains unchanged,
the proposed approach is also suitable for the next development
stage of CAN. The higher payload also increases the number
of rising edges, which can be used to reduce the sample rate.

IX. CONCLUSION

Intrusion Detection Systems are a promising technology
to increase security in connected vehicles. Due to the missing
sender identification of the CAN, the most used bus system, the
IDSs miss the important information from which ECU received
messages were sent. Also the evolution, CAN-FD, which will
be introduced with the next vehicle generation, does not change
this and can therefore benefit from this information as well.
Besides the automotive sector, CAN is also used in other areas,
such as automation, medicine and rail. The approach presented
in this paper allows the sender to be identified by differences
in signal characteristics caused by hardware. The evaluation
based on a prototype and two production vehicles proved
that a sender identification of over 99.9 % is also possible
with resource-constrained hardware. Thus, it could also be
shown for the first time that classification is also possible at
low cost on the basis of comprehensive signal characteristics,
while real-time requirements could be met. This was mainly
achieved by strong simplifications of the individual phases, the
reduced sampling rate and the small amount of data which has
to be processed by the system. Nevertheless, we were able
to further increase the identification rates, as the presented
approach focuses on the characteristics which contain the most
information for sender identification. In addition, we have
specified an update approach and shown by simulation that
it is able to adapt the model to potential changes. Besides
attacks using compromised ECUs, the presented IDS is also
able to detect intrusions by unmonitored and additional ECUs.
It was also demonstrated to be robust against attackers who
can influence the voltage level of compromised ECUs and
the energy supply of the vehicle. Finally, we did a one-week
test drive to demonstrate the robustness of the system under
changing conditions and active consumers. Considering that
an attacker can control all vehicle functions as soon as he has
access to the internal communication, the approach presented
here offers considerable potential for increasing the security
and thus the safety of connected vehicles. Overall, EASI is the
first sender identification approach exploiting comprehensive
signal characteristics which enables the implementation on a
realistic automotive platform.

14



REFERENCES

[1] Arm Limited, “Cmsis dsp software library,” https://github.com/
ARM-software/CMSIS 5, 2018, version 5.4.0.

[2] AUTOSAR Development Partnership, Specification of Diag-
nostic Communication Manager, no. 4.3.1. [Online]. Avail-
able: https://www.autosar.org/fileadmin/user upload/standards/classic/
4-3/AUTOSAR SWS DiagnosticCommunicationManager.pdf

[3] ——, “Specification of module secure onboard communication,”
https://www.autosar.org/fileadmin/user upload/standards/classic/4-3/
AUTOSAR SWS SecureOnboardCommunication.pdf, Nov. 2016.

[4] O. Avatefipour, A. Hafeez, M. Tayyab, and H. Malik, “Linking received
packet to the transmitter through physical-fingerprinting of controller
area network,” in 2017 IEEE Workshop on Information Forensics and
Security (WIFS), Dec 2017, pp. 1–6.

[5] Z. Cai, A. Wang, W. Zhang, M. Gruffke, and H. Schweppe, “0-days
& mitigations: Roadways to exploit and secure connected bmw cars,”
Black Hat USA, vol. 2019, p. 39, 2019.

[6] CAN in Automation, “Canopen the standardized embedded network,”
https://www.can-cia.org/canopen/.

[7] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Sav-
age, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno, “Comprehensive
experimental analyses of automotive attack surfaces,” in Proceedings of
the 20th USENIX Conference on Security, ser. SEC’11. Berkeley, CA,
USA: USENIX Association, 2011, pp. 6–6.

[8] K.-T. Cho and K. G. Shin, “Error handling of in-vehicle networks
makes them vulnerable,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS
’16. New York, NY, USA: ACM, 2016, pp. 1044–1055. [Online].
Available: http://doi.acm.org/10.1145/2976749.2978302

[9] ——, “Fingerprinting electronic control units for vehicle intrusion
detection,” in 25th USENIX Security Symposium (USENIX
Security 16). Austin, TX: USENIX Association, 2016, pp.
911–927. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/cho

[10] ——, “Viden: Attacker identification on in-vehicle networks,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’17. New York, NY,
USA: ACM, 2017, pp. 1109–1123. [Online]. Available: http:
//doi.acm.org/10.1145/3133956.3134001

[11] W. Choi, H. J. Jo, S. Woo, J. Y. Chun, J. Park, and D. H. Lee,
“Identifying ecus using inimitable characteristics of signals in controller
area networks,” IEEE Transactions on Vehicular Technology, vol. 67,
no. 6, pp. 4757–4770, 2018.

[12] W. Choi, K. Joo, H. J. Jo, M. C. Park, and D. H. Lee, “Voltageids: Low-
level communication characteristics for automotive intrusion detection
system,” IEEE Transactions on Information Forensics and Security,
vol. 13, no. 8, pp. 2114–2129, Aug 2018.

[13] Consumer Watchdog, “Kill switch why connected cars
can be killing machines and how to turn them off,”
https://www.consumerwatchdog.org/sites/default/files/2019-07/KILL%
20SWITCH%20%207-29-19.pdf, 2019.

[14] T. Dagan and A. Wool, “Parrot, a software-only anti-spoofing defense
system for the CAN bus.”

[15] Federal Office for Information Security, “Tr-02102-1 cryptographic
mechanisms: Recommendations and key lengths,” Jan. 2018.

[16] M. A. Fischler and R. C. Bolles, “Random sample consensus:
A paradigm for model fitting with applications to image analysis
and automated cartography,” Commun. ACM, vol. 24, no. 6, pp.
381–395, Jun. 1981. [Online]. Available: http://doi.acm.org/10.1145/
358669.358692

[17] M. Foruhandeh, Y. Man, R. Gerdes, M. Li, and T. Chantem, “Simple:
Single-frame based physical layer identification for intrusion detection
and prevention on in-vehicle networks,” in Proceedings of the 35th
Annual Computer Security Applications Conference, ser. ACSAC ’19.
New York, NY, USA: ACM, 2019, pp. 229–244. [Online]. Available:
http://doi.acm.org/10.1145/3359789.3359834

[18] I. Foster, A. Prudhomme, K. Koscher, and S. Savage, “Fast
and vulnerable: A story of telematic failures,” in 9th USENIX
Workshop on Offensive Technologies (WOOT 15). Washington, D.C.:

USENIX Association, 2015. [Online]. Available: https://www.usenix.
org/conference/woot15/workshop-program/presentation/foster
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